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Abstract. We propose an adaptive algorithm based on wavelets for the fast numerical solution
of control problems governed by elliptic boundary value problems with distributed or Neumann
boundary control. A quadratic cost functional that may involve fractional Sobolev norms of the
state and the control is to be minimized subject to linear constraints in weak form. Placing the
problem into the framework of (biorthogonal) wavelets allows to formulate the functional and the
constraints equivalently in terms of ¢3—norms of wavelet expansion coefficients and constraints in
form of an ¢> automorphism. The resulting first order necessary conditions are then derived as a
(still infinite) system in ¢3. Applying the machinery developed in [CDD1, CDD2], we propose an
adaptive method which can be interpreted as an inexact gradient method, where in each iteration
step the primal and the adjoint system needs to be solved up to a prescribed accuracy. In particular,
we show that the adaptive algorithm is asymptotically optimal, that is, the convergence rate achieved
for computing the solution up to a desired target tolerance is asymptotically the same as the wavelet—
best N—term approximation of the solution, and the total computational work is proportional to the
number of computational unknowns.
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1. Introduction. Recently a new type of adaptive wavelet methods for the nu-
merical solution of a wide class of variational problems have been developed and
analyzed in a series of papers [CDD1, CDD2, CDD3]. These methods have been
shown to exhibit asymptotically computational complexity in the following sense. If
the solution can be approximated (using ideal complete information) by N terms
from the underlying wavelet basis with accuracy O(N~*%) (in the energy norm) then
the scheme recovers for a certain range of decay rates s, depending on the wavelet
basis, the solution with any desired target accuracy € at a computational expense
that stays proportional to /%, uniformly in € and matches in this sense the optimal
work/accuracy rate of best N—term approzimation.

Moreover, the underlying analysis has lead to a new algorithmic paradigm that
can be summarized as follows.

(i) Establish well posedness of the underlying variational problem, which is to
identify a Hilbert space (energy space) for which the operator induced by the
variational problem is boundedly invertible as a mapping from this Hilbert
space onto its dual.

(if) Transform the original problem into an equivalent one that is now well posed
in the Euclidean metric £5. This is usually done by finding a wavelet basis
that is a Riesz basis for the energy space.

(iii) Exploit (ii) so as to devise an iterative scheme for the (still infinite dimen-
sional) transformed problem on /> that has a fixed error reduction per step.
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(iv) Perform the ideal iteration from (iii) approximately by adaptively applying
the involved operators in wavelet coordinates within suitable dynamically
updated accuracy tolerances.

The objective of this paper is to explore the use of such concepts in the context
of optimal control problems with PDE constraints. We are primarily motivated by
the following two aspects. By their very nature such control problems tend to have a
rather demanding computational complexity so that the use of schemes that minimize
computational complexity is very tempting. The second reason is the fact that since
the above paradigm tries to stay with the infinite dimensional well-posed problem as
long as possible, it turns out to inherit the stability of the infinite dimensional problem
in the following sense. Compatibility conditions on finite dimensional trial spaces that
may arise in coupled problems, such as in the form of the LBB condition for saddle
point problems, do not arise in the adaptive context, see [CDD2, DDU]. Moreover,
the fact that suitable scalings of one and the same wavelet basis form Riesz bases for
a whole range of Sobolev spaces allows one to treat in a convenient way a variety of
such norms in the objective functional which pose difficulties in conventional settings.

In order to bring out the basic mechanisms, we deliberately confine the discussion
to rather simple types of control problems with linear constraints, including Dirichlet
and Neumann problems with distributed or Neumann boundary controls. The setting
will be described in Section 2 along with some examples that will guide the subsequent
developments. While the above paradigm has been developed mainly for PDEs or
singular integral equations, the first issue will be to formulate the optimal control
problem in a way that allows us to branch into the above road map. This will be
done in Section 3 that provides the background for (ii). In Section 4 we briefly collect
some relevant facts from [CDD2, CDD3] that will later be used for (iv). One major
task in the present context is the formulation of a convergent (ideal) iteration (iii)
and a way that makes (iv) feasible. This is the objective of Section 5. Having started
out from a rather general setting we will have by then narrowed down step by step
requirements on the computational ingredients that will imply optimal complexity
at the end and guide the construction of the scheme. The complexity analysis in
Section 6 will finally allow us to identify specific evaluation schemes that will be seen
to render our adaptive solver for the optimal control problems under consideration
to have optimal work/accuracy rates in the above sense. It is perhaps worth noting
that the analysis brings out some distinctions between the inherent computational
complexity of problems with distributed versus Neumann boundary control.

Throughout the paper, we will employ the following notational conventions, unless
specific constants have to be identified: The relation a ~ b stands for a < b and
a 2 b, where the latter relation means that b can be estimated from above by a
constant multiple of a independent of all parameters on which a or b may depend.

2. Problems in Optimal Control. We shall be concerned with the following
abstract class of problems in optimal control that will serve as a first simple model
for studying adaptive solution concepts in such a context. Several specifications will
guide the subsequent analysis.

2.1. Abstract Linear—Quadratic Control Problems. Let Y and () denote
the state and the control space, respectively, which are assumed to be (closed sub-
spaces of) Hilbert spaces, with topological duals Y',Q’ and associated dual forms
(-, v xy, (Yo xg- When there is no risk of confusion we write briefly {-,-). In
many applications the states y are measured in a weaker norm corresponding here to
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a Hilbert space Z hosting the observed data y.. In contrast, the regularity imposed
on the control u, represented here by a Hilbert space U, is often higher than that
required in a natural variational formulation. Thus, we shall assume the validity of
the continuous embeddings

lwllz < llwlly, weY, ol < llvllv, vel. (2.1)

~

All norms will be indexed by the respective space notation.
Denoting by T': Y — Z a continuous linear operator

1Tyllz < llylly, (2.2)

mapping states into the observation space Z, our objective is to minimize quadratic
functionals of the form

1 . w
J(y,u) = 5||Ty—y*||2z+ 5”“”2Ua (2.3)

subject to linear constraints, that will be described next. We shall assume that
a(,):Y xY — IR is a bilinear Y—elliptic form, i.e.,

a(w,0) ~ [}, veY. (2.4)

It will sometimes be convenient to refer to the linear operator A : Y — Y’ defined by
(Ay,v) = a(y,v), v €Y.

The last ingredient is a linear continuous operator E : Q — Y, describing an
action on the control.

The abstract linear—quadratic control problem can now be formulated as follows.

(ACP): For given observations y. € Z, a right hand side f € Y' and a weight
parameter w > 0, minimize the quadratic functional (2.8) over (y,u) € Y X Q subject
to the linear constraints

a(y,v) = {f + Eu,v), v€eY. (2.5)

REMARK 2.1. Of course, when the observed data are compatible in the sense that
y« = TA7Lf, (ACP) has the trivial solution v = 0 yielding J(y,u) = 0, which can be
used to test solution schemes.

2.2. Some Examples. In all the following Q ¢ IR? denotes a bounded Lipschitz
domain. The choice Z = U = Ly(Q) in the functional (2.3) is classical (see [Li]),
perhaps partly due to the difficulty of evaluating the norms that could be termed
natural (such as fractional trace norms) with regard to the underlying variational
formulation, namely, the norms ||-||v, ||-||o. Here we explicitly allow for employing also
natural norms for observing the state y, unless, for statistical reasons, measurements
are only meaningful in weaker norms such as Ls. It will be seen below that Sobolev
or even Besov norms on 2 or (part of) its boundary I' = 99 for a certain range of
regularity scales can be dealt with by our approach.

Although the problems with distributed control are perhaps rather of academic
nature, they serve as good illustrations for the essential mechanisms.
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2.2.1. Dirichlet Problem with Distributed Control. In our first example
we consider such a distributed control problem with the following identification of the
above ingredients:

a(v, w) == /Q Vo.Vwds, ¥ =H\Q), Q= H Q) =Y. (2.6)

This gives rise to constraints whose strong form is given by the standard second order
Dirichlet problem with distributed control,
Ay = f+u in Q,

2.
y = 0 on 0. 27)

Admissible choices for Z,U, satisfying (2.1), are then

Zi=Hy(@), 0<s<1, U=H(Q):=(Hyg (@), -1<t<0, (28)
where H§,(€2) consists of those elements in H*(2) whose trivial extension by zero
belongs to H*(IR?). Thus, for s < 1 the states are measured in a weaker norm while
for t > —1 additional smoothness is imposed on the control when compared with the
natural norms. In particular, the classical case U = Z = Ly(Q) is covered. In all

these cases the operators T, E are the canonical injections T' = I, E = I, which, for
the regularity scales in (2.8), are indeed bounded.

2.2.2. Neumann Problem with Distributed Control. Choosing
a(v,w) :== /(Vv -Vw +vw)dz, Y :=H'(Q), Q= (H" Q) =Y, (2.9)
Q

(2.4) holds. Denoting by y the trace operator to 92, mapping functions in Y = H(Q)
to H'/2(89), we consider next the constraint

a(y,v) = (f,v) +/ g(yv) ds + (u,v) forallveY (2.10)
80

and for given f € Y', g € H™Y/ 2(0Q). Tts strong form is the second order non—
homogeneous Neumann problem with distributed control

—Ay+y = f+u in Q,
2.11
@ =g on 01}, ( )
on

where % is the normal derivative in the direction of the outward normal. The con-
straints (2.10) can be formulated as an operator equation

Ay=f+u, (2.12)
where the data f is defined by (f,v) = (f,v) + Joq 9(yv)ds and A is boundedly

invertible from Y to Y.
In analogy to (2.8) we can take here

Z=H*), 0<s<1, U=(HQ), 0<t<1. (2.13)

Again T = I and E = I are then the canonical injections.

