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Abstract. This paper is concerned with the estimation and evaluation of wavelet coefficients of
the composition F owu of two functions F and u from the wavelet coefficients of u. The main result is
to show that certain sequence spaces that can be used to measure the sparsity of the arrays of wavelet
coefficients are stable under a class of nonlinear mappings F that occur naturally, e.g. in nonlinear
PDEs. We indicate how these results can be used to facilitate the sparse evaluation of arrays of
wavelet coefficients of compositions at asymptotically optimal computational cost. Furthermore, the
basic requirements are verified for several concrete choices of nonlinear mappings. These results
are generalized to compositions by a multivariate map F of several functions ui,::-,u, and their
derivatives, i.e. F(D%*uy,- -, D% uy).
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1. Introduction. This paper is concerned with the estimation and evaluation of
the wavelet coefficients of a composition of two functions F and u where u is given in
terms of a wavelet expansion. Our interest in this subject stems from recent develop-
ments of adaptive wavelet schemes for the numerical solution of several types of initial
or boundary value problems for partial differential equations. Such schemes typically
rely on the sparsity of the wavelet representation of the solution allowing for data com-
pression, as well as in the ability to perform accurate numerical computations in the
compressed representation. For initial value problems, dynamically adaptive schemes
introduced in [20] require a reliable prediction of significant wavelet coefficients from
the current state when progressing to the next time level. In the case of hyperbolic
conservation laws, this question was first addressed in [19] and further discussed in
[11]. Here one has to estimate the action of the nonlinear terms defining the con-
vective fluxes on the current approximation in its multiscale representation. Another
related example is the wavelet analysis of turbulent incompressible flows where such
estimates are related to the energy transfer between different scales, see e.g. [18] and
[17]. For boundary value problems, adaptive wavelet schemes also require the tracking
of the significant coefficients as the iterative solution process progresses, see e.g. [1],
[4], [8], [9] and [23].

In all these examples, we are interested in the following general question : does
composition with F preserves the sparsity of the wavelet coefficients of the function
u. By the sparsity, we mean that only a quantifiable relatively small set of these
coefficients is needed to recover the underlying function (with accuracy measured in a
given norm) to within some target accuracy. It is well-known that sparsity of wavelet
coefficients in this sense is closely related (in fact equivalent) to the regularity of the
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function with respect to certain scales of Besov spaces, see e.g. [15]. Hence the above
issue is closely connected with the question how the regularity of a given function
u is affected by the composition with some nonlinear function F, or more generally,
given some regularity spaces R;, i = 1,...,m, what is the image of []\, R; under
the mapping

(1 (), - um () = F(ua(), - um())-

This mapping is often referred to as a Nemytskij operator. The mapping properties
of Nemytskij operators between Besov spaces has been treated by several authors
and the reader is referred e.g. to [2], [3], [22], and to the book by Runst and Sickel
[21] for a detailed treatment. Sharp results are indeed available on the amount of
smoothness which can be expected for F(u) given the smoothness of u, under fairly
general assumptions on F. Thus, in principle, in all cases covered by these results
the sparsity of the wavelet coefficients of compositions can be predicted fairly well.
However, these results neither tell us which coefficients of compositions F(u) are
significant, based on knowledge about u, nor how to calculate them efficiently once
they have been identified, while this is a crucial issue in the perspective of numerical
computations. The objective of the present paper is therefore also to develop concepts
and tools for treating this latter problem.

Our paper is organized as follows. We present the problem formulation in Section
2 which involves the wavelet discretization F of the mapping F as well as a notion of
tree structure in the organization of wavelet coefficients. We provide in Section 3 a
proof that this mapping preserves sparsity, under some general assumptions describing
the stability and local action of F in the space-scale domain. We also present a
specific algorithm that constructs sparse approximants with a prescribed accuracy
€ at asymptotically optimal cost. This type of scheme is needed for the adaptive
solution process of nonlinear operator equations, see [10]. We shall prove in Section
4 the validity of the required assumptions for general local nonlinear mappings of
subcritical type. Finally, the generalization of these results to compositions of the
form F(D*uyq,---,D%u,) between a multivariate map F and the derivatives of
several functions uy, -+, u, is discussed in Section 5.

2. Problem formulation.

2.1. Background and wavelet prerequisites. To explain the relevant fea-
tures of the problem it suffices to describe the following (simple) example in a little
more detail. Consider the nonlinear boundary value problem of the form

(2.1) —Au+Fu)=fin Q, u=0 on 89,

where Q C RY is some open bounded domain. The variational formulation of (2.1)
in the space H = H} () reads: find u € H}(Q) such that

(2.2) /QVu-Vv+/Q}'(u)v:/va,

for all v € H} (). Here H}(Q) is the usual Sobolev space of distributions with
first order weak derivatives in L2(2) vanishing on the boundary 99 in the sense of
traces. (Of course, other boundary conditions may also be considered). For (2.2) to be
meaningful F should map H; () into its dual H~1(£2). This is the perhaps simplest
instance of a variational problem inducing a bijective mapping from a Hilbert space
H onto its dual H'.

For more general problems, H is a product of closed subspaces H! of Sobolev
spaces determined e.g. by homogeneous boundary conditions on part of the domain
boundary, see e.g. [9] for examples. For simplicity we will confine the subsequent
discussion to the case of a single model space H = H* for some t > 0.
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2.2. Wavelet discretization. As already explained, we are motivated by adap-
tive numerical methods based on discretizing the variational formulation (2.2) in a
wavelet basis ¥ = {¢) : A € J}. The indices A encode scale, spatial location and the
type of the wavelet . We will denote by |\| the scale associated with 1. We shall
only consider compactly supported wavelets, i.e., the supports of the wavelets scale
as follows

(2.3) Sy :=supp ¥y, o2 AN < diam Sy < Cp271N,

with ¢g,Co > 0 absolute constants. The index set J has the following structure
J = Jp U Ty where Jy is finite and indexes the scaling functions on a fixed coarsest
level jo. Jy indexes the “true wavelets” 1 with |A| > jo. From compactness of the
supports we know that at each level, the set J; := {A € J : |A| = j} is finite. In fact,
one has #J; ~ 2/% with constants depending on the underlying domain.

