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Abstract

In the early eighties the direct application of a multigrid technique for solving the
partial eigenvalue problem of computing few of the smallest eigenvalues and their corre-
sponding eigenvectors of a large symmetric positive definite matrix A was proposed by
Brandt, McCormick and Ruge [4]. This method solves the eigenvalue problems on the
sequence of nested grids using an interpolant of the solution on each grid as the initial
guess for the next one and improving it by the Full Approximation Scheme (FAS) [3]
applied as an inner nonlinear multigrid method.

In the present paper an experimental study of the method for model elliptic and linear
elasticity problems is carried out. Based on these results the quality of the method is
improved by using the nonlinear Gauss-Seidel iteration as pre- and postsmoothing steps.
Finally, we give some practical advice for a good choice of multigrid-related parameters.
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1 Introduction

In this paper, we are interested in computing few smallest eigenvalues and their corresponding
eigenvectors of a large symmetric positive definite matrix A , which arises as a result of the
finite element approximation of boundary value problems. Typically, the matrix A is large
and sparse. To be able to solve the problem (5) with a reasonable computing time one
must use optimal (or nearly optimal) techniques, i.e., methods for which the computational
complexity grows linear (or almost linear) with increasing problem size.

The usual methods for solving eigenvalue problems are often based on the effect of exci-
tation of the smallest eigenvalues by repeated multiplication of the inverse matrix A~! on a
vector. This applies to such popular techniques as a subspace iteration, the Rayleigh quo-
tient and the Lanczos method [23]. However, in the large—scale finite element problems, it is
often desirable to avoid a costly inversion or, to be more precise, exact factorization of the
matrix A . The simplest way is to use some preconditioned iterative procedure instead of the
direct method for solving the linear system with A whenever it is required in the algorithm.
In particular, algebraic multilevel and multigrid methods allow us to construct optimal pre-
conditioners for sufficiently wide number of industrial applications (see [26] and references
therein).
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Today among of a lot of literature published about efficient eigensolvers one can extract
two main directions. The first one is based on the implicit application of algebraic multilevel
or multigrid methods to construct an approximated inverse of A and use them as a precondi-
tioner [1, 2, 6, 7, 12, 13, 14, 15, 16], when the second one directly applies the main multigrid
ideas of the fine grid relaxation and the coarse grid correction [4, 8, 9, 10, 11].

However, all of these methods are treating this eigenvalue problem as a purely algebraic,
and hence, we lose some valuable information about the desired eigenpair. For example, the
smallest eigenvector of the Laplace operator is very smooth, i.e., it can be well approximated
on coarser grids, and hence, one can use this information during the solution process. The
nested iteration multigrid process, which take the advantage of this smoothness, was proposed
by Brandt, McCormick and Ruge [4]. The idea of this method is that the eigenvalue problems
are solved on the sequence of finer grids using an interpolant of the solution on each level as
the initial guess for the next one and improving it by an inner nonlinear multigrid method, i.e.,
suppressing the high frequencies oscillations arising as a result of the interpolation process.

However, in spite of the good numerical results and the fact that the method was suggested
in the early eighties, there has been no substantial further research and development in this
direction for many years. It can be intuitively motivated by the lacking of a strong theoretical
background due to the nonlinearity of the problem to be solved. The present work is an
experimental study of this methods to understand the main points of the method, which have
an important meaning as for the accuracy of computed eigenpairs and as for its computational
complexity. Moreover, based on first results we slightly modify the relaxation step in the inner
iteration process to avoid possible disconvergence when more than one relaxation step used.

The paper is organized as follows. In Section 2 the formal definition of the elliptic bound-
ary value and the linear elasticity eigenvalue problems is given. Moreover, the method for
constructing the sequence of matrices is discussed. Further the paper is naturally divided into
two parts. In the first part (Section 3) we consider the simplest eigenproblem for finding the
smallest eigenvalue and its eigenvector to present a general framework of the full multigrid
method or, shortly, the FMG-EV method. Based on numerical results we will make some
recommendation for chosing effective user-defined parameters. The FMG-EV(p) method for
finding p smallest eigenvalues and their eigenvectors will be discussed in the second part (Sec-
tion 4). The corresponding numerical results shows its robustness at least for model problems.
The final conclusions are given in Section 5.

2 Problem formulation

A lot of physical lows and govering processes can be formulated by means of partial differential
equations. In practice, most such problems concern the elliptic self-adjoint boundary value
problem

div(k(z)grad u(z)) = Au(z),

in a bounded domain of R¢ with appropriate boundary conditions. Here d = 2 or 3 is a
spatial dimension. The coefficient matrix k(z) denotes a symmetric positive definite second
or fourth order tensor, which is frequently piecewise constant and/or highly anisotropic. The
displacement equation of linear elasticity problems have the similar form, where u(z) now
denotes the displacement vector u(z) = (u1,...,uq)? and the coefficient matrix k(z) denotes
the elasticity tensor. Below we will give differential and variational formulations for two model



problem of this type, which we will study numerically. The corresponding matrix formulation,
which has a unique form for both cases, will be also presented.

2.1 The elliptic boundary value problem

Consider the elliptic boundary value problem with homogeneous boundary conditions
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where Q is a polygonal domain in R? with boundary 012, where the coefficient matrix [k;;(z)]
is assumed to be uniformly symmetric positive definite for any z € Q, and g(z) is a given
function. Although we assume Dirichlet boundary conditions, the results of this paper are
valid for general boundary conditions. Under these assumption all eigenvalues A of (1) are
real and positive.

The Galerkin variational formulation of the boundary value problem (1) is as follows.

Find \; € R and u, € H}(Q) = {v € H(Q) : v=0on Q} such that

a(ug,v) = Agb(ug,v), k=
l

32 Dy
b(Uk,Ul) = 5kl7 = ]-a 27 . (2)
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for all v € H}(Q), where H'({2) is the usual Sobolev space, §;; is the Kronecker symbol
and bilinear forms a(u,v) and b(u,v) are defined by
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a(u,v) —/ [z_: k”(x)a_x,a_x]] s, b(u,v) = /uv dQ.
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2.2 The linear elasticity problem

The linear elasticity eigenvalue problem in a domain Q in R? with boundary I' can be formu-
lated in terms of the displacement vector @ = (u1,ug,us3), stress tensor o = (0;;) and strain
tensor € = (¢;;) as follows

divo = \u,

. 1 8’[1,1 an

3
oij(w) = le—:l kijri() €xi (),
u=0onTp, o-mn=00onTy=T\Tp.

Here k;jxi(x) is elasticity tensor depending on positive material (Lamé) coefficients, 7 is the
outward pointing normal on I'y and I'p, 'y denote Dirichlet and Neumman parts of the
boundary, respectively. We assume that I'p # @ and the Korn inequality holds. These
assumptions are needed to ensure that all eigenvalues A of the problem (3) are positive. For
more details regarding the problem formulation we refer to [19] or other books on elasticity.

The variational formulation of the linear elasticity eigenvalue problem (3) can be derived
in a standard way and is stated as follows:



Find \; € R and 5, € [H}(Q)]? = {v € [HY(Q)]? : =0 on I'p} such that

a(ﬂkaﬁ) = )‘kb(ﬂkaﬁ)a k=
b(Tg, W) = O, l

for all T € [H}(Q)]? and two bilinear forms a(w,v) and b(w, 7) are defined by
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2.3 Matrix formulation and the sequence of A%

Let us assume that the domain 2 is decomposed by a set of finite elements Y. Introducing
Vi C HY(Q) or V}, C [H'(Q)]? the space of vector functions with local support, associated
with the vertices of T, and applying to (2) or (4) the standard Galerkin procedure, we obtain
the following eigenvalue problem

Aug = Agug, A:ATERnxn, 0< A <A< <y,
(ukaul)zdkla kal:]-a"'apa

()

where the matrix A corresponds to the bilinear form a(-,-) or a(-,-) and (u,v) = u’v.

In order to define a multilevel process we have to construct a sequence of symmetric
positive definite matrices {A(k)}, k=0,1,...,L — 1, L of an decreasing order n; such that
A©® = A, For last two decade many scientists concerns to the question for solving the
linear system of equations: how to construct the best (or optimal) sequence of matrices AK)
(in terms of computational costs of the corresponding iterative process)? The problem was
successfully solved for sufficiently wide nimber of industrial problems (see [26] and references
therein). There are two major types of the methods, which are based on either problem-
dependent geometrical information or matriz-dependent numerical information. The choice
of the method to compute {A(k)} usually depends on the problem to be solved, and hence, is
up to the user priority. However, in the case of the eigenvalue problem the situation is quite
different.

Let Ny € {1,...,nx} be the set of indeces of all unknowns (or nodes) on the level k,
k > 0 and is partitioned into two non-intersection subsets, e.g., N,{ c {1,...,ng} and
Nf C {1,...,nk} such that N = N,gUN,f and N,gﬂN,ﬁc = (). This partititioning yields
the following block matrix form of A®*)

AR AE ] d\ng
Ak) —
A a9 ] s

where the first group of unknowns correspond to the indeces in N, ,{ and the second one forms
a new set of indices on the next level, i.e., N1 = N{. For the given partititioning, we define
a prolongation matrix PF,; € R™>X™k+1 of the following form

ph = T e\ 41
* Tir1 | e



where I 1 is an identity matrix of order ngy; and the choice of blocks J; depend on the
method used for construction of the sequence of matrices A®*).
For example, the matrix-dependent methods are based on the Galerkin coarse-grid matrix

formulation:
AHD = RI/EHA(IC)PlfHa R’;i“ = (Plf+1)T,

where BT is a transpone of B and the block Jj, in the definition of an interpolation matrix P,f 1

(

is a sparse approximation of —(All?)_lAgg). Assume ”ideal” situation for iterative mehods,
ie.
k)\— k
Ty = —(Af)) 14,
then we get
k k k)y— k
AKFD = Agz) - Aél) (Agl)) 1A§2)-

and hence, we solve the following eigenproblem on the coarse level
k k k)\— k k k
AGF) (kD) = ZAEFD(kFD) (AgZ) - Agl)(Agl)) lAgz))lé ) = )\(Hl)ug )- (6)

On the other hand, from
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we obtain the equivalent eigenproblem on the coarse level
k k), 4 (k —1 4 (k). (k k
(Ag2) - Ag1) (Ag1) - /\(k)I) 1A§2))ug = /\(k)ug )7

which is different (!!!) from (6). Thus, the direct application of matrix-dependent multilevel
technique developed for solving the linear system of equations is not a good idea, and hence,
the method for computing a good sequence of matrices A%¥) is required.

From the first point of view the problem-dependent approach have to work much better
than matrix-dependent one, since the problem information about the behaviour of the smallest
eigenvectors are used (at least implicitly). Nevertheless, the smallest eigenvalue on two adjoint
levels are still different due to different characteristic mesh sizes on different grids.

In the present paper following [4] we use the standard multigrid method, although any
kind of multilevel techniques specially developed for eigenproblems can be used to construct
that sequence of matrices.