One can also prescribe as observations boundary conditions of Dirichlet type y. on
A9 in which case the natural observation space is Z = H'/2(8Q). Then T : H'(Q) —
HY/ 2(89) coincides with the trace operator. In this case, the optimal control problem
is to steer the states towards Dirichlet boundary conditions while the constraints
(2.11) involve Neumann boundary conditions.
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2.2.3. Neumann Problem with Boundary Control. Let now the boundary
00 be decomposed into two parts 0Q = 'y U T'., where I'; has nonvanishing d — 1
dimensional measure. For a(-,-) from (2.9), consider the constraint

a(y,v) = (f,v) +/ g(yv)ds +/ u(yv) ds forallveY = HY(Q) (2.14)
T. e

and given f € Y', g € (H'/?(T,))', whose strong form is the second order Neumann
problem

—Ay+y = f in Q,
@ _ 0 on 'y, (2.15)
on g+u onl,.

In order to identify the remaining ingredients, note first that, for the right hand side
of (2.14) to be well defined, the control must belong to Q = (H/?(T,))". Thus, the
operator E is the adjoint of the trace operator v to the control boundary T., defined
as

(Bq,w)(H1(Q)) x H () :=/ q(yw) ds. (2.16)

c

That is, F : (H'/?(T.)) — (H'(Q))" is an extension operator to Q. Thus, the
formulation of the constraint as an operator equation reads in this case

Ay = f + Eu. (2.17)

As in the previous cases, one could choose Z to be a space defined on Q. A more
frequent practical situation is to approximate prescribed conditions for the state on
some part of the boundary.

To this end, denote by I's C 99Q an observation boundary (again with strictly
positive measure) and by T : H'(Q) — HY?(T,) the trace operator to this part
of the boundary. Then the natural choice for Z is H'/?(T,). For the control, we
have Q = (H'/?(T.)) so that U = La(T'.) would require the optimal control to be
somewhat smoother. For these choices, the functional (2.3) is of the form

1 w
J(y,u) = EHTZI - y*”fql/z(rc) + EHUH%@(FC)- (2.18)

Again we could take Z = H*(T',) for 0 < s < 1/2 instead. For the choice Z =
Ly(T',) and U = Ly(T.), the functional (2.3) with constraints (2.14) has been treated
in [BKR] by employing an adaptive finite element solver. The case I'; = T'. = 00 and
Z =U = Ly(09) is classical [Li].

REMARK 2.2. For linear—quadratic elliptic problems with Dirichlet boundary con-
trols the constraints are usually formulated as saddle point problems, see, e.g., [K2],
which do no longer satisfy the ellipticity condition (2.4). The techniques developed
below can also be extended to this situation, see [CDD2]. However, in order to make
the basic mechanisms as transparent as possible we confine the present discussion to
the case of elliptic constraints.
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3. Reformulation of (ACP). The standard approach to control problems like
(ACP) would be to derive the necessary conditions for optimality in terms of an
adjoint equation in the functional analytic setting, see e.g. [Li], and to discretize the
resulting conditions by choosing suitable finite dimensional trial spaces. Here we
will deviate from such a procedure in several ways. The first step is to transform
the original problem (ACP) into an equivalent (hence still infinite dimensional) one
which is, however, formulated entirely in £». This formulation will be seen to offer the
following advantages:

e all the previous special cases take a unified format. All norms (including those
with negative order or fractional trace norms) are represented by £3—norms.

e there is no need for inverting ill-conditioned linear systems;

e it provides the foundation for adaptive solution strategies;

e aside from complexity issues such adaptive strategies have stabilizing effects
in cases where usually discretizations have to obey compatibility constraints
such as the LBB—condition.

The transformation hinges on the availability of appropriate wavelet bases which will
be described next.

3.1. Wavelet Coordinates. In the following we shall assume that for each
Hilbert space H € {Y, )} we have a collection of functions

‘IJHZ{le’)\ZAEHH}CH (31)

— a wavelet basis — with the following properties at our disposal. Iy is an infinite
index set whose elements A\ encode different features such as scale || and spatial
location k = k(A). In the simplest case of wavelets on the real line one has g, =
2i/24)(27 - —k), j,k € Z, normalized in L,. Thus A represents (j,k) and |\| = j. We
dispense at this point with further technical details about the actual construction of
such wavelet bases but collect only those properties that are relevant in the present
context.

Locality (L): The functions g, are local, and the widths of their support are
decreasing with growing discretization level ||,

diam (supp g x) ~ 2717 (3.2)

Cancellation property (CP): There exists an integer 7 = 7y such that

<UJ¢H,A) ,S 2_‘/\l(d/2—i_m)|U|Wm(supp YHE,A)? (33)

where d is the dimension of the underlying domain or manifold. Thus, integrating
against a wavelet has the effect of taking an /mth order difference which annihilates the
smooth part of v. In fact, this is typically realized (for wavelets defined on Euclidean
domains) by constructing ¥y in such a way that it possesses a dual or biorthogonal
basis ¥y C H' such that the multiresolution spaces S; := span{¢m : |A| < j}
contain all polynomials of order 7. Here dual basis means that (g x,¥m.) = 0.,
A, v € I'g. Here and in the sequel the tilde is to express that the collection is a dual
basis to a primal one for the space identified by the subscript. The role of dual bases
will be addressed again below.

This cancellation property entails quasi—sparse representations of a wide class of
operators.
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Riesz basis property (R): This is perhaps the most crucial requirement. Every
v € H has a unique expansion in terms of ¥ g,

v=Y utmr=:v Tu, vi=(0\)rern, (34)
A€l

and its expansion coefficients satisfy the following norm equivalence: There exist finite
positive constants cg, Cy such that

callVllesrn) < IV ¥ulla < CrllVlemy), v E€ IR, (3.5)

Thus, wavelet expansions induce isomorphisms between certain function and sequence
spaces.

By duality arguments one can show that (3.5) is equivalent to the existence of a
biorthogonal collection

@H = {1Z'H,>\ NS ”H} C HI7 <¢H,/\7,(ZH,[,L) = 5/\,/47 )‘7/14 € IH7 (36)
which is a Riesz basis in H', i.e.,
Cr' ¥ llesmy < I9" Tl < 19 llea 3.7)

holds for any & = ¥7 @5 € H', see e.g. [D1, D3, D4, K1].

We shall need a little more information about the way how bases with the above
properties are constructed. In all our examples the Hilbert space H € {Y,Q,Z,U}
is actually (a closed subspace of) a Sobolev space H* = H*(G) or its dual (possibly
determined by homogeneous boundary conditions) where G is either the domain € or
(part of) its boundary. The basis ¥ g for H is then typically obtained from an anchor
basis ¥ = {¢)y : A € I = Iy} which is a Riesz basis for La(G), i.e., [[¥allr.q) ~ 1,
whose dual basis ¥ is therefore also a Riesz basis for Ly(G). In fact, ¥ and ¥ are
constructed in such a way that rescaled versions of both bases ¥, ¥ form Riesz bases
for a whole range of Sobolev (sub-)spaces H®, for 0 < s < v, 7, respectively. From
this fact one derives then that for each s € (—%,7) the collection

W, :={27 Ny : N e I} =D°¥ (3.8)

is a Riesz basis for H® (with the above interpretation of H® as a dual when s is
negative) [D1], i.e., there exist positive constants c,, Cs such that

¢ IVllea(ry < VT Wsllzre < Cs [IVlleamy, v € L2(DD), (3.9)

holds for each s € (—%,7). Analogous relations hold for ¥ with reversed roles of +
and 4. We shall make use of the following consequence of this fact. For t € (—7,7)
the mapping

Dt:y=vI® - (D)7 =vID!'T = Z vy 2L ey (3.10)
el
acts as a shift operator between Sobolev scales, i.e.

ID*|| s ~ [|v]|grs++ ~ |D*T'V]ly(r), provided that s, s+t € (=%,7). (3.11)

Concrete constructions of wavelet bases with the above properties for parameters v, ¥
ranging in most cases up to 3/2 on bounded Euclidean domains and also on closed
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piecewise parametrically defined manifolds can be found in [CTU, CM, DKU, DSI,
DS2, DSt]. Note that in the above examples the relevant Sobolev regularity indices
range between —1 and 1 so that these bases allow us to exploit relations like (3.11)
when the metrics in the spaces Z and U differ from the natural norms in the way
indicated above. So we shall henceforth assume the validity of the above properties
(L), (CP), (R) in appropriate ranges as detailed in the next section.

In the sequel, it will be convenient to make systematic use of the following short-
hand notation that has been already employed to some extent above. We will view
¥ both as in (3.1) as a collection of functions as well as a (possibly infinite) (col-
umn) vector containing all functions always assembled in some fixed order. For a
countable collection of functions © and some single function o, the quantities (0, o)
and (o, ©) are to be understood as the column, respectively row, vector with entries
(0, 0), respectively (o,0), 8 € ©. For two collections ©,%, the term (O, X) is then
a (possibly infinite) matrix with entries ((6,0))gsco, sex for which (0, %) = (¥, 0)7T.
This also implies for a (possibly infinite) matrix C that (CO,%) = C(0,X) and
(6,C%) = (0,%)CT. In this notation, the expansion coefficients in (3.4) and (3.7)
can explicitly be expressed as vI' = (v, ¥) and ¥ = (¥, 7). Furthermore, the biorthog-
onality or duality conditions (3.6) can be reexpressed as (¥, ¥) = I with the infinite
identity matrix.

