CONVERGENCE ANALYSIS OF A MULTIGRID SOLVER FOR A
FINITE ELEMENT METHOD APPLIED TO
CONVECTION-DIFFUSION PROBLEMS
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Abstract. The paper presents a convergence analysis of a multigrid solver for a system of
linear algebraic equations resulting from the disretization of a convection-diffusion problem using a
finite element method. We consider piecewise linear finite elements in combination with a streamline
diffusion stabilization . We analyze a multigrid method that is based on canonical inter-grid transfer
operators, a “direct discretization” approach for the coarse-grid operators, a smoother of line-Jacobi
type and one nonstandard component which is called a “local presolver”. A robust (diffusion and
h-independent) bound for the contraction number of the two-grid method and the multigrid W-cycle
are proved for a special class of convection-diffusion problems, namely with Neumann conditions on
the outflow boundary, Dirichlet conditions on the rest of the boundary and a flow direction that is
constant and aligned with gridlines. Our convergence analysis is based on modified smoothing and
approximation properties. The arithmetic complexity of one multigrid iteration is optimal up to a
logarithmic term.
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1. Introduction. Concerning the theoretical analysis of multigrid methods dif-
ferent fields of application have to be distinguished. For linear selfadjoint elliptic
boundary value problems the convergence theory is well developed (cf. [3, 7, 33, 34]).
In other areas the state of the art is (far) less advanced. For example, for convection-
diffusion problems the development of a multigrid convergence analysis is still in its
infancy. In this paper we present a convergence analysis of a multilevel method for a
special class of 2D convection-diffusion problems.

An interesting class of problems for the analysis of multigrid convergence is given by
{—5Au+b-Vu = f in Q=(0,1)? (1.1)
u = g on 01, )

with € > 0 and b = (cos¢,sin¢), ¢ € [0,2r). The application of a discretization
method (e.g., a finite difference method with upwinding or a streamline diffusion
finite element method) results in a large sparse linear system which depends on a
mesh size parameter hy. Note that in this discrete problem we have three interesting
parameters: hy (mesh size), e (convection-diffusion ratio) and ¢ (flow direction). For
the approximate solution of this type of problems robust multigrid methods have
been developed which are efficient solvers for a large range of relevant values for
the parameters hy, €, ¢. To obtain good robustness properties the components in
the multigrid method have to be chosen in a special way because in general the
“standard” multigrid approach used for a diffusion problem does not yield satisfactory
results when applied to a convection-dominated problem. To improve robustness
several modifications have been proposed in the literature, such as “robust” smoothers,
matrix-dependent prolongations and restrictions and semicoarsening techniques. For
an explanation of these methods we refer to [7, 31, 2, 11, 12, 14, 15, 20, 35]. These
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modifications are based on heuristic arguments and empirical studies and rigorous
convergence analysis proving robustness is still missing for most of these modifications.

Related to the theoretical analysis of multigrid applied to convection-diffusion
problems we note the following. In the literature one finds convergence analyses
of multigrid methods for nonsymmetric elliptic boundary value problems which are
based on perturbation arguments [4, 7, 13, 30]. If these analyses are applied to
the problem in (1.1) the constants in the estimates depend on & and the results are
not satisfactory for the case ¢ < 1, i.e., for convection-dominated problems. In
[9, 22] multigrid convergence for a 1D convection-diffusion problem is analyzed. The
results show robustness of two- and multigrid methods. These analyses, however, are
restricted to the 1D case. In [19, 23] convection-diffusion equations as in (1.1) with
periodic boundary conditions are considered. A Fourier analysis is applied to analyze
the convergence of two- or multigrid methods. In [19] the problem (1.1) with periodic
boundary conditions and ¢ = 0 is studied. A bound for V-cycle contraction number
is proved which is uniform in € and hy provided ¢ < chy, is satisfied with ¢ a positive
constant that does not depend on € or h. In [23] a two-grid method for solving a
first order upwinding finite difference discretization of the problem (1.1) with periodic
boundary conditions is analyzed and it is proved that the two-grid contraction number
is bounded by a constant smaller than one which does not depend on any of the
parameters €, hy, ¢. In [1] the application of the hierarchical basis multigrid method
to a finite element discretization of problems as in (1.1) is studied. The analysis
there shows how the convergence rate depends on ¢ and on the flow direction, but
the estimates are not uniform with respect to the mesh size parameter hy. In [24] the
convergence of a multigrid method applied to a standard finite difference discretization
of the problem (1.1) with ¢ = 0 is analyzed. This method is based on semicoarsening,
a matrix-dependent prolongation and restriction and a line smoother. It is proved
that the multigrid W-cycle has a contraction number (in the euclidean norm) smaller
than one independent of hy and £. The analysis is based on linear algebra arguments
only.

In the present paper we consider the convection-diffusion problem

—eAu+u, = f in Q:=(0,1)*
%zo on Tp:={(z,y) €|z=1} (1.2)
u=0 on 8Q\FE

In this problem we have Neumann boundary conditions on the outflow boundary and
Dirichlet boundary conditions on the remaining part of the boundary. Hence, the
solution may have parabolic layers but exponential boundary layers at the outflow
boundary do not occur. For this case an a priori regularity estimate of the form
llu||gz < ce™Y||f]|lz> holds, whereas for the case with an exponential boundary layer
one only has ||u||g2 < ce=2||f]|z2. The fact that for the case with Neumann outflow
boundary conditions the regularity bound is significantly better is important for our
analysis. We remark that Neumann outflow conditions are often used in practice (cf.
[26]).

Due to the Dirichlet boundary conditions a Fourier analysis is not applicable.

For the discretization we use conforming linear finite elements. As far as we
know there is no multigrid convergence analysis for convection-dominated problems
known in the literature that can be applied in a finite element setting. In this paper
we present an analysis which partly fills this gap. It is well-known that a standard
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Galerkin finite element discretization is not suitable for the convection-dominated
case. We use the streamline diffusion finite element method (SDFEM). We remark
that SDFEM ensures a higher order of accuracy (cf. [25, 36]) than a first order upwind
finite difference method. In SDFEM a mesh-dependent anisotropic diffusion, which
acts only in streamline direction, is added to the discrete problem. Such anisotropy
is important for the high order of convergence of this method and also plays a crucial
role in our convergence analysis of the multigrid method. In this paper we only
treat the case of a uniform triangulation which is taken such that the streamlines are
aligned with gridlines. Whether our analysis can be generalized to the situation of an
unstructured triangulation is an open question.

We briefly discuss the different components of the multigrid solver.
For the prolongation and restriction we use the canonical inter-grid transfer operators
that are induced by the nesting of the finite element spaces, i.e., for the prolongation
we use linear interpolation and for the restriction operator we take the adjoint of the
prolongation.
The hierarchy of coarse grid discretization operators is constructed by applying the
SDFEM on each grid level. Note that due to the level-dependent stabilization term
we have level-dependent bilinear forms and the Galerkin property Ax_1 = riAxpr
does not hold.
Related to the smoother we note the following. First we emphasize that due to a
certain crosswind smearing effect in the finite element discretization the z-line Jacobi
or Gauss-Seidel methods do not yield robust smoothers (i.e., they do not result in
a direct solver in the limit case ¢ = 0, cf. [7]). This is explained in more detail in
remark 1 in section 6. In the present paper we use a smoother of z-line-Jacobi type
which is not robust.
The only nonstandard component in our multigrid algorithm is a local presolver,
which is applied before the coarse-grid correction. This step consists of solving a lo-
cal subproblem of relatively small dimension on a subdomain adjacent to the inflow
boundary. The arithmetic complexity of this presolver is less than the arithmetic
complexity of a matrix-vector multiplication. The reason for using this presolver will
be explained below.
These components are combined in a standard manner resulting in a multigrid W-
cycle algorithm (cf. Algorithm 1 on page 17). In this method we use v postsmoothing
iterations (of z-line-Jacobi type) but instead of a presmoother we apply a local pre-
solver.