Let us assume that the initial (coarse) triangulation Yy, of the domain {2 is such that the
coefficient matrix k(z) is constant in each element 7; € T, and can be discontinuous across
the elements. To obtain a sufficiently accurate solution of the problem (2) or (4) we make
a uniform refinement procedure to construct a sequence of nested meshes (triangulations)
T, C Y1 C...C YTy C7YTog=7. Introducing V; C HI(Q) or Vi C [HI(Q)]g the space
of linear vector functions, associated with the vertices of T}, and denote by A*) the global
stiffness matrix on level k, which is calculated as

AW = {a(¢™, )},

where {(ﬁz(k)} is a set of standard (nodal) basis functions in V.



Now the Galerkin procedure applied to (2) or (4) on each grid Ty leads to the sequence
of eigenvalue problems with the corresponding matrices A®) of the decreasing order:

A(k)uz(-k) _ )\_uz(k)’ Ak) — AK)T eR™" (< )\( ) /\g ) <...< /\(k)
W uy =6y, ij=1,...,p k=01,...,L,

where the matrix A®*) corresponds to the bilinear form a(:,-) or a(-,-) on the level k.

For the given partititioning, coefficients for the interpolation of the value u®) from ul
are computed using the standard (geometrical) linear interpolation [8, 27]. Note that by the
definition of P} '+, we have for k <

k+1)

ok pktl . pk phktl 1-2 pi—1
=P P =... =P, Py...B{P,

and vica-versa

R, =R, \R.’'=...=R} \R}.. . RI}P[""

3 The FMG-EV method for the first eigenvalue

The idea of the FMG-EV method based on the idea of the well-known full multigrid approach,
i.e., we find some approximated solution of the analogous problem on the coarse level and
using its interpolant as the initial guess for some inner iterative process on the next (finer)
one.

3.1 The basic method
Now we formulate the FMG-EV method for solving the sequence of intermediate problems
AR E) = \Ely®) - u®)|| =1, k=L,L—1,...,1,0, (7)

beginning with the coarse level (k = L) and including the finest level (kK = 0) as the final
stage.

OO = FMGEV(AT, ., A0);
Compute the coarse level approximation {u(), v(1)}
for kK =L-1,...,1,0
o
Mo ™ = H
for it = 1 - g (inner iteration)
{/‘g&c)a Vit } =FAS-EV (4 (k),ugle,v(f)l)
v = v v
pk) = (A(k)v(k) v /(v (k)Y

Here FAS-EV (A, i, v) denotes the inner multigrid method applied for
solving the eigenvalue problem Au = Au using {x, v} as initial guess.




In order to start the multilevel (recurrent) process we have to compute the coarse level
approximation {u(), v(P)} to the desired eigenpair {A\(X), u(P)} by solving the coarse level
eigenvalue problem. Due to the order nj; of the coarse level system is sufficiently small, we
can compute it exactly with the small number of arithmetical operations.

Now assume that we have an approximated solution {,u(kﬂ) , v(kH)} on the level k+1. The
transition to the previous level k starts with the interpolation of the approximated eigenvector
v{#+1) on the next fine level and computing the corresponding initial approximation to )
by using the Rayleigh ratio as follows

k) (k) (k)
v(()k) = P,f+1v(k+1), N(()k) = (A)kvo—’/:r())' ®)
(V(() ),v(() ))

Next to eliminate the high frequencies oscillations, which arise in result of the interpolation
process (8), we apply ¢ times the inner multigrid method, which is based on the full ap-
proximation scheme (FAS) approach [3] and used the same sequence of matrices {A(k)}. The
specific nature of the inner solver will be discussed below. Usually, one or two inner multigrid
sweeps is enough to suppress all (or at least all) undesired frequencies in the approximated

solution. Finally, the iterate v((lk) is normalized and a new updated value of *) is computed.
The process is then repeated on the next finer level until the finest level (k = 0) is reached.

The remainder of this section is devoted to a detailed discussion of certain aspects of the
inner multigrid solver, its relaxation step and numerical results.

3.2 The inner multigrid solver

As stated before, once the vector v(¥) have been interpolated by (8) on the level k — 1, the
vector v*~1) is a weak approximation to u*~1) that we seek. Moreover, the eigenvalue
problem is a monlinear problem. Finally, the normalization condition does not ensure the
uniqueness of the solution since in this case u*) are solutions of (7). Nevertheless, since
v(5=1) ig still the approximation to u*~1Y we would like to converge to a new vector vik=1)
with the same ”sign” or in the similar direction. Thus to obtain a unique solution one can
choose the following normalization condition

(v(k_l)aw(k_l)) =1, (9)

where w(*~1) is some another approximation to the desired eigenvector ulk—1),

One possible way to solve all above mentioned problems is to use a nonlinear multigrid
method as the full approximation scheme, which is responsible quickly and qualitatively
eliminate the high frequency components of the corresponding error u*=1) — v(k=1),

The idea of FAS is the construction of the coarse level problem so that its solution is a
just the fine level solution transfered to the coarse level. Let the currently finest problem on

the level [ be written as follows
ADu® = XOu®O Ju®| = 1. (10)

Assume that we have an approximation v(¥) to the exact solution and the error u{¥ — v(¥) has
been smoothed by v;th relaxation steps (presmoothing), then the problem (10) is transferred
on the next level as follows

AGDWID = DD L B0 gy (wl D) = oy, (1)



where
b+ — (A(Hl)RfH _ RfHA(l)) v(l)’

and ¢;,1 is a normalization condition, which guarantee the uniqueness of (11) and specifies
the size of the solution 0;4;. Note that it is not actually necessary that ;41 be equal to 1
since a solution of any reasonable size is acceptable. The specific nature of ¢; will be discussed
below. Note that if v() = u®, then w+1) = RI*'u® and + = A0,

Now continue the transfer process to next levels using the same idea yields the sequence
of nonlinear problems

AK) (k)
P (w®)
To maintain the ”sign” of the coarse level solution and due to the fact that Rfv(l) is in some

sense an approximation to w(*) one can choose the following normalization condition similar

to (9)

= 4®wk) ¢ pk) | bk = RE_ b1 4 (A(k)Rﬁ_l _ Rlli_lA(k_l)) v(k=1)

T (12
b®) =0, k=11+1,...,L. (12)

= Ok,

¢ (v) = (v, Rfv). (13)
and the corresponding definition for the size of the solution
or = (Ri_v, Riv®). (14)
{1®,v0} = FAS-EV (40, 4, v{)):
b® =0
for k£ =1,...,L—-1
for it = 1,...,11  (presmoothing)
k k k
{Mz(t)’vz(t)} = Relax (A% /Jz(t)la z(t)17b(k))
(8,0} = {pu) vir}
pk+1) — Rﬁ“b( ) + (A(k+1)R£+1 - Rﬁ“A(k)) v(¥)
(()z+1) REF1y(®)
s = p®
Solve the coarse level problem  A@)v(L) = [ (L)y (L) 4 p(TL)
with the normalization condition (v(P), Rfv()) = (RE_,v() RIv()
for k£ =L-1,...,]
v(()k) = vk 4 P,f+1(v(k+1) — RiFLy(k))
us? = pk+)
for it = 1,...,1n  (postsmoothing)

{Nzt ’ zt)} = Relax (A( ) :u‘gt)la gt)lab(k))

{p®) v} = () vy

Here Relax (A, u,v,b) denotes a nonlinear iteration step applied for solving
the nonlinear system (A — jiI)w = b using {u, v} as initial guess.

Once a suitable approximation v{) to w{Z) on the coarse level is found, the approximation

v(L=1) on the previous (finer) level L — 1 can be corrected as follows
-1 _ -1
v =i U+ PR — REVGY),



and finally, v(Z~1) is again smoothed by vyth relaxation steps (postsmoothing).

To proceed, we apply a similar operations to each v(¥), | < k < L, and repeat this process
until the fine level [ is reached. Finally, note that similary to the linear solvers the prolongation
operator in the FAS-EV method does not need to be identical to the prolongation operator in
the FMG-EV method, and, moreover, the FAS-EV method can be considered as eigenvalue
solver itself.

3.3 Nonlinear relaxation step

The relaxation procedure is as follows. First we linearize the nonlinear problem (12) by fixing

the current approximation ugli)l to u®). Now applying one linear Gauss-Seidel iteration step

(k)

for solving this linear problem we obtain a new approximation v;"’ to the solution w(k) | Next

based on definitions (13) and (14) we make normalization
ko o(k=1) pky(l)
vk — (Rg_.v RV )w(k)’
¢ (w(k’), R{Cv(l))

and finally we update the current approximation to x*¥) as follows

*) (A(k)vgk) _ b(k),vz(k))
He ™ = %)

(v, v#)

wk) = GSI (A(k) — Mgfl it—1)
(k) _ (Rf_v* D RiVD)

Vit

£ (% Z E
{uz(t)’vz(t)} = Relax (A(k)’uz(tzl’vz(t)l’b(k)) k
1Ik’v( ) b(k))
1

(w(k), R{cv( )
) AWV —p®) D)
Pat™ = ® ()

(Vit s Vit

Here GSI (A,y,b) denotes the Gauss-Seidel iteration step applied
for solving the linear system Ax = b using y as initial guess.

3.4 Coarse level solvers

To start the nested iteration process we have to find the coarse level approximation {u(L), v(L)}
to the solution {A(X), u(®)}. To solve these problems we use the Gauss-Seidel iteration pro-
cess followed by the standard normalization condition. There are two possibilities to stop this
iterative process. The first one is in that we make a fixed number of relaxation steps Veoarse,
and the second one is in that we solve the coarse level problem with a prescribed accuracy
Ecoarse- As it is readily seen the second version required one additional matrix-vector multi-
plication and one additional vector-vector subtraction per iteration to compute the current
residual ||rZ(L) ||. However, the number of coarse level iteration depend on the order of matrix
A®) | and hence, we could not known in advance an optimal number of iteration to get a
desired accuracy of solution. Thus, both approaches has their advantages and disadvantages,
which was analized by numerical experiments. Based on the results it is recommended to use
the second version as a more flexible to the problem to be solved and as a result less time
consuming.



{p) v(1)} =  OuterCoarseLevelSolver (A()

,ugL) =0, v((]L) = random vector, it =0

) = AN i

while  ( ( [[ri”1l / e8] > €coarse ) and ( it < veoarse ) ) do
) = OB (0 T )
v =w /o
WD) _ (40 D)D) D)

13 R
) = AOVE — vy
it =it + 1
p@ = plP (L) = )

Finally, we have to note that similar relaxation process as for the pre- and postsmoothings
with similar stopping criteria can be used for solving the coarse level problem in the inner
multilevel process:

{(u®,v(D} = InnerCoarseLevelSolver (A, ;i vl p(L))
it =20

) = AN

while  (([r1] /1571 > econrse ) and (it < Veparse ) ) do
{f‘() i) TmRela(’E)(’?L()L)’“EtL)“ i, b
Ty = AlL) Vit o T Mg Vit
wt=9t + 1

0 =P 3 =P

3.5 Computational complexity

In order to investigate the whole computational complexity of the FMG-EV method we recall
that the solution of eigenvalue problems by the FAS-EV method requires the largest compu-
tational costs. By its definition, such a solution breaks up into a set of problems with the
matrices A®) on all levels.

