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which is well posed in the Euclidean metric £2. Then conceptually one seeks iteration schemes for the
infinite dimensional problem that exhibits at least a fixed error reduction per step. This iteration is
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tree approximation and the sparse evaluation of nonlinear mappings of wavelet expansions. We prove
asymptotically optimal complexity for adaptive realizations of first order iterations and of Newton’s
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1. Introduction.

1.1. Background and Objectives. Adaptive wavelet schemes for numerically
solving a wide class of variational problems have been recently studied in [7, 8] from
the perspective of asymptotic estimates for convergence rates and corresponding work
counts. The problems covered by this analysis include elliptic boundary integral equa-
tions, elliptic boundary value problems, but also indefinite problems of elliptic type
such as the Stokes problem. Two requirements were essential in this context: (i) the
variational problem induces an operator £ that is an isomorphism from some Hilbert
space H onto its dual; (i) this Hilbert space permits a wavelet characterization, i.e.,
the H-norm of an element is equivalent to a weighted ¢>-norm of its wavelet coeffi-
cients. It could then be shown that certain adaptive schemes exhibit an asymptotically
optimal accuracy/work balance within a certain range of convergence rates depending
on the choice of wavelet bases. The precise meaning of this statement is explained in
the Meta-theorem below. To our knowledge for the above range of linear problems
such convergence/complexity estimates have been established so far only for wavelet
methods. Just recently, a similar result has been proved for adaptive finite element
methods for the more restricted class of second order elliptic boundary value problems
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In this paper we wish to exlore the convergence rates and the computational
complexity of certain new adaptive wavelet schemes for nonlinear problems for which
no results of the above type seem to be known so far.

Our primary concern here is not to develop a specific algorithm for a concrete
application. We are rather interested in developing a numerically realizable new al-
gorithmic paradigm in a fairly general context of nonlinear problems and in analyzing
its principal complexity features. Therefore the various algorithmic ingredients will at
times not be discussed in full detail but only to an extent that clarifies their principal
asymptotic complexity.

The new paradigm is based upon the adaptive evaluation of (linear and nonlin-
ear) operators in the course of an ideal iteration for the infinite dimensional problem
formulated in the wavelet coordinate domain. Such perturbed iterations will lead to
an algorithm SOLVE that (with a proper initialization) produces for any target ac-
curacy e a finitely supported vector of coeffcients ti(e) that approximates the array of
wavelet coefficients of the exact solution (of the underlying variational problem) in £5
with accuracy e. The choice of wavelet basis will then imply that the corresponding
finite expansion approximates the exact solution with accuracy Ce in the energy norm
where C' depends only on the wavelet basis. In order to identify the essential mech-
anisms governing such schemes, we will consider nonlinear variational problems on
various levels of generality. The results will be purely asymptotic in nature. They re-
veal asymptotically optimal work/accuracy balances interrelating the achieved target
accuracy with the required computational work and associated adaptively generated
number of degrees of freedom. More precisely, we shall prove results of the following
type.

Meta-Theorem If the exact solution can be approrimated as a linear combination
of N wavelets (subject only to certain tree restrictions on the distribution of active
coefficients) to accuracy of order N=%, (for a certain range of s), then the support
of the output @(e) of SOLVE for target accuracy € grows at most like e~'/%, uni-
formly in €, and the computational complexity stays also proportional to the support
size. In this sense the scheme tracks the exact solution at asymptotically minimal cost.

Note that the above mentioned tree restriction on the permitted distribution of
active coeffcients is the analogue of locally refined meshes in the finite element context.
We shall outline now how we approach results of the above type.

1.2. The Basic Paradigm. The classical approach to numerically solving (lin-
ear and nonlinear) variational problems is concerned with the following issues:

(c1) Well-posedness of the given variational problem;

(c2) discretization of the infinite dimensional problem so as to obtain a finite

system of algebraic equations;

(c3) well-posedness of the finite system of equations and error analysis;

(c4) numerical solution of the finite system of equations.
It is important to note that (cl) is often hidden in the analysis and that (c3) is,
in general, not a direct consequence of (cl). Typical examples even in the linear
case are saddle point problems. It is well known that, for Galerkin discretizations
to be stable, the trial spaces for the different solution components have to satisfy
a certain compatibility condition (LBB-condition). For nonlinear problems one can
often establish only local uniqueness of solutions so that some care is required to
ensure that the discrete problems approximate the correct solution branch. Thus,
the discrete problems do not necessarily inherit the “nice properties” of the original
infinite dimensional problem. Depending on the choice of the discretization one might
introduce “new difficulties”. The typical obstructions encountered in (c4) are the large
size of the discrete systems and possible ill-conditioning. The latter issue interfers with
the need to resort to iterative solvers, due to the size and sparseness of the systems.
Attempts to reduce computational complexity are often based on adaptive and hence

2



possibly economic discretizations. A reliable control of adaptive refinements, however,
depends usually in a sensitive way on the particular type of the problem and rigorous
complexity estimates are generally not available.

A new paradigm has been explored in [8] for linear variational problems. It aims
at closely intertwining the analysis - discretization - solution process. The basic steps
there read as follows:

(n1) Well-posedness of the given variational problem;

(n2) transformation of the infinite dimensional problem into an equivalent problem
in £ which is well posed in the Euclidean metric;

(n3) the derivation of an iterative scheme for the infinite dimensional £2-problem
that exhibits a fixed error reduction per iteration step;

(n4) numerical realization of the iterative scheme by an adaptive application of
the involved infinite dimensional operators within some finite dynamically
updated accuracy tolerances.

Thus, the starting point (nl) is the same as (c1), although it takes a somewhat more
exposed and explicit role in the new setting, as will be explained later. The main
difference is that one aims at staying as long as possible with the infinite dimensional
problem, hopefully, given in a favorable format. Only at the very end, when it comes
to applying the operators in the ideal iteration scheme (n4), one enters the finite
dimensional realm. However, the finite number of degrees of freedom is determined
at each stage by the adaptive application of the operator, so that at no stage is
any specific trial space fixed. Roughly speaking, the “nice properties” of the infinite
dimensional problem are preserved through adaptive evaluations. In fact, one can
show that thereby compatibility conditions like the LBB-condition indeed become
void [8, 12].

The main goal of the present paper is to show how to carry over this paradigm,
already existing for linear problems to the nonlinear setting. One then encounters
three major issues, namely:

(a) the choice of tolerances in (n4) to ensure that the perturbed iteration con-

verges to the correct solution;

(b) the design of economic approximate application schemes for the possibly non-

linear infinite dimensional operators;

(c) estimating the complexity of the scheme.

Here (a) means that any given target accuracy € is achieved after finitely many steps.
(b) is the most crucial part and will be discussed in detail in the course of the paper.
Clearly (b) is closely related to (c). As in [7, 8, 12] we will measure complexity by
the number of adaptively generated degrees of freedom N = N(€) required by the
adaptive scheme to achieve the target accuracy € and the corresponding number of
floating point operations (which, of course, is aimed at staying proportional to N (¢)).
Estimating the asymptotic work/accuracy balance N(e) > € will be a central theme
in the subsequent developments. This part differs significantly from the classical
error analysis for FEM and resides on concepts from harmonic analysis and nonlinear
approzximation.

Finally, a comment on (n3) is in order. Aiming at a fixed error reduction per
iteration step means that one is content with a first order scheme. So why not go
for faster iteration schemes? The answer to this question is not completely clear.
Indeed, a higher order method may not automatically win for the following reason.
Usually a higher order method is more costly in function evaluations. In the present
context this means, according to (n4), it is more costly in the adaptive application
of the full infinite dimensional operators within some dynamically updated accuracy
tolerance. Preserving the higher order of the ideal iteration also in its perturbed form
in connection with the higher demands of function evaluations may very well increase
the cost of each iteration step so as to offset the potential gain of a better error
reduction. So with regard to the objective of reaching a target accuracy at possibly
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low overall computational cost, the role of higher order schemes remains unclear. In
fact, it will be seen that asymptotic optimality can indeed be achieved already with
simple first order outer iterations. Nevertheless, we shall show that it is also possible
to retain second order convergence of the adaptive version of Newton’s scheme so as
to arrive at an overall scheme with asymptotically optimal solution complexity, which
may offer quantitative advantages over the first order versions.

1.3. Organization of Material. The paper is organized as follows. In Section
2 we describe (nl), (n2) and (n3) for a general setting that will host all subsequent
specifications. In Section 3 we distinguish three classes of variational problems to
which the subsequent developments will refer frequently, namely (L) linear problems,
(SL) semilinear elliptic problems and (GNL) more general nonlinear problems where
we have to assume the existence of locally unique solutions. In Section 4 we formulate
the prototype of an adaptive perturbed first order iteration which is based on two
main ingredients, namely approximate residual evaluations and a certain coarsening
scheme. In particular, the residual approximations involve the adaptive application
of linear or nonlinear (infinite dimensional) operators. Assuming at this stage that
these ingredients are indeed available, we address for the most general setting first
only issue (a) to clarify for which choice of dynamically updated accuracy tolerances
is convergence guaranteed. The remaining sections will be devoted issues (b) and (c)
for the problem types (L), (SL) and (GNL).

In Section 5 we review briefly concrete realizations of these ingredients for the
linear case (L) and indicate the concepts for their complexity analysis. This serves two
purposes. First, these results will be used in the last section in connection with Newton
iterations. Second, they motivate our treatment of the nonlinear case. In Section
6 we introduce some new concepts needed to deal with nonlinear problems. They
center upon tree approximation and related coarsening techniques. This enables us to
formulate the notion of 7*-sparsity as the key criterion for controlling the complexity
of the adaptive schemes in the nonlinear case. Drawing on several results from [9]
we develop in Section 7 adaptive evaluation schemes that are proven to be 7*-sparse
and thus lead to asymptotically optimal results in the sense of the above Meta-
Theorem. To our knowledge these are the first convergence and complexity estimates
for adaptive solvers for nonlinear problems. Finally, in Section 8 we develop an
adaptive Netwon scheme and analyze its complexity. It differs in essential ways from
the schemes discussed in the previous sections which are based on first order iterations.
In particular, we show that the quadratic convergence of the outer iteration can in
some sense be preserved in the adaptive context.

After completion of this paper we became aware of related work concerning the
convergence of Newton’s method in the wavelet coordinate domain [23]. However, in
this latter work no complexity estimates are given and the convergence is asserted
under the assumption that the nonlinearity is stable on appropriate sequence spaces.

2. The Setting. We describe now the setting for which the above paradigm will
be discussed.

2.1. The General Problem Format. The variational problems mentioned in
step (nl) above will always have the following format. Let H be a Hilbert space with

norm || - ||% and let H' denote its dual endowed with the norm
(v, w)
ol == sup =",
weH ||w”7—t

where (-,-) is the dual pairing between H and H' (with respect to Ly as the pivot
space). Suppose that f € H' and

(2.1) F:tH



is a (possibly nonlinear) mapping. We consider the numerical solution of the problem:
Find u € H such that

(2.2) (v, F(u) = f) =:{v,R(uw)) =0, wveH.

The objective in (nl) is the identification of a suitable space H, so that (2.2) is well
posed in the following sense. Recall that the Frechét derivative DR(z) = DF(z) is a
mapping from H to H', defined by the duality

(2.3) (v, DR(z)w) = Jim %@, R(z + hw) — R(2)).

The problem (2.2) is called well-posed if R has the following properties
A1: R possesses a continuous Frechét derivative, i.e., R € C1(H,H') as a mapping
v = R(v).
A2: There exists a solution u € H to (2.2) and in addition to (2.1) the Frechét
derivative DF of F' at v in some neighborhood U of u is an isomorphism from
‘H onto H'.
Clearly A2 ensures that the solution w is locally unique.

2.2. Wavelet Coordinates and an Equivalent /5- Problem. The transfor-
mations for (n2) will be based on suitable wavelet bases. For a detailed discussion of
such bases, we refer the reader to the literature (see e.g. [5, 6, 13, 10]) and collect
here only the relevant facts. A wavelet basis ¥ = {4 : A € J} C H has the follow-
ing properties: The indices A € J encode typical information about the wavelet 1y,
namely its type its location k(\) and its scale |A|.

We shall now explain the meaning of “suitable” in the present context. We will al-
ways assume that the wavelets have compact support which scales as diam (supp ¥y) ~
2-1Al. Abbreviating in the following Sy := supp ¥, A € J, we require the collection
S(¥) := {Sy : A € J} of wavelet supports to have the following finite incidence prop-
erty (FIP): There exists an M € N such that, whenever G C S(¥) has the property
that no element of G is contained in any other element of G, one has

(2.4) (] Sx#0 forsome G'C G implies #G' < M,
AEG’

i.e. only a finite number of supports in such a G overlap at any given point. The
(FIP) is known to hold for essentially all known wavelet bases, see [9].