The last important ingredient concerns wavelet representations of operators. Sup-
pose that c(-,-) is a bilinear form on the product of Hilbert spaces H x M with
bases Uy, Wy, respectively. Let L : H — M', L' : M — H' be defined by
(Lv,w) = c(v,w) = {v,L'w). We can then represent Lv € M' in terms of the

basis W,s for M' which is dual to ¥y, i.e.,

Ly = L(VT\I’H) = (L(VT\I’H), l:[»']u)li’]u = C(VT\I’H, lI’]u)\ilju = VTC(\I’H, lI’]u)‘i’]ul
= ((c(Tp, Op) V) Fpp = (U, LTV T Ty (3.12)

Thus, the expansion coefficients of Lv (in the basis that spans the range space of L)
are obtained by applying the infinite matrix L := (U, L¥g) = (c(Tg, )T to
the coefficient vector of v, a fact that will be used frequently below. This matrix is
referred to as the (standard) representation of L with respect to the wavelet bases
U, Uy of the underlying spaces.

For general surveys on the application of wavelets to operator equations, we refer
to [Co, D2, D3].

3.2. Equivalent Control Problems in ¢,. Now we are in the position to
transform the abstract control problem (ACP) into wavelet coordinates. We begin
with the constraints (2.5). Following the above recipe (3.12), i.e., expanding y in Ty
and u in ¥g, and testing with the elements of ¥y, (2.5) takes the form

Ay = f + Euq, (3.13)
where
A = a(‘Py, ‘Py), E = <‘~I’Y7EIIJQ), f = <‘I"Y7f) (314)

(Since it will be more convenient later to work with a scaled version u of 11, we reserve
the symbol u for that purpose.) To simplify the notation we shall suppress in the
following the subscripts £2([) and write briefly || - || := [| - [|¢,(z) because we shall only
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be dealing with Euclidean norms and the ranges of indices I will always be clear from
the context.

It is well known that the ellipticity (2.4) and the Riesz basis property (R) (3.5)
(for H =Y imply the following fact, see e.g. [D2].

REMARK 3.1. The matriz A is a boundedly invertible mapping of £2(Iy) onto
itself, i.e., there exist finite positive constants ca,Ca such that

callvll < [[Av]| < Callvll, v e l(Iy). (3.15)

Similarly, since the observation data y, and Ty are supposed to belong to the
space Z, it is natural to expand these quantities in terms of the basis ¥z (whose
precise form will be derived shortly with the aid of (3.8)). In fact, for y = y? ¥y one
has by (3.12)

Ty=y (TUy, ¥2)¥z, yu= (Y., ¥5) ¥y,
which means that the representation of 7" and the coordinates of y, are given by
T:=(0,,TUy), yz:=(Vzu.). (3.16)
Now we still have to specify ¥z depending on the choice of Z. According to the above

examples, two essentially different cases arise.

Case (I): The space Z belongs to the Sobolev scale over 2, see (2.8), (2.13). As
mentioned in the previous section, the basis ¥z can then be taken as a scaled version
of Uy, i.e. there exists a diagonal matrix Dz such that

Uy, =D;Uy, ‘i’z = Dgllily, (3.17)

which clearly forms a dual pair for Z. In this case T" was just the canonical injection
so that

T = (‘i’z, \Ily) = D51<‘ily, \I’y) = DEI, Yz = D21<\i’y,y*) =: Dzly* (318)

If Z does not coincide with Y, Z induces a weaker topology than Y so that the entries
of the diagonal matrix Dz increase in scale. For instance, for Y = H!, Z = H?, s < t,
one has (Dz)x x ~ 2(t=5)[Al - Recall that in this case the mapping E is also just the
identity ((2.7), (2.12)), i.e., @ =Y’ and ¥4 should span the range of A. So we might
as well take

Ty: =0y, E=1, (3.19)

in this case. Thus, T and E are obviously bounded on 4>(Iy), €2(I g), respectively.
When U induces a strictly stronger topology than ), we can make use of the shift
relations (3.11) which say that there exists a diagonal matrix Dy such that

llullo ~ Dy all. (3.20)

Again, since Uy is a Riesz basis for Q = Y’ and U induces a stronger topology, the
diagonal entries of Dy are non-increasing in scale.

We have collected now all the ingredients to formulate a counterpart to (2.3) in
the present case.
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REMARK 3.2. Under the assumption (I) the quadratic functional
J(y,1) == LID; (v — vy I? + 2D al? 3.21
(v.8) = 3D (v — ) + 2D al?, (3.21)

is equivalent to the functional J(y,u) from (2.3) in the following sense: There exist
finite positive constants cj,Cy such that for anyy =y ¥y €Y, y, = (Dgly*)T\I'Z €
Z and any u = ul' Vg € U, one has

Proof. The fact that ||D,'(y — v.)|| ~ |Ty — y«||z follows immediately from
(3.18) and the fact that ¥z is a Riesz basis for Z. The assertion is then an immediate
consequence of (3.20). O

Case (II): The spaces Z and U are defined over different domains than , such
as traces as explained at the end of Section 2.2.2 and in Section 2.2.3. Here we
cannot simply interrelate the bases for Y and Z. In fact, they will generally be
quite independent of each other. However, we may still identify the range R of the
mapping T when acting on Y as a naturael space on the observation side. Thus, we
can begin again with a Riesz basis ¥ for this natural space and can, as in all the
above examples, generate a Riesz basis for Z through a proper scaling

Uy =Dy, Uy;=D,' g, (3.23)

where, by the same reasoning as above, the diagonal entries of Dz increase in scale.
Replacing (3.17) by (3.23), we obtain as before

T =D, T, TTy), y.=(D,'y.) ¥z, (3.24)
to conclude that
IDZ Ty —y )l ~ 1Ty —yallz forall y=y"¥y. (3.25)
Likewise, the Riesz basis ¥y for U can be taken as a scaled version of ¥,
Uy =Dy¥y, (3.26)

for some diagonal matrix Dy whose entries do not increase in scale since U induces
an at most stronger topology than Q. As before we infer that (3.20) holds again.
REMARK 3.3. Under the assumption (1) the functional

~ . 1 _ w 1.
J(y,a) = §||DZI(TY —-yoll? + §IIDU1u||2, (3.27)

with T,y and Dz, Dy given by (3.24), (3.23) and (3.26), respectively, is equivalent
to J(y,u) in the above sense.

At this point we cannot further specify the representation of E from (3.14) but
remark that the continuity of the operators E and T (see, e.g., [K2] for references
to trace theorems) combined with the property (R) of the wavelet bases ensures that
also in the case (II) there exist finite positive constants Ct, Cg such that

ITv[| < Crllvll,  lEv| < Cgllv]] (3.28)
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for v € lr(Iy) and v € £5(I ), respectively.
In summary, we arrive at the following abstract control problem as a discretized
control problem over {s.

(DCP): Minimize the quadratic functional (3.27) (respectively (3.21) in the case (I))
subject to the constraint (3.13) with A, T,E defined as above.

In view of Remarks 3.2, 3.3, the minimizer of (3.21) or (3.27) is related to the
minimizer of the original functional (2.7) as follows. For some c¢* € [cs,C;] one has
¢*J(¥,14) = J(y,u) for the minimizing pair (y,u) and its wavelet coordinates (¥, 1),
so that the minimizer (y, 1) of (3.27) satisfies J(y, 1) < ¢;1J(y,u). Moreover, in the
case of compatible data y, = T A™! f the respective minimizers coincide. In that sense
the minimization of either one of the new functionals (3.21) or (3.27) is understood
to capture the essential features of the original extremal problem. Since estimates
for the constants in the norm equivalences (3.5) are known for concrete examples of
wavelets, the value for the functional (2.7) can in case (I) be directly computed. In
case (II), one would also need estimates for the constants in the trace theorems to
determine the constants in (3.28).

We shall derive next several equivalent formulations of (DCP), which the sub-
sequent numerical treatment will be based upon. By standard arguments (see e.g.
[Li]), the unique minimum for (DCP) is obtained by solving the first order necessary
conditions for J which can e.g. be derived by first eliminating y in (3.27). In view
of (3.15), we can invert (3.13) to obtain y = A~!f + A"!Eu. Substituting this into
(3.27) yields a functional which only depends on 1,

J(@) = SID;! (TA "B~ (v. ~TA£) | + “IDg'al’.  (3:29)
Abbreviating
Z:=D,'TA'E, G:=D,'(y.—-TA'f), (3.30)
J is of the form
i) = gl|za- G| + 2Dzl (331)

This is a standard least squares functional whose minimizer is characterized by the
normal equations which were in the present format derived in [K2].

PROPOSITION 3.4. The functional J is twice differentiable on f2(Ig) with first
and second variation given by

§J() = (Z'Z +wDp?)u—-2'G,  §*J(1) = Z'Z + wDy>. (3.32)

Thus, J is convez so that a unique minimizer exists.
In fact,

Q:=7Z"7Z +wDy? (3.33)

is positive definite since ZTZ is at least positive semi—definite and D52 is a diagonal
matrix with strictly positive diagonal entries. Thus, the solution of (DCP) is uniquely
determined by solving §J (1) = 0, i.e., the system

Qui=g where g:=727G. (3.34)
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The system (3.34) would offer a natural link to the setting in [CDD2] because it
is symmetric positive definite and, thus, invites the application of gradient iterations
which could then be carried out approximately by adaptive applications of Q. How-
ever, there are still two obstructions, namely, (a) the spectral condition of Q and (b)
the difficulty in applying Q and evaluating the right hand side due to the inverses
involved in the definition of Z and G.