Assume that the number of nodes decreases in a geometrical ratio with a factor p defined
by

Dhtl e <p<1, k=0,1,...,L— 1.
Nk
and hence, we have
o0
Sk <@ (15)
k=0

Denote by W‘(/l) the whole computational complexity of the FAS-EV method applied for
solving (10) on the level [. Let C4 and Cp denote the upper bound of the arithmetic work per
unknowns defined by the matrix-vector multiplication with matrices A®*) and P,f 11 (Rﬁ“),
respectively. Then 2C4ny is approximately the number of operations for one Gauss-Seidel
iteration step with A%*) and moreover, 2n;, is the computational cost of the scalar product
on the level k. Moreover, we assume that the computational costs for solving the coarse level

10



problem is proportional to the number of unknowns on the fine level, i.e., there is a positive
constant Cj such that
Wi < Cong. (16)

Thus, taking into account (15) and (16) we have

L—-1
W < S+ ) [(8Ca + Ty + (1= p) "' Cpmy| + (2C4 + 6Cp + 4)ng } + Cono
k=l
< [(r1 +12)(3Ca+ 7+ (L —1)Cp) +2C4 + 6Cp + 4] (1 — p) "tn; + Cyneo.

Now taking into account the prolongation, normalization and computation of the Rayleigh
ratio on the level [ we obtain the computational complexity of the FMG-EV method for the
transfer from level [ + 1 to level [

WO < q[(v1 +1)(3Ca + T+ (L —1)Cp) +2C4 +6Cp + 4 (1 —p) 'ny
+(Ca+ Cp + 5)n; + Cong.

Next summing by levels we obtain that the total computational complexity denoted by W is
proportional to the number of nodes on the fine level and the number of level used, i.e.,

L
W= <4 [(ul + ) (3CA + T+ —2Cp) + 204+ 6Cp + 4| (1 — p)ng

Inp—1
=0
+ (CA +Cp + 5)(1 - p)ilno + LCong = C(q’ V1, V2, P, CA, CPa CO)LnO = O(LnO)a

where C(u,v1,v9,p,C4,Cp) is a constant depending on the user-defined parameters only.
Hence, the total computational costs of the FMG-EV method for the first eigenpair is nearly
optimal.

3.6 Numerical results

The present numerical results can be naturally divided into two parts. At the first part we
will test our method for the problem, which have an exact solution, to see the approximation
properties of the method and to choose an optimal set of parameters from different points of
view, i.e., the accuracy of the solution and the whole computational cost. Then we will check
the robustness of the method for the model linear elasticity problem with the optimal set of
parameters. All calculations were performed on IBM SP2 in double precision.

To test the method we first consider the eigenvalue problem (5) for the small eigenpair
{A,u}, which corresponds to the piecewise-linear finite—element discretization of the three
dimensional second—order elliptic problems

—Au=Au in Q,
u=0 on I'p = 09, (a7
[[ull =1

in the cube domain Q = [0,1]® on a uniform Cartesian mesh Y, with stepsize h.

h ugvman)}

Formulas both for continuous {);;, », u”™"} and for discret eigenpairs Mmoo

can be easily derived, and they are
Nomn = 72 (12 +m? + n?),
I,m,n=12...,
ulbmmn) = gin (Irz) sin (mary) sin (n7z)

11



for the continuous case, and

A= 4 [sin2 (ﬂ l) + sin? (Lh m) + sin? (W—h n)] ,
T h? 2 2 2 (18)

[ (l;man)

uy L =ul™m(Gh shkh),  lLm,n=1,...,N,

]z‘,j,
for the discrete case (N = h™1).

To illustrate the quality of the eigensolver used we shall show that the accuracy of the
eigenvalue approximation is tended to zero when we increase the number of the relaxation
sweeps per level and the number of inner FAS-EV iterations and at the same moment the
computational complexity is still optimal with respect to the different parameters used.

The first group of numerical experiments were performed for test the accuracy. It is well-
known that in the case of multigrid method when the number of smoothing steps increase and
when we find an exact solution on coarse levels, then the multigrid solver for linear system
of equation is going to be a direct solver, i.e., the difference between exact and computed
solutions tends to a mashine accuracy. We expect the similar behaviour for our eigensolver.
To guarantee the exact solvers on the coarse level we define the following values for vy, Veoarse,
€0 and €cparse- The maximal number of coarse level iteration vy is fixed and is always equal to
100. The maximal number of nonlinear Gauss-Seidel iteration used for computing the initial
coarse level approximation vgeqrse is also fixed and is always equal to 1000. The prescribed
accuracy for the coarse level solvers has been choosen ecpgrse = 10731 and gy = 10716,
Moreover, we use the following generalized parameter v defined by v = v; = 5.

In Tables 3.1-3.2 the results of the experiments for the FMG-EV method for different
choices of relaxation steps and inner iterations are given. In all tables of the paper v is the
number of pre- and post- smoothing iterations on each level, ¢ is the number of inner FAS-EV
iterations applied on each level and Lwls is the number of levels used. Moreover, y is the
computed approximation to the exact eigenvalue A, and hence, the magnitude |A— u| measures
the difference between exact and computed eigenvalues, whereas |Av — pv|| measures the
quality of the approximated pair {u, v}.

N=16 g=1 q=2
Lols | v A —u |Av — pvl] A —u |Av — pv]

4 1 | 0.27669 -10~% | 1.21508 -10~" | 0.10345 -10~* | 0.80434 -10~?
2 | 0.12475 -107* | 0.89570 -10~2 | 0.27632 -10~'! | 0.43173 -107°
3 | 0.48938 -10°® | 0.17608 -10~2 | 0.19165 -10~® | 0.11023 -10~%
4 | 0.30555 -107! | 0.44175 -10~° | 0.47042 -10~2* | 0.67100 -10~*2
5 | 0.12371 -107** | 0.88592 -10~7 | 0.98828 -10~2% | 0.62181 -10~1*
10 | 0.65898 -10=2% | 0.50767 -10~'3 | 0.19644 -10~' | 0.54118 10723

3 1 | 0.27664 -10~2 | 1.21503 -10~' | 0.10345 -10~% | 0.80434 102
2 | 0.12475 -10~* | 0.89570 -10~2 | 0.27632 -10~'! | 0.43173 -10~5
3 | 0.48929 -10=® | 0.17608 -10~% | 0.18973 -10~'® | 0.11020 -10~®
4 | 0.30537 -1011 | 0.44174 -107° | 0.44469 -10-2° | 0.53316 -10~12
5 | 0.12272 -107'* | 0.88570 -10~7 | 0.48726 -10~3' | 0.21738 .10~ 15
10 | 0.20800 -1073! | 0.29617 -10~*° | 0.19259 103! | 0.42379 10~

2 1 | 0.27473 -10~2 | 1.21096 -10~' | 0.10344 -10~% | 0.80432 -10~?
2 | 0.12475 -10~* | 0.89570 -10~2 | 0.27629 10~ | 0.43172 -10~°
3 | 0.48929 -10-® | 0.17608 -10~% | 0.18970 -10~'® | 0.11020 -10~2
4 | 0.30537 -10~'' | 0.44174 -107° | 0.44468 -10~2°% | 0.53315 -10~12
5 | 0.12272 -107'* | 0.88570 -10~7 | 0.54311 -10~3' | 0.22586 .10 1%
10 | 0.95429 -1073 | 0.31748 -10715 | 0.36111 -10~32 | 0.26471 -101¢

Table 3.1. Accuracy of the computed eigenpair {y, v} as a function of v and ¢, p = 1, Laplace problem
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N=32 g=1 q=2
Lols | v A —pl [[Av — pv]| A —pl [[Av — pv]|

5 1 | 0.29207 -10=3 | 0.39956 -10~' | 0.72755 -10~® | 0.21859 -10~2
2 | 0.78026 -107°% | 0.22781 -10~% | 0.39828 -10~'® | 0.51935 -10~°
3 | 0.15763 -107° | 0.32312 -10~* | 0.10628 -10~2° | 0.84033 .10 !°
4 | 0.42304 10713 | 0.53015 -107° | 0.73599 -10~2® | 0.19323 -10713
5 | 0.87054 -1077 | 0.75985 -10~% | 0.17333 10732 | 0.14855 -1071°
10 | 0.20316 -1072° | 0.45221 -107%° | 0.34474 -1073! | 0.23540 -10~2¢

4 1 | 0.29206 -10~% | 0.39956 -10~' | 0.72755 -10~° | 0.21859 -10~°
2 | 0.78025 -107% | 0.22781 102 | 0.39828 -10°*% | 0.51935 -10°©
3 | 0.15763 -107° | 0.32312 -10~* | 0.10626 -10~2° | 0.84033 -10~1°
4 | 042301 -107* | 0.53015 -107° | 0.55919 -10~28 | 0.19277 -10712
5 | 0.86888 10717 | 0.75984 -10~® | 0.82814 -1032 | 0.39426 -10 17
10 | 0.17911 -1073! | 0.44587 -10~*7 | 0.15600 -10~3! | 0.61014 -10~%!

3 1 | 0.29204 -107% | 0.39954 -10~ ' | 0.72755 -10~° | 0.21859 -10~*
2 | 0.78025 -107% | 0.22781 1072 | 0.39828 -10~*® | 0.51935 -107°
3 | 0.15763 -107° | 0.32312 -10~* | 0.10626 -1072° | 0.84033 -10~'°
4 | 0.42301 -107 ' | 0.53015 -10°% | 0.55899 -10~28 | 0.19277 -10 12
5 | 0.86888 -107'7 | 0.75984 -10~% | 0.14829 -1073' | 0.39426 -10~17
10 | 0.11362 -10~3! | 0.44587 -10°7 | 0.17911 -10~3! | 0.61580 .10~ 3!

2 1 | 0.28836 -10~® | 0.39700 -10~ ' | 0.72754 -10°° | 0.21859 -10*
2 | 0.78025 -107° | 0.22781 -107% | 0.39827 -10~'3 | 0.51935 -10~°
3 | 0.15763 -107° | 0.32312 -10~* | 0.10626 -1072° | 0.84032 -10~'°
4 | 0.42301 -107'% | 0.53015 -107° | 0.55913 -10=%® | 0.19277 -10™"3
5 | 0.86888 -107'7 | 0.75984 -10=% | 0.57777 -10733 | 0.39426 1077
10 | 0.71259 -10732 | 0.44587 -10717 | 0.19451 -10~3! | 0.60945 -10~%!

Table 3.2. Accuracy of the computed eigenpair {u, v} as a function of v and ¢, p = 1, Laplace problem

The first results shows that the accuracy of the approximated solution dose not depend on
the order of the eigenproblem to be solved, and hence, in what follows we present the results
only for N = 32 to avoid a large number of similar figures and tables for different grids.