Furthermore, aside from finitely many functions ¢¥x,A € Jy C J, |\ = Jjo,
representing the coarsest scale jo, the wavelets 15, A € J\Jy, have vanishing moments
of some order m € N, i.e., these wavelets are orthogonal to all polynomials of order
m.

Finally, each v € H has a unique expansion ), . ; vA®x such that

(2.5) aallvlleaz) < 1D vatalla < Cillvlles(),
AeT

holds for some positive constants c¢1,C1, i.e. ¥ forms a Riesz basis for H. Note that
(unlike the quoted references) we have normalized the wavelets here in the energy
space H associated with the variational problem (2.1), (2.2), i.e. ||[¥allx =1, A € J.
Again such bases are known whenever H is a product of Sobolev spaces (or closed
subspaces of Sobolev spaces, determined e.g. by homogeneous boundary conditions
or vanishing integral means).

In the following, we will always use boldface notation v to denote the wavelet
coefficients of a given function v € H with respect to the basis ¥. It is often viewed
as a column vector with respect to some fixed but unspecified ordering of 7 (and
analogously for u,w € H), i.e., v =vI¥ =3 -0y
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Next note that by duality (2.5) implies

(2.6) Cr I, vaMaeslle) < lwllw < el (w,va)reglles)-

We shall make frequent use of the following fact, see e.g. [8].
REMARK 2.1. Assume that T : H — H' is a linear isomorphism, i.e., there exists
positive constants cr, Ct such that

(2.7) cr||vlln < ||Tvllw < Crl|v]|o.
Let

T .= (<¢AaT¢v))A,ueJ

be its wavelet representation. Then one has

(2.8) cicrlVlle) < I1TVlleg) < CLCTIVIe -

We can now transform (2.2) into wavelet coordinates. Defining

R(v) := {¢n,R(v)) : A € J) whenever v = Z vAt,

reJ

the orginal problem (2.2) is obviously equivalent to finding u € ¢2(7) so that
(2.9) R(u) =0.

2.3. The Basic Iteration. According to (n3) we wish to devise an iterative
scheme for the problem (2.9) such that each step reduces the current error at least by
a fixed rate p < 1. The schemes we shall consider will have the form

(2.10) u"t = u"” - B, R(u"),

where the (infinite, possibly stage dependent) matrix B,, is yet to be chosen. For
instance, B,, = al corresponds to a fixed point or Richardson iteration, while for
B, := DR(u") ! (2.10) becomes Newton’s method. We shall make frequent use of
the fact that the Jacobian DR(u™) is given by

(211) DR(V) = ((wkaDR(U)lpV)))\,uEJ:

where DR = DF is the Frechét derivative of the mapping R.
We proceed now in discussing several instances of this setting.

3. The Scope of Reference Problems. We shall address the variational prob-
lem (2.2) for the following different levels of generality:

(L) Linear well posed problems;
(SL) Semilinear elliptic boundary value problems;

(GNL) General nonlinear problems.

Beginning with (L) will serve two purposes. First it provides a guideline for the
treatment of nonlinear problems. Second, it allows us to formulate some prerequisites
for the later discussion of Newton’s method.

(SL) is a natural extension of (L). Essential features of nonlinear problems are
already encountered in (SL). On the other hand, it is specific enough to permit a
complete complexity analysis for a globally convergent iteration scheme.
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Finally, in (GNL) we relax our assumptions on the structure of R to a great
extent. We pay for this by making stronger assumptions on initial guesses and being
content with locally convergent first order iterations on the infinite dimensional level.

We shall exemplify step (n3) for all three cases (L), (SL) and (GNL) in this order.
Except for the last Section this will be based on first order iteration schemes for the
underlying infinite dimensional problem. It will be seen along the way that it then
suffices to employ stationary “preconditioners” B,, = B to obtain asymptotically op-
timal complexity estimates (although more flexible nonstationary choices may well
result in quantitative improvements in practical realizations). The use of truly non-
stationary B,, will be necessary only in connection with Newton’s method in Section
8.

3.1. Linear Variational Problems (L). In order to guide the discussion of
nonlinear problems we briefly review the case of linear variational problems. Let
a(-,-) : H X H — R be a bilinear form such that the operator A defined by a(v,u) =
(v, Au), for all v € H, is an isomorphism from H to H', i.e. there exist positive
constants c4, C4 such that

(3.1) callvlli < | Av|lar < Callvlly, v e H.

The simplest example is

(3.2) av,0) = (Vo, Va) + w(v,u), 20, (o,0)= [vw,
Q

and H = H(Q) (the space of functions with first order weak derivatives in Ly whose
traces vanish on the boundary I' = 912) endowed with the norm |v||3, := ||Vv||iQ(Q) +

c||v||2L2(Q). In this case, C4 = 1 while c4 is the constant from the Poincaré inequality.
Clearly, for any fixed f € H', the problem: find v € H such that

(3.3) (v, R(u)) := a(v,u) — (v, f) =0, veH,

is well posed in the sense that DR = A has the required mapping property relative to
H defined above. Moreover, taking any wavelet basis whose properly scaled versions
are Riesz bases in Ly(Q2) and H} (), one can find a diagonal scaling such that (2.5)
holds uniformly in the parameter k of the zero order term in (3.2), [7]. Denoting by
A = (a(¥r,¥v))rveg the wavelet representation of A and setting £ = ((¢a, f) : A €
J)7T, the problem (2.9) takes the form

(3.4) Au=f,

whose solution u gives the solution u = ), ; uxthy in H. In this case A is symmetric
positive definite so that one can find a relaxation parameter o such that

(3.5) IT— aAlle (7)) <p <1

Hence, the iteration

(3.6) u"tl =u" —a(Au" -f), n=0,1,2,...,
has the form (2.10) with B,, := oI and provides iterates satisfying

(3.7) [ = u{lgy7) < pllu = 0"l ).

This line of thought easily extends to problems where a(-,-) is no longer definite
or not even symmetric but where the induced operator A still satisfies the mapping
property (3.1). This is for instance the case for certain saddle point problems such
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as the Stokes problem, see [8] for more examples. In this case ATA is symmetric
positive definite and, since A satisfies (2.8), is still boundedly invertible on £2(7).
Hence one can again find a relaxation parameter a > 0 such that

(3.8) u"t! = u" — (AT Au" — ATf) = u" —aAT(Au" - f), n=0,1,2,...,

converges with a fixed error reduction p < 1 and has the form (2.10) with B,, := aAT.
For saddle point problems there are actually alternatives that avoid squaring the
problem (in wavelet coordinates). One option is to employ an Uzawa iteration for
applying the Schur complement operator, which also leads to an iteration of the form
(3.6), [12, 16].

As mentioned before, we could use stage dependent relaxation parameters a,, in
(3.6) and (3.8) which would give rise to instationary “preconditioners” B,,. However,
since this will have no asymptotic effect we shall confine the discussion in connection
with the case (L) always to the stationary matrices B, = B = al or B,, = B = aAT.

Of course, in either case step (n4) requires eventually approximating the weighted
residual B,R(u™) which in the above linear case amounts to approximating f and
approximately evaluating the infinite matrix A (respectively AT). We shall address
this issue later in some detail.

3.2. Semilinear Elliptic Problems (SL). To formulate a natural nonlinear
generalization of the above problem class (L) suppose again that a(-,-) is a continuous
bilinear form on a Hilbert space H endowed with the norm || - ||, which is H-elliptic,
i.e., there exist positive constants ¢, C' such that

(3.9 c||v||%{ <a(v,v), a(v,w) <Clv||ul||lwl|y, Vv,weH,

see (3.2) as an example. In principle, the subsequent analysis will also cover elliptic
integral operators with positive order such as the hypersingular operator.

We suppose that G : R — R is a function with the following property:

P1 the mapping v — G(v) takes H into its dual H' and is stable in the sense that

(3-10) |G (u) = G()|l3 < Clmax {lulla; [[vllx}P)llw = vlln, u,veH,

where t — C(t) is a nondecreasing function of ¢.
The problem: Given f € H' find u € H such that

(3.11) (v, F(u)) := a(v,u) + (v,G(u)) ={v, f), V veH,

is of the form (2.2) with R(v) = F(v) — f. We wish to discuss this problem in a little
more detail because it will turn out to admit a complete analysis of adaptive solvers
and thus may serve as a good point of departure for more difficult problems later.

It is not hard to verify that the weak formulation of the boundary value problem

(3.12) —AutudP=f in Q w=0 on 99,

is of the form (3.11) where for H = H}(Q) the above assumptions hold for d < 3. We
shall describe later more general classes of mappings G satisfying property P1 and
covering (3.12) as a special case.

REMARK 3.1. If we assume in addition that G is monotone, i.e. (u—v)(G(u) —
G(v)) > 0 for u,v € R, then (8.11) has for every f € H' a unique solution u € H.

The argument follows standard lines. Under the above assumptions it is easy to
show that the operator F', defined by (3.11), is also monotone and coercive. One
can then invoke the Browder-Minty Theorem (see e.g [21], Theorem 9.45) to conclude
existence while the strict monotonicy guaranteed by the quadratic part also ensures
uniqueness.

REMARK 3.2. Alternatively one can argue that, under the above assumptions,
G is of potential type so that (3.11) is the Euler equation of a conver minimization
problem with a strictly convex functional, see e.g. [24], Proposition 42.6.
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An equivalent fo-formulation (n2):. We turn now to step (n2) in the present
setting. In order to rewrite (3.11) in wavelet coordinates, we adhere to the notation
from Section 3.1 and set in addition G(v) := ({()x,G(v)))reg- Then u =37, s urtha
is the unique solution of (3.11) if and only if u solves

(3.13) R(u) = Au+G(u) - f=0.

Note that, in view of (2.6), f belongs to H' if and only if £ € ¢5(J). Clearly
A is symmetric positive definite. Moreover, it follows from (3.9) that the operator
A defined by a(v,u) = (v, Au) for all v € H, is an isomorphism from H onto H'.
As an immediate consequence of Remark 2.1 we can assert that there exist positive
constants c4,Ca (depending only on ¢;,C in (2.5) and on the constants in (3.9))
such that

(3.14) callvlley sy < NAV|leor) < Callvllea)y, v € €2(T),

which, of course, means that [|All¢,(7)—e(7) < Ca and [|A7Y o) mea(7) < €1 e,
A is a positive definite automorphism of £5(7).

We end this Section with the simple observation that monotonicity of G together
with (3.9) implies monotonicity of F which carries over into the discrete setting,
namely

(3.15) (u=v)I(F(u) =F(v)) >0, u,vebL(J).
In fact, denoting by ¥ the dual basis to ¥, we have by definition of F(u)
u—v=> (ur—va)r, F(u)—F@)= ((F(u)—F),r)px.
AeT reJ

Thus (3.15) follows from monotonicity of F' and biorthogonality.

Gradient Iterations (n3):. We now address (n3) for the above class of semilinear
elliptic problems. The simplest option is to take B,, = aI which gives the iteration

(3.16) u" =u” — aR(u"), neN.

Keeping Remark 3.2 in mind, one can show that (3.13) are the Euler equations of a
strictly convex minimization problem on £5(7), and (3.16) can be viewed as a gradient
iteration. However, if we do not insist on determining the optimal step size a = ay,
for the steepest descent we can argue directly as follows.

u"™! —u = u" —u-a(R(u") - R(u))
=|I- a/(A + DG(u+ s(u™ —u)))ds | (u" —u)
(3.17) =: (I-aM(u",u)) (u" — u).

By (3.14) and (3.15), the smallest eigenvalue of the matrix M(u”, u) is bounded from

below by c4. By P1 and (3.14), F takes bounded sets into bounded sets. Thus the

largest eigenvalue of M(u”,u) is bounded from above by some constant C depending

on C4 and the norms |[u”||¢, (7, [[ulle,(7)- In particular, given u®, &y := [[u—u®(|,, ),

there exists a positive a such that [|I — aM(v,u)||s,(7)—e) < p < 1forall v €

Bs, (u), the ball of radius do with center u. This confirms the following observation.
REMARK 3.3. Given u® choose a > 0 such that

(3.18) 11— aM(®, )|l 7)) <p <1,
then, one has

(3.19) [u = 0"y < plla—u"lgy), neN



3.3. The General Nonlinear Case — Locally Convergent Schemes (GNL).
While the assumptions in the previous setting allow us to conclude convergence of the
ideal infinite dimensional scheme for any initial guess u®, one often has to be content
with weaker assumptions (and correspondingly weaker conclusions). In the literature,
variational problems of the type (2.2) are frequently studied under general assump-
tions on R, such as Al and A2, that typically guarantee local convergence of an
iterative scheme to a locally unique solution provided that a sufficiently good initial
guess is known, see e.g. [20, 22].