One key feature is that ¥ is a Riesz basis of the relevant space H = H!. This
means that every v € H has a unique expansion v = ) vx1, and that there exist
some constants ¢, C' independent of v such that

(2.4) cllwa)aeall <11 oxthalla < Cli(wa)aesll;
AET

where [|(ua)res > = X re s [val® denotes the £5(J)-norm. In particular, the wavelets
will always be assumed to be normalized in H, i.e., ||¢x|]|g = 1. We abbreviate by

v = (ures

the corresponding sequence of wavelet coefficients. Details on the construction of
wavelet bases for Sobolev spaces of general domains can be found in [5, 6, 13].
Note that, by duality, (2.4) is equivalent to

(2.5) CHI(w, el < llwllar < e HI(w, oa)aesll, w e HY,

where (-,-) denotes the duality pairing between H and H'. Clearly the quantities

(w,1py) are the coordinates of w € H' with respect to the dual Riesz basis ¥ to .
Since, as pointed out above, the nonlinearity F is supposed to map H into H' we

shall therefore describe w = F(u) by its inner product sequence w = (wy)res with

(2.6) wy = (w,¥y), Ae€J.
We shall denote by F the corresponding discrete nonlinear map
(2.7) urw=F(u) = ((F(u),¥r)res-
A key issue in the applications mentioned above can roughly be described as
follows. Suppose that 4 € H can be approximated in the energy norm || - ||z within

a tolerance € by a linear combination of N(e,u) wavelets 15. What is the number
N (e, F(u)) of dual wavelets needed to recover F(u) within tolerance e? Note that,
due to the norm equivalences (2.4) and (2.5), this can be restated as follows: Suppose
that the wavelet coefficients u of u € H can be approximated in £2(J) with accuracy &
by a finitely supported vector involving only N (g, u) nonzero terms, how many entries
of the sequence F(u) are needed to approximate F(u) in £2(7)? Thus in the wavelet
coordinate domain all approximations take place in £2(7). In brief when does sparse
approximability of u imply sparse approximability of F(u)?

Questions of the above type are by now well understood for linear operators and
their wavelet representations, as we shall now describe. In this context, the level of
sparsity of u is measured by the smallest 7 < 2 such that u € ¢¥(J). Here £¥(7) is
the collection of all u € £2(J) which satisfy

(2.8) #AET ual >n} <O, >0
3



In fact, £*(7) is a (quasi-)normed linear space endowed with the norm

(2.9) lalley () == supn[#{r € T« fur| > .
n

An equivalent norm is given by the quantity

(2.10) supn'/Tu¥,
n>0

where (u})n>0 is a nonincreasing rearrangement of (Jux|)acs. Note that if 7 < 2, we
have!

(2.11) lall < llullew -

Moreover, defining the error of best N-term approzimation in £o(J)
1/2

(2.12) on(u):= inf [lu—v]|= (Z |u:;|2) ,

supp v<N
#Supp v n>N

one has the following characterization [8].
PROPOSITION 2.1. Foru € £3(J) and s > 0, one has on(u) < N~° if and only
if u € L¥(J) with

(2.13) 1o s+ 1

) T 2
Moreover,
(2.14) on(u) $ N 7ullew(g)-

Thus the smaller 7 the fewer terms are needed to achieve a desired target accuracy
for u € £*(J). In the case where F(u) = Au is a linear operator bounded in £2(J),
it is shown in [8] that this operator maps £¥(J) into itself provided that it can be
approximated by sparse matrices Ay with NV entries per rows and columns at the
rate ||A — Anlley(7) < N7 for some r > L — 1. Moreover, it is also shown how to
practically build N-term approximations wy of w = Au which fulfill the optimal rate
lWwn — Wl < N7%, from similar approximations of u at O(N) computational

cost.

2.3. Tree structures and weak spaces. When dealing with nonlinear map-
pings, the following slight modification of these notions turns out to be appropriate.
The approximants will be constrained by imposing a tree structure to the set of in-
dices identifying the active coefficients. We shall say that a set 7 C J is a tree if
A € T implies p € T whenever Sy C S,. Given a p there are at most K indices
A € J|ul+1 such that Sy C S,; these A are called the children of p and p is a parent
of A. Similarly, every A has at most K parents. Note that, by definition, whenever a
A belongs to a tree all of its parents belong to it as well.

If the tree 7 C J is finite, we define the set Lt = L1(T) of inner leaves as

(2.15) Lt:={\eT:pachildof \ = ugT}

Additionally, the set £~ = L (T) of outer leaves is the set of those indices outside
the tree such that all of their parents belong to the tree

(2.16) LT ={AeT: AT, S5 CS, = peT}

1Here and later we use the notation a < bif a < Cb with an absolute constant C' independent
of all parameters on which a, b depend.
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We shall make use of the following easily verifiable inequalities

(2.17) #T ~#L(T) ~#L(T),

where the constants depend only on K. Defining

(2.18) Tyh:={peJ:S,CSr},

one easily verifies that

(2.19) J\Tc (J Ia
XeL—(T)

Note that for any tree 7 both collections £¥(7) and £~ (T) share the property
that none of their elements is contained in any other of their elements. This fact
will be seen to have an important consequence that will be utilized several times. A
collection C = {Cy : I € T} is said to have the finite incidence property (FIP) if the
following holds: there exists a fixed integer M, such that for any subset G C C with
the property that no element of G is contained in any other element of G, at most M
elements of G have a nonempty intersection.