As for (a), when using the natural norms in (2.3), the mapping Q is indeed
boundedly invertible on ¢2(fg) and ready for applying an iterative scheme. In the
other cases, note that Z has a bounded £, —norm since D' has nonincreasing diagonal
entries when the scale grows and T,E, A~! are bounded on /2, see (3.15), (3.28).
However, D{J2 will increase whenever U has a strictly stronger topology than @. In
order to cover this more general situation we can precondition the system through
the following scaling. Defining

u:=Dj'a, Z:=ZDy, Q:=DyQDy=2"Z+uI, (3.35)
straightforward calculations show that (3.34) is equivalent to
Qu=g:=7Z7G. (3.36)

Since now Z is f2—-bounded, the third relation in (3.35) shows that Q has uni-
formly bounded condition numbers. Consequently, there exist finite positive constants
cqQ,Cq such that

allvll < 1Qv|| < Collvll, v e, (3.37)

where we can actually take cq = w. Of course, (3.36) yields the unique minimizer of
the functional

1 w
J(w = SlZu-GJ* + 5 lul?, (3.38)

which corresponds to normalizing the controls from the beginning in the basis ¥y.
In view of (3.37), there exists a fixed positive parameter a such that the gradient
iteration

u" ! = u* + a(g — Qu) (3.39)

reduces the error in each step by at least a factor p < 1, i.e.
lu—u**| < pllu=u|, k=0,1,2,..., (3.40)
where u is the exact solution of (3.36). Our ultimate goal is to carry out this iteration

approximately with dynamically updated accuracy tolerances.

4. The Basic Concepts. In this section we collect the main conceptual tools
from [CDD2, CDD3] that will be needed to treat (3.36) for the solution of (DCP) and
thereby tackle obstruction (b), namely, the application of Q and the evaluation of the
right hand side g.

4.1. Perturbed Iterations. The basic strategy applies, in principle, to any
system of the form

Mq = z, (4.1)
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where M : £, — {5 is a (possibly) infinite matrix satisfying
em|lvl < [[Mv]] < Cumllvll, v € b, (4.2)
for some finite positive constants ¢y, Cwv, as well as
p=I-aM| <1 (4.3)

for some positive number a. Clearly, due to the positive definiteness of Q and by
(3.37), M = Q falls into this category.
Given (4.3), the gradient iteration

N :qk+a(z_qu)7 k=0,1,2,..., (4.4)

will converge with a fixed error reduction rate p < 1 per step. Of course, this iteration
cannot be carried out exactly because M is an infinite matrix and the data z could
be an infinite array. However, one can hope that perturbed iterations with dynamical
accuracy tolerances that are suitably updated in the course of the iteration will still
converge. Thus, we need a routine with the following property.

Res[n,M,z,v] = r, DETERMINES FOR A GIVEN TOLERANCE 77 > 0 A FINITELY
SUPPORTED SEQUENCE r; SATISFYING

|z —Mv —ry|| <. (4.5)

There is a further ingredient whose role is at this stage not apparent yet but
which will eventually play a crucial role in controlling the complexity of the scheme.

COARSE [n,w] - Wy DETERMINES FOR ANY FINITELY SUPPORTED INPUT VECTOR
W A VECTOR wy, WITH SMALLEST POSSIBLE SUPPORT SUCH THAT

[w — wyll <. (4.6)

The precise description of COARSE can be found in [CDD1]. The idea is to sort
the entries of w by size and to subtract squares of their moduli starting from the
smallest one until the sum reaches n?. The sorting usually introduces a logarithmic
term of the size of w. A quasi—sorting based on binary binning can be shown to avoid
the logarithmic term at the expense of the resulting support size being at most a fixed
constant of the minimal size, see [B]. This will suffice for the subsequent analysis so
that it is justified to suppress logarithmic terms in the sequel.

Let us suppose for the moment that the routine RES is already at our disposal.
We shall first devise the precise form of a perturbed iteration that converges in the
following sense. For every target accuracy € it produces after finitely many steps a
finitely supported approximate solution with accuracy e.

Following [CDD2], to arrive at the right interplay between the routines RES and
COARSE, we need the following control parameter. Given (an estimate of) the reduc-
tion rate p and the step size parameter o from (4.3), let

K :=min{f € IN : p* "(al + p) < 1} (4.7)

(Here the upper bound (10) ! stems from the analysis in [CDD2] and will be used
again below.) Denoting in the following always by q the exact solution of (4.1), a
perturbed version of (4.4) can now be formulated as follows.
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SoLvE[e, M, z,q°,&0] — .
(1) FIX A TARGET ACCURACY ¢ > 0. GIVEN AN INITIAL GUESS G ALONG WITH
AN ERROR BOUND ||q — @°|| < &9, SET j = 0.
(1) IF ¢; <&, STOP AND SET q, := ¢’ . OTHERWISE SET v := @’.
(i.1) For k=0,...,K —1 cOMPUTE RES [p*e;,M,z,v*] — rF AND

k+1

vl = vk L ark (4.8)

(11.2) APPLY COARSE[2¢;,v¥] — @/t!; SET €)1 := 3¢5, j+1 — j AND GO
TO (11).
In the case that no particular initial guess is known, step (1) is replaced by the default
(1)’ FIX A TARGET ACCURACY € > 0. SET j = 0 AND

=0, g := CK/IIHZH (4.9)

In this case we use the short notation SOLVE [¢, M, z] — q..

The choice of the interior tolerance p*e; in step (11.1) yields the following estimate
from [CDD2] regarding the final iterate YK resulting from step (11.1). Inserting the
exact iterate of (4.4) with initial value %’ denoted by ¥ (W), we get

[vE —all < V% = ¥5 &) + [¥F (+) —dl|
< aKp"le; + pR W —dl| < (aK + p)p™ e (4.10)

Employing the choice of K in (4.7), this yields
K Ej
— < = 4.11
llv q < 10 ( )

The particular form of the constants for the interior estimates that can be seen in
(4.10) will be employed later in Section 6.

Straightforward perturbation arguments reveal the following result, see [CDD2,
CDD3].

PROPOSITION 4.1. The iterates @’ generated by SOLVE [, M, z] satisfy

la—@ll <ej, 4§ €N, (4.12)

where £, = 27 J¢gq.

Of course, the estimates for a rely on the constants in the norm equivalences
(3.5) and in the relation (4.2). So there may be only a poor estimate for p which, in
turn, gives rise to an overly pessimistic choice for the number K defined in (4.7) of
perturbed iterations in each block (11) of SOLVE prior to a coarsening step. Therefore,
we recall from [CDD3] that step (11) can be terminated based on monitoring the
approximate residuals as follows. By (4.2), we have

lla = vl < eyp llz — Mv]]. (4.13)

Choose any p < 1 and define K by (4.7) with respect to p. Replacing p by p in the
definition of the tolerances in step (1) of SOLVE would take M := max {K, K} steps
to ensure that in the (j + 1)st call of (11) ||q — v¥|| < £;/10. Now suppose that the p
is expected to be a too pessimistic estimate of the true reduction rate. Choosing e.g.
p := 1/2 and setting ni, := 2 %¢; = p*¢; as tolerances in the (j + 1)st call of (11),
we infer from (4.13) and (4.5) that

lla = vl < ey llz = MVl < ey (e + [Ie*]]) = 6,
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where r* is the approximate residual produced in step (11.1) of SOLVE. By the previous
remarks, we can terminate the iteration in step (11) of SOLVE when either k = K — 1
or the computable a-posteriori bound dy satisfies d < ¢;/10, which might happen
much earlier than predicted by (4.7). Of course, the constant en is usually also
only estimated. However, a poor estimate enters the above a—posteriori termination
criterion in a less severe way than a poor estimate for p. Nevertheless, in order to keep
the exposition as simple as possible, we confine the subsequent discussion to the above
version of SOLVE, bearing in mind that variants of the above sort are automatically
covered by the complexity analysis.

4.2. Complexity Analysis. Of course, the main issues are the actual realiza-
tion of the routine RES, and to understand its complexity. The realization will depend
on the concrete application, which here will be the control problem (DCP). Here we
outline first a suitable framework for the complexity analysis. Striving for schemes
that are in some sense optimal, the meaning of optimality has to be clarified first.

We say that the scheme SOLVE has an optimal work/accuracy rate s if the following
is true: Whenever the error of best N—term approximation

on(@):=lla—anll:= , min_ flq-v (4.14)
decays like O(N %), then the solution q, is produced by SOLVE at an expense that also
stays proportional to e~'/¢ and in that sense matches the best N—term rate. Clearly
this implies that #suppq. also stays proportional to ¢=1/5. Thus, our benchmark is
‘best N—term approximation’ which is obviously the best one can hope for.

Clearly this best N—term approximation qn of q is given by taking the N largest
terms in modulus from q. When q is the (unknown) solution of (4.1) this knowledge
is certainly not available. Nevertheless, the formulation of appropriate complexity
criteria will be based on a characterization of those sequences v for which the best
N—term approximation error decays at a particular rate (Lorentz spaces). Following
[CDD1], consider sequences that are sparse in the sense that for any given threshold
0 < n < 1, say, the number of terms exceeding that threshold is controlled by some
function of this threshold. Specifically, set for some 0 < 7 < 2

0 ={vely: #{Ael:|va|>n} <Cyn 7, foral 0 <n <1}, (4.15)

i.e. the set £¥ consists of all those sequences v € ¢5 for which there exists a constant
Cy such that for all 0 < n < 1 the number of terms vy whose moduli exceed the
threshold 7 is bounded by Cyn~7. Note that this determines a strict subspace of ¢,
only when 7 < 2, and the sequence is the sparser the smaller 7 is. Denote for a given
v € {¥ by Cy the smallest constant for which (4.15) holds. Then one has

[V]ew := sgﬂpi[nl/Tv; =Clr, (4.16)

where v* = (v} )nemn is a non—decreasing rearrangement of v. The quantity
IVllew := VIl + [v]ew (4.17)

can be shown to be a quasi—norm for /% [CDD1]. Furthermore, because of the following
continuous embeddings

b ClY Clrye Cly forr<tT4+e<2, (4.18)
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LY is very close to £, which justifies to call it weak £,. Now we can recall the following
result from [CDD1] which relates the sequences in £¥ to best N-term approximation.
PROPOSITION 4.2. Let positive real numbers s and T be related by

1 1

- =5+ (4.19)

T 2

Then a sequence v belongs to 0¥ if and only if
|[v—-vn| < N°° and on(v) < N77||v|lew, (4.20)

where as before v denotes a best N—term approximation of v.