Our plan here is to exemplify the above paradigm under assumptions A1 and A2,
provided that a sufficiently good initial approximation is known. According to (n2)
we consider again the equivalent formulation (2.9) in wavelet coordinates and turn to
devising a suitable iteration of the form (2.10) that converges for a sufficiently good
initial guess. To this end, we assume that

(3.20) u’ € Bs(u) := {v : [|[v — ull,(7) < 6},

where § will be specified below.

As mentioned before a possible choice for B,, could involve the Jacobian which
leads to Newton’s method. But under the above weak assumptions on R we wish to
avoid at this point requiring higher order smoothness conditions and consider first
the following much simpler option. An analog to the least squares iteration (3.8)
would be B, := DR(u®)T. An even simpler alternative, which is presumably less
computationally demanding, is to take the stationary matrix

(3.21) B = DR(u%)7,
provided that § is sufficiently small. Let us point out next that
W(v) :=v —aDR(u®)TR(v)
is a contraction on Bs(u). In fact,
W(z) -W(v) =(z-v) - aDR( N (R(z) - R(V))
= (I- aDR(u’)"DR(v)) (z—v) + o 1z = vles ()
= (I- aDR(u’)"DR(1’)) (z - v) + o(||z = V|¢,())
(3.22) + O(e(d)llz — vllea())

where we have used assumption A1 and where €(8) tends to zero as § — 0. By Al and
A2, DR(u?) is still an isomorphism from H onto H' when § is sufficiently small. Thus,
by Remark 2.1, the positive definite matrix DR(u®)T DR,(u°) is an automorphism on
£2(T). Therefore, for @ > 0 satisfying

(3:23) || DR(u®) " DR(U) | ey(5) - a() < 25
W is a contraction on Bs(u). Furthermore, the iterates
(3.24) u"t = u" — aDR(UW)'R(u"), n=0,1,...,

stay in Bs(u). In fact, as above

u"™! —u=u"—u—-aDRu® )T (R(u") — R(u))
=u" —u— aDRu’)T(Ru") — R(u))
= (I- aDR(u’)"DR(u’))(u" — u) + o([[u" — ull,(s))
+ O(e(d)[[u" — ulley())-

Hence, for a as above and § sufficiently small, i.e. [[I—aDR(u®)" DR(u)||r(7)56(7) =:
b < 1and o(1) + O(e(d)) < 1 — b, one has [[u"*! — ul|s,(s) < §. We can summarize
these observations as follows.
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REMARK 3.4. Under the above assumptions there exists a 69 > 0 and a positive a
such that for any § < & and u® € Bs(u) the iteration (3.24) converges to the locally
unique solution u of (2.9). Moreover, there exists some p < 1 such that

(3.25) [ —ulle) < plla™! —ulleygy, n=01,....

4. A Perturbed First Order Iteration Scheme. We shall now turn to step
(n4) under the assumption that (2.10) gives rise to a fixed error reduction p per
iteration step. Recall that by (3.7), (3.19) and (3.25), that this is indeed the case for
(L), (SL) and (GNL) already for the corresponding stationary choices of B,, = B. In
order to minimize technicalities we shall consider only this case in connection with
such first order schemes. In order to arrive at computable versions of these schemes
we have to approzimate the weighted residuals BR(u"”) in each step. Already in the
linear case (L) this requires approximating the application of an infinite matrix to
a finitely supported vector and to approximate the given data f. In the nonlinear
cases (SL), (GNL) the additional difficulty is to approximately evaluate the nonlinear
expressions R(u’).

Our strategy can be outlined as follows. In the present section we shall address
only issue (a) from Section 1.2, namely how accurate have these approximations to be
chosen at a given stage of the iteration, so as to guarantee convergence to the correct
solution? We shall do so at this point under the assumption that a subroutine for
approximating the weighted residuals BR(v) with desired accuracy is at our disposal.
Once (a) has been clarified for the general scope of problems, we shall in subsequent
sections then narrow down step by step the specific requirements on the basic subrou-
tine, develop concrete realizations for the various problem types (L), (SL) and (GNL)
and analyze their complexity.

Thus for the time being we assume now that a routine with the following property
is given:

RES [,B,R,v] = w,,: determines for any positive tolerance n and any finitely sup-
ported input v a finitely supported w,, satisfying

(4.1) IBR(V) = Wyllea() < -

The need for the following further ingredient is at this point less obvious. It will
be applied after a certain finite number of perturbed iterations based on the applica-
tion of RES. It will be seen later that this is crucial for controling the complexity of
the scheme.

CCOARSE n,v] — w,: determines for any positive tolerance n and any finitely
supported input vector v a finitely supported output vector w, such that

(4.2) v = wylles ) <,

while the support of w,, is minimized subject to certain constraints on the distribution
of its entries.

The constraints mentioned in CCOARSE will depend on the particular appli-
cation and will be specified later. A perturbed iteration based on these ingredients
requires specifying a suitable

Initialization: We distinguish the following three cases for the choice of the initial
guess:
(L): In the linear case (3.3) we can set u® := 0 so that an initial error bound is
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given by € := c;'||f |le;(7) when A is symmetric positive definite, B = oI, and

€ = ¢ ’Z}rlc Allflle;(7) in the general case when using a least squares formulation
B=aA".

(SL): In the case of semilinear elliptic problems (3.13), (3.11) we know that the
exact solution u of (3.13) is contained in the ball By around zero. Since u =
—(DR(£u)) 'R(0) for some £ € [0, 1], we conclude that

13 Il < max [(OREm) e@ou ROl = @

which is the desired initial error bound for the initial guess u® = 0. Now let
(4.4) Bi={vebt(): lu—vlay) < 20

denote the ball around u with radius 2¢p. Then, choose a@ > 0 according to the
remarks in the previous section such that

(4.5) IT = aDRM) i) seaa) P <1, ¥ v EB.

We fix this value of o and set B = ol in the case (3.13).

(GNL): For the locally convergent scheme, we adhere to the assumptions made in
Section 3.3. For any fixed § < do (the parameter from Remark 3.4) which satisfies
(1 + a)é < §p where a is the constant from (3.23), we choose u’ according to (3.20).
In this case we have B = aDR(u’)” and and ¢y := J is a valid initial error bound.

Thus in all cases (L), (SL) and (GNL) one has under the above premises
(4.6) lu = |, () < €

The last prerequisite is to determine the number of applications of RES before
calling CCOARSE. To this end, it will be convenient to extract the following fact
from the above considerations.

REMARK 4.1. For each of the above choices of B in (L), (SL) and (GNL) there
exists a neighborhood B of the exact solution u and a constant p < 1 such that for
v,z € B one has

(4.7) (v —2) = B(R(v) = R(2))lle(5) < IV = 2llex()-

Proof: In the linear case (L) this readily follows from (3.5) when A is symmetric
positive definite and B = oI for a suitable a. More generally, when (3.1) holds, « is
chosen so that T — AT A is a contraction which corresponds to B = aAT. In either
case we can take B = £5(J).

In the case (SL) of the semilinear elliptic problem (3.11), respectively (3.13), this
follows for B = oI and suitable positive « from the reasoning leading to (3.18), where
B is the set from the initialization.

Finally, for (GNL) (see Section 3.3) the claim follows from (3.22) for B = aDR(u®)?
and « satisfying (3.23) with B = B;(u). O

We can now describe our computable analogue of (2.10). For this we choose any
fixed summable sequence (wj);en, which, for convenience, we arrange to sum to one
> j—owj = 1. Then define K as

1
p— H . k—1 < - -
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where p is the constant from (4.7) and where C* is a fixed constant depending on
the realization of the routine CCOARSE, see Section 6.2. We have now collected all
necessary ingredients to describe the following scheme:

SOLVE [¢, R] - 1(e)
(i) Set @® = u° and the corresponding initial bound ¢y according to the above
initialization, and define j = 0;
(ii) If ¢; < € stop and output ii(e) := @/; else set v® := @/ and for k =
0,...,K —1, set ny, := wgpe;; compute

wk = RES [Uk; B,R, vk]

and update

k+1 k k

v =v' —w";

(iii) CCOARSE[%,VK] = utt €1 =€/2, j+1 = j, go to (ii).

Let us confirm first that the choice of accuracy tolerances in SOLVE imply
convergence.

PROPOSITION 4.2. The iterates @/ produced by the scheme SOLVE satisfy

(4.9) la— |l ) <,

so that in particular [[u — t(e)||g, () < €. Moreover, one has

(4.10) lu— " @(e)atalln < Cie,

AEA(e)

where C1 is the constant from (2.5) and A(e) := supp u(e).
Proof: We assume the above initialization and employ a simple perturbation argu-
ment using induction on j. We fix a value of j and let u* := u*(v%) be the exact

iterates uft! = u*f — BR(u*) with initial guess u® = v = @/. Hence
vk+1 _ uk+1 — vk _ uk _ (Wk _ BR(uk))
(4.11) =vF —u* - BR(v}) - R(u")) + (BR(vF) — wh).

Next we wish to invoke (4.7). To do this we need to make sure that the iterates
vk, u* stay in the neighborhood B mentioned in Remark 4.1. In the linear case
(L) there is no constraint, i.e., B = £2(J). Let us look at the semilinear case (SL)
next. By induction assumption we know that ||u — @/||s,7) < €; < €. Therefore
[u—u*lley) < PFllu=1lley(s) < PFllu—@ley(s) < ph€j. Sou* € Bforall k < K.
Also v? = @/ € B. Thus suppose that v* is in B. We wish to show that then also
vkl € B. To this end, we infer from (4.7), (4.11) and the definition of w* in step

(ii) that

[VEHE — "l ) < plIVY = u¥[ley(7) + wrp®e;
k
(4.12) <Pl D wi < plej,
=0

where we have used that u® = v°. Since p < 1 we see, by the previous estimate for
the u®, that also v¥*! € B and the iteration can be advanced up to K. We now
conclude from (4.8) and (4.12) that

— 6'
(4.13) = vy < (p+ )" e < gy
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For the locally convergent scheme (GNL) with B = aR(u®)7 the reasoning is
analogous. The choice of the initial guess ensures that (p + a)e; < (p + a)e <
(1 + a)eo < do. Then the above arguments for (SL) yield again (4.13) so that all
iterates stay in Bj, (u).

Thus in all cases the estimate (4.9) follows now immediately from step (iii) in
SOLVE, the definition of CCOARSE and (4.2). Finally, (4.10) is an immediate
consequence of the norm equivalence (2.5) and (4.9). O

Thus for an idealized infinite dimensional scheme of order one in (n3) we know
how to choose the tolerances in the routines RES and CCOARSE so as to guarantee
convergence. Let us pause to point out that the scheme SOLVE in the above form
should be viewed as the simplest proptotype whose practical realization could be
varied in several ways depending on the special case at hand. For instance, in step
(ii) one could try to avoid performing always K perturbed iterations but terminate
earlier based on information provided by the approximate residuals. This might be
important if only a poor guess of the reduction factor p is available which determines
the possibly much too pessimistic value of K. Let us briefly indicate a possible
strategy. Note that in all the above examples there exists a constant C' such that

(4.14) la = vller) < CIIBRMV)lea( )

for v in a suitable neighborhood of u. In fact, in the semilinear case (SL), the
monotonicity of G assures that for B = oI we could take C' = (@Amin(A))~! where
Amin (A) is a lower bound for the spectrum of A. Alternatively, one has in this case

a(w,v — u) + {(w, G(v) — G(u))
l|wl#

[B(v)|l3 = sup > cljo —ullu,

weH
where c¢ is the ellipticity constant from (3.9). Now the norm equivalences (2.5) and
(2.6) yield

IRMV)llez(7) > Rl > cerllu — vl > ecflla—vlle, (),

so that €' = cc? would be an admissible choice (without any restriction on v). For
the locally convergent scheme with B = aDR(u’)? the reasoning leading to (3.23)
also leads to an estimate of the type (4.14).