From the presented numerical results we see that if we increase the number of the relax-
ation steps per level without changes of other parameters, then the accuracy of the approxi-
mated solution is improved. Comparing results for ¢ = 1 with corresponding ones for ¢ = 2
in all Tables one can see that in the second case the accuracy of the approximated solution is
always better, i.e, increasing the number of inner FAS-EV steps lead to the improving accu-
racy of the approximated eigenpair {\, v}. Moreover, the results for different number of levels
are similar, i.e., the accuracy of the approximated solution does not depend on the number
of level used. Hence, we show that the FMG-EV method can compute the first eigenvalue
with a desired order of accuracy by corresponding choices of eigensolver parameters, when we
solve the coarse level problems exactly. Hence, in practice, ¢ =1 and v = 2 or close to these
values are sufficient to ensure the convergence of FMG-EV method.

The second group of numerical experiments were performed for various combinations of
the values €9 and €.pqrse, Wwhen the number of inner iterations and relaxation steps are fixed
and is always taken as ¢ = 1 and v = 2. The behavior both of the accuracy of eigenvalue
approximation and of the time of the whole iterative process with respect to €y and ecpqrse
for different number of levels are shown in Figures 3.3.1-3.3.2. Here, the value of €.p4rs¢ and
gg are changed in a range from 107! to 107!, and the power of 10 are given along the left
axis for €.qqrs¢ and along the right axis for €.

From the presented numerical results we see that the accuracy of approximated solution
depends only slightly on the values of €y and there is a strong dependence on the values of
Ecoarse- Here we have to note that starting from some values of e.44r5¢ and gg the accuracy
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does not changed, i.e., we reach the maximal accuracy for the given number of relaxation
steps v. On the other hand, there is a strong dependence of the computing time on the values
of €y and, at the same time, a weak dependence on £.4rs¢. Hence, in practice, the optimal
choice of the iterative parameters seems to be €coqrse = 10 * and ey = 1072 or close to these
values.

The next group of numerical experiments were performed for various problem sizes and for
different numbers of relaxation steps used, when e.44rs¢ and €g are optimal in above mentioned
sense and are fixed. The time of the whole iterative process for various values of Lvls with
respect to the number of unknowns on the finest mesh and the number of relaxation steps are
given in Figures 3.4 and 3.5, respectively. Moreover, in Figure 3.6 we present the dependness
of the time of eigenvalue solver and the accuracy of the computed eigenvalue with respect to
the number of levels used.

As it is readily seen from Figures 3.4-3.6 the computing time of the whole iterative process
essentially depends on the number of level used. For example, in a case of Lvls = 2 the
computing time of the whole iterative process grows faster than a linear function, i.e., the
computational costs per iteration step increases faster than the number of unknowns on the
finest mesh. On the other hand, in if Lvls is equal to 3, 4 or 5 the computing time of the
whole iterative process grows almost linearly. However, this difference in a behaviour is of
no surprise, since in the case Lvls = 2 the arithmetic cost per outer iteration is not optimal,
inasmuch as the optimal condition (16) on the computational complexity of the coarse level
solver is not satisfied. The results of the Table 3.7 show that the number of iterations for the
inner coarse level solver depends on the number of nodes as O(,/nr,). Indeed, we have

3375 343
—1 —1

= —— 984 = — =~ 12.70.
P1 343 ’ P2 27

At the same time the number of iterations grows approximately with factor +/9.84 ~ 3.14
between second and third columns and with factor +/12.70 =~ 3.56 between third and fourth
columns. Hence, the computational complexity, grows as O(np./nr), and must satisfy (16)
or, the same,

O(nr+v/nr) = O(ng) < O(ng) = O(ng/g),

from which taking into account (15) follows that the computational costs per outer process
are optimal if and only if

O(p"no) = O(ng*) & O(ng") = O(p™")

holds, and hence,
1
L> —3 log,, no-

Thus, in the two-level case (L = 1) we must satisfy
L=1> L 1
= —— 10
<73 £1/8 0,

from which follows that the computational costs per outer iteration are optimal if and only
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if ng < 8 =512 holds. For the other cases we have

—_

L=22> —loggng = ng < 8% = 262144,

3
1 9
L=3> 3 logg ng = ng < 8” = 134217728,

1
L =4> 3loggng = ng < 812 = 68719476736.

Thus, the optimal computational complexity can be attained by increasing the number of
levels used, and it is proved by numerical results.

Quter coarse level solver Inner coarse level solver

Number of unknowns | 27 | 343 | 3375 Number of unknowns | 27 343 | 3375
Ccoarse = 1077 1.2 | 1.0 | 1.0 g =101 1.9 | 2.8 5.8
Ccoarse = 1072 41 | 22 | 1.0 g = 1072 2.6 | 4.8 | 12.8
€coarse = 1073 9.3 | 6.0 | 8.0 g =1073 3.7 | 7.5 | 23.1
Ccoarse = 1074 17.1 | 11.7 | 21.0 g =10 42 |10.3 | 34.7
Ecoarse = 1075 23.8 | 19.4 | 35.8 g =107° 54 | 13.6 | 50.7
Ecoarse = 1076 33.0 | 30.1 | 63.4 gg =107 6.4 | 17.7 | 67.3
Ecoarse = 1077 4251 39.5 | 91.9 g =1077 7.6 | 19.8 | 82.5
€coarse = 1078 50.2 | 48.2 | 134.7 g =1078 8.7 | 23.3| 97.1
€coarse = 1077 59.5 | 58.1 | 164.2 g = 1077 9.6 | 26.9 | > 100
€coarse = 10710 | 60.8 | 58.9 | 176.1 g =10710 10.1 | 27.4 | > 100

Table 3.7. The average number of iterations for outer and inner coarse level solvers.

On the other hand, it is also follows from Table 3.7 the number of iterations for the outer
coarse level solver does not depends on the number of unknowns on the coarse level and is
only depended on the desired accuracy. However, this behaviour is of no surprise, since it
is only prove the well-known fact from the convergence theory of the preconditioned inverse
iteration method (see [16, 17, 20, 21, 22] and references therein), that the convergence factor
depend on the original eigenvalue distibution and the condition number of the preconditioned
matrix.

Based on the presented numerical results we can see that the FMG-EV method has an
nearly optimal computational complexity, i.e., the time of the whole iterative process does
not depend on the number of unknowns on the finest level and does only slightly depend on
the number of level used.

Now to illustrate the efficiency of the techniques used the similar experiments for the three
dimensional linear elasticity problem with the homogeneous Dirichlet boundary conditions in
the cube domain = [0,1] x [0,1] X [0,1] on a uniform Cartesian mesh 7, with stepsize
h = N! were performed. The ”exact” smallest eigenvalue A has been computed by the
Gauss-Seidel iteration method beginning with the random initial guess v(®) and continue the
iterative process until the following stopping criterion was satisfied

=]

Al | —12 (k) — AR (k) _ (k) (k)
||I'(0)||<10 , =AWy pA v

where (9 and 7*) are the initial and the final residuals, respectively.
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N=16 g=1 q=2

L|v A — pl |[Av — pv| | Time (sec) A —pl [[Av — pv|| | Time (sec)

4] 1 |0.18766 -10-2 | 0.37333 -10~! 8.60 | 0.13093 -10~3 | 0.89867 -10~? 15.17
2 | 0.13861 -1072 | 0.90307 -10~2 13.56 | 0.13880 -10~° | 0.67454 -103 25.12
3 | 0.90189 -10~° | 0.19036 102 18.46 | 0.18045 -10~7 | 0.75458 .10~ * 34.99
4 | 0.13531 -107° | 0.67833 -1073 23.45 | 0.13159 1078 | 0.15376 -10~* 44.89
5 | 0.11025 -107° | 0.19556 -10~2 28.42 | 0.25888 -10~° | 0.55911 -107° 54.69
10 | 0.14618 -107% | 0.12328 -10* 53.03 | 0.34772 107! | 0.65020 -10~¢ 104.07

3] 1 [0.19283-107% | 0.39311 107" 9.50 | 0.10903 -10~° | 0.81701 -10~ 2 16.04
2 | 0.12757 -10~2 | 0.85886 102 14.19 | 0.18321 -10~% | 0.78770 103 25.79
3 | 0.13519 -10~* | 0.23281 -10~2 18.89 | 0.72569 -10~7 | 0.10573 1072 34.82
4 | 0.18275 -10~° | 0.77967 -1073 23.55 | 0.21767 -1077 | 0.26623 -1074 44.57
5 | 0.28713 -107°¢ | 0.24979 1073 28.32 | 0.10061 -10~7 | 0.16873 -10~* 54.17
10 | 0.36640 1077 | 0.32665 -10~* 52.02 | 0.54730 -10~° | 0.37209 -107° 101.09

2] 1 [0.18780 -10~% | 0.39511 -10~* 13.08 | 0.11463 -10~° | 0.84105 -10~? 22.25
2 | 0.15070 -1072 | 0.97192 -10~2 17.95 | 0.19856 -107° | 0.75905 1072 31.70
3 | 0.19502 -107* | 0.25037 10~ 2 23.58 | 0.17259 -10~° | 0.21648 -10~2 41.76
4 | 0.21043 -10~® | 0.81073 -102 25.97 | 0.10470 -10~° | 0.15833 -10~2 49.52
5 | 0.13009 -10° | 0.32103 1072 31.10 | 0.11669 -10~° | 0.17195 1072 57.79
10 | 0.15593 -10~° | 0.19889 102 51.08 | 0.51628 -107% | 0.10705 103 96.00

Table 3.8. Accuracy of the computed eigenpair {u, v} as a function of v and ¢, p = 1, elasticity problem

The results of the corresponding experiments for N = 16 are given in Table 3.8. Here
the FMG-EV method is used with €cogrse = 107* and gy = 1072, Analizing these results
one can see that in the case ¢ = 1 and v = 3 we compute a sufficiently accurate eigenvalue
approximation with a reasonable computational cost.

Moreover, in Figure 3.9 we compare the method with these parameters, denoted by ”real”,
to the method with ¢ = 1, v = 3, €cparse = 10710 and g9 = 10716, denoted by "ideal”, from
which one can see that our choice is close to optimal from the accuracy point of view and
more attractive from the timeing point of view. Hence, we see that the all conclusion, which
are made for Laplace operator, are also valied in a more general case — for linear elasticity
problems.

4 The FMG-EV (p) method

Now there are several possibilities to define a multilevel method for computing the first
p eigenvalues and their eigenvectors of A. There are two different approaches how to proceed
eigenvectors through the multilevel process simultaneously or sequentially. Both of them have
their advantages and disadvantages in terms accuracy of the eigenpairs computed, handling
the orthogonalization conditions, the computational complexity and the amount of storage
requirements.