Depending on the space H which is characterized by the wavelet basis Uy, the
fact that an array of wavelet coefficients v belongs to £, is typically equivalent to
the fact that the expansion vI ¥y belongs to a certain Besov space which describes
a much weaker regularity measure than a Sobolev space of corresponding order. In
view of (4.18), Proposition 4.2 therefore expresses how much loss of regularity can be
compensated by best N-term approximation, i.e., by judiciously placing the degrees
of freedom in a nonlinear way so as to retain a certain optimal order of error decay.
We shall return to this issue later.

As will be seen in Theorem 4.3 below, a key criterion for a scheme SOLVE to
exhibit an optimal work/accuracy rate can now be formulated through the following
property of the respective residual approximation.

T*—Sparsity: The routine RES is called 7" —sparse for some 0 < 7* < 2 if the following
holds: Whenever the solution q of (4.1) belongs to £¥ for some ™ < T < 2, then for
any v with finite support the output r, of RES[n,M, z, v] satisfies

(]
@ lealler < max{l[vllee, lallex}, (4.21)

#suppr, < 17/ max{||vilL", lallzt'},
where s and T are related as before by (4.19);
(ii) the number of floating point operations needed to compute r, stays propor-
tional to # suppr,.
Furthermore, the constants in (i), (i) depend only on 7 as T — 7*.

In this context we shall always make the following tacit assumption. Given data
are always be considered completely accessible. In practical terms this may mean that,
depending on some final target accuracy (in view of (3.37)) sufficiently many of the
corresponding coeflicients of explicitly given data are determined in a preprocessing
step and then ordered by size, so that COARSE can be applied to a finitely supported
array. For notational simplicity we shall not distinguish between the ideal exact data
and such an approximation.

The following result can then be extracted from the analysis in [CDD2] (see also
[CDD3] for nonlinear problems) and has been employed already in [DUV].

THEOREM 4.3. If RES is 7*—sparse and if the exact solution q of (4.1) belongs
to LY for some T > T*, then for every e > 0 algorithm SOLVE [e, M, z] produces after
finitely many steps an output @, (which, according to Proposition 4.1, always satisfies
lla —a.|| < &) with the following properties: For s and T related by (4.19), one has

— — 1 —
#suppq, < e llallyt’,  ldlle S llalle, (4.22)

and the number of floating point operations needed to compute q. remains proportional
to #suppq..
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Thus, 7*-sparsity of the routine RES implies asymptotically optimal work/accuracy
rates of the scheme SOLVE for a certain range of decay rates given by 7*. We stress
that the algorithm itself does not require any a—priori knowledge about the solution
such as its actual best N—term approximation rate. Theorem 4.3 also shows that
controlling the £*-—norm of the quantities generated in the course of the computation
is crucial. This finally explains the role of COARSE in step (11.2) of SOLVE through
the following result from [CDD1].

LEMMA 4.4 (Coarsening Lemma). Let v € £¥ and let w be any finitely supported
approzimation such that ||v — w|| < in. Then the output w, of COARSE[fn,w]
satisfies

11{,7' nfl/s

#suppwy < IVl o Av=wyll S m, and iwyllee S lIVIlee- (4.23)

Thus, knowing an error bound for a given finitely supported approximation w, a
certain coarsening using only knowledge about w, produces a new approximation to
(the possibly unknown) v which gives rise to with a slightly larger error but realizes
up to a uniform constant the optimal relation between support and accuracy. In the
scheme SOLVE this means that by the coarsening step the £“—norms of the iterates v&
are controlled. Recall from (4.11) that the choice of the constant K in (4.7), which
controls the number of iterations in step (11.1), guarantees that in the (5 + 1)st outer
iteration of SOLVE the iterate v¥ satisfies ||q—v¥|| < :e;. The threshold Z¢; in step
(11.2) assures, on account of (4.23), that the error after coarsening is still bounded
by %e;. At the same time, if q € £, then ||q’||¢» remains bounded and # supp @’
increases at most like ej_l/ " which is the best possible N-term rate for sequences in
£¥. Thus to ensure an overall optimal work/accuracy rate one has to show that the
¢¥—norms of the intermediate iterates v¥ in step (i1.1) of SOLVE cannot grow too
much which is indeed guaranteed by 7*—sparsity.

The remainder of this paper is now devoted to the construction and analysis of a
concrete realization of SOLVE — termed SOLVEpp, — for the problem (DCP) such that
the corresponding routine RESycp is 7*-sparse.

5. The Scheme SOLVEy. Since Q from (3.35) involves several inverses of ma-
trices it is not so clear how to realize a residual approximation in an economical
way — recall obstruction (b) in Section 3.2. Therefore we shall first consider several
equivalent formulations of (DCP).

5.1. Auxiliary Formulations of (DCP). It will be helpful to derive equivalent
formulations that better support numerical realizations. Substituting as before u :=
D[_Jlﬁ, we define the Lagrangian and introduce as an additional variable the Lagrange
parameter p € £>(Iy),

Lagr(Y:I): u) = J(ya ll) + <p7 Ay - f - EDUU), (51)

where J(y,u) = 1|D;*(Ty — y.)|I> + £||u/|> has been defined in (3.27). Straightfor-
ward calculations yield the first—order Euler-Lagrange equations whose solution also
yields the minimizer of (3.38), see e.g. [Z] or [K2].
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REMARK 5.1. The solution u of the system (3.36) is a component of the solution
(v, p,u) of the weakly coupled system of Euler equations in wavelet coordinates

Ay = f + EDyu
(EE) ATp=-T"D? (Ty —y.) (5.2)
wu = DyE”p. (5.3)

The first equation of (EE) is often denoted as the state or primal equation while the
second equation is called the costate or adjoint equation.
Note that either a scaled version of the Lagrange multiplier p or of its image
under ET (recall the cases (I), (IT) from Section 3.2) agrees with the optimal control.
The system (EE) can, of course, be reformulated as a saddle point problem

wl 0 —DyET u 0
0 T'D,’T AT y | =| T'D%y. |. (5.4)
—-EDy A 0 p f

In particular, in the case (I) when using natural norms in (2.3), i.e. Dy = Dz =1,
we have

wl 0 -I u 0
0 I AT vy =1y |- (5.5)
-I A o0 P Vi

Due to the trivial form of the upper left two by two block, this system satisfies the
inf-sup condition and, therefore, defines a boundedly invertible mapping on £5(fy)3.
Thus, one can immediately apply the results from [DDU] on adaptive Uzawa iterations
for well posed saddle point problems. Corresponding optimal complexity estimates
apply whenever the matrix A is compressible, which is the case in all the above
examples.

In general, however, when T is a trace operator, the block TTD§2T has a non-
trivial kernel. In order to apply the Uzawa strategy, one first has to stabilize the
system so as to have a well-defined Schur complement. This can be done along the
lines described in [DDU]. Here we prefer the formally somewhat different approach
based on the system (EE). This approach also applies in principle to constraints in
form of a saddle point system as pointed out in Remark 2.2.

Our strategy for approximating in each step the residual g — Qu* will be based
upon the following observation, namely, that the residual of (3.36) is just the residual
of the third equation in (EE).

LEMMA 5.2. For any v € £y(Iq), one has the representation

Qv —g=wv—Elp, where Ey:=EDy, (5.6)

where p is the solution of the first two equations in (EE), i.e., for any given v, the
sequence p is determined by solving

ATp = -TL (Tzy —yz), where Ay = f+Eyv, Tz:=D,'T, (5.7)

and yz = D'y, is defined in (3.18).
Proof. By definition we infer from (3.35) and (3.30) that

Qv-g=wv+Z(Zv-D,' (y. — TA'f)).
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Recalling the definition of Z from (3.35), the second term on the right hand side of
this equality can be written as
Z'D,'TA'EDyv - Z'D' (y. — TA7'f)
=Z"D,'TA '(EDyv + f) - Z"D'y..

Thus, taking y as the solution of the second equation in (5.7), this reduces to
-Z'"D,! (y. — Ty) = -DyE"A-TT"D*(y. — Ty) = -DyE”p,

where we have used the first equation in (5.7) and the definition of Tz. This finishes
the proof. a

Since the entries of D}l,DU are nonincreasing in scale (and assuming without
loss of generality that they are all bounded by one), we infer from (3.28) that one still
has

ITzv| < Crxllvl, [[Buvl < Cellv]. (5.8)

It will be convenient in the sequel to be able to refer to the equations (EE) with
the notation from Lemma 5.2 as the system

Ay = f+Epu
(EEn) A"Tp=-T%(Tzy —yz)
wu = Elp.