To see how this can be exploited, an inspection of the above proof reveals the
following fact. Choose any p < 1 and define K by (4.8) with respect to p. Replacing
p by p in the definition of the tolerances in step (ii), it would take M := max {K, K}
steps to ensure that in the (j 4 1)st call of (ii) [[lu—vM||,,(7) <€;/(2(143C*)). Now
suppose that the p is expected to be a too pessimistic estimate of the true reduction
rate. Choosing e.g. p := 1/2 and setting n; := 27¥¢; as tolerances in the (j + 1)st
call of (ii), we infer from (4.14) that

Il = V¥ lles) < CIBRO) ) < O + W lleag ) = .

By the previous remarks, we can terminate the iteration in step (ii) of SOLVE when
either k = K or the computable a-posteriori bound &y, < €;/(2(1+3C*)), which might
happen much earlier than predicetd by (4.8). Of course, the constant C is usually also
only estimated. However, a poor estimate enters the termination criterion in a less
severe way than a poor estimate for p. Nevertheless, in order to keep the exposition
as simple as possible we confine the subsequent discussion to the above version of
SOLVE, bearing in mind that variants of the above sort are automatically covered
by the complexity analysis.

We have thus far introduced our paradigm for solving nonlinear problems. This
paradigm is built on the availability of numerical algorithms such as CCOARSE and
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RES. The remainder of this paper is to show how to construct concrete practical re-
alizations of these algorithms in various settings and then to show how, under suitable
controls on the computations in these algorithms, we can give complexity estimates
for the entire numerical scheme SOLVE. More precisely, we wish to determine its
work/accuracy balance i.e. given any target accuracy €, how many degrees of freedom
N = N(e) := #A(e) where A(e) := suppii(e), are needed to achieve it, and what
is the associated (asymptotic) computational work. Of course, one hopes to keep
the latter quantity proportional to N(e) so that the number of degrees of freedom
is a reasonable complexity measure. In the following section we shall address these
issues first for the linear case (3.3). We review quickly the the relevant facts from
[7, 8] tailored somewhat to the present situation, since this will guide the subsequent
developments.

5. Realization and Complexity Analysis in the Linear Case (L). Recall
from (3.6) that in the linear case, BR(v) = a(Av —f) (or «tAT(Av —f)). Thus, one
part in approximating the residual is to approximate given data, here in the form of
the right hand side f which, in general, is an infinite sequence.

5.1. Coarsening and Best N-term Approximation. We will also assume
in the sequel that all coefficients of f are known and thus in principle accessible. In
practice this may require a preprocessing step that computes for some overall target
accuracy € (depending on the desired solution accuracy) an approximation f: satis-
fying ||f — fe[|¢,(7) and then order the entries by size. Once this has been done any
coarser approximations, needed in the course of the iteration process, can be produced
by the following simplest version of CCOARSE, introduced and analyzed in [7].

COARSE [n,v] — v, associates with any finitely supported input v a vector v, such
that

(5.1) ||v - vn||42(3) <mn, #suppw > #suppvy,, whenever |v — w||42(3) <.

Thus COARSE determines for a given finitely supported vector, a new vector
with the smallest possible support deviating no more than a prescribed tolerance
from the input. There is no constraint on the distribution of active indices in this
case. Ordering the entries of v sizewise, this can be realized by summing entries in
increasing order until the sum of their squares reaches n%. For a detailed description
of this routine see [7]. In fact, a strict ordering is not necessary. The same effect
is realized by collecting the entries in binary bins which avoids a log factor at the
expense of a fixed factor in the accuracy tolerance, [1].

The routine COARSE can be used to approximate the data f as follows.

(5.2) RHS [, f] := COARSE 5 — ¢, f],

whenever 71 > €.

Note that COARSE is a nonlinear process that realizes a given accuracy tol-
erance at the expense of a minimal number of degrees of freedom. It is therefore a
version of best N-term approzimation in £5(J). In fact, defining

(5.3) N () (1) i= #sulgg{}SN [a = vlle (),

one has for any v € £2(J)

1/2
(54) one () (V) = IV =Vl = (Z IUZIZ’) ;

n>N
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where (v})nen is any nonincreasing rearrangement of v. Thus vy is obtained by
retaining the N largest (in modulus) terms of v and setting all other entries to zero.
Depending on the context vy will be viewed as a sequence in £2(J) or a vector in
RY.

The best N-term approximation sets a lower bound for the complexity that could
ever be achieved by a scheme like SOLVE. In fact, it will serve as our bench mark in
the case of linear variational problems of the form (3.3).

5.2. Adaptive Application of Compressible Matrices. It remains to ap-
proximate the action of A on a finitely supported vector v. While the treatment
of the right hand side data has been already seen to comply with best N-term ap-
proximation complexity, the question arises whether Av can be approximated with
a similar efficiency. This has been answered affirmatively in [7] and we briefly recall
the relevant facts from there.

Due to the vanishing moment property of wavelets the wavelet representation of
many operators turns out to be quasi-sparse. The following quantification of sparsity
is appropriate [7].

A matrix C is said to be s*-compressible — C € Cs+ — if for any 0 < s < s* and
every j € N there exists a summable sequences ()32, (3_;; < o0) and a matrix
C; obtained by replacing all but the order of ;27 entries per row and column in C
by zero, while still satisfying

(5.5) IC—Cjll < Caj27%°, jeN

Specifically, wavelet representations of differential (and also certain singular inte-
gral) operators fall into this category. One typically has then estimates of the type

(5.6) la(yx, )| < 27Nkl

where 0 > d/2 depends on the regularity of the wavelets.

In order to describe the essence of an approximate application scheme for com-
pressible matrices, we abbreviate for any finitely supported v the best 2/-term ap-
proximations by v{;; := vy; and define

(5.7) w; = AjV[O] + Aj71(V[1] - V[o]) +---+ A()(V[j] - V[j—l]);

as an approximation to Av. Obviously this scheme is adaptive in that it exploits
directly information on v. In fact, if A € Cs-, then the triangle inequality together
with the above compression estimates yield for any fixed s < s*

i
(5.8) |AV = Wjlleo () < cllv = Vijplleary + D a2 " Ivi—y = Vij—ic1)llea) -
%,—/ l:O ~ ~~ "4

T2i 45 (V) S oni-1-1 o) (V)

One can now exploit the a-posteriori information offered by the quantities o;—1-1 g, () (V)
to choose the smallest j for which the right hand side of (5.8) is smaller than a given
target accuracy n and set w, := w;. Since the sum is finite for each finitely supported
input v such a j does indeed exist. This leads to a concrete multiplication scheme (see
[7, 2] for a detailed description, analysis and implementation) which we summarize as
follows:

APPLY [5,A,v] — w,: determines for any finitely supported input v a finitely
supported output w, such that

(5.9) 1AV = wylley() < 7
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To describe the work/accuracy rate of APPLY in precise terms, we recall from [7]
the following characterization of those sequences in £5(7) whose error of best N-term
approximation decays like N—° for some s > 0. For any 7 < 2 let

Yzl (Ve ) = IVl + Ve )

(5.10) |V|ew () :=supn
and let £(J) denote the subspace of those v € £(J) for which [|v||gw (s < oc.
(Obviously one obtains a strict subspace of £5(7) only when 7 < 2.) Tt is easy to see
that

£ C ()

while the difference between both spaces is rather small. ¢¥(7) is often called weak
£; due to the following alternate characterization, see e.g. [7, 19]:

(6.11) £2(J) ={v € £2(T) : 3 C such that #{\:|va|>n} <Cn~7, n>0}.
In fact, the smallest constant C = C(v) above satisfies
(5.12) Cv) = |V[fw(g)-

We will make use of the following fact, see [7].
ProrosiTION 5.1. Let

1 1
(5.13) —=s+_.
T 2

Then v € £2(J) if and only if on 4,7y (V) S N7°. In addition,

(5.14) v =vnllegy S N7Vl N=12,....

~

The main result concerning APPLY can be formulated as follows [7].
THEOREM 5.1. Suppose that C € Cs+ and that for some 0 < s < s*, v € £¥(7),
where L = s+ 1. Then w, = APPLY [, C,v] satisfies:
() Iwgllee(y S WVllew(a)s
(i) #flops ~ #suppwy, < [[VILT . mYe,
where the constants in these estimates depend only on s when s is small. In particular,

we see that C is bounded on (¥ (J), + = s+ %, as long as s < s* and T are related by

(5.13) ’

Thus, when dealing with linear problems (3.3), an approximation within the toler-
ance 71 > 0 for to the weighted residual BR(v) = a(Av —f) for any finitely supported
input v can be computed as follows

(5.15)  RESi[n,a,A,f,v] == a (APPLY [%, A,v] — RHS [%, f]) 7

where RHS is given by (5.2). The same ideas can be used in the least squares case
(3.8), where again RHS can be composed of COARSE and APPLY, see [8] for
details.

REMARK 5.2. Since by Theorem 5.1 £ € £¥(J), whenever the solution u belongs
to ¥ (J), the above considerations and analogous facts about COARSE from [7]
show that the output f, of RHS [, f] satisfies ||f;|lew(7) < [lullew(s) and #suppf,

< gV S||u||(1zés( - These observations provide the following result.

PROPOSITION 5.3. If the sequence of wavelet coefficients u of the exact solution
u of (3.3) belongs to £¥(J) and if A belongs to Cs« where T is related to some s <
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s* by (5.13), then, for any finitely supported input v, the output w, of the scheme
RESin [, 0, A, £, V] satisfies

1w llew () (IVllew gy + lallex () 5

<

5.16 ~
B0 appw, < e (il + VI3 5) - n >0,
where the constants in these estimates depend only on s.

The only missing link now is to explain the role of step (iii) in SOLVE. It is
based on the following result from [7].

PROPOSITION 5.4. If v € L¥(T) and ||v — W|lg, ) < 1 with #suppw < oo.
Then w, := COARSE [w, 41 satisfies

(5.17) #suppw, < ||V||§45(J)77_1/s; v — Wy llesry < 5,
and
(5.18) IWollew ) < Vllex ()

where the constant in these estimates depend only on s when s becomes small.

Thus, in this case C* = 4/3 is a valid choice in the definition of the constant K
in (4.8).

By Proposition 5.4, the coarsening step (iii), with the above algorithm COARSE
used as CCOARSE, pulls a current approximation to the unknown u towards its
best N-term approximation and controls the £¥(J) norms of the approximations,
while Proposition 5.3 controls the complexity within each iteration block (ii).

Let us now denote by SOLVEy;, the specification of SOLVE obtained by using
RES);, and COARSE in place of RES, respectively CCOARSE. We emphasize
that adaptivity enters the scheme SOLVEy;,, solely through the adaptive application
of A.

In order to describe the complexity of SOLVE};,, we define, in analogy to (5.3),
the error of best N-term approximation in #H as

on(u) = aacin A llw = vatpalla-
A€A
It follows from the norm equivalence (2.5) that
(5.19) 10N 4,(7) (1) L on(u) < Croy g, (0).

The main result of this section follows now from Propositions 5.3 and 5.4, see [8] for
details.

THEOREM 5.2. Assume that the wavelet representation A of the operator A
induced by the bilinear form a(-, ) belongs to Cs- and that the solution u = )y 7 uxthx
of (3.8) satisfies

ON,H S N—?

for some s < s*. Then the output t(e) of SOLVEyn[€, R] and its support A(e) have
the following properties:

(5.20) #AQ) S eVl 1@l S Tl

Moreover, the number of operations and storage needed to compute @(e) remains pro-
portional to #A(e) while

(5.21) lu— > ule)agalln < Cre.
AEA(e)
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Thus, under the above premises, SOLVE};, has in a certain range the same
asymptotic work/accuracy rate as the best N-term approximation of the solution and
exhibits in this sense optimal complexity.

REMARK 5.5. We conclude this section by recalling that u € £¥(J) is for instance
implied by a certain Besov regularity of u. In fact, when H = H, u € Bt43(L,)
with 771 = s + 1/2, implies u € £¥(J). This can be used to identify circumstances
under which the adaptive scheme performs asymptotically better than a scheme based
on uniform refinements. Recall that BEY9(L.) is the “largest” space of smoothness
t + sd imbedded in H.

6. The Nonlinear Case. In view of the fact that SOLVE has the same struc-
ture, regardless of whether the involved operators are linear or nonlinear, our strategy
will be to follow closely the above lines also when the variational problem (2.2) is non-
linear. In principle, this will prove successful although some important modifications
of the ingredients will be encountered. The main distinction lies in the sparsity mea-
sure in that the role of best (unrestricted) N-term approximation will be replaced
by best tree approximation. This constraint on the distribution of active coefficients
arises naturally when analyzing the approximate evaluation of nonlinear expressions

R(v).