4.1 The basic method

Following [4] we use a combination of those approaches. Indeed we compute all eigenvectors
simultaneously through outer nested iteration process followed by the orthogonalization and
the Ritz projection [23] to improve the eigenvector approximations on the currently finest
level, but we proceed vector by vector through the inner nonlinear multilevel method.
There are few hard points in this approach. First of all, there is no exact correspondence
between eigenvectors on different levels, i.e., the ith eigenvalue and its eigenvector on the
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coarse level can be a good approximation to jth eigenpair on the fine level with ¢ # j. It is
not a problem if j is also less than p, and hence, during the following Ritz projection we find
both of desired eigenvectors on the fine level. However, if j is great than p, then the further
efforts to improve this approximation in the direction of ith eigenvector is vain since FAS
works good only in a small neighbourhood of the solution [24, 25].

Thus, on the coarse level we can find a fixed number of approximation vectors, which are
a good approximation to desired eigenvectors. This number depend on the order of the coarse
level problem, and hence, can be defined as cnp, where ¢ is a coefficient less than 1. Now
if p > eng, then we find the coarse level approximations only for first cnjy eigenvectors and
start our nested iteration process with this smaller number of vectors. After transfering and
processing these approximated eigenvectors on the next finer level we compute the deficient
coarse level approximations using the relaxation steps followed by orthogonalization with
respect to previous ones, and if p is still great than cny_1, then we repeat this process on the
next finer level and so on. Note that the coarsest level used in the inner multilevel method
for ith eigenvector is one on each vz(k) first appeared. The rest components of ths method is
similar to the FMG-EV method for the first eigenvalue.

(W9 v — FMG-EV(p, AL, ..., AO):
i=0, k=L, ™ =0
1 i=i+1

Compute the coarse level approximation {,uz(k), z(k)},
which is orthogonal to computed ones {ug-k), vgk)}é;ll
if ((i<cng)and (i<p)) gotol
(v Yo = Rita (49, (v}P})
2 if (k=0) stop
k=k-1
for s =1,...,1
ngo = Plf+1vgk+1)
2
for it = 1,...,q (inner iteration)

k
{:uszb gz)t} = FAS-EV (A(k)’ugz)t 17vgkzt 1’{ (k Jj= 1)

{/J(k) (k)};: — Ritz (A(O) {v(k) i)
if (i<p) then go to 1
else go to 2

Here FAS-EV (A, u;, vi, {v; };;11) denotes the inner V-cycle multigrid method applied
for solving the eigenproblem Au; = \;u; with an orthogonalization condition to {v; };;11
using {p;, v;} as initial guess, and Ritz (A, {v;}];) computes new eigenvalue and
eigenvector approximations in the subspace spanned onto vi,...,v, by the Ritz method.

4.2 The inner multigrid solver

Since we apply the inner nonlinear multilevel method sequentially to each approximated eigen-
vector, then the main algorithm for the inner multilevel method presented in Section 3.2 does
not changed. Nevertheless, in addition to it we have to orthogonalize the current eigenvector

17



approximation to previously computed ones. It caused the corresponding modifications in
the relaxation step and the coarse level solver.

] l
{'LLZ()’VZ()} = FAS-EV (A(l ’NZO’ ZO’{ (k )

b =0
for kK =1,...,L-1
for it = 1, v1  (presmoothing)
k k k k)
{/‘g,izavg,n)t = Relax (A(k)’/‘z(,iszla z(zz 1,{v( }; llab( ))

{1 v} = (g v}
’ 1,V17 " 1,V1

b{FHD = REHBH) 1 (4GOI _ REFA®) v
(IBH) R’““ (k)

Mgf”” u§k) ;

Solve the coarse level problem Ay ( ) = Z( ) Z(L) + bz(-L)
with (ng),Rlngl)) (RE_ 1v(L) Riv ](l)), =1,...,i—1
for k = L-1,...,1

k k k k

vkl )+Plf+1( (k+1) _RIEHVZ( ))

® e
_|_
y’z,O = My
for 4t = 1, vy (postsmoothing)

(k) {/ngz%’ zZt} _Relax (A( )’N‘Ez% 1 gkz% 1’{v(k }; ll’b )
{lu’i 3 V. }_{/1’11/2’ zuz}

Here Relax (A4, p;, vi, {v; }3-;11, b) denotes a nonlinear iteration step applied for
solving the nonlinear problem (A — fi;])u; = b with an orthogonalization
condition to {v; };;11 using {p;,v;} i as initial eigenpair approximation.

4.3 Nonlinear relaxation step

As it was mentioned above we have to handle the separateness of computed eigenvector
approximation during the inner nonlinear multilevel process. Repeating the same arguments
from Section 3.2 we obtain the following sequence of problems

ABw® = ;iFw® L p® b = RE bV 4 (ABRE - RE  ACD) VY, (19)
be(w®) = oy, b =0,  k=0l+1,...,L, i=1,....p

Let ug-l) is the solution on level [, then Rf“ug-l) is the solution on next level, and hence, if we

would like to find ugl), i # j, we have to orthogonalize the current eigenvector approximation
vglﬂ) to Ri“ugl). Unfortunately, we do not known the exact solution u§-l) (it is our original

problem!), but we have vg-l) g-l).
o 0

practical point of view Rf“v is an approximation to R%""lu , which one can use to keep
orthogonalization on the level [ + 1. Now similar to (13) and (14) we define the following
orthonormalization condition

, J < 1, which is a good approximation to u Thus, from a

e (v = v RIVY), op = (BE VP RIVY) =1, (20)
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Nevertheless, we have to note that the condition (20) does not guarantee a uniqueness of
the solution (19), since we work with approximations rather than exact solutions. In our case

i
=1
can be linear dependent, and hence, on the level £ we will compute v,

0

! used for the orthogonalization

(k)

it may happens that the sequence of test vectors {Rk (a

, which is a good

approximation to v;”, j <4, and which we already known, instead the desired approximation

(0

to v; . It is confirmed by numerical results.

{szta zzt = Relax (A(k)alﬁgkz% 1’v£kzt v k)}s 1-b *))
wz(,%) = GSI (A( ) — k) Ik’ 1(135 17b(k))
for s = 1, z—l (orthogonalzzation)
o, = EE i) - @D RE V)
(RlvS (0 Rkvg))
wg? wz(,ks) 1= O Rkvgl)
WO SRl Ut
T )
iy - s
’ (vi,it’ vi,z’t)
Here GSI (A,y,b) denotes the Gauss-Seidel iteration step applied
for solving the linear system Ax = b usingi y as initial guess.

4.4 Coarse level solvers

The algorithm for the coarse level solver in inner multigrid method presented in Section
3.4 does not changed since it is based on the definition of the relaxation step, which is
already modified. On the other hand, the coarse level solver for computing initial coarse level
approximations is changed. It is caused by the orthogonalization condition. To do this we
use the standard Gramma-Schmidt orthogonalization process, and hence, we obtain
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{MEL),VEL)} = O(lLl)terCoarseLeveISolver (A, {vgk)}i;ll)

Mo =0, v(L) = random vector, it =0

A vl )

while  ( ( ||lrzt |/ ||r0 | > €coarse ) and ( it < Veoarse ) ) do
L L
Wz(t,()) = GSI (A( ) — NE zt) IIL’VZ(,z't)—lﬁb(L))

for s = 1,...,i—1 (orthogonalization)
L (L
o — (Vg ) Et,i_l)
5 (vg ) V(L))
W(L) _ Wz(tL)q ag - viP

(L)

vz it — wztz 1/||wztz 1”

uB) — (A G0y I (L)

(Zlff - ([zlazt’ z,(th) (L)z,zt’ 2,1t
L AD) Vit = Mgt Vit
it=1t+1
(L) (L) (L) v
_ Hz itr ¥ z it

4.5 Ritz method

It is well-known that Ritz projection computes the best set of approximated eigenvectors
from a subspace to eigenvectors of the original matrix A [23]. Here we use them to find all
eigenvectors from the subspace spanned onto computed approximations vgk), e ,vz(,k). As
a result we get a number of orthonormal approximated eigenvectors and their eigenvalues.
Here we present only the basic steps of the method, which are required for definition the

computational costs in the next subsection.

{wi,vi¥l_{ = Ritz (A,V1,...,Vp)
1 Orthonormalize the vectors {V;}¥_; and form n-by-p matrix
W = [w%k), . ,wl(,k)] from new orthonormal vectors {wgk) b
2 Compute matrix-vector products Aw(k) i=1,...,p

3 Compute scalar products h;; = (w; (k) Aw( )) and
form p-by-p matrix H = {h;;} = WTAW

4 Compute all eigenpairs of H: Hu; = y;u;, 1 =1,....p

5 Compute all Ritz vectors v; = Wu;, i =1,...,p

4.6 Computational complexity

It is evidence that the whole computational complexity of the FMG-EV(p) method grows
at least linear with respect to the number of desired eigenpairs since we proceed vector by
vector through the inner nonlinear multilevel method. However, the main difference between
methods for computing of one and few eigenpairs is keeping of their separateness during
computational process. It is handled by a Gram-Schmidt orthogonalization method and a
Ritz projection method for the outer process and by a specific orthogonalization method
during relaxation steps for the inner process. The later is change the formulae for the whole
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computational complexity of inner multilevel process applied to ith eigenvector approximation
as follows

Wi < Lf [ v+ 1) {(30,4 + 9)ny + (i — 1) [(1 —p) " Cpmy + 7nk]}

( 4+ 6Cp + 4)nk] + Cono

< [(1/1 + 1/2) {3CA +9+ (7, — 1)((L — Z)CP + 7)} +2C4 +6Cp + 4] (1 — p)flnl + Cyng.

Next summing by ¢ we obtain

p

. - 1

Wy < STW) < plvs +12)(30a +9)(1 = p) - Zp(p — DL ~D)Cp +T)(1 = p) '
1=1

+p(2C4 + 6Cp + 4)(1 — p) ny + pCono.

On the other hand, the Ritz projection method on the level I requires the following compu-
tational cost

! 1
W = p(p+1)n + pCany + §p(p + 1)ng + O(0*) + p°ny

1
= 5p(5p + 3)nu + pCany + O(p®),

where each term of the sum corresponds to above defined actions of the Ritz method, respec-
tively.
Now taking into account the prolongation of p vectors from level 7,1 to m; and the

computation of their Ritz projection on the level [ we obtain the computational complexity
of the FAML-EV method for the transfer from level [ + 1 to level [

WO < g + pCpmy + Wi,

< C(vy,v2,Ca,Cp) (gp*(L — 1)(1 — p)~'ny + gpno) + O(p*ny) + O(p?).