We now outline the convergence analysis of the multigrid method. Let Ay denote
the stiffness matrix on level £ and Sy = I — W~ L4, the iteration matrix of the
postsmoother. Furthermore, for the iteration matrix of the local presolver we use the
notation Q. The two-grid iteration matrix is given by T}, = Sy (I —pkA,;llrkAk)Qk.
After the local presolve operation the defect is zero on a small subdomain adjacent to
the inflow boundary. This yields the relation A;Qr = Ji A, Qr, where Jy is a diagonal
projection matrix with (Jg)i; € {0,1} and (Jg):; = 0 iff the grid point corresponding
to index ¢ lies in this subdomain. We use the euclidean norm denoted by || -|| and the
level-dependent A-norm ||z||4 = ||Arz||. For the A-norm contraction number of the
two-grid method we have the bound

I Tklla < 1ARSEW IHIWRCR Tl IQrlla Cri= ALY — prAi r (1.3)

For the analysis we restrict ourselves to the convection-dominated case € < chy, (hy =
27F: mesh size on level k). We derive bounds for the three terms on the righthand
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side in (1.3).

For the first term in (1.3) we prove ||AxSyW, || < cv~%. Here and in the remainder
a constant c¢ is always independent of k£ and e. This result is closely related to the
smoothing-property as introduced by Hackbusch [7, 8].

For the second term in (1.3) we prove uniform boundedness, ||[W;CrJi|| < c¢. This can
be interpreted as a modified approximation property. Note that the approximation
property known from the literature (and used for diffusion-dominated problems) is of
the form ||Cy|| < ¢||Ax||~t, whereas we consider the term ||[W};CyJi||. Our approach is
different in two respects. Firstly, in our analysis the preconditioner W}, which comes
from the smoother, plays an essential role in the approximation property. If we would
use the splitting [|[WiCrJrll < [[WkllICxJkll < ¢||Ak|ll|CrJk]|, then sharp bounds
for the terms ||Ax|| and ||CyJi|| do not imply uniform boundedness of [|[WCyJk|.
Only the combined effect of the preconditioner Wj and the operator CyJy results
in uniform boundedness. This is related to the fact that we do not have a robust
smoother. Secondly, we use the operator J; which comes from the local presolver and
which projects errors to zero on a local subdomain adjacent to the inflow boundary.
The main reason for using this operator (and thus the presolver) is the following. As
is usually done in the analysis of the approximation property we use finite element
error bounds combined with regularity results. In the derivation of a L? bound for
the finite element discretization error we use a duality argument. However, the formal
dual problem has poor regularity properties, since the inflow boundary of the original
problem (z = 0) is the outflow boundary of the dual problem. Thus Dirichlet outflow
boundary conditions would appear and we obtain poor estimates due to the poor
regularity. To avoid this, we consider a dual problem with Neumann outflow and
Dirichlet inflow conditions. To be able to deal with the inconsistency caused by
these “wrong” boundary conditions we assume the righthand side to be zero near the
boundary z = 0. In order to satisfy this assumption we use the local presolver in the
multigrid algorithm which then yields the projection term J.

For the third term in (1.3) we obtain, unfortunately, a bound which is k-dependent:
[|Qklla < ck. To compensate this, the number of smoothings has to be taken level-
dependent: v = vy, ~ k2. This then results in a two-grid method with a contraction
number ||T%||4 < ¢ < 1 and a complexity O(Ny(In Ni)?), with Ny = h;>.

Using standard arguments we obtain a similar convergence result for the multigrid
W-cycle.

The remainder of this paper is organized as follows. In section 2 we give the
weak formulation of the problem (1.2) and describe the SDFEM. In section 3 some
useful properties of the stiffnes matrix are derived. In section 4 we prove some a
priori estimates for the continuous and the discrete solution. In section 5 we derive
quantitative results concerning the upstream influence of a righthand side on the so-
lution. These results are needed in the proof of the modified approximation property.
Section 6 contains the main results of this paper. In this section we describe the
multigrid algorithm and present the convergence analysis. This analysis is based on
four important auxiliary results (smoothing property, modified approximation prop-
erty, bound for ||Qk||4 and a stability result for the prolongation operator). These
auxiliary results are formulated in section 6 and using these we derive a bound for the
multigrid W-cycle contraction number. The proofs of the auxiliary results are given
in the sections 7-10.

2. The continuous problem and its discretization. For the weak formu-
lation of the problem (1.2) we use the L?(f2) scalar product which is denoted by
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(+,-). For the corresponding norm we use the notation || - ||. With the Sobolev space
V:={veH(Q) |v=0 on 90\ g} the weak formulation is as follows: find
uw € V such that

a(u,v) 1= €(Uz, Vz) + €(Uy, vy) + (Ug,v) = (f,v) forall veV (2.1)

From the Lax-Milgram lemma it follows that a unique solution of this problem exists.
For the discretization we use linear finite elements on a uniform triangulation. For
this we use a mesh size hy, := 2% and grid points @; ; = (ihk,jhi), 0 < i,5 < At
A uniform triangulation is obtained by inserting diagonals that are oriented from
south-west to north-east. Let Vy C V be the space of continuous functions that
are piecewise linear on this triangulation and have zero values on 0Q \ I'g. For the
discretization of (2.1) we consider the streamline-diffusion finite element method: find
uy, € Vy, satisfying

(e+0khr)((ur)z, Vz) Fe((Uk)y, Vy) + ((Uk)z,v) = (f,v+0phrvg) for all v €V (2.2)

with

5 if >
o = 2e = (2.3)
0 otherwise
The stabilization parameter J is a given constant of order 1. For an analysis of the
streamline diffusion finite element method we refer to [25, 6].
In this paper we assume
- 1
0€[=,1]. (2.4)
3
The value % for the lower bound is important for our analysis. The choice of 1 for the
upper bound is made for technical reasons and this value is rather arbitrary.
The finite element formulation (2.2) gives rise to the (stabilized) bilinear form

a(u,v) := (€ + dphi) (ugz,vz) +(Uy, vy) + (Ug,v), w,v €V (2.5)
Note the following relation for the bilinear form ay (-, -):
1
ar(v,v) = ellvy||? + (e + deh) ||va||* + 5/ vidy for veV. (2.6)
I'e

The main topic of this paper is a convergence analysis of a multigrid solver for the
algebraic system of equations that corresponds to (2.2). In this convergence analysis
the particular form of the righthand side in (2.2), which is essential for consistency
in the streamline diffusion finite element method, does not play a role. Therefore
we will consider the discrete problem, with a righthand side induced by an arbitrary
f € L2(Q): find uy € Vi such that

ak(uk,vk) = (f, Uk) for all v, € Vy, (27)
we will also use the following auxiliary continuous problem: find u € V such that
ag(u,v) = (f,v) for all ve V. (2.8)

Note that v and u; depend on the stabilization term in the bilinear form and that
these solutions differ from those in (2.1) and (2.2).
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3. Representation of the stiffness matrix. We now derive a representation
of the stiffness matrix corresponding to the bilinear form ay(-,-) that will be used
in the analysis below. The standard nodal basis in V} is denoted by {¢¢}1<e<n,
with N the dimension of the finite element space, Ny, := h; '(h;' —1). Define the
isomorphism:

Ny,
Po: Xp :=RY -V, Puax= Zmz’@'-
i=1
On X, we use a scaled Euclidean scalar product: (z,y)r = h} Zﬁ“l z;y; and cor-
responding norm denoted by || - || (note that this notation is also used to denote

the L?(Q2) norm). The adjoint P} : Vi, — X} satisfies (Pyz,v) = (z, Pfv) for all
z € X, v € Vi. The following norm equivalence holds

C Y| < ||Prz|| < C|lz|| for all z € Xy, (3.1)
with a constant C independent of k. The stiffness matrix Ay on level & is defined by
(Agz,y)r = ar(Pyz, Pry) for all z,y € Xy. (3.2)

In an interior grid point the discrete problem has the stencil

101
1 0 —£ 0 1 0 ~% 6
2 | e 2(er +e) —er |+ " -+ 0 11, e =€+ 0phy . (3.3)
k 0 —€ 0 Bl _1 1
6 6

For a matrix representation of the discrete operator we first introduce some notation.
Let ng := h;l and

1 1 (-1 1
D, := —tridiag(—1,1,0) = — . ) € R XMk
hk hk . .
-1 1
2 -1
-1 2 -1
A, :D’fpm—hi2 € Rv ™
k -1 2 -1
-1 1

Ay = tridiag(~1,2, —1) € R~ Dx(me=1)

3
hi,
1 1
1 o §
Spi= — Lo | emmexm
hy, -1 1
0
1
J = € R™ XM

1
)

T := tridiag(0,0,1) € R™ X"
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Furthermore, let I}, be the k x k identity matrix. We finally introduce the following
Ny, x N matrices (N, = (ng — 1)ng)

ﬁw =119 D, , Az =1, 1Q A, = ﬁfﬁw , fly =A,®J
and the N x Nj blocktridiagonal matrix
B := blocktridiag(I,, ,4I,,,T) .