6.1. Tree Approximation and Coarsening. To explain this, recall that Sy :=
supp¥r. A set T C J is called a tree if A € T implies p € T whenever Sy C S,.
Given a p there are at most P indices A € J|,,)41 such that Sy C S,;; these A are called
the children of p and p is a parent of A. Similarly, every A has at most P parents.
Note that, by definition, whenever a A belongs to a tree all of its parents belong to it
as well.

If the tree T C J is finite, we define the set £t = L1 (T) of inner leaves as

(6.1) Lt:={\eT:pachildof \ = ugT}

Additionally, the set L= = L7 (T) of outer leaves is the set of those indices outside
the tree such that all of their parents belong to the tree

(6.2) LT ={AeT: AT, 5 CS, = peT}

We shall make use of the following facts.
REMARK 6.1. a) One has

(6.3) #T ~#LE(T) ~ #L(T),

where the constants depend only on the number P of parents.

b) There exists an M € N such that at most M elements of L*(T) have a nonempty
intersection.

Proof: a) is easily verified. As for b), note that for any tree 7 both collections £ (7))
and £ (7) share the property that none of their elements is contained in any other
of their elements. Recall that the collection S(¥) of wavelet supports is assumed to
have the (FIP). The claim b) follows then from (2.4). O

Of course, regular thresholding does not generally preserve tree structures. This
leads us to the following notions. We associate to any sequence v = (vy) in £3(J)
another sequence v = (7,) defined by

1/2

(6.4) by = S vl
S CSx,lul>IA|
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One readily confirms that S, C Sy implies ¥ > ¥, i.e. for any n > 0 the set
(6.5) T =Ta(v) :={X : |0x] >n}

has a tree structure. Thus, thresholding with respect to the modified sequences @
creates trees.

Recall that in the linear case we have been able to compare the performance
of SOLVE with the best (unconstrained) N-term approzimation. We want now to
develop sparsity measures that respect tree structure. Once a suitable measure has
been identified one can follow conceptually the lines of Section 3. The counterpart
for the spaces £¥(J), entering the characterization of best (unconstrained) N-term
approximation rates (recall Proposition 5.1), are now the following spaces (see [9])

(6.6) L () ={ve () :veZ(T)} Ve = IVllez -
Thus, by (5.11) and (5.12), one has
(6.7) #T(V) <07V gw(gy, V€L (T)-

In analogy to Proposition 5.1 one has, [9]
PROPOSITION 6.2. Let vy, :=v|7,. Then v € (£¥(J) implies the error estimate

(6.8) Iv=voll $ ' TPVIE 5 S BT V),

with s = 1/7 — 1/2, see (5.13). Conversely, ||v — vyl < C[#(Ty)]~* for allnp > 0
implies v € (L (J) with [|v|, 27y < C.

One can again relate the membership of v to (£¥(J) to the regularity of the
corresponding expansion v, [9].

REMARK 6.3. Let H = H' for some t > 0. If the wavelet expansion v with
coefficient sequence v belongs to Bi?LSd(LT/) for some 7' satisfying T' > (s +1/2)"1/2,
then v € (£¥(J) with T = (s + 1/2)~Y2. Thus, in terms of regqularity, £*(J) differs
from £2(J) by a little additional regularity imposed on the respective expansions, due
to the stronger metric L, T > 7. Thus a tree approzimation rate N—° can still be
achieved for much larger spaces than H'"? which governs the corresponding rate for
uniform refinements.

6.2. Tree Coarsening. We shall specify next a coarsening routine CCOARSE
that preserves tree structures and, as before, applies to finitely supported sequences.
It will be referred to as TCOARSE. Its definition requires some preparation. Given
w, a tree T = T*(n,w) is called n-best for w if

W —w|rlle) <n and #T =min{#7" : ||w — W|r|le ) <, T' a tree}.

Requiring best trees will be too stringent from a practical point of view. Therefore
we shall be content with the following relaxed version. A tree T = T (n,w) is called
(n, C)-near best (or briefly near best when the parameters are clear from the context)
if

W = W|Tlleo(ry <m and #T < C#T(n/C, w).

The action of TCOARSE can now be described as follows.

TCOARSE [, w] — W, determines for a fized constant C* > 1, any finitely sup-
ported input w, and any tolerance n > 0 an (n,C*)-near best tree T (n,w) and sets

Wy i = W|T(g,w)-
The realization of this routine can be based on the second algorithm for gener-
ating near best tree approximations developed in [3]. To apply the results from [3] in
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the present situation, the role of the partition P associated in [3] to a tree T is played
here by the set L~ (T) of outer leaves, while for A € L7 (7) the local error terms for a
given v € £>(7) are here given by e(\) := #3. Since, by Remark 6.1 b), at any given
point the number of A € £~ that overlap that point is finite we see that the e()) are
subadditive in the sense of [3]. Hence the results from [3] apply. To use the algorithm
from [3] we need to know the values @y, A € T (supp w), the smallest tree containing
the support of w. Summing the squares of the entries of w starting from the leaves
of T (suppw) working towards the roots, provides these quantities at an expense of
#7T (supp w) operations. Combining this with Theorem 5.2 from [3] establishes the
following fact.

PROPOSITION 6.4. For any given finitely supported input w the computational
cost of the output W, produced by TCOARSE [, w] remains proportional to #7T (supp w).
The underlying tree T (n,w) is (n, C*)-near best, where C* is the constant appearing
in the estimate (5.8) in Theorem 5.2 of [3].

The routine TCOARSE will be used as CCOARSE in step (iii) of SOLVE.
The constant C* enters the definition of the number K of perturbed iterations in
step (ii) of SOLVE (see (4.8)). As in the linear case its purpose is to control the
£ (J)-norms of the approximants. This is made precise by the following counterpart
to Proposition 5.4.

PROPOSITION 6.5. If v € £X(J) and [|[v — W||g ) < 1 with #suppw < oco.
Then w, := TCOARSE [w,3C*n)] satisfies

69 #suppw, S IVILm IV = Walleg < (1430,
and
(6.10) IWall,er oy S MIVILex ()

where the constants depend only on 7 when 7 — 0, on C* in TCOARSE and the
constants from Proposition 6.2.

Proof: The second estimate in (6.9) follows from the triangle inequality. As for
the first estimate in (6.9), assume that v € £¥(J) and consider the thresholding
tree Ts5(v) for v defined by (6.5). We shall show that for a judiciously chosen ¢ the
restriction of w to this tree provides a 3n-accurate approximation to w, i.e. one has

(6.11) W = Wiz llea() < 30

Therefore, by the definition of the (1, C*)-near best tree 7 (3C*n, w) and by (6.7), we
have

(6.12)  #T(BC™n,w) < C*#T(3Bn, w) < C*#Ts(v) < C* 67 ([VI[ g ()
To determine § > 0 for which (6.11) holds, note first that

W — Wl e S IW =vVlleuw) + IV =vrmllew) + 11V =W)lnmllew

(6.13) <20+ CIVIITfE 70

where we have invoked Proposition 6.2. Now choose § such that n = C ||V||:l/w2 ( J)51*T/ 2

so that (6.11) is indeed valid. Recalling now that for s and 7 related by 7 = (s+1/2) 1,
one has 1 — 7/2 = s7 and hence § = Cil/(”)||v||;h/(?;)n1/(”) which gives §77 =
CY3||v||7/?2n~1/2. Substituting this into (6.12), and noting that %~ +1 = X, confirms
the first estimate in (6.9).

It remains to prove (6.10). It suffices to show that ||z||,¢w () < [V ew(7) with
z := v — w;. We shall show that

(614) Nl/T%J*V S ”V”tlf(J)a N:15273a"'5
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which, in view of the definition of ||z|,¢»(7), Will complete the proof. We consider
two cases.

Case 1) N > 4#T7(3C*n,w) := m: First note that Zy = 0y except for A €
T(3C*n,w) = suppwy. Thus, we can view the sequence Z; as obtained from 0}
by changing at most m of these values and then rearranging to put them in their
proper order. It follows that one of the 07, j = N —2m, ..., N was not changed and

when rearranged becomes 2}, = 07 with |j' — j| < m. Hence
NYT 2y < NY7zp = NYToy <4V <4V ),

which verifies (6.14) in this case.

Case 2) N < 4#T (3C*n, w): In this case, let 7" be a subtree of 7z: (z) obtained
by possibly discarding some of the nodes A with 2y = Z}, so as to guarantee that
#T*=N. Welet LT := LT(T*) be the set of inner leaves of 7* so that, by Remark
6.1a), cN < #L+ < N holds for some constant ¢ > 0 depending only on the supports
Sy of the wavelets 1, € ¥. Moreover, by Remark 6.1 b), only a uniformly bounded
finite number of supports S,,, v € L1, overlap any given point. Then, by Remark 6.1
a) and Holder’s inequality,

T/2 1-7/2
Nl < Yl < (z w) (z 1)

velt velt velt

(6.15)

N

T/2
<Z |5u|2> N7 < (ll2lleay)N®) 7

veLt

where we have used Remark 6.1 b) in the last step. Since by (6.11), [|z[|¢,(7) = ||V —
Wy lles(7) < 3C*n, and since by the first estimate in (6.9), 7 < [|VI] ¢ (o) (F#T (1, w))~*,
we conclude from (6.15) that

NY7 |20 < oV < e
which finishes the proof. O

6.3. The Key Requirement. Up to this point we have not imposed any con-
ditions on the subroutine RES which is used to approximate the residual at each
iteration. We will now introduce a condition, called 7*-sparsity, motivated by the
analysis of the previous section for the linear case, see Proposition 5.3. We will
then show that whenever RES is 7*-sparse then the algorithm SOLVE is optimal
in its rate/complexity for a certain range of error decay rates depending on 7*. The
subsequent section will then show how to construct 7*-sparse routines for nonlinear
problems.

We say that the scheme RES used to approximate residuals is 7*-sparse if the
following property holds.

T*-Sparsity: Whenever the exact solution u of (2.9) belongs to £¥(J) for some
T > 7%, then one has for any finitely supported input v and any tolerance 7 > 0 that
the output w,, := RES [n, R, V] satisfies

#suppw, < OV (IVI1e ) + Il e ) + 1)

(6.16)
lwill,ee 7y < C(Ivll,ex oy + llall,ew ) + 1),

where C depends only on 7 when 7 — 7. Moreover, the number of operations needed
to compute w,, stays proportional to #supp wy,.
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The occurence of [|ul|,¢»(7) in the above estimates is already plausible from the
linear case as expained in Remark 5.2.

It will be understood in the sequel that TCOARSE is used as CCOARSE and
that a proper initialization is used that complies if necessary with the requirements
on the quality of the initial guess (see Section 5) so that, in particular, the respective
variant of the iteration (2.10) satisfies (3.7).

Under these premises we now show that 7*-sparsity implies asymptotically opti-
mal complexity of the scheme SOLVE.

THEOREM 6.1. Assume that the scheme RES is 7*-sparse for some 7 > 0. If the
exact solution u of (2.9) belongs to £*(J) for some T > 7*, then the approzimations
u(e) satisfy for every target accuracy € > 0

(6.17) llu—t(e)ley ) <
while
(618)  #suppu(e) < O lullfe sy [0@lex) < Cllull,es (o),

where the constant C depends only on T when T — 7*. Moreover, the number of
operations needed to compute G(€) stays proportional to F#supp wy.

Proof: The first part follows directly from Proposition 4.2. From (4.13) we know
that the result v¥ after K perturbed iterations in the j + 1st block of step (ii) in
SOLVE satisfies [[u—v¥||,,(7) <€;/(2(14+3C*)). Now Proposition 6.5 ensures that
then

1/s

4 —q -1
619) & i) < Cllullex)s  #supp @™ < O |lulllf2 .

while the computational work stays proportional to the support size of vE. Here it is
important to note that the constant C is independent of the input v of TCOARSE.
Thus for j > 0 the input of the first application of RES in step (ii) of SOLVE sat-
isfies (6.19). Since there are only a uniformly bounded number K of applications
of RES in each iteration block, vX also satisfies (6.19) with a constant depending
now on K. (Here we have tacitly assumed that the initial guess has been subjected
to a TCOARSE so that it also satisfies (6.19). Otherwise, we would have to add
#suppu® to the above estimates.) The estimate in (6.18) now follows from these
estimates for the terminal value of j. This also shows that the number of operations
remains proportional to #supp a(e). |

We shall discuss below how to obtain schemes RES that are 7*-sparse for certain
7* and what limits the value of 7*.

7. Nonlinear Evaluation Schemes. Just as the efficient application of com-
pressible matrices A was pivotal for the adaptive solution of (3.3), we need efficient
evaluation schemes for F(v) that allow us to realize the residual approximation in
RES. Such a scheme has been already proposed in [9] for a class of nonlinearities F'
that will be described next.