5.2. Realization of the Routine RES,.,. The realization of the routine RESycp
for the problem (3.36) will be based on the residual representation (5.6) in Lemma 5.2.
However, this requires solving the two auxiliary systems in (EEn). Since the residual
has to be only approximated, these systems will have to be solved only approximately.
These approximate solutions, in turn, will be provided again by calls of the scheme
SOLVE but this time with respect to suitable residual schemes tailored to the systems
in (EEn). In all our examples the matrix A appearing in (EEn) is symmetric positive
definite and the choice of wavelet bases ensures the validity of (3.15). Hence, (4.2) and
(4.3) hold for M = A and M = AT so that the scheme SOLVE can indeed be invoked.
We hasten to mention, however, that the symmetry and positive definiteness of A is
not essential. Aslong as (3.15) holds, which means that the operator equation induced
by the constraints is well-posed, (which is still the case, e.g., for many saddle point
problems) we can multiply the systems in (EEn) by AT, respectively A, to arrive at
a least squares formulation with M = ATA or M = AAT, still satisfying (4.2) but
now yielding symmetric positive definite systems to ensure (4.3). However, in order
to keep the exposition as simple as possible, we confine the following discussion to the
case that A already satisfies (in addition to (3.15)) (4.3).

Note also that, although we conceptually use the fact that a gradient iteration for
the reduced problem (3.36) reduces the error for u in each step by a fixed amount, the
use of (EEn) for the evaluation of the residuals will generate as byproducts approxi-
mate solutions to the full Euler-Lagrange system, i.e., we shall obtain approximations
to the exact solution triple (y,p,u) of (EEn).

Under this hypothesis, we have to formulate next the ingredients for suitable
versions SOLVEpgy and SOLVE,p,; of SOLVE for the systems in (EEn). Specifically, this
requires identifying residual schemes RESpry and RES,p; for the systems SOLVEpgy
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and SOLVE,p,. The main task in both cases is to apply operators A, AT, T, T%,
Ey and E].. Again we assume for the moment that routines for the application of
these operators are available, i.e., that for any L € {A, AT, T2, TL, Ey,E}L} we have
a scheme with the following property at our disposal. We shall later discuss their
concrete realization.

APPLY[U, L, V] — Wy DETERMINES FOR ANY FINITELY SUPPORTED INPUT VECTOR
V AND ANY TOLERANCE 7 > 0 A FINITELY SUPPORTED OUTPUT Wy, WHICH SATISFIES

Ly — wyl| < 7. (5.9)

The scheme SOLVEggy for the first system in (EEn) is now defined by
SOLVEPRM [na Aa EU: f; v, yO, 50] = SOLVE [777 A; f + EUV7 yO’ 50]: (510)

where y° is an initial guess for the solution y of Ay = f + Eyv with accuracy €y and
where the scheme RES for step (11) in SOLVE is in this case realized by a new routine
RESpry which is defined as follows.

RESeru [, A, Ey, f,v,¥] &> r,  DETERMINES FOR ANY POSITIVE TOLERANCE 17, A
GIVEN FINITELY SUPPORTED V AND ANY FINITELY SUPPORTED INPUT Y A FINITELY
SUPPORTED APPROXIMATE RESIDUAL r, SATISFYING (4.5), THAT IS,

If +Euv — Ay — x|l <, (5.11)

AS FOLLOWS:
(1) APPLY[in, A, 5] = wy;
(1) COARSE[37, f] = f;
APpLY[in, Ey,v] = z,;

(1) SET 1y := f, + 2,y — Wy.
In fact, noting that f + Eyv — Ay —ry, = (f — f,) + (Buv — z,) + (w,, — Ay), by
triangle inequality (5.11) is an immediate consequence of the choice of the tolerances
in steps (1) — (111) of RESepu.

Similarly, we need a version of SOLVE for the approximate solution of the second
system in (EEn), ATp = —T%(T 2y —yz), which therefore depends on yz = D3, 'y.,
an approximate solution ¥ of the primal system and possibly on some initial guess p°
with accuracy gq. Specifically, we set here

SOLVEADJ [777 Aa TZ) Yz, y; ﬁoa 50] = SOLVE [7% AT; _TE(TZy - yZ)a ﬁoa 50]' (512)

As usual we will assume that the data f,yz are approximated in a preprocessing step
with sufficient accuracy (depending on the final target accuracy for solving (3.36)) by
finite arrays whose entries are ordered by size and hence can be treated by COARSE.

Again we have to identify a suitable residual approximation scheme RES,p; for
step (11) of this version of SOLVE where the main issue is the approximate evaluation
of the right hand side. The routine RES,p; is defined as follows.

RES.v; [1,A,T2,¥2,¥,P] & r,  DETERMINES FOR ANY POSITIVE TOLERANCE 1),
GIVEN FINITELY SUPPORTED DATA ¥,yz AND ANY FINITELY SUPPORTED INPUT P
AN APPROXIMATE RESIDUAL r, SATISFYING (4.5), L.E.,

| - TZ(T2zy —yz) — ATp —1,|| <, (5.13)

AS FOLLOWS:
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(1) AppLY[in, AT,p] — wy;

(1) APPLY[5¢= 1, Tz,¥] = 2z, WITH C1 FROM (5.8);
COARSE[ﬁ 0,¥z] = (¥z)n; SET dyy := (y2)n — 2Zn;
AppLy[in, TZ,d,] = vy;

(II1) SET 1y := v, — Wy.

To confirm the validity of (5.13), note that by steps (1) — (111) of RES,p,

- T (Tzy —-yz) - A'p -1,
=T (T2 —yz) — dy) + (T3d, — vy)) + (W, — ATD),
so that (5.13) follows, in view of (5.8) and the tolerances above, by triangle inequality.
Recall that the exact solution u of (3.36) is the third component of the solution
triple (y,p,u) of the Euler-Lagrange system (EEn). We shall consistently use this
notation for the exact solutions of the respective systems. We are now in a position
to define the residual scheme for the version of SOLVE applied to (3.36). We shall
refer to this specification as SOLVEpc,. Likewise the corresponding residual scheme
is denoted by RESp. We shall use the constants from (3.15) and (5.8). Since the

scheme is based on Lemma 5.2, it will therefore involve several parameters stemming
from the auxiliary systems (EEn).

RESoer[17,Q, 8, ¥, 0y, P, 0p, V,04] — (r5,¥,dy, D, p) DETERMINES FOR ANY AP-
PROXIMATE SOLUTION TRIPLE (¥,P,Vv) OF THE SYSTEM (EEN) SATISFYING
ly =3l <y, [[P=Bl <6, [lWw—v]<d, (5.14)
AN APPROXIMATE RESIDUAL r; SUCH THAT
lg = Qv —ryll <. (5.15)

MOREOVER, THE INITIAL APPROXIMATIONS y,p ARE OVERWRITTEN BY NEW AP-
PROXIMATIONS ¥, P SATISFYING (5.14) WITH NEW BOUNDS J, AND ¢, DEFINED IN
(5.17) BELOW, AS FOLLOWS:

(1) SOWEemu[5508, A £V, ¥,0y] = ¥a;
(1) SOLVEsn[5¢=,A,T2,¥2,¥9, P, 0p] = Pn;
(1) AppLY[Z,EY,py] = dy;
(IV) SET rj := g, — wV;

(V) SET
Ce ca CiCE 2
= (5 — = T (5 — 1
fy A v+ 3CEC% 7, gp Ci v+ 3CE 7, (5 6)
AND REPLACE §,d, AS WELL AS P,d, BY THE NEW VALUES
¥ = COARSE[4{y, yy,], by :=5¢&y, (5.17)
p := COARSE[4&,, py), dp :=5&p. '

((5.16) already indicates the conditions on the tolerance 7 and the accuracy bound 4,
under which the new error bounds in (5.17) are actually tighter. The precise relation
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between n and J, in the context of SOLVE,, will emerge from the complexity analysis
in Section 6, see (6.2) below.) Let us confirm the claimed estimates (5.15) and (5.17).
To this end, let for any given input v the exact solution to the first system in (EEn)
be denoted by yv. Moreover, let py be the exact solution of the second system in
(EEn) with y replaced by yv. Finally, let p be the exact solution of the second system
but with y replaced by the approximate solution y, of the first equation in (EEn).
By step (1v) in RESpcr and (5.6), we have

g~ Qv —r, = E{pv — a; = E{(pv — py) + E{Py — ay-
Hence it follows that
lg = Qv — 7yl < 3 + Crllp, — pull- (5.18)
In order to estimate the second term, note that
pv—bP=ATT;Tz(yv —yy),
and therefore, by (3.15), (5.8) and step (1),

Iy = Bl < ca'Chllyy — ¥l < 57 (5.19)

Thus, by step (11) and (5.19), [lp, — pv|l < 7%, which together with (5.18) confirms
(5.15).

Adhering to the above notational conventions, the first system in (EEn) yields
y —yv = A 'Ey(w — v) so that by (5.14), (3.15) and (5.8)

CE CA
vl <y =y =yl < 25+ =2y 5.20
ly = vaoll < lly = yvll + [lyv —¥qll < ot 3CaCh n (5.20)

which is the value of &, in step (v). Likewise we infer from the second system in
(EEn) that

P—Py=P—P+P—Py=A"T;Tz(y —yy) + P~ Pn
Hence, by (3.15), (3.28) and step (11), we obtain

n _ C%‘CE 2
SCE a 02A 61) + 30}3 >

ci
lp—pyll < —& + (5.21)

CA
which is the value of &, in step (v). The estimates (5.14) with the new bounds defined
in (5.17) are now an immediate consequence of the coarsening step in (V) and the
triangle inequality. This concludes the confirmation of all estimates stated in RESpcp.