A prototype instance of (FIP) can be described as follows. Suppose that C' C R?
satisfies C C [0, L]¢ for some fixed positive integer L and define C;, := {Cj; =
279k +C): ke Z? je N} It is shown in [16] that Cr, has the (FIP) for every
L € N, where the number M depends on (the smallest) L (for which C' C [0, L]¢) and
the spatial dimension d. Thus, when ¥ is a wavelet basis on all of R? generated by a
classical multiresolution sequence of shift-invariant spaces, the collection of supports
C(¥) :=Z*U{Sx: A= (j,k,e) € Ng x Z%x {0,1}%\ {0}} has the (FIP). It is not hard
to see that C(¥™) has the (FIP) when U™ is a wavelet basis on the torus obtained by
periodizing a basis on R?. For the simplest example of a bounded domain, namely the
unit cube O in R¢, say, boundary adapted wavelet bases ¥" can be constructed by
taking tensor products of boundary adapted wavelet bases on the unit interval. The
bases on O, although no longer being shift invariant, still have the property that the
supports of the wavelets on the level j are contained in some cube 277 (k + [O,L]d),
for a fixed positive integer L and some k € Z? The arguments in [16] can still
be used to show that C(¥") has the (FIP) also in this case. A common strategy
for constructing wavelet bases on bounded domains or compact manifolds 2 is to
partition the domain into a smooth parametric images of the unit cube and to build
a basis ¥% on the whole domain from parametric liftings of a basis ¥" on the unit
cube O. Thus, intersections of supports of wavelets in the physical domain correspond
to intersections in the parameter domain. Thus one can infer the (FIP) for C(¥%)
from that of C(¥"). Throughout the remainder of the paper we shall assume that the
wavelet bases referred to possess the (FIP).

Now we associate to any sequence u = (uy) in £5(J) the corresponding sequence
i = (@) defined by

1/2

(2.20) iy = | Y |ul

pely

The coefficients @) can be viewed as local error bounds. In fact, one has for any tree
T that

(2.21) i} < lu—ulr?
AEL-(T)

To see this, recall that the collection of supports Sy, A € J possesses the (FIP). Hence,
any pu € T is contained at most a uniformly bounded finite number of elements in
L~(T), which confirms (2.21).



One readily verifies that S, C S implies 4y > 4y, i.e. for any n > 0 the set
(2.22) Tn = Tp(a) :={X : |G| > n}

has tree structure. Thus, thresholding with respect to the modified sequences @
creates trees. This motivates us to define

(2.23) 7 (T) ={ueb(7):ue (D)} uller ) =l

Clearly, we have [[ul|¢w(7) < |lul],¢(7) and
(2.24) #Tn(0) <077 [[allpw(7)-

Therefore the spaces (£2 () can also be used to quantify the sparseness of sequences
subject to the tree structure constraint. In fact, one has the following counterpart to
Proposition 2.1.

PROPOSITION 2.2. Let u, := u|7,. Then u € (£(J) implies the error estimate

(2.25) =yl S 02l 72 S B Nl

with s = 1/7 —1/2. Conversely, ||lu — uy|| < C[#(Ty)]~* for all n > 0 implies
u € £(J) and |[ull,ew sy < D with D proportional to C.

Proof: Let £, := £L7(7,) denote the set of outer leaves of the tree 7,. By (2.19) ,
(2.21) and using (2.24), one has

lu—u,l* = Z lua? < Z aX < #Lyn’
AETy AeLy

(2.26) #Tan” < alllpwryn® ™7,

N

where we have used (2.17). This confirms the first estimate in (2.25). Since again
by definition (2.23) and (2.24), n < ||u||tg;u(3)(#777)’1/7, the second estimate follows
from (2.26).

As for the converse, let Ny, := #7, and M, := #L, so that, by (2.17), N, ~ M,
uniformly in 5. Then, denoting by (@) a non-increasing rearrangement of i, we have
by assumption

My (i, 40,)* < Y 8 S lu—wl? S #7,7%,
xeLy

where we have again used (2.21) . Thus @y, |, < (#T,)~ /2 = (#T7,)~Y7 for
s and 7 related as above. Since [lul|* > 7n?#L;}, where £} := L*(T,), we conclude
that #7, grows at most like n~2. Hence #7T, //n grows at most like n which, in view
of the above observation for N = N, confirms that u € (£¥ (7). This completes the

proof. m|

Of course, the question arises which property of u implies that the array of wavelet
coeflicients u belongs to £¥(7).

REMARK 2.3. Let H = H* then u € B *¥(L..) implies u € £¥(J), whenever
%<%=s+% and 0 < ¢ < 0.
Sketch of proof: It is enough to prove this for Bi**¢(L,/) and 7 < 7' < 2, because
the remaining cases follow by embeddings. The condition u € B%}*¢(L,:) says that
the H!-normalized wavelet coefficients uy of u satisfy

1/
Y ™ < 279,
[Al=j
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where § := s + § — L > 0 is the discrepancy measuring the “distance” of BL*¢(L,)

Y
from the critical embedding line. From this one derives that also (EI Mg [BAl7 )

< 2794 j € N. This, in turn, implies that the function @ with wavelet coefficients
i belongs to B{F*¢(L,+). By Corollary 4.2 in [7], the best N-term approximation of
@ in H*® has order N~*. Therefore, by Proposition 2.1, @ € £¥(J), which, by (2.23)
means that u € £*(J) as claimed. O

We can now restate the above questions in the following way:
e Does F map a sequence u € £ (J) into a sequence w = F(u) € £*(J)?
e Can we compute asymptotically optimal sparse approximations of w = F(u)
from asymptotically optimal sparse approximations of u?
Note that a positive answer to the second question gives a positive answer to the first
question in a constructive way.

3. Sparsity preserving discrete operators.

3.1. General assumptions. We shall use two general assumptions on the func-
tion F. The first assumption expresses the fact that F is a stable transformation from
H to H'.

Assumption 1. F is o Lipschitz map from ly into itself. More precisely, we assume
that we have

(3.1) IF(u) - F(v)|| < Cllu—v|l, with C = C(sup{[[ul,[IvI]}),
where x — C(x) is a positive non-decreasing function.

The fact that the constant C' might grow with the norm of u and v accounts for
the nonlinearity of the tranformation. In the context of solving operator equations of
the type (2.1), the norms of the arguments of F will remain bounded (by the || - ||g-
norm of the solution up to the achieved precision) so we can think of C' as a constant.
We shall actually use a local version of this stability assumption which will be a direct

consequence of (3.1) whenever the nonlinear function F is local in the physical space:
if D is a subdomain of €2, we have

(3-2) I(F(u) = F(v))l{asacoyll < Cli(u = v)[ixisanp-oyl

with C' depending on ||u|| and ||v]|| as for the global estimate.

The second assumption describes the local action of F in the space-scale domain
of wavelet coefficients.