Using all this notation we obtain the following representation for the stiffness matrix
Ap in (3.2):

A A 1
A = (e + 6ph)Ay + Ay + gblocktridiag(Dm, —2hy A, +4D,, S,)
1 A A 1
=(e+ (0 — g)hk)Am +edy + gblocktridiag(Dz, 4D, Sy) (3.4)
1 - A 1aax
=(e+ (0 — g)hk)Aw +edy + EBD””

The latter decomposition can be written in stencil notation as

- 00 0 S [0 -1 0 1 0 -1 1
h—’; 12 “1 450 2 0|4+ | =4 40 (3.5)
El 0 0 0 kL0 -1 0 El -1 10

with &, = e+ (0, — %)hk > 0.

Some properties of the matrices used in the decomposition (3.4) are collected in
the following lemma.

For B,C € R**" we write B > C iff t7 Bz > 2T Cx for all z € R™.

LeMMA 3.1. The following inequalities hold

A,D;t >0 (3.6)
A, D7t >0 (3.7)
B>aI (3.8)
ADt > %I (3.9)
1D A1 <3 (3.10)

Proof. To check (3.6) observe
APt = PTD, Do = DT,

Now note that ﬁ{ + ﬁm is symmetric positjve Adeﬁnite.
To prove (3.7) it suffices to show that DI 4, > 0 holds. We have

K:=DTA, =(I,,.1®DI)(4,®J) = 4, ® DT,

with the matrix

N
[N



Hence in the matrix K + KT = 24, ® (DI + D,) both factors A4, and DI + D, are
symmetric positive definite. From this the result follows.

To prove (3.8) we define R := B — 4I and note that ||R||? < ||R||eol|R|: < 4.
Using this we get

(Bu,u)y = 4lull® + (Ru, uh > 4fjull* — | RI|[[ull* > 2|l

which proves the desired result.

Inequality (3.9) follows immediately from the representation of Ay in (3.4) and
inequalities (3.6)—(3.8).

From the result in (3.9) it follows that DT A, > 1DTD,. This implies ||[D,z|* <
3(Arz, Dy2)y, < 3||Apz||||Dyz|| for all z and thus estimate (3.10) is also proved.
a

4. A priori estimates. In this paper we study the convergence of a multigrid
method for solving the system of equations

Akmk =b s (41)

with Ay the stiffness matrix from the previous section. As already noted in the
introduction our analysis relies on smoothing and approximation properties. For
establishing a suitable approximation property we will use regularity results and a
priori estimates for solutions of the continuous and the discrete problems. Such results
are collected in this section.

In the remainder of the paper we restrict ourselves to the convection-dominated
case:

ASSUMPTION 1. We only consider values of k and € such that

1
<=-h
6_2 k

If instead of the factor % in this assumption we take another constant C, our anal-

ysis can still be applied but some technical modifications are needed (to distinguish
between d;, = § and §;, = 0) which make the presentation less transparent.
We consider this convection-dominated case to be the most interesting one. Many
results that will be presented also hold for the case of an arbitrary positive ¢ but
the proofs for the diffusion-dominated case often differ from those for the convection-
dominated case. In view of the presentation we decided to treat only the convection-
dominated case. Note that then

< .1 1 = 3
0, =0 € [5,1] and ghk <egp=e+oh < Ehk (4.2)
hold.
For the inflow boundary (i.e., the one on the west side) we use the notation
Tw := {(z,y) € Q| 2 = 0}. For the continuous solution u the following a-priori

estimates hold
THEOREM 4.1. For f € Ly(Q) let u be the solution of (2.8). There is a constant
¢ independent of k and € such that:

lul + lluall < €l £, (4.3)

Valluyl < el £l (4.4)

hillge | + VeRmlluayll + elluyy | < clIfl, (4.5)

[y [ wtdgre [y <l (4.6)
I'g T'w I'e
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Proof. Since f € Ly(2), the regularity theory from [5] ensures that the solution
u of (2.8) belongs to H2(£2). Hence we can consider the strong formulation of (2.8)

—EUyy — EfUgy + Uy = f (47)

with boundary conditions as in (1.2). Now we multiply (4.7) with u, and integrate
by parts. Taking boundary conditions into account, we get the following terms:

9 3
() = ()0 = 5 [ ady,
I'e
—erltazun) = F (D) = F [ wddyzeh [ uldy, (veuse 42)
T'w T'w

(o, uz) = [[ual® > [|ull?,
1 1
(fruz) < SIFIP + 5l
From these relations the results (4.3) and (4.6), except the bound for fFE u? dy, easily
follow. Next we multiply (4.7) with u and integrate by parts to obtain

1
elluyll® +exlluall” + §/F u?dy = (f,u) <[|fllllull < clIf[*.  (we use (4.3))

Estimate (4.4) and the remainder of (4.6) now follow.
To prove (4.5) we introduce F' = f —u,. Due to (4.3) we have || F|| < ¢||f||- Moreover

—EUyy — EpUgg = F.
If we square both sides of this equality and integrate over {2 we obtain
& |luyyll” + 2ee (uyy, toa) + etllucall = |IFII* < cllFI1*. (4.8)

Further note that for any sufficiently smooth function v, satisfying boundary condi-
tions from (1.2), the relations

me(mao) = ’Umz(.'L', 1) =0, z¢€ (Oa 1)5 Uy(oay) = Uzy(lay) =0,y¢€ (07 1);
hold, and thus

(Vyy, Vez) = —(Vy, Vozy) = (Vay, Vay)-

Using a standard density argument we conclude that for u € HZ(f) the relation
(Uyy, Uzz) = (Ugy, Uszy) holds. Now (4.8) gives

llugylI* + 2eerlluayll® + i lluss|I” < clI 1.

In combination with (4.2) this yields (4.5).
0

The next lemma states that the z-derivative of the discrete solution is also uni-
formly bounded if the righthand side is from Vj.

LEMMA 4.2. For fi € Vi, let up, € Vi be a solution to (2.7), then

l(ur)zll < cllfell- (4.9)
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Proof. The result in (4.9) follows from the estimate (3.10) in lemma 3.1. To show
this we need some technical considerations.