It remains to initialize the scheme SOLVELc,. Again we assume that f and yz are

given and fully accessible. Choosing @® = 0 we infer from (3.37), (3.30) and (3.36)
that

@ —ull < cg'1QW° —gll = ¢g'llgll
= ' [EGA T (yz — T2A ')

CeC C
2O (vl + 21

IA

CA
=:gq. (5.22)
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Moreover, for ¥° := 0 one has

ly =50l = A7 (£ + Eow)l| < ex’ (IF] + Creg'llgl)
<cx' (Il + Creo) =: 6,0 (5.23)

Similarly, for p° := 0 we obtain
I18° — pll = |ATTL(Tzy —y2)|| < 2 (C3dy0 + Crllyzll) =: 0po. (5.24)

The scheme SOLVEpc, takes now the following form with the error reduction factor
p = p(Q) from (3.40) and K given by (4.7) with a from (3.39).

SOLVEpes [€,Q, g] — T.
(1) LET @ := 0 AND LET gy BE GIVEN BY (5.22). MOREOVER, LET ¥ := 0,
P := 0 AND SET j = 0. FINALLY, LET §y := dy,0,0p := 0po BE DEFINED BY
(5.23), (5.24), RESPECTIVELY.
(i) IF g; <€, STOP AND SET U, :=W, y. =§, P, = P
OTHERWISE SET v :=w/.
(1.1) For k=0,...,K —1, COMPUTE
RESpcr [pkejaQagaya6y3f)36pavk36k] — (rkaya(syaf)a(sp):
WHERE Jg := £; AND &, := pF~1(ak + p)ej;
SET
viHl = vk L ark, (5.25)
(11.2) APPLY COARSE [2¢;, vE] —» @/ SET ;41 := 1¢;, j+1 = j AND GO
TO (11).

(The particular choice of the interior tolerance &y in step (11.1) is based the estimate
(4.10).) Since when overwriting ¥, p at the last stage prior to the termination of
SOLVEpce one has 6, < ¢, n < g, the following fact is an immediate consequence of
(5.17).

REMARK 5.3. The outputs y. and p, produced by SOLVE,¢, in addition to u. are
approzimations to the exact solutions y,p of (EEn) satisfying

— CE CA
- < = 2
_ CiCg = 2
- < — . .2
lp — Pl < 5e ( & + 30 (5.27)

6. The Complexity of SOLVE,p. In view of the definition of RESpy and
RES,p; entering RESpcp, the scheme SOLVE ultimately hinges on the availability
of suitable schemes APPLY for the operators L € {A, AT, Tz, T%, Ey, EL}. We shall
adhere to our strategy of narrowing down step by step the requirements on our algo-
rithmic ingredients and wish to identify first conditions on the APPLY schemes that
ensure 7*—sparsity of RESycp as formulated in Section 4.2. It will not surprise that the
key requirement is that the approximate application of each of these operators has a
work/accuracy rate that is within some range comparable to best N—term approxi-
mation. Precisely, we say that APPLY[-, L, -] is 7*—efficient for some 0 < 7* < 2 if for
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any finitely supported v € £¥, for 0 < 7 < 7 < 2, the output w, of APPLY[n,L,V]
satisfies
—1/s 1/s
IwWallee S IVllew, #suppwy S 07 [l n—0, (6.1)

where the constants depend only on 7 as 7 — 7* and where s is related to 7 by (4.19).
Moreover, the number of floating point operations needed to compute w, is to remain
proportional to #supp w,.

One should note that the existence of a 7*—efficient scheme for an operator L has
the following important implication that follows immediately from Proposition 4.2.

REMARK 6.1. If one can find a 7" —efficient scheme for L then L is bounded on
¥ for every T > T*.

Proof. For convenience, the proof from [CDD1] is included here. For v € £¥ and
n > 0 there exists a v with ||[v — ¥|| < n/(2||L||) and #suppv < n_1/3||v||%,s. Now
by definition of w, =APpPLY [/2,L,¥] and 7*efficiency of L (6.1), one has for 7 >
7*, the estimate [[L¥ — wy|| < n/2 while #suppw, < 7 V*|[9[L* < n Vvl
Since ||Lv — wy,|| < n we have identified a vector w,, with support < 57!/% that
approximates Lv within accuracy 1. Hence we can invoke Proposition 4.2 to conclude
that [|[Lv[[ee < [|[V][e as claimed. 0

PROPOSITION 6.2. If the APPLY schemes in RESpry and RES,p; are 7% —efficient
for some ™ < 2, then RESpcp is T*—sparse whenever there exists a constant C' such

that

Cn > max{d,,0,} (6.2)

max {[[pllex, I¥llex, IVllew} < C (llyller + llpller + llullex) (6.3)

where v is the current finitely supported input and where §,p are the initial guesses
for the exact solution components (y,p).

Proof. Since SOLVEp actually determines an approximation to the full triple
(y,p,u), the notion of 7*—sparseness of RESpcp refers to properties of the whole
triple. Thus, we have to assume that each of the solution components belongs to
Y for some 7 > 7*. By Remark 6.1 and our hypothesis on 7*—efficiency, each
L € {A,AT,T;,TL,Ey,ET} is bounded on ¢¥ for 7 > 7*. Thus, for the first
system in (EEn) this implies

[fllee < liyllew + [lulle. (6.4)

Likewise we have

ITZyzllex < llpllew + [Iylle- (6.5)

Now, by the assumption (6.2), the quotients d,/n, d,/n are bounded. Therefore,
according to step (1) in RESpcp, the scheme SOLVEp:, will invoke only a uniformly
bounded finite number of iteration blocks (11) with corresponding residual approx-
imations RESpry. From the 7*—efficiency of A and Ey and Remark 6.1, we infer
that

lynllee < Nfllew +MIvilew +[17lex < yllee + [[ullee + [1Vilew +[IF]lez,  (6.6)
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where we have used (6.4). Likewise one concludes that the output p, of step (iI) of
RESpcr satisfies

IPaller S IBller + ITZyzller + (17 le
< Ipllee +117llew + [1Pllew + llylles (6.7)

where we have used (6.5) in the last step. (4.21) follows now from (6.6), (6.7) and (6.3).
The second part of (4.21) and (ii) of the 7*—sparseness of RESycp can be concluded
from 7*—efficiency of the APPLY schemes in RES,, and RES,;;. This confirms the
claim. a
THEOREM 6.3. Assume that the APPLY schemes appearing in RESpry and RES,p;
are T*-efficient for some T < 2 and that the components of the solution (y,p,u) of
(EEn) all belong to the respective space £¥ for some 7 > 7*. Then the approzimate
solutions y., pe, uc, produced by SOLVEpcp for any target accuracy €, satisfy

Iyellew + [[Peller +[[ucller < llyller +[Ipllew + [lulle, (6.8)

and
(#suppy.) + (#suppp:) + (#suppuc) < (Il + Il + lull;f") e 717, (6.9)

where the constants depend only on T when T approaches 7*. Moreover, the num-
ber of floating point operations required during the execution of SOLVEpc, remains
proportional to the right hand side of (6.9).

Proof. According to Theorem 4.3, it remains to show that at each stage when
RESpep is called in step (11.1) of SOLVEpcp, the hypotheses (6.2) and (6.3) in Proposi-
tion 6.2 are satisfied for some fixed constant C'. The claim follows then from Theorem
4.3.

The validity of (6.2) is a consequence of the bounds (5.17) for the initial guesses,
the values of  and d; in the kth perturbed iteration of the (5 + 1)st call of step
(11.1) of SOLVE,cp, and the initialization bounds (5.22), (5.23) and (5.24). By the
coarsening Lemma 4.4 and the coarsening in step (V) of RESpcp, we know that

||5’||13$ < ||Y||£;“; ||I~)||l;" < ||P||£:"- (6.10)

Moreover, since in the (j + 1)st call of step (11) in SOLVEy, vX satisfies ||u — vE|| <
€;/10, see [CDD2] or (4.10), we conclude from step (11.2) in SOLVEpe and Lemma
4.4 that

[@ller < lullee, J € No. (6.11)
Combining (6.10) and (6.11), confirms the validity of (6.3). O

Thus the practical realization of SOLVE¢, providing optimal work /accuracy rates
for a possibly large range of decay rates of the error of best N—term approximation
hinges on the availability of 7x—efficient APPLY schemes with possibly small 7* for
the involved operators.

Distributed Controls. In this regard we discuss first the example in Section 2.2.1
for natural norms, ie., Z = Hi(Q) and U =Y’ = Q = H~}(Q). In this case, one
hasE=T =Dz =Dy =1 and A = A7. Since the identity mapping is 7*—efficient
for any 7* < 2 we only have to discuss the 7*—efficiency of A defined by (3.14). The
fact that one can indeed devise efficient schemes for the approximate application of
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wavelet representations of a wide class of operators, including differential operators,
is a consequence of the cancellation properties (3.3) of wavelets together with the
norm equivalences (3.5) for the relevant function spaces. In fact, such representations
turn out to be quasi—sparse in the following sense. Recall that a matrix A is called
s*—compressible, if for any 0 < s < s* there exists a matrix A; with at most < a;2
nonzero entries per row and column such that

A —Ajll <a;27%,  j €Ny, (6.12)

where {o;}jem, is any summable sequence.
Denote for a finitely supported vector v its best 2/—aproximations (given by the
27 largest wavelet coefficients) by vi;) := vy;. Following [CDD1], the expansion

wj = Ajvie+Aj (v[1] — V[g]) +---+Ag (V[j] - V[j_l]) (6.13)

approximates Av. In fact, combining the a-priori knowledge (6.12) with the a-
posteriori information ||vyy — vix—_1jl|, one can see that for any finitely supported
input v the error |Av — w;|| tends to zero when j grows. Thus, given a tolerance
n > 0, one chooses the smallest j so that the bound for ||Av — w;|| is less than or
equal to 5. This leads to a concrete scheme with the following properties.