Assumption 2. If w = F(u) for a finitely supported u, we have the estimate

(3.3) lwal < C  sup  |u,[277ATIED with € = C(||ul)),
i SpNSA#D

for all X € Ty, where v > d/2 and x — C(z) is a positive non-decreasing function.

A typical value of 7 is
(3.4) yi=r+t+d/2,

where r reflects the smoothness and order of vanishing moments of the wavelets, i.e.
Yx € C" and [, ™5 (x)dz = 0 for |m| = my + - + mg < r. We shall see in the
next section that all these assumptions are fullfilled for a fairly general class of local
composition operators.



3.2. Tree expansions. Given a tree T, we have defined already the set £L=(T)
of outer leaves for 7. It will be important in the trees that we construct that there
is not too much overlap in the elements of £~ (7). We can always accomplish this by
expanding the tree slightly as follows. Given any A € J, we define () = {A}. If
®4_1(X) has already been defined then we define ®(A) as the set of all u, |u| = |A|—k

such that S, NS, # 0 for some g’ € ®p_1(A). We define &(\) := U‘k’\zlotﬁk()\).
Now, given a tree T, we define the expansion 7 as

(3.5) T := Urer®(N).

Let us note that by construction T has the following property:
Expansion Property: If u € T and y' € J, then

!
< -
(3.6) '] < lul — gt

Sp NS, #0

The following lemma, see e.g. [12, 14] shows that 7 has comparable size to 7.
LEMMA 3.1. There exist constants C1 and Ca such that for any finite tree T, we
have:
(i) #(T) < C#(T), )
(7i) For all X € L= (T) there exist at most Cy indices p € L~ (T) such that S, NSy #
0.
Proof: We show first the existence of the constant Cy. To this end, it suffices to
show that for each y € T there exists a reference element A € T such that |A| = |y
and dist (S, S,) < Co2 #/ with Cy the constant of (2.3). Now any u € 7 is in
@4 (') for some X' € T. We prove by induction on k that there is such a reference
element. For k = 0, 4 = X so we can take A = X'. Suppose that we have proven
the existence of such a reference element for all p' € ®;_1()\') and let p be an index
that has been added in the construction of ®;()\'). By the definition of ®4()\') there
is a p' € ®,_1(\') such that S, NS, # 0. By our induction assumption, there is a
reference element X € T, with || = |i/|, such that dist(S,,, Sx) < Co2~ I, Tt follows
that

dist(S,,, S3) < Co2~*'| + diam(S,/) < Co2 ¥ + Co2~ W' = Cp2- v,

Hence, we can take any parent A € T of X as our reference element for p.

To confirm the existence of Cs, note that when v,u € L7(7) and S, N S, # 0,
then ||v| — |p|| < 1. In fact, suppose that |v| < || — 1. Then, for any parent y' of
p we have S, NS, # 0. Since ' € T and |y/| > |v| we conclude v € T which is a
contradiction. This completes the proof. |

3.3. The main result. We wish to predict next the significant coefficients of
w = F(u). To this end, we fix n > 0 and for the constant v of (3.3), we define for all
i € J the number n(u) satisfying

(3.7) nzvn(u) < li,| < nzw(n(u)ﬂ),

and the influence set

(3.8) A= A = SN S, # D and [N < [l + [n(w)]- ).
We then define a set of coefficients for the approximation of w by

(3.9) Ay =AU Ty,



with

(3.10) An = UueﬁATI,H

where 7, is the tree for u defined by (2.20) and 777 is its expansion defined in the
previous section. We notice that A, has a tree structure.
THEOREM 3.2. Given any u € £2(J), one has the coefficient size estimate

(3.11) @Al < mif A¢ Ay,

where the wy are defined for w = F(u) according to (2.20). If in addition u € (£*(J)
for some d/y < T < 2, then we have the cardinality estimate

(3.12) #An) < lalllgwnyn™™ + #(Ts)-
Moreover we have w € (£¥(TJ) and

(3.13) w7y < 1+ Iullew ()

The constants in these above inequalities depend only on the constants in Assumptions
1 and 2, the space dimension d, and the parameter T in the case of (3.12).
Proof: In order to prove (3.11) , we first consider the restricted vector u, = uls. and

its image w,, := F(u,) = (wx,). For A ¢ A, and for all u € 7, such that S, NSy # 0,
we have by (3.8) and (3.10) the inequality |A| — |g| > [n(@)]+. Therefore, remarking
that A € Jy, the local action assumption (3.3) implies

(3.14) [wagl < n-

Moreover if v is such that S, N Sx # 0 and |v| = |A| + 1, we also have |v| — |u| >
[n(p)]+ + ! and therefore, for each p € Ty, the better estimate

(3.15) lwy,n| < 277.
It follows that

(3.16) [irgl* < n* (2120 < P,
1>0

since by assumption v > d/2.
Next, we remark that for A € £ (A,)), we have

[[@xn]? = [BA1?| < ([@x9] + [@A])|Dr,n — DA
(2|Wa5| + [Dx,y — DA]) W,y — Wi

(m+ Il(w = wy) e, DW= wy) e, -

N IN A

(3.17)

Now observe that, according to (3.2) ,

lw = wy)lrsll = (W = W)l {u:s, csnl
< C([lulDllCa = up)|{u:s,ns5 203l
1/2
= C(|ul]) > lwf
1€ Tn,SuNSA#£0
1/2
< C([[ull) > |, [ S C2C([|ul])n,
pEL™(T),SuNSA#D
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where C, is the constant from Lemma 3.1. Combining this with (3.16) and (3.17),
we obtain the size estimate (3.11) .
To prove (3.12) we define the trees

(3.18) T = Tomi

From (2.24) and Lemma 3.1, we infer that u € £*(J) implies

(3.19) #(T5) S 0772 ull T -

Writing

(320) An = U U AT],uv
320 peTi\Ti41

so that

A CTiU | A:SanSu #0, |ul <A < |ul + [n(w)]4 },
€T\ Ti41 HE€T\T41

and remarking that, by (3.7) and (3.8), n(u) = j for u € T; \ Tj+1 we obtain in view
of (3.19)

# U A 29T\ Tin) + #(T))
€T\ T4
(3.21) < ||u||ifww)nfrg(d7w)j_

Since d — vy < 0, by summing over j > 0, we obtain
(3.22) #(A) < Nl nn 7

and adding the cardinality of J,, we thus obtain (3.12).
In order to obtain the estimate (3.13), we first notice that (3.22) already indicates
that we have the estimate

(3.23) @\ )rezyllez < lallew )

For the remainding indices A € Jy, we can write

(@) regsllew ) < N(@a)reg,lle.
< [#(T)]Y 20 ) re g, |l
< Cllwll,

so that we have [|[w||,¢v(7) < [lull,e2(7) + [|W||. Since by Assumption 1,

~

(3.24) Iwll < [IFOI +[[ull < 1+]ull $ 1+ull,ez),
the estimate (3.13) follows O

Note that, since we have used Assumption 1 and its local version in the above
proof, the constants in both estimate (3.11) and (3.13) are of the form C(||ul|) where
x — C(x) is a positive non-decreasing function.