First we show how the size of the z-derivative of a finite element function v € Vg,
can be determined from its corresponding coefficent vector P, 'v € X}. Let T be the
index set {(i,j) | 0 <i <mp—1, 1<j<m—1} For (i,j) € T let T}, ; and
T&j) be the two triangles in the triangulation which have the line between the grid
points x; ; and z;11,; as a common edge. Let v € Vj, be given. For 1 < j < mnp -1

we introduce the vector v; = (v(21,5),---,0(Tn,,;))T. We then obtain
loall? = 3 (/ v2 dady +/ v2 dzdy)
ez ? T (i)
-y (U($i+1,j31— U(-%’i,j))2 n
(4,4)€T k
=hi Y (Davi)'(Davy)
1<j<n—1

~ _ T /A _ ~ _
= hi(DoP, 'v)" (Do P, ') = ||D. Py Mol
Therefore
vzl = |Da Py 0| for any v € V. (4.10)

For the discrete solution of (2.7) with f = fr we have the representation uy =
P A P} fr. Now from (3.10) and (4.10) it follows that

()l = DAL P fill < 31IPEfll < el fxl

with a constant ¢ independent of k and . O

The next lemma gives some bounds on the difference between discrete and con-
tinuous solutions

LemMMA 4.3. Define the error e, = u — ug, where u and ug are solutions of
the problems (2.8) and (2.7) with righthand side f = fr, € Vi. Then the following
estimates hold

lI(ex)ell < cllfxll (4.11)

1 h2
ellenl? +35 [ ebdu < EIAIE (412
E

Proof. Estimate (4.11) directly follows from (4.3) and (4.9) by a triangle inequal-
ity. The proof of (4.12) is based on standard arguments: the Galerkin orthogonality,
approximation properties of Vj and a priori estimates from (4.5). Indeed

- 1 .
ell(er)ylI* + (¢ + hi)ll(ex)=|I” + 5/ ex dy = ag(ey,ex) = inf ag(er,u—vy)
Tk v EVE

< ell(er)yllli(w = vi)yll + (e + Shi)ll(er)z Il (w — vi)all + ll () llllw — vl
< ¢ (e hull(er)yllllullm + hEll(ex)z Il =)

h2 h2
< (heller)yllll fell + EAl) < gll(e’c)yll2 + el

The estimate (4.12) follows.
a
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5. Upstream influence of the streamline diffusion method. Consider the
continuous problem (2.8). The goal of this section is to estimate the upstream influ-
ence of the righthand side function f on the solution u. The same will be done for the
corresponding discrete problem. In the literature results of such type are known for
the problem with Dirichlet boundary conditions and typically formulated in the form
of estimates on the (discrete) Greens function (see, e.g., [29, 16]). A typical result
is that the value of the solution at a point z is essentially determined by the values
of the righthand side in a “small” strip that contains x. This strip has a crosswind
width of size O(¢*|Inh|), where £* = max{e,h2}, and in the streamline direction it
ranges from the inflow boundary to a O(h|In h|) upstream distance from z. A proof of
such estimates is rather technical and involves the formal adjoint problem. We need
similar estimates regarding the upstream influence for the problem with Neumann
outflow boundary conditions. Below we present elementary proofs of the results that
are needed for the multigrid convergence analysis further on. Our analysis avoids the
use of an adjoint problem and is based on the following lemma.

LEMMA 5.1. For g, = € + 6hy assume a function ¢ € HL (0,1), such that
0 < —expy < ¢. Denote by || - ||p & semi-norm induced by the scalar product (¢-,-).
Then the solution u of (2.8) satisfies

Jusllo < 211le (51)
w00 [ aday<IfIE (52)
Il . +ellugll? < (6 £,u). (53)

Proof. We consider the strong formulation (4.7) and multiply it with ¢u, and
integrate by parts. We then get the following terms

3 3
ety d2) = Sl 2, + 5000 [ widy20,
I'e

3 3
~erlitazs buz) = = Fuall, + F00) [ w2y

Tw

1 Ek
> sl + F000) [ w2y,
2 2 .-
(g, pug) = ||uz||§§ )
1
(f, dua) < Fllplluzlle < [1£115 + leuxlli-

Now (5.1) and (5.2) immediately follow.
To obtain the estimate (5.3) we multiply (4.7) with ¢u and integrate by parts. We
get the following terms:

—&(uyy, pu) = 5””1/”357
1
—&p(Uzz, Pu) = 5kl|uw“i + ek (Uz, Pz u) > Ek“uw”é - ei”um”%(j)m - Z”u”2—¢m

1
> ——lul|%, .
> = llullZ,,

1 1
(i) = 3l o, + 2532 [

11



Thus (5.3) follows. O
For arbitrary £ € [0, 1] consider the function

{ 1 for z € [0,¢],

pe(x) = exp <_;k’5) for z € (¢,1].

For any ¢ the function ¢¢(x) satisfies the assumptions of lemma 5.1. Define the
domains

Qe ={(z,y) €2: z < ¢}, (5.4)
Q=A{(z,y) €:z>n}, ne(01).

Direct application of lemma 5.1 with ¢ = ¢¢ gives the following corollary.

COROLLARY 5.2. Consider f € Ly(Q2) such that supp(f) € Q, and let u be the
corresponding solution of problem (2.8). Assumen — & > 2¢erp|lnhg|, p > 0. Then
we have

s llzae < B2IFI, (5.5)

& / W2 dy < WP £, (5.6)
I'w

Vellulla@e < VAR RIS (5.7)

Proof. The estimate

1715 = (@1, Pa, < eI fliE, = RFIFIP
and (5.1), (5.2) imply the results (5.5) and (5.6). We also have

(0F,0) = 6f.wa, < el + 1 (Gusw)a, = =llFI2 + (<60, u)a,

< exll£I5 + ZIIUIIZ’_%-

Together with (5.3) this yields (5.7).
ad

We need an analogue of estimate (5.1) for the finite element solution uy of (2.7).
To this end consider a vector ¢ = (¢, ..., dn, ), such that ¢; > 0 for all ¢ and

¢z d’z 1

e >0, i=1,...,nk (5.8)

CO¢1 =

with a constant co € (0,3) and & =& + (6 — 1)hy.
LEMMA 5.3. For the solution uy, of the problem (2.7) with f = fir € Vi the
estimate

ne ne—1 nE nE—1
Y 12 (“7:) <03 Y Be(M), (5.9)

i=1 j=1 i=1 j=1

holds. Here u;j is the nodal value of uy, at the grid point x; ;, f is the vector of nodal
values of fr and My, is the mass matriz.

12



Proof. Let iy = P,;luk € X}, be the vector of nodal values of uy, then
Akﬂk = Mkf =: bk. (510)

We introduce the diagonal matrices ® = diag(¢;)1<i<n, and ®:=1, 1 ®®. The
statement of the lemma is equivalent to

(D, Dytig), < c(®by, bi)x
with a constant c that is independent of bg. This is the same as
1Da 45 ls < € (5.11)

A

where the norm || - || is induced by the scalar product (®-,-)r =: (-,-)¢ on X;. Note
that (5.11) is a generalization of the result in (3.10). Here we use similar arguments
as in the proof of (3.10). We use the representation (3.4) of the stiffness matrix:

~ o | PN
Ap = ErAz + EAy + EBDE .
Note that
DZ&)Ay =In,—1® DZ)(Ink—l ®e)(4y®J) =48 DzTCI)J-

The matix A, is symmetric positive definite. Using ¢; < ¢;—1 and a Gershgorin
theorem it follows that DI®J + J®D, is symmetric positive definite, too. Hence,
DT®A, >0 holds, i.e.,

(Ayz,Duz)y >0 forall z e Xj. (5.12)

From the assumption on ¢ it follows that ¢;—1 < (1+ %)q&, for all 4. Using this and
the relation

1,1 _1 _1 1 1 i1 b;
—(®2DI® 7 + 2D, B2) = —tridia, 1/’—,2,1/
2( ‘ =®%) 2hy, g( bi ¢i+1)

it follows that
A 1
$:DTH-% > —(2—2,/1 n co_ﬂ) I>-27
2 Ek 2¢y,

1 . N
22) > —500(Dwz,Dwz)¢ for all z€ Xj. (5.13)

S

W)
ol
o
8
R
!
8
_
-
|
Q]
~
>
>
89
>
8
R
>

We decompose BasB=4I—R. A simple computation yields

- I 3
163 RSG5, §1+,/1+c‘;—’“ <1+vT+3e <2+ Sao.
k

Similarly we get [|$2 R® 2|, < 2+ 3¢o and thus |éz RO z|| <2+ 3¢o. From this
we obtain
s1aa 1 3 3
®2B® 2 > (4—(2+ 500))1 =(2- ECO)I
13



and thus

1,44 A 1 1 N .
E(BD$z,Dwz)¢, > (g - ZCO)(D$Z,Dwz)¢ for all z € Xy (5.14)
Combination of the results in (5.12), (5.13) and (5.14) yields
A 1 3 A N A .
(Arz,Dyz)g > (5 — ZCO)<DQEZ7D:I:Z>¢ > c(Dgyz,Dy2)y forall z € Xy

with a constant ¢ > 0 (use that co € (0, 5)). From this we have
||D Z||¢ < — (Akz D Z)¢, < —||Akz||¢||D Z||¢ for all z € Xk;

and thus ||D,z||s < &|Agz||s for all 2. Hence we have proved the result in (5.11).
a

In the discrete case we consider the vector

¢ 1 for ihy € [0,£], .
i { b () el im0

It is straightforward to check

~(f — ¢51) = (exp() 1) 6.