7.1. A Class of Nonlinear Mappings. We shall be concerned with nonlinear
operators of the form

(7.1) V=, - ,v)—w=FDv,---,D%v,),

acting from H x - -- x H to the dual H' (here a; = (@1, - -, @i,q) are multi-indices).
This clearly covers our previous example of a single argument n = 1 but also further
important cases like the nonlinearity appearing in the Navier-Stokes equations. Al-
though we shall not address variational problems involving nonlinearities of several
arguments in this paper we shall present the evaluation schemes in this somewhat
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greater generality because they are important for such applications and because we
shall apply the case of two arguments later in connection with Newton’s scheme.
We shall first describe our requirements on F' in the wavelet coordinate domain
and point out later circumstances under which these requirements are met.
Denoting by v; = (v;,») the arrays of the wavelet coefficients of the function v;,
V = (v1,---,vy) and F the corresponding discrete mapping

(7.2) F(V) = ((x, F(D*v1,---, D™ va)))reg

we make the following basic assumptions.

Assumption 1. F is a Lipschitz map from (€2(T))™ into €a(T):

(7.3) IF(U) =F(V)ll) <C Y llui = villea (),

i=1

with C = C(max;{||uille,(7), [IVilleo(7) }), where  +— C(x) is a positive non-decreasing
function.

Bearing the norm equivalences (2.5), (2.6) in mind, we see that property P1 from
Section 3.2 is a special case of Assumption 1 for n = 1. For local operators one infers
the following local version of this stability assumption (see [9])

(74)  [|(F(U) = F(V)(usscoylleaa) < C DN = vi) pausynpzop les ()

i=1

for any domain D.

Assumption 2. There exists a constant vy > d/2 such that for any finitely supported
V (i.e. with all v; finitely supported) and w = F(V), we have the estimate

(7.5) lwa] <C  sup (Z |’Uz'u|) 2 V(A= luh)

p: SANS,#0 i=1

where C = C(max; ||vil|e, (7)) and z — C(x) is a positive non-decreasing function.

The parameter v plays a similar role as the compressibility range s* for the wavelet
representation of linear operators.

Nonlinear mappings that satisfy the above assumptions are, for instance, those
with polynomial growth. In the special case of a single argument a typical condition
reads

(7.6) |F®) ()] < 1+ [v)P=®)+  k=0,...,n*, for some n* > 1.

REMARK 7.1. One can show that, for the special case n = 1, (7.6) implies
Assumptions 1 and 2, and in particular property P1, with no condition on p when
t > d/2 and otherwise provided that

d+2t
7.7 1< R —
(7.7) Sp<phi= o
see [9].
In the general case, when the nonlinear map F has the form F(D* uy,---, D% u,),
we impose the growth condition
n
(78)  [DPF(w1, s 2a)| SO L+ i), (8] = 0,1, %,
i=1
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for some p; > 0 and n* a positive integer. The following fact (covering Remark 7.1)
has been proven in [9].

THEOREM 7.1. Suppose that H = H? is (a closed subspace, determined e.g. by
homogeneous boundary conditions, or equal to) H'(Q) for some t > 0. Assume that
the growth assumptions (7.8) hold at least with n* = 0. Then F maps H X --- x H to
H' whenever t > 0 satisfies

1t "1t |l
(7.9) [5_8]++;pz[5_3+ 7+ <1l

If in addition n* = 1, then we also have under the same restriction

(7.10) IF(w) = F()llae < C Y [lui = vill,

i=1

where C = C(max;{||uil|, |villn}) end £ — C(x) is nondecreasing, and therefore,
on account of (2.5), Assumption 1 holds.

For the verification of Assumption 2, we treat separately the polynomial case for
which we have the growth condition

(7.11) |DPF(z1,---,20)| < CTQ + [&il)"~%, B <pi,

i=1

and DPF = 0 if 8; > p; for some i, where the p; are positive integers. We recall the
following result from [9].

THEOREM 7.2. Assume that the wavelets belong to C™ and have vanishing mo-
ments of order m (i.e. are orthogonal to P, _1 the space of polynomials of total
degree at most m — 1) for some positive integer m. Then Assumption 2 holds for
v =r+t+d/2 with the following values of 7:

(i) If F satisfies (7.8) with p such that Y"1 | pi[d/2 —t + ||+ < d/2+ ¢, then

r = [min{m, n*,p*}| where p* = min{p; : is.t.d/2 —t+ |a;| > 0}.

(ii) If F satisfies (7.11) with p such that > .| pi[d/2 —t+ |a;|]+ < d/2+t, then

r=m.

7.2. An Adaptive Evaluation Scheme. Given 7,(v;), i =1,...,n, our next
objective is to predict the tree hull T, (F(V)) of significant coefficients of w = F(V)
for nonlinear mappings satisfying Assumptions 1 and 2. To this end, we follow [9]
and fix n > 0. For the constant v of (7.5), we define for all y € J the number
n(p) = n(p, V) satisfying

(7.12) n27V) < max B3| < p27 (V) +1)

i=1,...,n
where ¥; ,, are the residuals for v; (see (6.4)). Moreover, we define the influence set
(7.13) Ay (V) :={X : SanS, #0and |A| < |p|+ [n(p, V)]+}

To define a set of significant coefficients for the approximation of F(V) we need one
further notion. Recall that £~ (7) denotes the set of outer leaves of T, namely those
A € J which do not belong to 7 but whose parents all belong to 7, see [9]. It can be
shown that for any tree 7 there exists an expansion 7 such that for some constant
C one has #7 < C#T while for any A € £~ (7) the number of u € £~ (T) such that
SxN S, # 0 is bounded by C, see Lemma 3.1 in [9]. Now let

(7.14) A(V):=T5U | Agu(V),
neTH(V)
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where 7, (V) = U™, T, (vi), (T,(v;) the expansion of 7,(v;)) and as before T, (v;)
consists of all indices u such that @;, > n. We notice that the sets A, ,(V) and hence
A, (V) have tree structure.

The following fact has been shown in [9], Theorem 5.1.

PROPOSITION 7.2. Assume that F satisfies Assumptions 1 and 2. Given any
V e (l(T))" let w = F(V) and define W according to (6.4). Then there exists a
constant C' independent of V such that

(7.15) [Bx| < Cn if A ¢ Ay(V).

For any set A C J and any v € £5(J) we define the restriction

vy if X €A,
0 if AdA.

(VIA)res =

This suggests the following routine for approximating F (V) for any finitely sup-
ported vector V:

EV [e,F, V] = w, is defined by the following steps:
(i) For j =0,1,..., define the threshold n; = 279 and compute A; := A,;(V) by

the strategy proposed above, see (7.14). Denote by L the set of outer leaves
Of Aj .

(i) According to Proposition 7.2, we have [[w — w|s, 7, 7y < C#(L;)n} = €.
Stop for the smallest j such that €; < € and define A, = A;.

(i1i) Define the corresponding approxzimation w. := W], .

Therefore the output w, of EV [¢, F, V] satisfies

(7.16) [We = F(V)llez(r) <

A more detailed discussion of this scheme can be found in [9]. Here we mention only
that the scheme indeed terminates after finitely many steps for any finitely supported
input V. In fact, finitely supported vectors belong to any space (£¥(J), 7 < 2. It
will be seen below that F is stable on these spaces for a certain range of 7 < 2. Thus
by definition 7,(F(V)) grows at most like n~7, so that the factor 7732- eventually forces
the upper bounds #(L; )n; = €} to become arbitrarily small.

This routine is still idealized at this point since nothing is said yet about the
actual computation of the entries wy = F(V)x. Once the significant coefficients have
been identified though, one can resort to the techniques in [15] to compute them effi-
ciently with sufficient accuracy. A more detailed treatment of this issue will be given
elsewhere. In the sequel we shall work with the following

Assumption E: The entries wyx = F(v)x can be computed (with sufficient accuracy)
on average at unit cost.

We can now formulate concrete realizations of the scheme SOLVE that are suit-
able for nonlinear problems. We shall use TCOARSE as our version of CCOARSE.
Moreover, for the semilinear elliptic problem (3.11) we can take

(7.17) RESq[n, A, G,v] := APPLY [/3,A,v]+EV [5/3,G,v] — RHS [/3,f],

where RHS is defined here as in (5.2) but with COARSE replaced by TCOARSE.

For the general nonlinear problem (GNL), we shall now devise a residual approxi-
mation for the scheme from Section 3.3 with B,, := B. Suppose that ||B||¢,(7)—:(7) <
Cp and set

(7.18) RES.[n,B,R,v] := APPLY [5/2,B,EV [n/2C5,R,V]].
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Of course, we have assumed here that the matrix B is compressible. In particular, for
the stationary choice B = DR(u?) this might be expected to be the case. We shall
return to this issue later.

7.3. Complexity Estimates. We have now explained how to obtain concrete
realizations of the scheme SOLVE in each of the three cases (L), (SL), (GNL). The
remainder of this section will be devoted to giving a complexity analysis of these
schemes. We begin with the following result from [9] (see Theorems 3.2 and 5.1).

THEOREM 7.3. Assume that F satisfies Assumptions 1 and 2. Given any V €
(L2 (TI))™ for some dfy < T < 2, then we have for the set A, (V) defined by (7.14)

(7.19) #Aa(V) S (1 IVIEer (e ) n 7
Therefore it follows that

(7.20) IFEV)lexy S T+ IVIGer@)n-

~

This can be used to derive the following estimate for the complexity of the routine
EV, see [9].

PROPOSITION 7.3. Assume that V € (£¥(J))". Let w, = EV [e,F,V]. Then
one has for s related to T by (5.13)

(7.21) #suppw, < (1 + ”V”t/lir”(J))") e/,

Moreover, (under Assumption E) the number of operations needed to compute w
stays proportional to #supp we.

Recall that in the case of semilinear equations, R involves a linear and a nonlinear
operator as in (3.2) or (3.11). Also recall from Theorem 5.1 that when the wavelet
representation A of the linear operator A defined by

(w, Av) = a(v,w), v,w € H = H,

belongs to Cs«, then A is bounded on ¢¥(J) with s < s* related to 7 by (5.13).
However, when also nonlinear operators are involved, Theorem 6.1 tells us that the
spaces (/¥ (J) should now play the role of £*(J). Thus, we shall prove in Proposition
7.6 below the boundedness of A with respect to this slightly stronger norm.

To prepare for Proposition 7.6, we make some remarks.

REMARK 7.4. It has been shown in [11] that when A is a local operator, i.e,
(v, Aw) = 0 whenever |supp vNsupp w| = 0 and when A is still bounded as a mapping
from H' to H= for a < m + d/2, where m is less than or equal to the order of
differentiabilty and vanishing moments of the wavelets ¢y, then one has

(7.22) la(r, )| < 277N g = ¢+ m +df2.
Moreover, we know from Proposition 3.4 in [7] that in this case A belongs to Cs+ with

« _t+m
(7.23) 8t =

Note that o agrees with the value of v in Assumption 2 or at least depends in
an analogous way on the spatial dimension, the order of the operator and the order
of the vanishing moments and the smoothness of the wavelets, see Theorem 7.2 (ii).
Note that the condition s < s* means, in view of (5.13), that L < s* + § = & 4 2
which is equivalent to

(7.24) djo < T.
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This is the same restriction on 7 as given in Theorem 7.3.

REMARK 7.5. One can show that for piecewise polynomial wavelets s* can be
chosen larger than in (7.23) resulting in a weaker restriction on 7 than (7.24), see
[2]. By definition one has £¥(J) C £¥(J). We shall need the following refinement
of Theorem 5.1.

PROPOSITION 7.6. Under the assumptions from Remark 7.4 on the linear part A
let

(7.25) o=m+t+d/2.
Then one has for T > d/o
(7.26) NAV],eo) S VILew(r), v ELI(T),

that is A maps L¥(J) boundedly into itself.