10



3.4. An Adaptive Evaluation Scheme. Adaptive wavelet schemes for varia-
tional problems of the type (2.2) rest on two conceptual steps. First (2.2) is formulated
in wavelet coordinates as an equivalent problem over £2(7) as follows

(3.25) Au+F(u) =1,

where A = ((Vioa, Vi, ) a ve s is the wavelet representation of A and £ = ({f,¥x)) res-
The second step is to devise an iterative scheme for numerically solving (3.25). This
iteration requires the approximate evaluation of Au” and F(u”) with some dynam-
ically updated tolerance, where u™ is the current finitely supported iterate. How to
deal with the linear part Au™ has been explained in [8]. The remaining task may
therefore be formulated as follows: given a target accuracy € > 0, and some finitely
supported v € £5(J), compute F(v) with accuracy € at a possibly moderate computa-
tional expense. We shall discuss and analyze a numerical method for such evaluations
which is suggested by Theorem 3.2.

Let us fix v with finite support and consider the numerical approximation of
w = F(v). We introduce the notation n; := 277 and A; := A, (v) where these sets
are defined as in (3.9) for v. Recall also the set £; := £, of outer leaves of A;. We
introduce the computable quantities

(3.26) € == Co#(L7)m;

where Cj is the constant of the inequality (3.11). The following algorithm EV which
takes as input a tolerance € > 0, the nonlinear map F, and the finitely supported vec-
tor and gives as output EV (e, F,v) = (A, w,) where A is a finite set and w. = w|j_.

Algorithm EV Given the inputs e > 0, F, v, do the following:

Step 1: Calculate Ao, Ly, and €. If €0 < €, terminate the algorithm and take as
output Ac := Ag and w. := w|;_. Ifeo > € set j = 1 and proceed to Step 2.

Step 2: Given j compute A;, Ej_ and €; and proceed to Step 3.

Step 3: If ¢; < ¢, terminate the algorithm and toke as output A= I_Xj W =W, .
If €; > € replace j by j + 1 and return to Step 2.

REMARK 3.1. The above algorithm assumes that given a finite set A, we can
compute wp. This is a numerical issue that we shall not engage except to mention
the paper [14] which treat this topic. In going further, we assume that given any finite
set A with tree structure, wp can always be computed at a cost proportional to #(A).

The following theorem summarizes the properties of Algorithm EV.

THEOREM 3.3. Given the inputs € > 0, a nonlinear function F such that F
satisfies Assumptions 1 and 2, and o finitely supported vector v, then the output w,
has the following properties:

P1: [|[w—w | <e.
P2: For any d/y < T <2 (see Theorem 3.2),

(3.27) #(supp(we)) < CIIVIILE 7" + #(T5)

with C' a constant depending only on the constants appearing in Theorem 3.2. More-
over, the number of computations needed to find w. is also bounded by the right side
of (3.27).

Proof: Since the vector v is finite, it belongs to all {¢¥(J). From (3.12) of Theorem
3.2, we have #(A;) < 297 +#(J,) from which it follows that €; tends to 0 as j — oc.
Therefore, the algorithm must terminate at some finite value j*. Now every pu which
is not in A, is in T, for some v € £j.. It follows from (3.11) that

(3.28) lw—wel> < > [Wul> < C3#(Ly)m = €5 < €,
vEL,
J
11



which proves bf P1.
To prove P2, we start with (3.12) which gives

(3:29) #(Aj) S IVITew(rymy” + #(Tp) = CElIVIITew (67 (H(L12))T? + #(T)-

We continue on under the assumption that the first term on the far right side of
(3.29) is bigger than the second since otherwise we are done. We recall now that
#(Aje) ~ #(L£;.) and €j+ 2 €j-—1 > € because the sets A; increase when j increases.
Using this information back in (3.29) gives

(3.30) #A) TS VI e

Therefore P2 follows by raising both sides of (3.30) to the power 1/(1 — 7/2) because
s=1/7—1/2, and hence 1 — 7/2 = s7.

Finally, to prove P3 we note that the number of computations Ny used at iteration
j = 0 of the algorithm is bounded by #(Ao) and

(3.31) #(Ao) S VI ymo "+ #(T)-

At each iteration j > 1 the number of computations N; needed to execute this itera-
tion from the computations already in hand at iteration j — 1 is bounded by

(3.32) Nj S VI gy -
So the total number N of computations is bounded by
(3.33) N < VI g (ymys” + #(Ts)-

This is the same estimate as we had for A;+ in (3.29) and therefore we derive P3 in
the same way we derived P2 from (3.29). O

4. Verification of the basic assumptions. We shall show in this section that
the Assumptions 1 and 2 hold for nonlinear mappings of the form F(u)(z) = F(u(x))
where F is a univariate function which satisfies growth conditions at infinity of the

type
(4.1) |f(”)(x)| <Cl+ |a:|)[”_"]+, z€e€R, n=0,1,---,n%

for some p > 0 and n* a positive integer. Clearly F(u) = u? is of this type for all n*
if p is an integer and with n* the integer part of p otherwise.

4.1. Verification of Assumption 1. The verification of Assumption 1 is a
classical result in the case where H = H({)), t > 0, or when H is a closed subspace
of H*(Q) determined e.g. by homogeneous boundary conditions, such as H{(Q) (the
closure in the || - [|g: norm of smooth functions with compact support in the open
bounded domain ).