Therefore, using & < %hk,

3 1
0<—Ek¢ ¢’1§—(exp( )=1)¢s, i=1,...,n.
hi 2
For any £ the vector ¢} satlsﬁes the assumptions of lemma 5.3 with ¢y = 2(exp(3)—1).

This constant is less than 4 5+ We get the following corollary from lemma 5.3.
COROLLARY 5.4. Consider fi € Vi, such that supp(fr) € Qy and let uy, be a the
corresponding solution of problem (2.7). Assumen —& > 8hyp| ln hil, p> 0, then

() e llzae) < chllfell, (5.15)
(ur)yllLacee) < cERE | fll- (5.16)

Proof. Estimate (5.15) is a consequence of (5.9). Indeed, observe the following
inequalities:

Wi 5 — U1,
lwallpaog < ¢ 3 th( j )

i: th<g j=1
Wi — U 2 N N-1
» 1,
—o 3 Yo (M) <o S oo,
i: th<¢ j=1 i=1 j=1
N N-1
. i 2 2p 2
SC(ggg?;@)i_le_l hp(Mnf); < e (max @) [fill” < e h [l fell”-

14



Estimate (5.16) follows from an inverse inequality, the Friedrichs inequality and (5.15):

ur)yllLaie) < byt lurlloaoe < e€hy HIr)ollLae) < c€hy I

COROLLARY 5.5. Consider f, € Vi such that supp(fr) € Qy. Let u and uy be
the solutions (2.8) and (2.7), respectively. Assumen—& > 8hyp|Inhg|, p> 0. Then
for e, = u — up, we have

l(ex)zllLa(ee) < chillfell,

ex &
lI(ex)yllLa(e) < € max{y/ ) h—k}hillfkll-

Proof. Direct superposition of estimates in the corollaries 5.2 and 5.4. O

The result in corollary 5.5 shows that the (H'-norm of) errors close to the inflow
boundary can be made arbitrarily small if the righthand side is zero on a sufficiently
large subdomain (2 \ ©,) that is adjacent to this inflow boundary. In the proof of
the approximation property in section 10 we will need these estimates for the case
& =hyand p = % Hence we take n = 4hy|In hy| + hy. Note that for the results in
the previous corollaries to be applicable we need righthand side functions fi which
are zero in Q \ Q,. For technical reasons we take Q, such that the right boundary
of the domain Q \ Q, coincides with a grid line. We use |Inhi| = kIn2 and thus
4hg|In hg| + hg < (3k + 1)hy and introduce the following auxiliary domains for each
grid level

Q= {(z,y) €0 | z < 3k + 1)hy ). (5.17)

As a direct consequence of the previous corollary we then obtain

COROLLARY 5.6. Consider fy € Vi such that fi, is zero on the subdomain Q}E"
Let u and uy, be the solutions of (2.8) and (2.7), respectively. Then for e = u — uy
we have

1
l(ex)zllLacan,) < chillfll, (5.18)

hi,
ler)yllLs(an,) < C_Eka”' (5.19)

6. Multigrid method and convergence analysis. In this section we describe
the multigrid method for solving a problem of the form Apz; = b with the stiffness
matrix Ay from section 2 and present a convergence analysis.

For the prolongation and restriction in the multigrid algorithm we use the canon-
ical choice:

pr: Xee1 = Xk, pr =P, P

(6.1)
Tk : Xk — kal, T = P]jfl(P]:)_l = %pf

Let Wy, : X}, — X be a nonsingular matrix. We consider a smoother of the form

2" = S (2, b) = 2 — wW ' (A2 = b), for 2°9,b € X, (6.2)
15



with corresponding iteration matrix denoted by
Sy =1- les_lAk. (6.3)
The preconditioner Wy we use is of line-Jacobi type:

£ A~
szah—%I—I-Dz, a>0. (6.4)

Note that W}, is a blockdiagonal matrix with diagonal blocks that are ny x n bidiag-
onal matrices. The parameters w and « are independent of k£ and €. A suitable choice
for these parameters follows from the analysis below.

REMARK 1. In the literature one is often recommended to apply a so-called ro-
bust smoother for solving singularly perturbed elliptic problem using multigrid. Such
a smoother should have the property that it becomes a direct solver if the singular
perturbation parameter tends to zero (cf. [7], chapter 10). In the formulation (6.2)
one then must have a splitting such that Ay — W), = O(e) (the constant in O may
depend on k). Such robust smoothers are well-known for some anisotropic problems.
For anisotropic problems in which the anisotropy is aligned with the gridlines one
can use a line (Jacobi or Gauss-Seidel) method or an ILU factorization as a robust
smoother. Theoretical analyses of these methods can be found in [27, 28, 32].

If the convection-diffusion problem (1.2) is discretized using standard finite differences
it is easy to see that an appropriate line solver yields a robust smoother. However,
in the finite element setting such line methods do not yield a robust smoother. This
is clear from the stencil in (3.3). For ¢ — 0 the diffusion part yields an z-line dif-
ference operator which can be represented exactly by an z-line smoother, but in the
convection stencil the [0 — ¢ &] and [-3 £ 0] parts of the difference operator are
not captured by such a smoother. It is not clear to us how for the finite element
discretization, with a stencil as in (3.3), a robust smoother can be constructed.

In multigrid analyses for reaction-diffusion or anisotropic diffusion problems one usu-
ally observes a €' dependence in the standard approximation property that is then
compensated by an e factor from the smoothing property (cf. [17, 18, 27, 28, 32]).
However, we can not apply a similar technique, due to the fact that for our problem
class a robust smoother is not available. Instead, we use another splitting of the iter-
ation matrix of the two-grid method, leading to modified (e-independent) smoothing
and approximation properties. 0

We now introduce a nonstandard component in the multigrid algorithm. The
convergence analysis will be based on the framework of the smoothing and approx-
imation property. For the analysis of the approximation property we derive finite
element error estimates in the L?2-norm (section 10). There we use an Aubin-Nitsche
duality argument. For the convection-diffusion equation that we consider the corre-
sponding dual problem can have a boundary layer at the boundary Ty, which then
gives rise to large discretization errors in the dual problem. This effect results in a
strong increase (for € | 0) of the theoretical bound in the approximation property
and yields unsatisfactory convergence results for the two- and multi-grid method. To
overcome this problem we introduce a “local presolver” in which a block solver on the
local inflow domain Qi defined in (5.17) is applied.

We now describe this local solver operation more precisely. For technical reasons
we need a block solver on a slightly larger domain, namely Q" with one additional
vertical strip of triangles:

QY = {(z,y) €|z < (3k +2)h }
16



For the local solver on this subdomain we introduce the local bilinear form

ain(u,v) := / +(5 + 0h)ugv, + EUYVy + ugvdady, u,v €V
o

and the corresponding Ny, x Ny, stiffness matrix
(Akz,y)k = ain(Prz, Pry) for all z,y € Xy. (6.5)

Note that this corresponds to the discretization of the given convection-diffusion prob-
lem on the local domain QZ"’+ with a Neumann boundary condition at the outflow
boundary of this local domain.