Proof: By assumption (3.9), A is a topological isomorphism from H onto H' and
obviously satisfies Assumption 1. The validity of (7.4) for F(v) := Av is an immediate
consequence of the locality of A. We need to show that Assumption 2 holds for all
~' < @, defined by (7.25). To this end, note that (7.22) provides

|(AV))\| < Z |UV|270(|/\|*‘V|) + Z |,UV|2*U(\)\|7|V\)2720'(|u\7\)\|)

[v] < [A], vl > [Al,
Sy NSy #0 Sy NSy, #0
7 7
< sup 2= (I/\\—\V|)|vu| E 9—(e=7")(IAl=1v])
vl < '*"m vl < AL
Sy NSy # Sy NSy #0
+ sup |vy|2*0(|/\\*\"|) E 920 (lv[=[A])
lv] > [Xx], vl > AL
Sy nsSy#0 S, NSy #0

We now check that both sums appearing on the right hand side are bounded indepen-
dently of X provided that ' < o. Indeed, in the first sum for any k£ > |A|, there are a
bounded number Cy of indices v with |v| = k such that S, NSy # 0. Hence this sum
is bounded by Co 3-32, 2-97=7") | For the second sum, note that for |v| = || + k,
there are at most Cy2*? indices v for which S, NSy # (. Since, by (7.25), 20 > d this
sum can also be bounded by a geometric series. We have thus verified Assumption 2
for all 4/ < . The assertion now follows from Theorem 7.3 and the restriction on 7
given in Theorem 7.3. |

We shall make use of the following consequence of Proposition 7.6.

COROLLARY 7.7. Under the same assumptions as in Proposition 7.6 let % =
s+ %, s <s*. Then w, = APPLY [, A, V] satisfies:

(i) #flops, #suppw, < [IVI[fe oyn Y°;

(i6) 1Wyll,exzy S WVILew()-
Proof: (i) follows directly from Theorem 5.1 (ii) and the fact that [| - [lew(7) < ||
Il,ew (7). As for (ii), note that, since the chunks (v[;; — v[;j_1)) have disjoint sup-
ports, for each j the vector w;, defined by (5.7), can be interpreted as w; = ClUy
where the matrix C¥) is a compressed version of A defined as follows. All columns
with indices outside supp v(;) are zero. The columns of C{ whose indices belong to
supp (V(x] — Vig—1]), k¥ < j, agree with the corresponding columns in the matrix A;_j.
Therefore, since the A ; are derived from A by replacing certain entries by zero, we
conclude that C) is obtained by replacing certain entries in A by zero. Thus the
C) still statisfy (7.22) uniformly in j. Assumptions 1 and 2 remain also valid. Thus
Proposition 7.6 can be applied to C'¥) with constants independent of j which finishes
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the proof. O

We have now collected all the ingredients needed to confirm 7*-sparsity of the
residual approximations defined before. We start with (7.17).

COROLLARY 7.8. Let «y be the parameter given in Theorem 7.2 for the respective

nonlinear mapping F. Suppose that o, defined by (7.25) satisfies 0 > ~v. Then RESg,
defined by (7.17) is T* sparse with 7* := d/~.
Proof: We have to verify the validity of (6.16) for 7 > 7*. If u € £¥(J) for some
7 > 7%, then Proposition 7.6 implies that f € £;(J) and [[f|],¢e () < [ull,ex(s)-
Hence, since TCOARSE satisfies completely analogous properties with regard to
% (J) as COARSE with respect to £¥(J) (see [7]), we conclude that the output f;,
of RHS [n, f] satisfies

(7.27) #suppt, S 1l s Ml S lallesca)-

Furthermore, Corollary 7.7 says that the output of APPLY remains bounded in
+£¥(J), while Proposition 7.3 ensures that the same is true for the output of EV.
Hence, by (7.17), one has

(7.28)[lwyll,ex oy £ (VI ex (o) + llull,ex oy +1), Wy := RESen[n, A, G,v],

which is the second estimate in (6.16). The first estimate in (6.16) follows also from
(7.27), Theorem 7.3, and Corollary 7.7 (i). This completes the proof. |

Combining Corollary 7.8 with Theorem 6.1, yields the first main result of this
paper.

THEOREM 7.4. Under the same assumptions as in Corollary 7.8 suppose that the
solution u = )7\ ;ua¥x satisfies u € (£¥(J) for some T > 7 := d/vy. Then the
approzimate solution u(e) = 3 y\cp () u(€)an produced by SOLVE (with the initial-
ization for the semilinear problem) after finitely many steps satisfies

llu = u(e)lln < Cre.

Moreover

(7.29) #(flops), #(A©) S ¢l sy 2@l er) S luleseos

where the constants depend only on T when T — T*.

Let us briefly discuss now the locally convergent scheme from Section 2.3. We
shall assume that for the general problem (2.2) the nonlinear map in (2.1) satisfies
Assumptions 1 and 2. Moreover, we assume that a sufficiently good initial guess
u’ is given, so that the error reduction (3.25) holds, and that SOLVE is initialized
accordingly, see Section 5.

COROLLARY 7.9. Let v be the parameter given in Theorem 7.2 for the respective
nonlinear mapping F'. Moreover, assume that the matriz B = B,, appearing in (2.10)
satisfies decay estimates like (7.22) for some o > ~v. Then the scheme RES). defined
by (7.18) is T*-sparse for T* := d/~.

Proof: The assertion follows again from Propositions 7.6 and 7.3. |

COROLLARY 7.10. Under the assumptions of Corollary 7.9 the assertion of The-
orem 7.4 remains valid for the locally convergent scheme based on RES)..

We end this Section with analyzing the compressibility of the special choice B =
DR(u’)T. We consider # = H! and only nonlinear maps of a single argument
n =1 and the subcritical case t < d/2, p < p*, recall (7.7). Recall from (2.11) that
the entries of DR(u%)” = DR(u°) have the form wj , = (1x, %, R'(u®)). Since in
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view of the # = H'-normalization of the ¥y, one has [l ~ 2(2=DIAl the same
arguments as used in the proof of Theorem 4.2 in [9] yield

. (44
wrol S I9loe o 1P =R @Olliysy S 27O, R @) e,
where we assume without loss of generality that |A| > |v|. Moreover, we obtain

[y R (u®) [wr(Lw(sy) S r?ggi|¢u|wr—l(Lw(sA))|R'(u0)|wz(Loo(sA))-

Abbreviating as before ¢ = r + g + t, we can estimate the first factor by
(7.30) 9(§=)lvig(r=Dlv| _ 20 Ivlg—(2t+DIv]

while the second factor can be estimated along the lines of the proof of Theorem 4.2
in [9] as

0||m+k—1

R (W) lwi(Lo(sy)) S pmax [l

(7.31) X sup |u2|2(1+(9*1)f)|M|2(P*1)(%*t)|l~b|,
w:SpNSANS, #0

where € > 0, j; € N and

(p—1-14 if [0l 21
0 if ([l < 1.

As in [9] we can choose € so that

U+ 1))l 1)($ D)l < o+ E+0)lulg—clulg—(4—0)lul — g—clulgl+20)|ul

Thus, combining (7.30) and (7.31), we obtain

(7.32) lwaw] < CUOlly)2~ X sup  Jud[2-elulolr+20ul=lv),
w:SpNSANS, #0

Note that the first factor C'(||u|, \7))2_"”*‘_“’” represents the same scalewise decay
of the entries as in the matrix A in (7.22). This ensures that DR(u®) belongs to Cs-
with s* given by (7.23). However, the entries are weighted by additional u°-dependent
factors, that could, in principle, become rather large when the finite expansion u°
contains basis functions from high scales overlapping S). Nevertheless, these factors
depend only on u® (and hence on the accuracy § of the initial guess) but not on
the accuracy by which DR/(u®) is applied through the scheme APPLY. Therefore,
in principle, one obtains asymptotically optimal complexity, however, with possibly
poor quantitative behavior.

8. Newton’s Method. In concrete cases the error reduction p obtained in (3.25)
or (3.19) may be so close to one that the number K of necessary updates in the
perturbed scheme SOLVE may become fairly large. So in spite of its asymptotic
optimality, the quantitative performance may be poor. We shall therefore address
Newton’s method, corresponding to B,, = (DR(u™))™! in (2.10), as an example where
the ideal scheme permits a faster error decay. The adaptive realization of Newton’s
method, applied to the infinite dimensional problem (2.2) or better yet (2.9), does not
quite fit into the format of SOLVE, explaining its separate treatment in this section.

Note that, for B,, = (DR(u")) !, (2.10) can be reformulated as follows. Given
an initial guess u” the next iterate u™*! is determined by solving

(8.1) DR(u™)w"™ = —R(u")



and setting
(8.2) u"t = u" 4+ wh

We are not interested here in the weakest assumptions under which the iterative
scheme (8.2) converges to a locally unique solution. We are instead content here with
the following setting: Recall that the mapping R in the variational problem (2.2) has
the form

(8.3) R(v) = F(v) - f,

where throughout this section we shall confine the discussion again to nonlinear maps
F of a single argument satisfying the growth condition (7.6) for some n* > 1. (Of
course, F' can have a linear part as in (3.11).) Therefore we have, in particular, that
R and F have the same Frechét derivative DR(v) = DF(v). Moreover, we assume
that for some open set U C H one has
(N1) The Frechét derivative DR(v) : w — DR(v)w is an isomorphism from # to
H' and for all v,y € U and some w > 0

(8.4) [(DR(v))" (DR(v + sy) = DR(v))ylln < swllyll

holds for all s € [0,1], v € U such that v +y € U.
(N2) There exists a solution u € I and an initial guess u° in U such that

(8.5) lu—u’||% <6 <2/w and Bs(u) CU

with w from (N1).

Let us check that (N1) holds, for instance, in the semilinear case (SL) when F
defined by (3.11) with monotone (scalar valued) G and when F' satisfies (7.6) with
n* > 2. (Note that Lipschitz continuity of G' would suffice as well). To see this,
recall that in this case one has (z, DF (v)w) = a(z,w) + (z,G'(v)w), where G’ is the
(pointwise) derivative of G. Hence, we obtain
(z, DR(v)w) a(z,w) + (2, G'W)w) _ a(w,w)

[|DR(v)w]||3 = sup = sup > c||lwl|a,
2€H (E2[E” 2€H [ 2] H

where c is the ellipticity constant from(3.9). Likewise, one has
IDR(w)wll3 < Cllwllw + |G (v)wllw -

When F satisfies (7.6) then Q(v,w) := G'(v)w satisfies (7.8) which, by Theorem 7.1,
means that ||G'(v)w||y < C(||v||#)||wl||%. This shows that DR(v) is an isomorphism
from #H to H'. The verification of (8.4) is similar now using that G satisfies (7.6) for
n* > 2.

Given the validity of (N1) and (N2), standard arguments can be employed to
prove that all iterates

(8.6) u™ =" — DR(u™) ' R(u™),

arising from Newton’s method formulated in H, remain in ¢/ and satisfy
(8.7) lu—u™||y <& for n €N and Jim llu — u™|3 = 0.
In fact, one has superlinear convergence

w
(88) ”u_un+1||7'l S EHU—UHH?H, ’I’LZO,I,Z,...,
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see e.g. [17, 18]. Finally, note that, by (2.5), the corresponding iterates in wavelet
coordinates satisfy

2
o Ciw

(8.9) [lu—u™ gy ) < Bllu—ullZ, 7, neNo, 2,

The purpose of this section is to show how the approximate solution of the linear
problem (8.1) can be performed again by an iterative scheme along the lines of [8]. By
our assumption (N1), we know that DR(z) is an isomorphism from # to H' provided
that z € Y. Thus

(8.10) |IVllea() < IDR(@)Vler(5) < CollVilea(ay, v € £2(T)

holds for all z such that z = 7, ; za®¥x € U. Given this mapping property (8.10),
the adaptive scheme from [8] can actually be applied under fairly general assumptions
on the linear isomorphism. For the sake of simplicity we shall assume that DR(z)
is symmetric positive definite. This is for example true in the case (SL) when G is
monotone. From positive definiteness and (8.10), we can find a damping parameter
a > 0 such that for some p < 1

(8.11) IL— aDR™)|| <p, ¥V vell.

The heart of the envisaged adaptive Newton scheme will be to solve the linear
problem (8.1) approximately with the aid of a variant, which will be called SOLVEJ,
of the scheme SOLVE;, discussed in Section 3. Before we proceed to describing the
ingredients of SOLVEN let us point out two issues to be addressed when designing
these ingredients and analyzing their complexity.

(a) The first point concerns the application of the Jacobian. Approximating
at each stage the Jacobian DR(u") in order to use the APPLY scheme based on
(5.7) might be computationally very expensive. (b) The second point concerns the
complexity of approximately solving the linear problem (8.1). Recall from Theorem
6.1 that the logic of complexity estimates is to infer from a certain compressibility (or
regularity) of the solution a corresponding convergence rate of the adaptive scheme.
In the context of the Newton iteration such a property will be assumed about the
solution u of the original nonlinear problem (2.9) which, however, does not necessarily
imply the same property for the solutions of the subproblems (8.1). So it is initially
not clear how to derive complexity estimates for the resolution of these subproblems.
It will be seen though that the solutions to these subproblems become increasingly
closer to elements having the necessary properties, a fact that, as it turns out, can be
exploited as long as the subproblems are not solved too accurately. In particular, the
question then arises whether the quadratic convergence of the Newton scheme can be
preserved.