PROPOSITION 4.1. Assume that F satisfies (4.1) for some p > 0 and n* > 0.
Then F maps H to H' under the restriction

. d+2t

4.2 <p< = _—
(4.2) 0<p<p:=—,

when t < d/2 and with no restriction otherwise. If in addition n* > 1, then we also
have under the same restriction

(4.3) 17 (u) = F)llar < Cllu = vl

where C = C(max {||u||m,||[v||g}) ond 2 — C(z) is nondecreasing, and therefore
Assumption 1 holds.

12



Proof: For u € H and ¢ € H, we write

(4.4) (Flw), )| < O / o] + / ellup].

The first term is bounded according to

(4.5) /Q ol < 1212l1¢llzs < 920l

For the second term, we use Holder’s inequality to obtain
(46) [ 1l < ligll, Il
Q

where % + % = 1. Taking ¢ such that ¢ = pq’ = pq/(¢ — 1), i.e. ¢ =p+ 1, this gives

(4.7) /Q llul? < Il lull? ..

We then remark that, when ¢t < d/2, H = H' is continuously embedded in L, if
and only if p < p*, and this embedding holds for all p > 0 when ¢ > d/2. We therefore
conclude that

(4.8) IF @)l < C(1 + [ullf)-

Therefore F maps H to H' provided that p < p* when t < d/2 and for all p > 0
otherwise.
For the stability property, we use the inequality

(4.9) |F(u) = F(v)| < Clu—v|(1+ |u| + [vo])?~ 1+

which is a consequence of (4.1) with n = 1. Therefore one has for all ¢ € H

(410)  [(F(u) — F),0)| < O / ollu — o] + / Il — ol (ju] + o)) 1],

The first term is simply bounded by

(4.11) / lollu — ] < llllzallu — ollza < el — vl

If p < 1, the second term is bounded analogously. If p > 1, we apply Hdlder’s
inequality twice, again with ¢ = p + 1, to obtain

_ -1
(4.12) /Q|90||“ = 0| (Jul + [0 < 1@llzpallu = ollz, (1l + 10llz,0) "

Using again the Sobolev embedding, these factors are controlled by ||¢||m, ||lu — v||&
and (||ul|z + ||v||z)?~" so that we obtain

(4.13) IF(u) = F)lla < Cllu = vlla,

which is exactly (3.1) . m|

Next we want to prove the local version (3.2) of Assumption 1. For a given
subdomain D, we define a vector v = (7,) such that o, = vy if Sx N D # 0 and
vy = u), otherwise. It follows that

(4.14) (@ = v)[txsanpzoyll = llu — 9|
13



Denoting by v, the corresponding functions v = )y o 7 va¥x, D = Yy 7 U, We
clearly have v = ¥ on D so that

(4.15) F(V)x = (F(0),9x) = (F(v),¢a) = F(v)ax,

whenever Sy C D. It follows that

(4.16) (F(u) — F(v))|{asscopll < F () = FF)I.

Therefore the local stability estimate (3.2) follows by combining (4.14) and (4.16)
together with the global stability estimate (3.1) . O

4.2. Verification of Assumption 2. For the verification of Assumption 2, we
shall assume that either (4.1) is valid or that

(4.17) |[F™ ()| < C(A + |=))P™™, n<p and F™(z) =0, n>p,

with p an integer. We shall show in the next theorem that whenever F satisfies either
(4.1) or (4.17) then it satisfies Assumption 2 with v = r + ¢t + d/2. Our reason for
separating the two cases (4.1) and (4.17) is that in the latter case we can take a larger
value for r. We recall the critical index p* defined by (4.2) .

THEOREM 4.1. Assume that the wavelets ¥y belong to C™ and have (for those
A € Jy) vanishing moments of order m (i.e. are orthogonal to Pp,_y the space of
polynomials of total degree at most m — 1) for some positive integer m. Then As-
sumption 2 holds for v =r +t + d/2 with the following value of r:
(i) if t > d/2 and F satisfies (4.1) for some p > 0, then r = min{m,n*}.
(i) if t < d/2 and F satisfies (4.1) with 0 < p < p*, then r = [min{m,p,n*}].
(1ii) if t > d/2 and F satisfies (4.17) for some p > 0, then r =m.
() if t < d/2 and F satisfies (4.17) for some 0 < p < p*, then r = m.
Proof. Suppose that u has a finite wavelet expansion. We assume that » > 1 and
leave the simpler case r = 0 to the reader (this case only occurs in (ii) when p < 1).
Since the wavelets 1, € Jy have at least r vanishing moments, we have
wal = [, o) =, dnf Jfw = Pl

TIAlg—(t+d/2)[Al —

(4.18) S |wlwr(pa(s,)2” |wlwr (Lo (532",

where w(z) = F(u(z)). Using the chain rule, any r-th order derivative of w can be
written as a finite sum of functions of the form

(4.19) F®(u)DPry---DP*u, k=1,...,r,
where |B1]| + - - - + |Bk| = r with the usual notation |3;| := B;1 + - - + Bi,¢- Therefore

one has

k
4.2 » < (k) DB
(4.20) [wlwr(Low(sy)) S kgf?f,,-mlHT%H:T”f Wlzo(sy) [ 11D

|70 (55)-

i=1
To bound the right side of (4.20), we recall that
: 1—|3;|/r /T
(4.21) 1D ullp sy Sl el r sy

This gives for k =1,...,r,

k
IIf(k)(u)lle(sA)HllDﬁ"u lwisny) S IFP@)eosollully s,

=1
(4.22) X [ulwr (Lo (54))-
14



We shall finish the proof by separating into two cases depending on the size of
lull o (sy)-

Case ||lu||z_(s,) > 1: In this case, (4.20), (4.22), and the bounds (4.1) and (4.17)
give
(4.23) [Wlwr Loy S NullE sy lulwr Lo s

where M := max{p,r} — 1 in cases (i) and (ii), and M := p — 1 in cases (iii) and
(iv). We can bound the norms on the right side of (4.23) by using the Besov spaces
B (L), s > 0. They satisfy the norm equivalences