We introduce the local grid, which is that part of the global grid that lies in the local
subdomain Q)

Gt = {miy | 1<i<h ", 1<j<h ' }namt

We assume an ordering of the grid points in this local grid, using a numbering
1,2,...,mg, with my = |GJ*|. Let

Py : R™ — RN
be the trivial injection operator, i.e., (P;);; = 1 iff grid point j in the local domain has

the number ¢ in the global domain. Furthermore let Ry, := PT. Using this notation
the local solve on the subdomain G} is given by

v = Rk(.CL’Old, b) := zod — Pk (RkAkpk)_le(Ak.'EOId —b), for IIIOld, b e Xy. (6.6)
For the corresponding iteration matrix we use the notation
Qk =1 — Pk(Rk/ikPk)ileAk.

With the components introduced above a standard multigrid algorithm is defined in
which we use v, post-smoothing iterations with the method in (6.2) and one pre-
smoothing iteration (which is actually not a smoother) with the local presolver (6.6).
In quasi-algorithmic formulation this multigrid method is as follows:

ALGORITHM 1 (Multigrid method).
function MGM,, (.CEk, bk)

{

if k=Fky then
T = Ay by // solve coarse grid problem
else
{
zr = Ri(Tk, br); // local block solver
dp—1 =7k (b — Agzr);  // restriction of defect
ey, :=0;
for i=1 to 7 do ~// recursion
ei:—l = MGMk—l(e’]lcilla dk—l);
T =Tk + Pr€f_1q; // add coarse grid correction
zy =S¢ (vr, br); // postsmoothing
}
return xy;

17



The two-grid method then has an iteration matrix
Tr = S (I — puAy b reAr) Qs
for the corresponding multigrid W-cycle (i.e., 7 = 2) the iteration matrix (cf. [8]) is
ME™ := 0, M = Tj, + Sy pr (M5 AL re ArQy (6.7)

k=ko+1,ko+2,... . Note that in the presolver we solve a problem on the domain
QM Yt I (3k+2)hy, > 1 then Q" = Q and the two-grid method on level k is a direct
solver due to @ = 0. Hence in the multigrid method we take ko sufficiently large
(but independent of £). In the remainder we only consider k > ko such that Q3" ;C,: Q.

After the block solve on the subdomain QZ”’+ the defect will be equal to zero on
the slightly smaller domain Qi" (this is the reason why we introduced the enlarged
domain QZ"’JF). This will play an important role in our convergence analysis for the
multigrid method. To formulate this “zero defect property” in a more precise way we
introduce the diagonal matrix Ji € RV *Ne with (Ji); = 0 iff the grid point with
index i in the (global) grid lies in Qi", and (Ji);; = 1 otherwise. Using this projection
we can formulate the following

LeMMA 6.1. The following holds

ArQr = JeArQr
Proof. One easily verifies that (Ag)i; = (Ag)i; if the grid point with index i lies
in ;. Hence
(I—Jie)(Ar — Ax) =0 (6.8)
holds. From the definitions of P, and Jj, it follows that
(I = Ji)(I — PRy) =0 (6.9)

Using the results in (6.8) and (6.9) we get

(I — Jo)AkQrAy" = (I — Ji)(I — AxPy(RxAcPy) ™' Ry)
= (I — Ji)(I — A Py(Re AxPy) ™' Ry)
= (I —Jx) — (I = Jo)(I — PyRy) APy (Re Ax Pr) 'Ry,
—(I— Jk)PkRkAkPk(’kAkPk 1Ry,
= —Jk)—0—(I - Jp)PRy = (I - Jp)(I - PoR) =0

From this we obtain (I — J¢)ArQr =0. O

We now formulate three main results on which the convergence analysis will be
based. The proofs of these results will be given further on.

THEOREM 6.2. If in (6.4) we take a > 0 sufficiently large, then there exists a
constant ¢, = ¢1(a) independent of k and & such that

WiA ' > el for k=1,2,... (6.10)

18



Proof. Given in section 7. It yields (6.10) for any o > 1 and a corresponding
c>01. 0O

THEOREM 6.3. For any o > 0 there exists a constant ca = co(a) independent of
k and € such that

Wi(AL" — pe A re)Jkl| o for k=2,3,... (6.11)

Proof. Given in section 10. 0O

THEOREM 6.4. There exists a constant c3 independent of k and € such that

||AkaA,;1|| <csk for k=1,2,... (612)

Proof. Given in section 8. 0O

Using these results we can prove a two-grid convergence result in the A-norm:
|B|la := ||AxBA, || for B € RN+ *Ne_ First we prove a smoothing property in the
A-norm.

LEMMA 6.5. From (6.10) it follows that

”I - 201Wk71Ak||A S 1

holds.
Proof. We use the notation B := AW, '. Note that

1T —2c:W, " Ag || = II — 2¢1B|)* = p((I — 2e:BT)(I - 2¢1B)) .
From (6.10) it follows that BT B < 5-(B” + B) holds and thus
0< (I-2:BTY(I—-2,B)=1-2¢,(BT +B)+4BTB<1I.

From this the result follows. 0O
ASSUMPTION 2. We take a fized o > 0 sufficiently large such that (6.10) holds.
In the smoother (6.2) we take

We then obtain the following
COROLLARY 1. The following smoothing property holds:
4

S, LA < —.
|| k k k”A = cl\/m

(6.13)

Proof. Follows from lemma 6.5 and theorem 10.6.8 in [8] (or results in [10, 21]). O

We now obtain a two-grid convergence result:
THEOREM 6.6. Assume that (6.10), (6.11) and (6.12) hold. For the two-grid
method we then have

402 C3

c1V 2 ’

k .
1Tklla < Ctg\/—y_k, with cyg :=

19



Proof. Note that

ITklla = IS¢ (I — pr ALy e Ak) Q4
(we use lemma 6.1) = ||(AkSZka_1) (T/Vk(A,;1 —pkA,;_llrk)Jk) (AkaAgl) |
1S3 W ArllalWie (A" = peAi i) Tl Ak Qi AR

IN

4
<70263k-

- CIV27TVk

Thus the result is proved.

a

Note that from the result in this theorem one obtains a uniform bound ||Ty||l4a < e < 1
for the two-grid contraction number, provided the number of smoothing iterations is
sufficiently large: v ~ ck?.

We now derive a convergence result for the multigrid W-cycle. We use that for the
canonical restriction operator the inequality

Il < e

holds with a constant ¢, independent of k. We need a stability result that will be
proved further on:
THEOREM 6.7. There exists a constant c4 independent of k and € such that

lApeAl I <ed for k=2,3,... (6.14)

Proof. Given in section 9 [

(From the two-grid result of theorem 6.6 we derive a multigrid convergence result
using standard arguments:

THEOREM 6.8. In addition to the assumptions of theorem 6.6 we assume that
(6.14) holds and the number of smoothing steps on every grid level is sufficiently large:

147 Z Cy k‘4

with a suitable constant ¢, (which follows from the proof). Then for the contraction
number of the multigrid W-cycle the inequality

*

| M8 4 < % , k>ko, (6.15)

holds, with a constant £* < 1.
Proof. From the recursion relation (6.7) for M, #™ immediately follows

M8 |4 < 1 Twlla + 1Skl | Akpr AL NMEET a1 AR Qi A -

The results in theorem 6.4, lemma 6.5, theorem 6.6 and theorem 6.7 yield

mgm k: mgm
|ME™ |4 < Ctg\/—y—k +ereseak||MIE,  for k> ko . (6.16)

2 . .
Define cg := (3 5“7 :)" and consider the recursion

/30:07 /Bk:€+cr630460/6]%_17 k:]-aza
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and assume that ¢ is sufficiently small such that this recursion has a fixed point
& < 1. Then B < &* VEk holds. Now take the number of smoothing iterations on
level k sufficiently large such that

v > ¢ £k

is satisfied. For pp := k||M;"®™||4 the bound puj; < £* holds, i.e., we obtain the
convergence result (6.15). 0O