Finally, summing by levels we obtain that the total computational complexity denoted by W
is proportional to the number of nodes on the fine level, the number of level used and the
number of desired eigenvectors, i.e.,

L
W = ZW O < C(v1,19,C4, Cp) (qp2ﬁr(1 —p) %ng+ quno) + O(p?Lng) + O(Lp?)
1=0
- C(q, vy, V2, p, CAa C1P)p2Ln0 = O(pQLnO)
where C(u,v1,v2,p,Ca,Cp) is a constant depending on the user-defined parameters only.
Hence, the total computational costs of the FMG-EV method is nearly optimal.
4.7 Numerical results

First we use the above mentioned test problem (17) with the exact solution (18) to check the
quality of the FMG-EV(p) method. Similar to the case for the first eigenpair the following
values of parameters has been choosen eqparse = 10731, €9 = 10715, vparse = 1000 and
vo = 100. The results for the first five eigenvalues and their eigenvectors on (32 x 32 x 32)-
grid are given in Tables 4.1-4.2.
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Ll v ] a—ml | Pe—pl | Pe—wl [ a—pa| | Ps—ps| ]
Lvls =5, NFine = 29791, NCoarse = 1, vy = 100, Veoarse = 1000
1] 1 [ 083528 -10=% | 0.94833 -10~3 | 0.94864 -10=° | 0.94896 -10=3 | 0.83950 -10~ '
2 | 0.69550 -107% | 0.31825 -107° | 0.31826 -10~° | 0.31827 -10~® | 0.43920 -10~!
3 | 0.16185 -107° | 0.89322 -10~° | 0.89323 -10~° | 0.89323 -10~° | 0.21761 -10~!
4 | 0.34395 -107'% | 0.33402 -107'2 | 0.33402 1072 | 0.33403 -10~*2 | 0.19062 -10~?
5 | 0.86509 -10~17 | 0.88854 10716 | 0.88855 -10~!¢ | 0.88862 10716 | 0.18896 -10!
10 | 0.20247 -10~%° | 0.66829 -10~3 | 0.26770 -1073 | 0.19259 -1073! | 0.18890 -10~*!
2 1 | 066492 -107% | 0.28152 -10~° | 0.28162 -10~° | 0.28166 -10~° | 0.19049 -10~2
2 | 0.36474 -10~'? | 0.55080 -10~'* | 0.29096 -10~'% | 0.30506 -10~'2 | 0.18892 -10~!
3 | 0.11061 -1072° | 0.48379 -10~'% | 0.44919 1015 | 0.11955 -10~*° | 0.18891 -10~?
4 | 0.75144 -1072® | 0.38784 -107® | 0.12579 -107'° | 0.11994 -1072% | 0.18890 -10~!
5 | 0.15214 -1073! | 0.15702 -10~2! | 0.33236 -10~22 | 0.10977 -10~3! | 0.18890 -10~!
10 | 0.24459 -10~3 | 0.19837 -10~3! | 0.50074 -10732 | 0.32548 107! | 0.18890 -10~!
Lvls = 4, NFine = 29791, NCoarse = 27, vo = 100, Veoarse = 1000
1] 1 [ 0.29206 -10=3 | 0.97645 -10~3 | 0.97648 -10=3 | 0.97726 -10=3 | 0.1805769470
2 | 0.78025 -107% | 0.31911 -10~° | 0.31911 -10~° | 0.31911 -107° | 0.1722472399
3 | 0.15763 -107° | 0.82750 -10~° | 0.82750 -10~° | 0.82751 -10=° | 0.1719186764
4 | 0.42301 -107'% | 0.32098 -1072 | 0.32098 -107'2 | 0.32099 -10~'2 | 0.1718761739
5 | 0.86888 -10~!7 | 0.85300 -10 6 | 0.85300 -10~!¢ | 0.85307 -10° 16 | 0.1718697271
10 | 0.94370 -10732 | 0.75111 -1073% | 0.19066 -10~3 | 0.21955 -1073! | 0.1718685606
2] 1 | 0.72755 -107° | 0.28289 -107° | 0.28290 -107° | 0.28291 -10°° | 0.1719674484
2 | 0.39828 -10713 | 0.29559 -10712 | 0.29563 1072 | 0.29565 -10712 | 0.1718698729
3 | 0.10626 -1072° | 0.10586 -10~° | 0.12209 -10~!° | 0.16090 -10°° | 0.1718685910
4 | 0.55921 -1072% | 0.10966 -10~2% | 0.20140 -10-2° | 0.25174 -10~2* | 0.1718685612
5 | 0.19451 -1073! | 0.62785 -1073 | 0.37420 -1073° | 0.14590 -10~2° | 0.1718685605
10 | 0.16370 -10~3' | 0.15312 -10~2' | 0.41675 -10~2' | 0.18266 -10~2% | 0.1718685605
Lvls = 3, NFine = 29791, NCoarse = 343, vo = 100, Veoarse = 1000
1] 1 [ 029204 -10=3 | 0.97639 -10=3 | 0.97655 -10=3 | 0.97723 -10=3 | 0.18430 -10~2
2 | 0.78025 -107% | 0.31911 -10~° | 0.31911 -10~° | 0.31912 -10~° | 0.71561 -10~°
3 | 0.15763 -107° | 0.82750 -10~° | 0.82751 -10~° | 0.82751 -10~° | 0.23087 -10~8
4 | 0.42301 -107!* | 0.32098 10712 | 0.32098 -10~!2 | 0.32099 10712 | 0.11690 -10~ !
5 | 0.86888 -1077 | 0.85299 -107'¢ | 0.85299 -10~'¢ | 0.85300 -10~'¢ | 0.38678 -107'°
10 | 0.11362 -1073! | 0.82814 10732 | 0.71259 103! | 0.81659 -1073! | 0.10400 103!
21 1 | 072755 -107% | 0.28289 -10~° | 0.28290 -10~° | 0.28291 -10° | 0.61068 -10~°
2 | 0.39828 -107!% | 0.29558 10712 | 0.29560 -10~!2 | 0.29561 -10~'2 | 0.10645 -10~ !
3 | 0.10626 -1072° | 0.10593 -1071° | 0.11592 -10~!° | 0.16149 -107° | 0.52750 -10~'°
4 | 0.55899 -1072% | 0.10728 -10726 | 0.50317 -10~2° | 0.25403 -10~2* | 0.85392 -10~26
5 | 0.10977 -1073! | 0.30814 -1073! | 0.16555 -1072° | 0.22887 -10~2° | 0.25422 -10~3!
10 | 0.14829 -10~3' | 0.41214 -1073! | 0.10014 -10~3' | 0.13481 -10~3! | 0.10168 -10~2°
Lvls = 2, NFine = 29791, NCoarse = 3375, 1o = 100, Veoarse = 1000
1] 1 | 0.28836-10~2 | 0.96578 -10=> | 0.96578 -10=° | 0.96578 -10~° | 0.18266 -10~2
2 | 0.78025 -107% | 0.31911 -107% | 0.31911 -10~° | 0.31911 -10=° | 0.71560 -10~°
3 | 0.15763 -107° | 0.82750 -10~° | 0.82750 -10~° | 0.82750 -10=° | 0.23087 -10~%
4 | 0.42301 -107'® | 0.32098 -10°1% | 0.32098 -10~!2 | 0.32098 -10~1% | 0.11690 -10~ !
5 | 0.86888 -107'7 | 0.85299 -107'¢ | 0.85299 -10~'¢ | 0.85299 -10~'¢ | 0.38678 -107'°
10 | 0.44296 -1073% | 0.18681 -10~3' | 0.18103 -10~3! | 0.20029 -10~3! | 0.80889 -10—32
2 1 | 072754 -10°° | 0.28289 -10~° | 0.28289 -10~° | 0.28289 -10—° | 0.61063 -10~°
2 | 0.39827 -107'3 | 0.29557 -107'2 | 0.29557 -10~'2 | 0.29557 -10~'? | 0.10644 -10~ !
3 | 0.10626 -1072° | 0.10585 -107° | 0.10585 -10~!° | 0.10585 -10~° | 0.52701 -10~'°
4 | 0.55911 -10728 | 0.10640 -1072° | 0.10641 -10~2% | 0.10641 -10~26 | 0.84829 -102¢
5 | 0.90518 10732 | 0.19644 -10~3' | 0.12903 -10~3' | 0.24459 -10~3! | 0.16948 -10~3!
10 | 0.24844 1073 | 0.47570 -10~3 | 0.20029 -10~3! | 0.25614 -10~3' | 0.49688 -103!

Table 4.1. Accuracy of computed eigenvalues y; as a function of v and ¢, p = 5, Laplace problem
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g | v | 1Avi —pava|l | [Ava — povoll [ [[Avs — pavs|| | [[Ava — pava]l | [[Avs — psvs]]
Lvls =5, NFine = 29791, NCoarse = 1, vy = 100, Veoarse = 1000
0.29266 -10~' | 0.71637 -10~* | 0.71649 -10~' | 0.71658 -10~* | 0.83950 -10~ '
0.22693 -1072 | 0.45634 -10~2 | 0.45634 -102 | 0.45635 1072 | 0.65110 -107*
0.32745 -10~* | 0.76292 -10~* | 0.76293 -10~* | 0.76293 -10~* | 0.23570 -10~!
0.53360 -10~% | 0.14788 -1075 | 0.14788 -1075 | 0.14788 -107° | 0.57555 -10~2
0.76464 -10~% | 0.24110 -10~7 | 0.24110 -10~7 | 0.24110 -10~7 | 0.98312 -10~°
0.45221 -10~*° | 0.45557 -10716 | 0.80728 -107% | 0.38392 -107® | 0.52163 -10~°
0.21825 -10~% | 0.42567 -10~2 | 0.42571 -10~2 | 0.42573 -10-2 | 0.94627 -10~2
0.52210 -107° | 0.14352 -107% | 0.14352 -10~° | 0.14352 -107° | 0.40164 1073
0.85727 -107° | 0.28196 -10~° | 0.27972 -10~° | 0.27937 -10~° | 0.50707 -10~*
0.19581 -10~** | 0.31330 -107'2 | 0.10004 -10~'2 | 0.87396 -10~'3 | 0.50515 -10~°
0.14869 10716 | 0.45261 -10~15 | 0.60726 -10~% | 0.24530 -107'® | 0.69688 -10~°
0.23540 -10~26 | 0.21185 -107° | 0.17954 -10~° | 0.20190 -107*° | 0.46533 -10~°

Lvls = 4, NFine = 29791, NCoarse = 27, vo = 100, Veoarse = 1000

0.39956 -10~ | 0.72774 .10~ | 0.72776 -10~' | 0.97726 -10~* | 0.1867057169
0.22781 -102 | 0.45793 -10~2 | 0.45793 -10~% | 0.45793 -10~2 | 0.19440 -10°!
0.32745 -10~* | 0.76292 -10~% | 0.76293 -10~% | 0.76293 -10~* | 0.31491 -10~2
0.53360 -10°% | 0.14788 -107° | 0.14788 -107° | 0.14788 -107° | 0.12095 -10~2
0.76464 -10~% | 0.24110 -10~7 | 0.24110 -10~7 | 0.24110 -10~7 | 0.47354 -10~2
0.44894 10717 | 0.73339 -1016 | 0.43861 -107'% | 0.76619 -10~'® | 0.43801 -10~°
0.21843 -10~% | 0.42567 -10~2 | 0.42571 -10~2 | 0.42572 -10~2 | 0.15604 -10~ T
0.52210 -107% | 0.14352 -10~° | 0.14352 -10~° | 0.14352 -10~° | 0.48879 -10~2
0.85727 -101° | 0.28322 -10°° | 0.28063 -10~° | 0.27935 -10~° | 0.76028 -10~*
0.19535 -10~ 2 | 0.33968 -10~12 | 0.12704 -10~'2 | 0.87305 -10~'% | 0.11685 -10~*
0.39948 -10~17 | 0.38703 -10715 | 0.18923 -10~%° | 0.30853 -107% | 0.17964 -10~°
0.64462 -1073! | 0.28575 -107'¢ | 0.18990 -10~!¢ | 0.54995 -10~!7 | 0.15441 -10~°