(4.24) ol rais ~  sup (2Woalle) = sup (20400, |)
S,NSA#0 5,NS\#0
with § := % — t. Here we used that the H-normalization of the wavelets implies

lvullz.. ~ 2%l We also recall the embedding estimates

(4.25) lullwe sy S Mullpsecoosuy:
for any fixed € €]0, 1] and all s > 0. Using all of this in (4.23), we obtain
M
[wlwr(Le(s) S ( sup 2(‘Hs)l"||uu|> ( sup 2(TJ”SJFE)“WM)
SMHSA750 SFOS)‘#@

M
(4.26) - (2(54—5)\#0\ g |) (2(T+6+5)|u1| g, |)

where po and p; are the maximizing indices. If § < 0 (i.e. ¢t > d/2), we can take
€ < || and obtain the bound

(427)  |wlwr(za(syy S ™ @I B, ) <™ sup 27w,
SpNSA#D

which verifies Assumption 2 in this case. If § > 0, then |u1| > |po| and p < p. and
M = p—1 and so we obtain

(4.28) [wlwr(pw(syy S Il @UFPFPlly, ) <[l sup 2 HEHRuy, |
SHOSA;'&@

provided pe < (p* — p)d. So we have completed the proof in this case.

Case ||lullz(s,) < 1: In this case, starting from (4.22) and using either (4.1) or
(4.17), we obtain

[wiwr(Lw(ss) S [Ulwrasn) S Nullprre@ (s,

(4.29) < sup 2RIl | < sup  2rHAEHDMy,|
SHQS)\#@ S,LQS)\;ﬁm
provided e < 2t. Therefore, we have verified Assumption 2 in this case as well. O

5. Multiple arguments and derivatives. In this final section, we shall extend
the previous results to more general nonlinear operators of the form

(5.1) (ur, -, up) = w=F(Duy,---,D"uy,),

acting from H x- - -x H to its dual H' (note that a; = (a1, - - -, @;,q4) are multi-indices).
These include multilinear operators as particular cases. Here we shall indicate the
apropriate generalizations of the results in the two previous sections with brief sketches
of proofs since they are quite similar but notationally quite heavier.
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5.1. Sparsity preserving discrete operators. Denoting by u; = (u; ) the

arrays of the wavelet coefficients of the function u;, u = (uy,---,u,) and F the
corresponding discrete mapping
(52) F(ll) = ((T(Daluh”'7Danun)7wA)X€J7

we introduce the following generalization of the basic assumptions.

Assumption 1. F is a Lipschitz map from (€2)™ into la:

(5.3) [F(u) —-FW)| <O [lu; —vill,

i=1

with C = C(max;{||wl|, ||vil|}), where x — C(x) is a positive non-decreasing function.

The local version of this stability assumption now reads

(5.4) [(F(u) = F(v))asncpyll < C Z (i = vi)risynpzoy

=1

for any domain D.

Assumption 2. For any finitely supported u (i.e. with all u; finitely supported)
and w = F(u), we have the estimate

(5.5) lwy| < C sup [Z |uiu|]2—7(|/\|—|ll|)],
w: SANS,#0 i—1

for all X € Ty, where v > d/2, C = C(max; ||u;||) and z — C(z) is a positive non-
decreasing function.

In order to predict the significant coefficients of w = F(u), we fix > 0 and for
the constant 7 of (5.5), we define for all u € 7 the number n(u) satisfying

(5.6) 7727"(”) < mla,x |ﬁi’ﬂl < 7’2’7("(H)+1)7

where 4;,,, are the residuals for u; (see (2.20)) and we define the influence set A, , in
a similar way as in (3.8). The set of coefficients for the approximation of w is now
defined by A, := Jp U A, with

(5.7) Ry =Ues Anus

where 7, = U, 7, (u;) and 7, (u;) is the expansion of the tree 7, (u;) (as before T, (u;)
consists of all indices p such that a;, > 7).

THEOREM 5.1. With this definition of A, and under the above generalized As-

sumptions 1 and 2, ifu € (£¥(J))™ we obtain that the same conclusions as in Theorem
3.2 also hold.
Sketch of proof: As in the proof of Theorem 3.2, in order to prove (3.11) we first
consider the restricted vector u, = ul# and its image w;, := F(u,;) = (wx,). Using
(3.8), (5.7) and (5.5), we obtain that for any A ¢ A,, we have |Wx,| < 7. We then
use (5.4) in a similar way in order to derive (3.11) .

In order to prove (3.12) , we use the trees 7~; = ’7:,21]-, in order to decompose A,
into layers indexed by j as in the proof of Theorem 3.2. We then proceed in a similar
way to derive 3.12, remarking that

(5.8) #(T5) S 72 sup w7 (s
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and that according to (5.6) and (3.8), n(u) = j for p € T; \ Tj41-
Finally, we prove

(5.9) [wll,exy S 14 suplluill,ee (),
2
by the same arguments as in the proof for Theorem 3.2. O

We can also generalize the algorithm of §3.4 which ensures the target accuracy € > 0
for w = F(u):
e For j = 0,1,..., define the threshold n; = 277 and compute A; := A,
according to 5.7. Define £ as the set of outer leaves of A;.
e According to Theorem 5.1, we have [[w — wa;[|> < #(£;)n
for the smallest j such that £; < ¢ and define A, = A;.
¢ Define the corresponding approximation w, := w,, .
This strategy exhibits asymptotically optimal complexity summarized in the following
proposition which is a direct consequence of Theorem 5.1.
PROPOSITION 5.1. Ifu € (¢£%(J))™ we have the estimate

? := €3. Stop

(5.10) #(A) < suplwillfe e+ #(Ts),

withs =1/ —1/2.

5.2. Verification of the basic assumptions. Recalling that the nonlinear
map has the form F(D*'uy,---, D% u,), we shall therefore replace (4.1) by growth
assumptions of the type

(511) |Dﬁ‘7:($151$n)| < CH(l + |xi|)[pi7ﬁi]+7 |6| = 07]-;"'7"*7

i=1
for some p; > 0 and n* a positive integer. For notational simplicity, we shall write
(5.12) F(u) = F(D*uyq,- -+, D% uy,), with u= (uy---,upy).