REMARK 2. We briefly discuss the arithmetic work needed in one W-cycle itera-

tion. First note that the arithmetic work for a matrix vector multiplication on level k
is of order O(N},) = O(n2). For the block solver iteration z"®" = Ry (z°!9,b) we need
a local defect calculation (on the subdomain QZ”“L) and a direct solver for the matrix
Ry ApP,. This is a my x my matrix (mg = O(nglnny)) with bandwidth O(Inng).
Hence for solving a system with such a matrix the arithmetic work needed by a di-
rect method is of order ny(Inng)®. We conclude that (asymptotically) the arithmetic
work in the presolver procedure is negligible compared to the matrix vector multipli-
cation Axz. The work needed in one smooting iteration %% = S (x°9,b) is of order
O(Ny). The number of smoothings behaves like v ~ k*. Hence the postsmoothing
procedure requires O (N (In Nj)*) operations. Using a standard recursive argument
(cf. [8] chapter 10) it follows that for a multigrid W-cycle iteration the arithmetic
complexity is of the order Ny (In N;)*. We conclude that this multigrid method has
suboptimal complexity.
The fact that the method does not have the optimal complexity O(N},) is caused by
the k-dependence of the bound in theorem 6.4. If we would have a local presolver
(which should yield a zero defect on the local subdomain) with O(N},) complexity per
iteration and such that the A-norm of the corresponding iteration matrix is uniformly
bounded, this would result in a multigrid method with optimal complexity.

7. Proof of theorem 6.2. We recall the representation of the stiffness matrix
in (3.4)

- 1 A 1

We will need the following lemma
LeMMA 7.1. The following holds

BD, >0

Proof. The matrix
bilinear form

%Bf)gc - %hkfiz is the stiffness matrix corresponding to the

(u,v) = / Uyv dxdy
Q

For any z € X we get

1 - - 1 o 1
S(BD.2, 2 — 5 (e Aoz, 2)e = / (Pe2)(Piz) dody = / (Pe2)? dady > 0
Q T

E

Since the matrix A, is symmetric positive definite the result now follows.
d
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We now consider the preconditioner Wy = a;>1 + 1536, as in (6.4).
k

THEOREM 7.2. For a > 1 the following holds:

1

Proof. First note that

1
th$D;F:Dw+DZ—h—(l,O,...,O)T(l,O,...,O) <D, + DT
k

and thus hy DI D,DTD, < DI (D, + DI)D, holds. Using A, = DI D, this results
in hy A2 < 2DT A, and thus:

1 ~ PN
ghAy < D7 A, (7.1)
Note that the following inequality holds for any a,b,c € R and o1, 02,03 > 0:
(a+b+c)? <(I+oa+o3)a>+ (1 +oz+07)b? + (1401 +05")c

We apply this inequality with o3 = 2,01 = 02 = 1. Also using ||Ay|| < 4h,;2 and
IBI| < 6 we get

) A P 14
[l Agz|” < 552||Ayz||2 +457|| A2 |]” + 3IIEBsz||2
£
hy

(7.2)

<10(:—)*(Ayz, 20k + 43| Ag2|? + 3]| D2

We recall that &, = e, — 0hy, < %hk. Now apply the result (7.1) and the estimates in
lemma 3.1, lemma 7.1 to obtain

N ~ ~ 144
Wiz, Apz)g = (ah%z + Dyz,cAyz + &L A2+ EBDzz)k
€2,

~ ~ ~ 1~ 4
> a(—) (Ayz, 2 + Ex(Dez, Ag2)p + (Dy 2, EBDzz)k

E\2, 7 3 5, 2 . 1. -
> a(i) (Ayz, 20 + 2l Al + 5l1Dael

v
|
=
o

E 2,2 30 5, 10, -

a(=) " (Ayz, 20k + S &l Auzl® + = (|1 D22]?)
hy, 7 3

1 €

2, 4 P R
2 1_0( (hk) <Ayz’z>k+45i”‘4zz”2+3||Dwz”2)

Combination of this with the inequality in (7.2) proves the theorem.
0
The previous theorem shows that theorem 6.2 holds.

8. Proof of theorem 6.4. We consider the presolver with iteration matrix
Qr =1 — Po(ReArPr) ' RiAx

and introduce



Note that D, represents the difference operator %[—1 1 0], in all grid points =
in the local domain Q¥+, The matrix Ry APy results from the streamline diffusion
finite element discretization on this local domain with homogeneous Neumann outflow
boundary conditions. Now we can use the same arguments as in section 4 (with A
replaced by Ry AP, and D, replaced by D, to prove (cf. lemma 3.1)

|1Ds(RrAxPy) 7 < 3

The matrix D, has (after some permutation) block diagonal form with diagonal blocks
a-tridiag(—1,1,0) of dimension (3k + 1) x (3k + 1). Hence,

1D < 3k + 1)hy
holds. Using this and [|Ag|| < chj " we get
14k QAL | < 1+ LA PNIDZ | Do (ReAxPi) "Il Bill < ¢k .
This proves the result in theorem 6.4

9. Proof of theorem 6.7. Let g1 € X;_1 be given and define g1 :=
(P,;Ll)_lgkfl € Vi_1. Let up_1 € Vip_1 be such that

ak—1(Uk—1,Vk—1) = (Gr—1,vk—1) for all vg_1 € Vp_1.

Then A;' gx—1 = P " ur_1 holds. The corresponding continuous solution u € V is
given by

ar—1(u,v) = (Gg_1,v) forall veV.
Now note that

(Arpr Pt ug—1, )k ar(Uk—1, k)
Appr At gr_1]| = max <c¢ max — 72
Mol =0y SCEELT fu
< ¢ max ap—1(Uk—1,Vk) + ¢ max ag(up—1,v%) — ap—1(Ug—1, V1)
T eV vkl v €Vy vl
(9.1)
Define ex—1 := u — ug—1. For the first term in (9.1) we get, using the results of

lemma, 4.3 :

ak—1(Ur—1,0k) < |ar—1(er—1,0k)| + |ar—1(u,vy)|
< chil(ex—1)z Ml (Vi) + €ll(ex—1)y Il (wr)y Il + [ (er—1)zl[[vrll + [(Ge—1, k)]
< c(ll(er—1)ell + hik”(ek—l)y”)“wc“ + | gr—1llvell

< cllge-1llllvell < ellge—llllvll 92)

For the second term in (9.1) we have, using lemma 4.2 :
|ak (uk—1,vk) — ak—1(up—1,0%)] = Shg|((ur—1)z, (vk)z)|
< ell(ur—1)ellllvll (9-3)
< cllgr—lllorll < ellgre—lllloll
Combination of the results in (9.1), (9.2) and (9.3) yields
APk A gk—1]l < cllge—1ll

and thus the result in theorem 6.7 holds. O
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10. Proof of theorem 6.3. We briefly comment on the idea of the proof. As
usual to prove an estimate for the error in the L2-norm we use a duality argument.
However, the formal dual problem has poor regularity properties, since in this dual
problem I'g is the ”inflow” boundary and T'w is the ”outflow” boundary. Thus
Dirichlet outflow boundary conditions would appear and we obtain poor estimates
due to the poor regularity. To avoid this, we consider a dual problem with Neumann
outflow and Dirichlet inflow conditions. To be able to deal with the inconsistency
caused by these “wrong” boundary conditions we assume the righthand side is zero
near the boundary I'yy. In order to satisfy this assumption we use the local presolver
in the multigrid algorithm.

A further problem we have to deal with is the fact that due to the level dependent
stabilization term we have to treat k-dependent bilinear forms.