APPLY [, A, V] = w, COMPUTES FOR A GIVEN TOLERANCE 7) > 0 A FINITELY
SUPPORTED SEQUENCE W, SATISFYING

1AV = w, || <n. (6.14)

A detailed description and analysis of this routine can be found in [CDD1]. Its
implementation has been discussed in [BCDU]. The following essential complexity
estimate is taken from [CDD1].

THEOREM 6.4. If A is s*—compressible, then A is bounded on ¥ for s < s*,
where T and s are related by (4.19), L = s+ . Moreover, for a finitely supported
vector v the output w, of APPLY [, A, V] satisfies

_ 1
IWoller < IIvllew, — #suppwy, #flops < n'/*|IvI4’.  (6.15)

Thus, the above scheme APPLY is 7*-efficient for 7* = (s* + 1/2)~! whenever A
is s*-compressible. It is known that s* is the larger the higher the regularity and the
order of cancellation properties of the wavelets are for all the differential operators
considered in Section 2. Bounds for s* in terms of these quantities for families of spline
wavelets can be found, e.g., in [BCDU]. Hence, Theorem 6.3 ensures asymptotically
optimal complexity bounds in the range 7 > 7%, i.e., the scheme SOLVEyq recovers
rates of the error of best N-term approximation of order N~% for s < s*.

Now consider the same example but with a strictly larger space Z O Y and a
strictly smaller space U C @ = Y'. While one still has E = T = I, the matrices
D, Dy are nontrivial scalings of the form Dz = D%, ie., (Dz)x, = 20‘"\|6,\’,,, and
Dy = D7 for some positive numbers a, 3 > 0. The system (EEn) then takes the
form

Ay = f+DPu
ATp=-D7**(y —y.) (6.16)
wu =D Pp.
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First of all, the scaling smoothes the right hand sides of the first two equations.
However, it also says that the components p and u belong to different sparsity classes.
In fact, a diagonal scaling results in a shift between weak £,—spaces. In particular,
scaling with D? for 3 > 0 makes a sequence more compressible, i.e., results in a
smaller value for 7. Recall that d denotes the spatial dimension of the underlying
domain.

PROPOSITION 6.5. One has that

1 1
pel?y implies D Ppet®, where = ==+ é (6.17)
T! T d

Moreover, this result is sharp in the sense that for no 7' < 7' there holds D=Pp € (%,
for allp € £2.

Proof. Let C' > 1 be a fixed constant that will later be chosen at our convenience.
Let P be the class of those p € £ with ||p[|s < CY7 and let p := D~ Pp. Consider
the set

A(J) ={X:[pr| >ns} wheren; = 9—Jr/7"

In view of the definition of £, in (4.15), we have to show that the cardinality of

A(y) increases at most like 2/7. (Standard arguments imply then that #{X : [pA| >
nt < n77 for any n < 1). To this end, we determine first which of the sets

Aj={\:279 < |py| < 27911}

is always fully contained in /MX( 7)- We know from [CDD1] that #A; < C277. Without
loss of generality we may assume that #A; = C277 to cover the largest possible sets.
Since the entries of p arise from those of p by scaling with the weights 2412 < 1, the
smaller the levels |A| in these weights, the better is the chance for A € A; to belong
to /~\( 7)- Thus, to ensure that for any p € P the set A; is contained in 11( 7)> we must
be able to find C2/7 indices A with possibly small |A| such that 24127 > 5;. This
count clearly involves the spatial dimension d since ¢27¢ indices ) of level |A| = j can
occur. Here the constant ¢ depends on the spatial dimension of the functions whose
wavelet coefficients are considered. Thus, the smallest possible maximum level L; of
these indices is therefore determined by 2% = C27, i.e., L; = jr/d + (log, £) /d.
Assume for convenience that C/c > 1. Then, for A € A; we conclude
d+p8r

|| > 2 PNg=i > 9~ (BLi+i) — 9—i( ™ )(C/c)ﬁ/d > o—it/T" (6.18)

Thus, A; C A(J) for 7 < J. On the other hand, since for A € A; one also has
|px| < 27PA1=3*1 not all of the indices in A; can be always contained in Ay for
j > J and any choice of p € P. To determine the maximum number of A € Ay g
for k € IN that can belong to /N\(J) for any p € P, we must have in view of (6.18)
|A| < g, where 8¢, + J + k < Jr/7'. Using that (7/7") — 1 = p7/d, straightforward
calculations yield £ < 27 — &. Thus, we can assign at most 2%* scaling weights to
A; to keep |pa] > ny for that many A € Ajyr. Moreover, the set Ajyyy is disjoint
from /N\(J) whenever 2-(/+k)+1 < n; which is the case when k > 1+ J73/d. Hence,

we have

Jr3/d Jr3/d

S #Asnlhg) < S 2t = 3 28CF R < 9 (6.19)
keIN k=1 k=1
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Since I = [U;50A; and 30, #A; < 277 we conclude from (6.19) that #/N\(J)
< 277 =y~7 for n = 2777/7". This confirms (6.17).

To verify the rest of the assertion, consider p whose decreasing rearrangement, is
given by p¥ = n='/7 while % = 2=FUtVp=1/7 for 24 < n < 240+, Then

024 (P)° = Z @) > i Z 2/~ 2B(i+1)

n>2% J=J 2id<n<24[+1)
0 2
> 22*2dj(%+%*%) > (Q—dJS')
~ ~ )
j=J

where s’ = L — 1. Thus, by Proposition 4.2, p € £2, for any 7' < 7/, which finishes
the proof. 0

Therefore, whatever the sparsity class of the adjoint variable p is, the third equa-
tion in (6.16) says, in view of Proposition 6.5, that the control u is even sparser.
Thus, although the control u may be accurately recovered with relatively few degrees
of freedom the overall solution complexity is in the above case bounded from below
by the less sparse auxiliary variable p.

As a possible remedy one might think of introducing the variable p = D~Pp (in
order to replace p by a sparser variable) and rewrite the second system in (6.16) as

ATp =D PD?*(y, —y), A:=D PADF.

To apply our complexity analysis we could assume now that p has a certain sparsity
which would then naturally be the same as the sparsity of u. But although the matrix
A has still the same spectrum as A and hence is an #y-automorphism for which the
gradient iteration would still converge, it is presumably less compressible. In fact, the
unsymmetric scaling means that we only have an estimate of the form

[(A)ro| < 200vI=ADg=aliAl=IvIl,

where o results from the regularity of the wavelets and determines the original com-
pressibility of A.

So, in summary, in the case of a distributed control the solution complexity is not
determined by the sparseness of the control but by that of the remaining variables in
(EEn).

Boundary Control. The situation is different for the example from Section 2.2.3.
Recall that in this case Y = H'(Q), Q = (HY*(T.))’ so that E : (HY/?*(T,))" —
(H'(Q)) is the extension operator defined by (2.16). Choosing Z = H*(Q) for 0 <
s <1 as the observation space, T' is the canonical injection and

T=I, Tz=D"* (6.20)

Choosing bases ¥q C Q = (HY*(T,))", ¥g Cc Q' = H'/?(T,.) and ¥y C Y = H'(Q),
Uy C (H'(2))', (2.16) and (3.14) say that E is given by

E = (vUy, 8g), ET = (Tg,7Ty). (6.21)

Thus, the entries of E are inner products of traces of wavelets on 2 with wavelets
on the control boundary I'.. Choosing U = Ls(T';), the Euler-Lagrange system (EE)
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now reads

Ay=f+ ED/?u
A'p=-D*(y-y.) (6.22)
wu = D*1/2ETp.

Recall that the sparsity of solutions of the first two systems in (6.22) is exploited
by the compressibility of A up to the limiting index s* which depends only on the
cancellation properties and the regularity of ¥y and not on the particular differential
operator. In contrast, as shown in [M], E is 7*-efficient only for 7* > 1, i.e., E¥
is not bounded on £¥ for 7 < 1. In other words, ET is at most s*-compressible for
s* = 1/2. The reason is that traces of wavelets are in general no longer wavelets
so that this factor does not have any cancellation properties that help keeping the
entries of E small. Thus, in this case, even when p is highly sparse in the sense that p
belongs to % for 7 much smaller than 1, the application of ET in the third equation
of (6.22) reduces that sparsity when computing the control u. However, the scaling
Dy = D~1/2 raises the order of compressibility by Proposition 6.5 to s* = 1. This
can be also seen directly because it enhances the decay of the entries of ET along each
row. Without the attenuation caused by the scaling the latter decay is weak due to
the lack of vanishing moments of the traces of domain wavelets.

7. Concluding Remarks. We have developed a class of fully adaptive schemes
for the solution of optimal control problems with elliptic boundary problems as con-
straints. The approach is based on a gradient iteration for the corresponding full
infinite dimensional variational problem in wavelet coordinates. The numerical re-
alization relies on the adaptive application of the involved operators within stage
dependent dynamically updated tolerances. The complexity of such schemes is shown
to hinge on the properties of these application routines. Concrete realizations of such
schemes are exhibited in several simple cases. This sheds some light on the different
inherent complexity properties of distributed versus boundary control problems also
in connection with different choices of norms in the objective functional. We refer to
[BK] for first numerical experiments with algorithms of the above form with uniform
refinements where the influence of different norms is explored. We have not consid-
ered here so far the role of the regularization parameter w in (2.3), (6.16) or (6.22).
Its variation affects all scales simultaneously while the diagonal scalings representing
different norms treat high and low frequencies differently. This issue is also addressed
in the experiments in [BK]. It turns out that the scheme is robust when w tends to
zero and turns out the correct solution. This can be seen from the structure of the
above scheme SOLVE,c, where w only enters the update in step (1v) of RESpc but
leaves the convergence of the ideal iteration (3.39) unaffected. Corresponding numer-
ical experiments for the above adaptive version will be presented and discussed in a
forthcoming paper.
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