Lvls = 3, NFine = 29791, NCoarse = 343, vo = 100, Veoarse = 1000

0.39687 -10~ | 0.71641 -10~* | 0.71644 -10~' | 0.71656 -10~* | 0.97039 -10~*
0.22757 -10°2 | 0.45634 -10°2 | 0.45634 -10~2 | 0.45635 -10°2 | 0.67757 -10~2
0.32745 -10~* | 0.76292 -10~* | 0.76293 -10* | 0.76293 -10~* | 0.12983 -10~3
0.53360 -107¢ | 0.14788 -1075 | 0.14788 -10~° | 0.14788 -1075 | 0.28500 -10~°
0.76464 -107% | 0.24110 -10~7 | 0.24110 -10~7 | 0.24110 -10~7 | 0.51928 1077
0.44894 1077 | 0.62019 107 | 0.33795 -10~1¢ | 0.28857 -107'¢ | 0.10870 -10~*°
0.21843 -107 2 | 0.42567 -10~% | 0.42570 -10" 2 | 0.42572 -10 2 | 0.61919 -10 2
0.52210 -10~% | 0.14352 -10~° | 0.14352 -10~5 | 0.14352 -10~% | 0.27464 -10~°
0.85727 -1071° | 0.28461 -107° | 0.28173 -10~° | 0.27938 -10~° | 0.64873 -10~°
0.19535 -10~'2 | 0.31547 -10~'® | 0.11360 -10~*% | 0.87354 -10~'? | 0.25379 -10~'2
0.39948 1017 | 0.62357 -1071° | 0.21039 -10~*° | 0.35207 -107'¢ | 0.11873 -1071°
0.66504 -1073! | 0.32661 -10722 | 0.79563 -10~26 | 0.19303 -10722 | 0.25208 -10~2°

Lvls = 2, NFine = 29791, NCoarse = 3375, 1o = 100, Veoarse = 1000
0.39700 -10~% | 0.72378 .10~ | 0.72378 -10~' | 0.72378 -10~* | 0.99144 -10~*
0.22781 -10~% | 0.45793 -10~2 | 0.45793 -10~2 | 0.45793 -10~2 | 0.68194 -10~?
0.32312 -10~* | 0.73423 -10~* | 0.73423 -10~* | 0.73423 -10~* | 0.12174 -1073
0.53015 -107% | 0.14496 -107° | 0.14496 -10~5 | 0.14496 -10~° | 0.27490 -10~°
0.75984 -10% | 0.23622 -10~7 | 0.23622 -10~7 | 0.23622 -10~7 | 0.49987 -10~”
0.44587 <107 | 0.28209 -1016 | 0.28209 -10~16 | 0.28209 10716 | 0.10411 -10~15
0.21859 -10~2 | 0.42678 -10~2 | 0.42678 -10~2 | 0.42678 -10~> | 0.62206 -10 2
0.51935 -107% | 0.14153 -10~° | 0.14153 -10~° | 0.14153 -107% | 0.26837 -10~°
0.84032 -1071° | 0.26284 -107° | 0.26284 -10° | 0.26284 -10°° | 0.58309 -10~°
0.19277 -10~'® | 0.83157 -10~'% | 0.83157 -10~'3 | 0.83157 -10~'3 | 0.23354 -10~'2
0.39426 -10~17 | 0.22772 -10716 | 0.22772 -10716 | 0.22772 -1071% | 0.79539 -10~1¢
0.75781 -1073! | 0.11026 -10~2" | 0.53513 -10~ 2% | 0.25093 -10~2® | 0.38020 -10~'7
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Table 4.2. Accuracy of computed eigenpairs {u;, vi} as a function of v and ¢, p = 5, Laplace problem
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Based on the results we have to conclude that the FMG-EV(p) method have the similar
behaviour as the FMG-EV method except few remarks, when the coarse level problems are
solved exactly.

First of all, in two- and three-level cases we have surprisely a good convergence for the
last eigenvalue A5 with respect to disconvergence for four- and five-level cases. It can be
intuitively explained by the coarse level problem is not sufficiently reach to generate a good
approximation to these eigenspaces.

Moreover, compare the results from Tables 4.1 and 4.2 for the first eigenpair {1, v1} with
ones from Table 3.2 one can see that when more eigenvectors, whether or not they converge,
are included in the process, all approximations are improved.

q | v | A1 — pu| | [X2 — po| | [As — psl | [Aa — pua] | |As — ps|
Lvls =4, NFine = 10125, NCoarse = 3

1] 1 ] 0.17121 -10=% | 0.18504 -10~2 | 0.23162 -10~2 | 0.21263 -10~% | 0.24166 -102
2 | 0.87427 -10~* | 0.18120 -10~% | 0.18459 -10~2 | 0.14426 -10~2 | 0.16316 -10~3
3 | 0.59710 -10~° | 0.15262 -10~* | 0.23290 -10~* | 0.16597 -10~* | 0.20785 -10~*
4 | 0.64233 -107% | 0.18220 -107% | 0.27387 -10~° | 0.22954 -10~° | 0.26639 -10~°
5 | 0.62436 -1077 | 0.27586 -10¢ | 0.33646 -107° | 0.29719 -10~¢ | 0.81938 -10¢
10 | 0.12715 -10~® | 0.16685 -10~® | 0.54289 -10~® | 0.13347 -107° | 0.34387 -10~°

2] 1 ] 066509 -10~% | 0.13746 -10~° | 0.14220 -10~° | 0.11944 -10~> | 0.13899 1073
2 | 0.56575-107°% | 0.17661 -10~° | 0.25094 -10~° | 0.16908 -10~° | 0.20703 -10~°
3 | 0.52939 -10=® | 0.36231 -10~7 | 0.47925 -10~7 | 0.13661 -10~° | 0.40596 -10—°
4 | 0.52667 -107° | 0.87679 -107° | 0.23866 -10~% | 0.69039 -10~7 | 0.18090 -10~°
5 | 0.92139 -107'° | 0.16693 -10~° | 0.27081 -10~% | 0.17478 -10~7 | 0.11907 -10~°
10 | 0.11360 -10~° | 0.11232 -10~° | 0.42050 -10~1° | 0.65845 -10~8 | 0.18503 -10~ "

Lvls =3, NFine = 10125, NCoarse = 81

1] 1 ] 017126 -10=% | 0.18520 -10~2 | 0.23164 -10~2 | 0.21153 -10~% | 0.22651 -10~2
2 | 0.86727 -10~* | 0.18121 -10~% | 0.18583 -10~2 | 0.15580 -10~2 | 0.16274 -10~3
3 | 0.59921 -10~° | 0.15343 -10~* | 0.23375 -10~* | 0.12978 -10~* | 0.16919 -10~*
4 | 0.63646 -107% | 0.18893 -10°° | 0.27678 -10~° | 0.22854 -10~° | 0.28454 -10~°
5 | 0.70249 -10~7 | 0.27376 -10~¢ | 0.34354 -107% | 0.38226 -10~¢ | 0.91077 -10¢
10 | 0.13113 -10® | 0.20920 -10~® | 0.71929 -10~® | 0.16827 -10~° | 0.23884 -10~°

2| 1 | 066521 -10~% | 0.13756 -10~° | 0.14223 -10~° | 0.11527 -10~° | 0.13875 -10~3
2 | 0.56377 -107% | 0.17248 -107° | 0.25207 -10~° | 0.15277 -10~° | 0.22036 -10~°
3 | 0.68877 -107% | 0.36520 -1077 | 0.81525 -10~7 | 0.82430 -10~ 7 | 0.36574 -10¢
4 | 0.78704 -107° | 0.22278 -10~% | 0.15379 -10~7 | 0.86195 -10~7 | 0.16180 -10~°
5 | 0.83009 -107'° | 0.23116 -107° | 0.94830 -10~% | 0.62724 -10~7 | 0.87238 -10~”
10 | 0.11371 -107° | 0.11276 -10~° | 0.36793 -10~° | 0.69298 -10~% | 0.12069 -10~"

Lvls =2, NFine = 10125, NCoarse = 1029

1] 1] 016598 -10°% | 0.17743 -10 2 | 0.22529 -10~ 2 | 0.20921 -10~ % | 0.22736 -10 2
2 | 0.89283 -10~% | 0.17879 -10~% | 0.18547 -10~2 | 0.14831 -10~2 | 0.16975 -10~3
3 | 0.68256 -107° | 0.15841 -10~* | 0.23290 -10~% | 0.15277 -10~* | 0.19748 -10~*
4 | 0.10038 -107° | 0.21974 -10~° | 0.32588 -10~° | 0.17504 -10~% | 0.24626 -10~°
5 | 0.16654 -107% | 0.33157 -10=% | 0.22759 -10~5 | 0.19340 -10=° | 0.65046 -10~°
10 | 0.13450 -10~® | 0.56302 -10~® | 0.20701 -10~5 | 0.18521 -10~7 | 0.10047 -10~°

21 1 | 066248 -10~* | 0.13791 102 | 0.14184 -10=2 | 0.11067 -10=° | 0.15442 -10~3
2 | 0.56097 -107% | 0.18273 -10~° | 0.56997 -10~° | 0.16318 -1075 | 0.25670 -10~°
3 | 0.25852-1077 | 0.37555 1077 | 0.17063 -10~° | 0.26033 -10~7 | 0.30782 10~
4 | 0.13821 -107® | 0.25116 -10°% | 0.94665 -10~° | 0.46884 -10~% | 0.39074 -10~"
5 | 0.14959 -107° | 0.46594 -10~% | 0.15020 -10°5 | 0.28829 -10~ 7 | 0.83986 -10~ 7
10 | 0.11348 -10~° | 0.28841 -10~1° | 0.40120 -10~% | 0.18245 -10~% | 0.48712 -10~2

Table 4.6. Accuracy of computed eigenvalues u; as a function of v and ¢, p = 5, elasticity problem
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Similar to the FMG-EV method for the first eigenvalue one can see that the accuracy
for all approximated eigenvalues is improved, when the number of relaxation steps v and
the number of inner iterations ¢ are increasing. Taking into account the whole comutational
complexity, which is also very fast growing when v and ¢ are increasing, the optimal choice
of the iterative parameters, in practice, seems to be ¢ =1 and v = 2 or close to these values.
Here we have to note that the later result is identical to the result for the first eigenvalue.