We then obtain the following generalization of Proposition 4.1
PROPOSITION 5.2. Assume that the growth assumptions (5.11) hold at least with
n* =0. Then F maps H x --- x H to H' whenever H = H* and t > 0 satisfies

|
d

1t o1t
(5.13) [5 - E]+ + ;pi[i 4 +—+ <L

If in addition n* = 1, then we also have under the same restriction

(5.14) 1F(u) = F)llar < C Y llwi —villm,

i=1

where C = C(max;{||ui||m, |villg}) and  — C(x) is nondecreasing, and therefore
Assumption 1 holds.
Sketch of proof: For u; € H and ¢ € H, we write

n
(5.15) [(F(u), )| < C/Q lol TT(1 + D us )P
i=1
In view of (5.13), we can choose positive numbers r and r;, ¢ = 1,...,n, such that

Lyyi B =1 and

&

>

(5.16)

N | =
ISHEE
SH

1
T

[y
-



It follows that H! is continuously embedded in L, and W!®!(L,.). We can apply
Holder’s inequality to obtain

n

(5.17) [(F(u), )| < Cllgllz, [TA + 1D%uillF),

i=1

where we have used the fact that Q is a bounded domain in order to control [, 1 by
a constant. In this way, we obtain

(5.18) IF@lar < CTJ( + ID*

i=1

H)-
For the stability property, we use the inequality

(5.19) [F(u) — F(v)| < C Y |D%u; — D vy [[(1+ [ D ug| + [D* vy |)lPr—0irl,

=1 k=1

with & the Kronecker delta. Therefore, when estimating |(F(u) — F(v), ¢)| for ¢ € H,
we are led to expressions of the form

n
(6.20) E;= / lo|| DY u; — D% vy H(l + | D% | 4 | Dy |) Pr 00l
Q k=1
for each i. Using Hélder’s inequality, we obtain

n
. . —(5,’ —(51'
E; < Cligllz, 1D u; = D¥willz, T (1 + 1D ug |57 4 | Dovuy | F- 704,
k=1

whenever

1 1 <& —§;
(5.21) _+_+ZM=1_
44 Tk

In view of (5.13), we can choose positive numbers r, ¢ and r; satisfying condition
(5.21) such that

RS AR TS SO P TS SN ]
Therefore, the Sobolev embedding gives

(5.23) E; < Cllellallui — villa,

and therefore Assumption 1 holds. 0.

The local version (3.2) of Assumption 1 is derived in the same way as in Section
4.2. Note that the condition (5.13) does not yield the optimal condition (4.2) in the
simple case n = 1 and a; = 0 due to the strict inequality, but that we anyway need
this strict inequality in order to obtain the validity of Assumption 2 according to
Theorem 4.1.

For the proof of Assumption 2, we again treat separately the polynomial case for
which we have the growth condition

(5.24) |DPF (a1, -+, zn)| < CTJ( + a5, B; < pi,
=1
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and DPF =0 if 3; > p; for some i, where the p; are positive integers.

THEOREM 5.2. Assume that the wavelets belong to C™ and have vanishing mo-
ments of order m (i.e. are orthogonal to P,, 1 the space of polynomials of total
degree at most m — 1) for some positive integer m. Then Assumption 2 holds for
v =r+t+d/2 with the following values of 7:

(i) if F satisfies (5.11) with p such that Y i, pild/2 — t + ||l < d/2 + ¢, then
r = [min{m, n*,p*}| where p* = min{p; : is.t.d/2 —t+ |a;| > 0}.

(i) if F satisfies (5.24) with p such that > pi[d/2 —t + |ai|]l+ < d/2 + t, then
r=m.

Sketch of proof: We shall prove (i); the other case is similar. We shall also assume
that » > 1 and leave the simpler case r = 0 to the reader. As in the proof of Theorem
4.1 we start from the estimate

(5.25) lwal < [wlwr (o (s:)2” ",

where w(z) = F(u(z)). Using the chain rule, any r-th order derivative of w can be
written as a finite sum of functions of the form

(5.26) D" F(D*uq,--+,D%*"u,)G,, |v|=1,...,r,
where

n Vi
(5.27) G, = H H DPiitaiy,

i=1j=1

and -7, 37, |Bi ] = 7. Therefore one has

(5.28) [WWr(Lowo(sr)) S max Ay
V|IST
where
(5.29) A, = ||D"F(D*"u,---, D" un)||z. (s0)IGvlL(sy)-

To bound ||G, ||z (s,), We use the estimate for intermediate derivatives (4.21)
and find with r; = z;h:l |,3,"]'| that

n

(5-30) 1Gullbwisny S I lualt;
=1

i—1
Wil (Loo(Sa)) il writiai (Lo (52))-

We now invoke (5.11) and obtain that

3

I/i—l

Ay < TTA + il oo ) T | Wiail (Lo (53) (Ul Writ12il (Lo (52))

k2

I
=

(5.31) <

—.

Il
N

M;
il yglas (1 (53 [EWrit1 (Lo (52))
K3
where M; = max(p;,r;) — 1 if |ui|W|“i|(Lw(SA)) > 1 and M; = 0 otherwise.
Each term appearing in the last product in (5.31) can be bounded by Besov
norms. The arguments used in deriving (4.28) and (4.29) gives

|Mig(rit(Mit1)(lail+3+e)) s

(5'32) |ui|%i|ai|(LOO(S)\))|U|W""i+|°‘i|(Loo(S)\)) S ||u| ||ui,ui|

where y; is a maximizing index. Let p* := max; u;. We place (5.32) into (5.31). Each
term |u; |, 1 # 1*, we pull out of the product by the majorant ||u||. This then gives

n

(5.33) A, < [ llalMe2tretMitlasi+ote)lusdyy,

Gy i
i=1

n
S M i 1271471,
i=1
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with M =31 | M; and

(5.34)

F=r+ i(l + M)(e+[d/2 —t+ |ai]]+)-

i=1

Now, consider any term in the sum which is not zero. If M; # 0, then M; +1 =
max(p;,r;) < max(p;,r) = p; because r < p;. If M; = 0, then M; +1 =1 < p;
because by definition r < p* < p; and we have assumed r > 1. Using this information
in (5.34) shows that

F<r+Y pile+[d/2—t+|ailly) <7

(5.35)
i=1
provided ¢ is sufficiently small. O
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