We introduce the space
V9 :={vp €V}, | vp(z) =0 forall z€Q}

Let by, € X} be given. In view of theorem 6.3 we must prove an estimate ||, (4, —
At rk) Jibr|| < c|bg|| with a constant ¢ that is independent of k,e and by,. Note
that

(P,:)_ljkbk =: fk € Vg

holds. For this fi € V9 we define corresponding discrete solutions and continuous
solutions as follows:

u € Vi, : ak(uk,vk) = (fk,vk) for all v, €V},
ueV: ar(u,v) = (fr,v) forall veV (10.1)
Ug_1 € Vi1 : ap_1(ug_1,v5-1) = (fr,vp—1) forall vp_; € Vi1 '
4 €EV: ak—1(@,v) = (fr,v) forall veV

In the proof of lemma 4.2 we showed that ||vg|| = ||15mPk_1v|| holds for all v € V. We
use that Wy, = a;5 1 + D, and obtain
k
Wi (Ap " — prAgt k) Jebill
€ — - A S _
< Ch—%H(Ak Y pe At k) Jebe|| + (|1 Do Ay P kel + (|1 Dapr At Jkbi|

3
< C(h_%”Uk — k|| + [l (u)e | + | (k1))

< C(%(Hu —wgll + 1@ — wp—al] + lJu = @ll) + [(ue)=l + ||(uk71)z||) (10.2)
k

From lemma 4.2 we get
[l (ur)ell + (1 (k1) < cll fll (10.3)

From the result in theorem 10.1 below it follows that

_ hi
llure = wll + [lup—1 — @l < c ?'“ Il 7k ll (10.4)

Finally, from theorem 10.4 we have

llu —al| < chgll frll (10.5)
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If we insert the results (10.3),(10.4) and (10.5) in (10.2) we get
Wi (A" — e At 7a) Tebel| < el fioll < cllbe|

and thus the result of theorem 6.3 is proved.
It remains to prove the results in the theorems 10.1 and 10.4.

THEOREM 10.1. For f € V9 let u and uy, be as defined in (10.1). Then

hi;
llu = ull < e lf2l (10.6)
holds.
Proof. Define ey, := u — ug. Let w € H?(Q) be such that
—EWyy — ExWzy — Wz = €k (10.7)
with
wy, =00onTw, w=0onT\Ty. (10.8)

Note that for this problem I'p is the ”inflow” boundary and I'y is the ”outflow”
boundary. We multiply (10.7) with e and integrate by parts to get

lexll” = e((er)y, wy) + ex((er)s, we) — Sk/r wger dy + ((ex)z,w)

= ay(eg, w) —sk/ wyer, dy
I'e

We use (4.6) with w and ey, instead of u and f, respectively, and (4.12) to estimate

1 3 3 1 h
o [ weeds| <ef (e [ wtar) ([ dan) <entled i 009
T'g Tr I'g \/E

From this estimate and the Galerkin orthogonality for the error it follows that for any
v, € Vp,

llexll” < e ((er)y, (w — vi)y) + ek ((ek)as (W — Vk)a) + ((€r)a,w — V&) + c”ek”\h/_ki;”fk”-

(10.10)
Let Qp := Qp, be as defined in (5.4), i.e., 2 is the set of triangles with at least one
vertex on I'y. In the remainder of the domain, w = Q\Qp, we take vy as a nodal
interpolant to w and we put vy = 0 on I'yy to ensure v, € V5. Note that vy is a
proper interpolant of w everywhere in  except in Q. Therefore we will estimate
scalar products in (10.10) over w and Qj,, separately. We continue (10.10) with:

lexll® < ee b li(er)sll, lhollimmo) + cex b ll(er)ally ol ey
3
h§
Fehilite)all, lolli + elle Z 1 fell + Ta,

1
< chll fellZllexll + T, - (10.11)
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The term Ig, collects integrals over Qp:

I, = ((er)y, (w —vk)y)qg, + ek ((er)es (W —Vk)2)q, + ((er)z,w —vk)g,

To estimate I, we use corollary 5.6 and the following auxiliary estimate, with wy, =
{(z,y) € Q: z € (hg,2hi)}:

l[orlle, < CIIUkIIwh < e([[wllon + [lox — wllw)

th T 2 %
—o(([ [ oo+ [ watng)in] dedy )+ o - wil)
hi 0

1 h2
<c(hg (/ w? dy) ¥ + hgllwg || + B w2 ) < (h2 '“)llekll-
I'w

We proceed estimating terms from I, :

e ((er)ys (0 = vi)y)g, < lerdylla, (lwyll+ @R llg, )

1 1 1 _
<cerhief || fell (2 llexll + bt llvklles)

1 it _1 h h2
<cerhg||fille™2 +hy ® + —’“)uekn <e(h + 7’;)||fk||||ek||,
e ((ek)ar (0 = Vi) ), < 2k (e )allay, (lwsll + [1(w6)e o)
§
< chEexllfll (lexll + by logllon) < c ?k)ufknnekn,
((ex)er — Vi), < Iler)elley, (lollan + [oellon)
<chlllfill (] (( [ wt ) + helelo, + ||vk||9h)
w

< e (e + =) fellllexll-
Inserting this estimates into (10.11) and using & < 1hy we obtain

h2
llexll” < oM IIkaIIIekII +e(hr+ —£ 42 )”fk“”ek” < c—’“llfkllllekll

v

and thus the theorem is proved.
O

For the proof of theorem 10.4 we first formulate two lemmas.
LEMMA 10.2. Consider a function g € HY(Q)). The solution of

—EUyy — EkUgz + Uz = Gz (10.12)

with boundary conditions as in (1.2) satisfies

[ <o (hkl ol + [ 2y + ||gw||2) . (10.13)
I'g Te

Proof. We multiply (10.12) with u and integrate by parts to get

1
el + el + 5 [ udy = ~(g,u) + [ gud. (10.14)
FE l_‘E
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For the righthand side in (10.14) we have

— 2
(g, ua)| < llgll Juz]l < cllgll llg=ll < ¢ (hkl g1l + P llge | )

. 1
/ gudyg/ gzdy+—/ u? dy.
I'g I'g 4 I'e

Combining these estimates and (10.14) we prove the lemma.
O

and

LeEMMA 10.3. For g € V9 let u be the corresponding solution of (10.12). Then
the following holds:

llull < cllgll- (10.15)

(Note that the standard a priori estimates Would glve only ||u|| < cllgz-)
Proof. Consider the auxiliary function v(x,y) fo u(&,y) d€. Tt satisfies

—EVyy — EkVzz + Vg = g + Ek Uin, (10.16)
with ui,(z,y) = %(0, y). The corresponding boundary conditions are

ov
8.17

Then the estimate (10.15) is equivalent to

u(l,y)on g , v=0o0n 0N\ TIg. (10.17)

ozl < cllgll- (10.18)

The estimate (10.18) is proved by the following arguments. We multiply (10.16) with
v, and integrate by parts to obtain

3 3
el + 5 [ @)Pdy+ % [ )" dy
FE FW

(gavw) + €k(u,n,’l);c) + %‘/F (Um)2 dy. (1019)

Note that for a function g from the finite element space V} estimate (10.13) yields
due to finite element inverse inequalities

[ wra=| u2dy§0(h;1||g||2+ [ s+ ||gz||2)5c1h;1||g||2.
I'e I'e I'e

(10.20)
Now we use the fact that g = 0 in Qi". Due to the choice of Qi (cf. (5.17)) we can
apply corollary 5.2 with £ = hy, n = 2¢x|In hg| + hy, and p = 1. Using (5.6) we get

1 1
er(Uin, vz) < klluimll® + 5 ”vw”2 = Ek/ (ug)” dy + 1 v I?
Tw

<chi llgall” + 7 llvzll <cllgll* + ||Ua:||2- (10.21)
Now (10.15) follows from (10.19) by applying the Cauchy inequality, estimate (10.20)
and (10.21).
a
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Using these lemmas we can prove the final result we need.
THEOREM 10.4. Let u and 4 be the continuous solutions defined in (10.1). Then

the following holds

llu =@l < chllfill (10.22)

Proof. The difference e := u — @ solves the equation

—Eeyy — Ekeyz + €5 = Yu , (10.23)

with g = —dhyii, and boundary conditions as in (1.2). Now the result of lemma 10.3
apply. We obtain

llell < cllgll = chy llaa]l < c1 byl i ll-
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