Now we have to define the optimal values for .y4rs¢ and €g. To do this we made a series
of runs for different combinations of €.p4rs¢ and g¢ under fixed values of ¢ = 1 and v = 2. The
corresponding results for different number of levels used are presented in Figures 4.3.1-4.3.4.

La | v [ [[Avi— mvi] [ [[Avs — povol| [ [[Avs — psvs|| [ [[Ava — paval| [ [[Avs — psvs]] |

Lvls =4, NFine = 10125, NCoarse = 3
1] 1 [ 0.35633 -10~% | 0.35849 -10~! | 0.48551 -10~' | 0.40670 -10~% | 0.46340 -10~!
2 | 0.69620 -107%2 | 0.11551 -10~! | 0.10216 -10~' | 0.96870 102 | 0.96702 -10~2
3 | 0.16195 -10% | 0.23696 -10~2 | 0.31153 -1072 | 0.25545 1072 | 0.28774 1072
4 | 0.54673 -1072 | 0.73684 -10~% | 0.10033 -10~2 | 0.81480 -10~2 | 0.88640 103
5 | 0.15609 -10=3 | 0.28865 -1073 | 0.33740 -1073 | 0.27417 -10~2 | 0.36506 -10~2
10 | 0.12719 -10* | 0.14326 -10~* | 0.17823 -10~* | 0.84203 -10~* | 0.13971 -10~3
2 1 | 0.61016 -10°2 | 0.89436 -10~2 | 0.98460 -10~2 | 0.83752 -10=2 | 0.91747 -10~2
2 | 0.51795 -10=3 | 0.72641 -10~3 | 0.96730 -10~3 | 0.71808 -10~3 | 0.83226 -10~3
3 | 0.42454 -107* | 0.10305 -10~% | 0.11552 -107 | 0.11879 -10~% | 0.17028 1073
4 | 0.86842 -107° | 0.15120 -10~* | 0.19860 -10~* | 0.59069 -10~* | 0.10028 -10~3
5 | 0.53047 -107% | 0.55883 -10°° | 0.10770 -10~* | 0.31108 -10~* | 0.77286 -10~*
10 | 0.87844 -107% | 0.14166 -107° | 0.19605 -10~° | 0.16655 -10~* | 0.31198 -10~*
Lvls =3, NFine = 10125, NCoarse = 81
1] 1 [ 0.35638 -10~ % | 0.35845 -10~! | 0.48545 -10~ ' | 0.39561 -10~ % | 0.45533 -10~!
2 | 0.69323 -10°2 | 0.11575 -10~' | 0.10219 -10~!' | 0.97138 -10~2 | 0.98802 -10~2
3 | 0.16205 -1072 | 0.23698 -10~2 | 0.31158 -10~2 | 0.22178 -10~2 | 0.26073 -10~2
4 | 0.54086 -1072 | 0.74379 -10~2 | 0.10048 -10~2 | 0.88062 -10~2 | 0.81750 -10~3
5 | 0.15830 -1072 | 0.28768 -10~% | 0.33659 -1072 | 0.28437 -10~2 | 0.34140 -10~3
10 | 0.12587 -107* | 0.16523 -10~* | 0.17521 -10~* | 0.98736 -10~% | 0.10736 -10~3
2 1 | 0.61022 -1072 | 0.89445 -10~2 | 0.98459 -10~2 | 0.82619 -10=2 | 0.91492 -10~2
2 | 0.52500 -1072 | 0.71841 -10~% | 0.96738 -1072 | 0.66363 -10°2 | 0.82692 -10~>
3 | 0.46287 -10~* | 0.10465 -10~2 | 0.11551 -10~3 | 0.99123 -10~* | 0.16709 -10~2
4 | 0.13839 -107* | 0.19808 -10~* | 0.21173 -107* | 0.66386 -10~* | 0.94793 -10~*
5 | 0.52278 -107°% | 0.62587 -107° | 0.16354 -10~* | 0.57611 -10~* | 0.66844 -10~*
10 | 0.70692 -107¢ | 0.79362 -107¢ | 0.41566 -10~° | 0.19018 -10~* | 0.23745 -10~*
Lvls =2, NFine = 10125, NCoarse = 1029
1] 1 | 0.35119 -10° ! | 0.35115 -10° 1 | 0.47902 -10° ' | 0.39215 -10~ ' | 0.45660 -10" !
2 | 0.70299 -10-2 | 0.11518 -10~' | 0.10113 -10~! | 0.96555 -10~2 | 0.10124 -10~*!
3 | 0.16783 -1072 | 0.23134 -10~2 | 0.31116 -10~2 | 0.25111 -10~2 | 0.28154 -10~2
4 | 0.58759 -10~2 | 0.79815 -10~2 | 0.94454 -10~2 | 0.69161 -10~2 | 0.91486 -10~3
5 | 0.21834 -1073 | 0.33317 -1073 | 0.33348 -1073 | 0.26339 -10~2 | 0.35363 -10~3
10 | 0.13607 -107% | 0.25534 -10~% | 0.22342 -1072 | 0.30763 -10~* | 0.72578 -10~*
2] 1 | 0.60697 -10=% | 0.89510 -10~2 | 0.98347 -10=2 | 0.81740 -10=2 | 0.96936 -10~?
2 | 0.52357 -1072 | 0.74812 -107% | 0.98926 -10~2 | 0.79192 -10=2 | 0.90675 -10~3
3 | 0.88952 -10™* | 0.10400 -10~% | 0.21830 -10~% | 0.89080 -10~* | 0.86215 -10~*
4 | 0.15535 -107% | 0.18265 -10~* | 0.14572 -10~3 | 0.19477 -10~* | 0.45988 -10~*
5 | 0.58039 -107° | 0.21082 -10~* | 0.18240 -1073 | 0.40298 -10~* | 0.63035 -10~*
10 | 0.59914 -10% | 0.40553 -10~° | 0.96543 -10~* | 0.74399 -10~° | 0.14618 -10~*

Table 4.7. Accuracy of computed eigenpairs {u;, v} as a function of v and ¢, p = 5, elasticity problem

Studying those Figures one can find that the pair of €.qrse = 107 and g9 = 1072 is still
otimal from different points of view. Indeed, in this case we got a good accuracy for the
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desired eigenvalues, i.e., the error between exact and computed eigenvalues is nearly 10~
for first fourth eigenvalues (at least), and also to obtain this accuracy we pay a reasonable
computational costs.

Moreover, the present experiments shows that the FMG-EV(p) method is of capable to
deal with a multiply eigenvalue. Indeed, from (18) we have

Moao =My =My, =4 [2sin? () +sin? ()]

and how one can see from the numerous numerical results presented here we find this eigen-
value and its eigensubspace without problems.

Additional to the case for one eigenvalue we have to show that the total computational
complexity grows as O(p?). It is evidence from Figure 4.5, where "linear” and ”theoretical”
lines denotes the linear and quadratic function on p, respectively. How it is readily seen, the
real computational complexity grwos as a function between linear and quadratic ones.

Finally, we want to mention a problem with the eigenvector orthogonalization for the inner
nonlinear method. Indeed, when we try to solve the coarse level problem for the second, third
or other eigenvectors during the FAS method with some given accuracy, we always perform
the maximal number of iterations, i.e. we could not reach the desired accuracy. It seems that
it is not a strong restriction on the suggested method since the method is still convergent.
However, the proposed technique with corresponding block-type modifications for the inner
nonlinear method can be done. The further investigation will be directed in this way.

The final group of experiments was done for the three dimensional linear elasticity problem
with Dirichlet boundary conditions in the cube domain. Note that in this example we have
multiply eigenvalues: A\; = Ay = A3 and Ay = A5. The results for the FMG-EV(p) method
with g = 107* and veeerse = 100, are presented in Tables 4.6 and 4.7. Based on the present
results one can made the similar conlusions as for the Laplace operator. Indeed, we obtain

e the accuracy is always better when ¢ and v increase;
e the accuracy does not depend on the number of levels used;

e the time grows linearly with respect to n;, (exept two-level case), ¢ and v, and quadrat-
icaly with respect to p;

e there are a limit accuracy for each pair g and v;

e it is more important to find a good initial coarse level approximation, then try to improve
it later by inner multilevel process;

e the method is capable to deal with multiply eigenvalues;

e when more eigenvectors, whether or not they converge, are included in the process, all
approximations are improved.

Finally, we have to note that the present method can be used as a good competitor to the
direct eigensolver when the small or medium number of eigenvalues required, i.e., p < {/no,
but if we would like to finding a series of eigenvectors with p > /ng, then the Lanzos method
with LU-factorization is better or, the same, less time consuming.
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5 Conclusions

As a final conclusion, we have found that the FMG-EV(p) method, applied for computing
the smallest eigenvalue and its eigenvector, leads to an iterative eigensolver with an optimal
order of the computational complexity and an uniform convergence behaviour. However,
there is a problem to keep orthogonalization between approximated eigenvectors during the
inner multilevel process. It seems that it is not a strong restriction on the suggested method
since the proposed technique with corresponding block-type modifications can be adopted
for the problem of computing the number of smallest eigenvalues and their eigenvectors. As
it was mentioned in first sections another open questions are the method for computing the
sequence of matrices A*) and also the proof of the convergence rate of the method. The
future investigation will be directed in these ways.
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Lvls =5

Lovls =4

Fig. 3.3.1. The time of the whole iterative process and the accuracy of the first eigenvalue
with respect to the inner stopping criteria €9 and ecpqrse, Laplace problem
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Lvls =3

Lols =2

Fig. 3.3.2. The time of the whole iterative process and the accuracy of the first eigenvalue
with respect to the inner stopping criteria €9 and ecpqrse, Laplace problem
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Fig. 3.4. The time of the whole iterative process for finding the first eigenpair
with respect to the number of unknowuns on the finest level, Laplace problem
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Fig. 3.5. The time of the whole iterative process for finding the first eigenpair with
respect to the number of pre- and post- smoothing steps used, Laplace problem
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Fig. 3.6. The time of the whole iterative process and the accuracy for the first
eigenvalue with respect to the number of level used, Laplace problem
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Fig. 3.9. The time of the whole iterative process and the accuracy for the first
eigenvalue with respect to the number of level used, Laplace problem
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Fig. 4.3.1. The time of the whole iterative process and the accuracy for five smallest
eigenvalues vs. the inner stopping criteria €y and ecpgrse, LIvs = 5, Laplace problem
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Fig. 4.3.2. The time of the whole iterative process and the accuracy for five smallest
eigenvalues vs. the inner stopping criteria €y and ecpgrse, LIvs = 4, Laplace problem
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Fig. 4.3.3. The time of the whole iterative process and the accuracy for five smallest
eigenvalues vs. the inner stopping criteria €y and ecpgrse, LIvs = 3, Laplace problem

35



Fig. 4.3.4. The time of the whole iterative process and the accuracy for five smallest
eigenvalues vs. the inner stopping criteria €y and ecpgrse, LIvs = 2, Laplace problem
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Fig. 4.5. The time of the whole iterative process with respect to the number of
eigenvectors computed, Laplace problem
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