We now turn to collecting the ingredients of the adaptive Newton scheme. First
of all, the coarsening will be again done by TCOARSE even though the problem is
linear. More importantly, the RES scheme will be of the form RESy;, from (5.15)
but with different schemes playing the roles of APPLY and RHS.

In view of the above issue (a), we shall pursue here the following approach.
Recall from (2.11) that for any v,z € £»(J) and corresponding v = >, vathy,

z = Z/\EJ z)\’(p)\ € Ha
(8.12) DR(z)v = ({¢)», DR(2)v) : A € J),

where DR(z) is the Frechét derivative of R at z. This suggests employing the scheme
EV with Q(z,v) := DR(z)v = DF(z)v. Note that, under the above assumptions on
F, we have

(8.13) Q:(z,v) = Q(z,v), Q:HxH—H.
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In fact, since F' satisfies (7.6) for some n* > 1, one readily verifies that

IDPQ(z1,2)| < (L+ |z )PP (1 + |2 ) 2P+, 0< B <n*—1, 0< B

~

We shall make use of the following consequences of this observation.

REMARK 8.1. The mapping Q satisfies (7.8) withp; :=p—1,p2:=1, a1 = as =
0. Moreover, (7.9) and (8.18) are seen to be implied by the condition (7.6) on F.
Hence Theorems 7.1 and 7.2 ensure that Q) satisfies Assumptions 1 and 2 in Section
7.1.

This suggests the following routine:

APPLY [, DR(z),v] = wy: determines for any tolerance n > 0 and any finitely
supported input vectors v and z a finitely supported output vector w, such that

(8.14) IDR(2)v — Wy|le,(7) < 1,
through
(8.15) APPLY\ [, DR(z),v] :=EV [,Q, (z,V)],

where the routine EV was introduced in Section 7.2

It remains to specify the routine RHS. Here it is issue (b) that calls for some
further preparations. The main point is that if the current right hand sides in (8.1)
are not approximated too accurately then one actually approximates a nearby right
hand side of a problem whose solution is known to be sufficiently sparse and thus can
be approximated efficiently by a linear version of SOLVE.

REMARK 8.2. Suppose that R € C? and let for any z € U and z = Z)\EJ Zaha

(8.16) G(z) := DR(z)(u — z),
where u is the exact solution of (2.9). Then there exists a constant C such that

(8.17) 1G(2) + R(®)llen5) < Cllu— 27, 5)-

Proof: One has
~R(2) = R(u) - R(z) = DR(z)(u~12) + O ([lu—zll%, )
which confirms the claim. O

We shall employ the following routine in which C is the constant of Remark 8.2:

RHSn~[n, R,z] = r,(z) which is defined for any finitely supported z with z € U such
that ||u— z||g,7) < € and for any n/2 > C&by

(8.18) RHSy [, R, 2] := — (EV [g — C¢,F,z] - RHS [n/2,f]) ,
where RHS is defined by (5.2) but with TCOARSE used as CCOARSE.

The role of the above conditions on z and 7 will become clear later.
We are now prepared to describe the version of SOLVEy;, to be used for the
approximate solution of the Newton systems (8.1) as follows:

SOLVEN([n, R,z] — w, determines for a given z € (5(J), such that z € U, an
approzimate solution wy, of the system DR(z)w = —R(z) satisfying

(8.19) W —wylleory < m5
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by invoking SOLVEn[n, DR(z), —R(z)] — w,), where, under the above assumptions
on z and n, in step (i) of SOLVE the residual approzimation

(8.20) RESx[n, R, z,v] := a (APPLYN [%, DR(z),v] — RHSy [%, —R(z)]) ,
and in step (i1i)) TCOARSE is used.

Note that, in view of (8.3), the evaluation of R also requires the approximation of
the data f as stated explicitly in (8.18). From Theorem 7.3, Proposition 7.3 and Propo-
sition 6.5 we infer, as in Remark 5.2, that u € (£¥(J) implies f € £*(J), and its 7-
accurate tree approximation satisfies estimates of the form #suppf, < n~'/* ||u||tle/§( 7))
Il oy S Ihall,ew (-

Moreover, by Remark 8.1 we can apply Theorem 7.3 and Proposition 7.3 to con-

clude that the output w, of APPLY\ [, DR(z), v] satisfies

_1/s 1 1 1
gy FPW S Y (1+ 121122 ) + VIR oy + 1l )
lwyll,ewry S L+ [zl ee 7y + VI, ee ) + [[ull e 7)-

Likewise the output r,(z) of RHSy [1, R, 2] satisfies

_ 1/s
(8.22) #suppry(@) S m (14 12lfes)) . IEa@ sy S 1+ lallescon-

Recalling from (6.16) the definition of 7*-sparseness, we can infer from (8.21) the
following consequence.

REMARK 8.3. Let 7 := d/v where v is the parameter associated with F by
Theorem 7.2. Then the scheme RESy, defined by (8.20), is 7*-sparse whenever
lzll,ex) S 1.

We can now formulate an adaptive Newton iteration as follows.

NEWTON [¢, R, u’] — u(e) determines for any finitely supported initial guess u®
whose corresponding expansion ug satisfies (8.5), an approximate solution @(e) satsi-
fying

(8.23) lu —a(e)lle(r) <€

by the following steps:
(i) Set ey :=cy's, 7 =0.
(i) If €; < € stop and output u(e) := @/. Otherwise choose some n; > 0 (see
(8.26) below) and perform

SOLVEx [n;, R, @] — w/.
(i17) Let (see (8.9))
=o' +w, ;=0 +n;, W :=TCOARSE[3C*i;, 1],

(where C* is the constant from Section 6.2) and set €j11 = (1 4+ 3C*)i);,
j+1— 3 and go to (ii).

The choice of the dynamic tolerance 7; in step (ii) is yet to be specified. The
first requirement is to keep the iterates @i/ in the right neighborhood of the solution,
which means that the corresponding expansions 4’ lie in Bs(u). For this we shall use
the following lemma.

LEMMA 8.1. Fiz a positive number 8 < 1 and assume that 6 > 0 is chosen
sufficiently small to ensure that, in addition to (8.5),

i
(1+3C*)Ciw’
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(8.24) 0 <



and

(1 +3C*)@6

(8.25) >

< B.

Then the condition n; < 19 < §/(2(1 + 3C*)C1) implies that u; € Bs(u) for all
subsequent approzimate iterates. Moreover, if

€ (B — (14 3C*)we;) )
: ;< : =0,1,...
(8 26) 77] — 1+3C* ’ J 071; )

one has for 7); defined in step (iii) of NEWTON

(827) €j+1 = (1 + 30*)’fb < ,661', 3=0,1,....

Proof: Denoting by u' the exact solution of DR(i’)u! = —R(i°) and recalling
from step (i) that [lu—a°||g,7) < ¢ 10 = €, the vector @1 produced in steps (ii), (iii)
satisfies, by (8.9) and (8.19),

= @llea() < = 0 lea(y + 10 = @llesir) < 6262 + .
Thus, taking the coarsening step into account, we infer from (2.5) and (8.9) that

llu —u'{lag < Cillu =@ ||gy ) < (1 +3C*)Cr (@i 6% + o)
(14 3C*)C3ws?

=g +a+3cc.

* 3 2
Thus, when e.g. % < §/2, which is (8.24), it suffices to take o < §/(2(1+
3C*)Cy) at the initial stage j = 0, to ensure that

@' = ull < llu = w®lla,

which verifies that 4' € Bs(u). We can now iterate this result, e.g. using %' in
place of u°, we obtain that u? € Bs(u), and so on. Now when (8.25) holds we have
B8 > (1+ 3C*)wey so that the condition (8.26) on n; is feasible for j = 0. Moreover,
(8.26) implies that €;41 = (14+3C*)7; < fe; which is (8.27) which ensures that the er-
ror bounds decay, so that (8.26) remains feasible for all j. This completes the proof. O

PROPOSITION 8.4. Assume that 6 and n satisfy (8.24), (8.25) and (8.26), re-
spectively. Then the scheme NEWTON terminates after finitely many steps and
produces a finitely supported vector u(e) satisfying

(8.28) la = &) ey < e

Thus, by (2.5),

flu - z u(e)aalln < Cre.

AEsupp u(e)

Proof: We employ a simple perturbation argument as in the proof of Lemma 8.1.
Let u/t! denote the exact Newton iteration u/*! = @/ — DR(@/)"'R(@’). By step
(i) we know that [lu — @°||s,7) < €. Then, supposing that [[u — @/||s,(7) < €;, we
infer from (8.9) that

(8:29) lu = w? gy gy < D65
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Hence, denoting by w’ := u/*! — @/ the exact solution of DR(@/)w = —R(d’), we
obtain according to step (iii)

lu— @ | ) < llu—=w/t |z + 0/t =l gy + 10— @4y
< @€} + W — W[4y ) + 3 < D€f + 1+ 3C™;
(8.30) = (1+3C")n; = €j11,

which advances the induction assumption. By (8.27), this finishes the proof. m

It remains to analyze the work/accuracy rate of NEWTON. So far the only
condition on the tolerances 7; in step (ii) of NEWTON is (8.26) which ensures that
the error bounds €; decay at all. This would allow us to keep n; proportional to ¢;
which would result in an overall first order error reduction rate. On the other hand,
choosing 7; proportional to e?, the error bounds €; decay, by step (iii), quadratically.
However, according to the earlier discussion of issue b), the subproblem (8.1) should
not be resolved too accurately, as reflected by the above right hand side scheme
RHSy, see (8.18). The following main result of this section says that within these
constraints on the tolerances 7; one can still realize an outer convergence rate, ranging
from first to second order, in such a way that the overall scheme exhibits optimal
rate/complexity.

THEOREM 8.2. Suppose that (N1), (N2) and the above hypotheses on F hold.
Assume that 0 satisfies (8.24) and (8.25) for some fized 5 < 1. Moreover, assume
that at the jth stage of NEWTON the tolerance n; is in addition to (8.26) subjected

to the condition
(8.31) n;p™ > Cée? for some fixed ¢ > 1,

where p, K are the constants from (3.7) and (4.8). Then, for any target accuracy
€ > 0, NEWTON outputs after finitely many steps a finitely supported vector u(e)
satisfying |[u — G(e)||e, () and hence

llu— Z a(e)aalln < Cre.

A€supp u(e)

Moreover, if the solution u of (2.9) belongs to £¥(J) for some d/y < T < 2, the
output u(e) of NEWTON has the following properties:

©832) @l S lullew), #suwpuE $ [l

where as before =1 = s+ 1/2. Under the assumption E the number of floating point
operations needed to compute @(e) remains proportional to #supp u(e).

It is understood that in the final step 7; is chosen within the above constraints as
large as possible so as to attain the target accuracy. Note that, as indicated before,
within the above constraints on 7; (see (8.26), (8.31)) the convergence rate of the
outer inexact Newton iteration can be chosen to vary between linear and quadratic
convergence.

Proof of Theorem 8.2: First, observe that in step (iii) one has at the jth stage, by
the the first part of (8.30),

(8.33) flu—1llg < llu— /|y + [0 =l ) < OeF + 7 =1);.
Hence, by Proposition 6.5 and step (iii), we obtain

(8.34) [+ | ew ) S

~

—_4 —1
ull,en (), #supp @t < [lulYoe ",
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where, as before, % =s+ % Moreover, the computational work remains proportional

to #supp @/,

Thus the only question concerns the intermediate complexity in step (ii). Here
it is important that the Newton updates (8.1) are, in view of (8.31), not computed
too accurately. In fact, under this constraint the approximation of R(a’), computed
in SOLVEY, is incidentally also a sufficiently accurate approximation to G(i’), see
Remark 8.2. To explain this, recall (8.18) and set

Y’ :=EV [n; — Ce?, —R(w/)].
Then one has, by Remark 8.2,

1G(@) = Y |la(r) S NG@) + R(W) |lea(r) + IR(E) + Y7 lea7)
< (:'ef +n; — C'e? = ;.

Thus, within the accuracy range permitted by (8.31), the routine RHSy invoked by
SOLVEy satisfies the accuracy requirements for the perturbed equation DR(@/ )W =
G(uw’), whose solution is, by definition of G(u’), just W/ = u—a/. Now the (£*(J)-
norm of W7 is, by assumption and the reasoning at the beginning of the proof, uni-
formly bounded. Therefore Theorem 6.1, combined with Remark 8.3, bounds the
complexity of the w7, which completes the proof. O
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