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Abstract

As a model problem of aeroelasticity the panel flutter problem is considered
to study the discretization of nonlinear aeroelastic problems and the behaviour of
the corresponding algorithmic processes. A discretization that mimics the energy
budget of the continuous problem is derived. The set of equations occuring in
each time step are implicit in time over fluid and structure and a Newton—Iteration
and a Fixed—Point-Iteration are employed as solution methods. Their convergence
behaviour is compared. Further, the obtained solutions are compared to the ones
found with loose coupling schemes in cases of transonic aeroelasticity, in particular
concerning the predicted location of bifurcations.

1 Introduction

The numerical simulation of large scale fluid-structure interaction problems is typically
achieved by merging a given fluid code and a given structural code: Due to some coupling
strategy, a master program advances the discrete fluid—structure system in time by calling
the time stepping modules of fluid and structure and modules that accomplish the data
transfer at the interface. The discretization techniques chosen in fluid and structure, the
data transfer formulaes and the coupling strategy, define the underlying discrete fluid—
structure system and its properties.

Several partitioned procedures, such as the loose coupling [11], the staggered coupling
[16], subcycling [18] and predictor corrector strategies [18] have been proposed in the liter-
ature. These procedures are known as partitioned as they make use of independent time
integration modules for fluid and structure in order to solve a time dependent aeroelastic
problem by appropriately exchanging data between the modules. The only comparison
of these partitioned procedures can be found in [8]. In the fluid and in the structural
module, several criteria such as conservation properties and order of accuracy are met
by diminishing in each time step the residual of appropriately designed sets of discrete
equations. But the mentioned coupling strategies barely have the ambitions to do so
for the overall aeroelastic scheme. A conservative load projection at the fluid—structure
interface is discussed in [4] and a conservative energy transfer in [9]. In both cases the
methods generally only give a conservation property in the data transfer step. But if a
fluid module is used that has an at least second order time integrator, as usually is the
case, then the conservation in the data transfer step does not automatically imply that
the discrete set of equations underlying the numerical scheme possesses a conservation
property at the interface. Further, the high time orders present in fluid and structure
modules are lost in the proposed schemes. These two unpleasant issues are caused by the
coupling schemes employed.

On the other hand, strong coupling schemes are employed in [1] and [17] without
attributing interface conservation properties to the proposed schemes.

In contrast to the above approaches, we set up a discrete system for the aeroelas-
tic problem that we prove to mimic the energy conservation property of the continuous
problem. Further, all of its discretization steps are of second order in time. The discrete
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Figure 1: Geometry of the 2D panel-flutter—problem.

equations will be seen to form a set of equations that is implicit in time, coupled over the
fluid and structure unknowns. One algorithm employed to drive the equations’ residual
to zero, is a fixed point iteration which uses several applications of the fluid integrator
and the structural integrator within one time step. A second algorithm implemented is
a Newton iteration applied to the derived set of fluid structure equations. The experi-
ence with algorithms for this nonlinear problem is not yet well developed. Further, a
deeper investigation of possible advantages of such a strong coupling methodology over
weaker coupling strategies is not yet available. Through numerical experiments we ob-
serve that the strong coupling clearly increases the time order in comparison with the
loose or staggered coupling.

In section 2, coupling issues will be more thouroughly discussed, using our model
problem, the panel flutter problem, as an illustrative example. In section 3 the continuous
problem will be formulated. In section 4 the discretization of fluid and structure will be
given and the construction of the aeroelastic scheme that satisfies our design criteria will
be derived. The solution techniques for the corresponding equations will be discussed in
section 5. Finally, in section 6 the proposed schemes and algorithms will be compared in
transonic aeroelastic cases, in particular the improvements over the loose coupling when
predicting bifurcation points will be shown.

2 Coupling Issues

We wish to make the interrelations of the discretization steps of an aeroelastic problem
more precise, taking as a specific example the 2D panel flutter problem with an inviscid
flow model. The panel flutter problem consists of a simply supported plate (panel) over
which a compressible fluid (air) flows. We assume constant behaviour in the direction
of the long panel side (spanwise direction), so that a 2D flow passes over a strip of the
plate, compare Fig. 1. Let us further specify typical discretization techniques applied in
this example: Let the fluid code use cells with piecewise polygonal boundaries, thus a
piecewise linear representation of the interface is given for the fluid. In the structure,
the typical application of the Finite Element discretization results in a representation of
the interface that is a piecewise polynomial of third order. Typically non-matching grids
appear at the interface, sketched for the present case in Fig. 2. Certain fluid vertices are



required to stick to corresponding structural material points at each time level and the
remaining fluid grid is deformed accordingly. Let us further assume that the mid-point
rule is used in both fluid and structure as a time integrator of second order.

Denote by p}. the discrete pressure distribution in the fluid code at time level n, so

that p?,fl/ ? contributes to advance the fluid from time level n to n + 1. Let similarly
ng/ ? denote the discrete load distribution that enters the structural equations. Let a

projection of p% onto the structural grid be denoted by (p})s. Let us further introduce
the structural deflection w™, which defines a fluid grid configuration . Let the grid
velocities used during the time step from level n to n + 1 be denoted by &"/2.

In the popular loose coupling one sets

P = Wh)s (1)
performs a structural time step and determines from the obtained deflection w"*! the
grid configuration £"*!. Then a fluid time step from " to t"*! follows.

Since the mid-point rule was chosen as a time integrator in both fluid and structure,
a conservative load transfer for the forces in y-direction (nsy is the normal component
in this direction as indicated in Fig. 2 and its value is negative),

[
/F L ds /0 P2 g @)

is therefore not satisfied for the loose coupling. Further, the time order present in fluid
and structural solver is not carried over to the aeroelastic scheme. It is only of first order
in time. Here I'"*Y/2 is the interface belonging to the grid configuration z"*'/? and
associated with the time level corresponding to the pressure distribution p?,fl/ > Note
that all formulas in this section are on the discrete level and thus in this section the
integrals stand for the corresponding quadrature rules employed in the scheme.

In [4] strategies to employ global load conservation in the projection step are dis-

cussed, i.e. quadrature formulas are required to satisfy

/n phngds = /Ol(p’%)s dz . (3)

In [4] numerical experiments were made with a loose coupling, but the time discretizations
employed were not discussed. No efforts were made to satisfy a conservative load transfer
like (2). Still, drastic improvements over load projections obtained from traditional inter-
polation methods are found. In the examples of [4], loads with sharp peaks are present,
where interpolation violates the conservation properties immensely.

The transfer of geometrical data establishes the connectivity of the two media and
defines the fluid grid by assigning its boundary position. Further, from the fluid grid
positions the fluid grid velocities &"F1/2 follow.

Together, load and geometry transfer govern the energy exchange of the two media on
the discrete level: Global conservation of the energy,

l
/ —p7£,+1/2 (a.}n_|_1/2)Tnn—|—1/2 ds — / pg+1/2 u-}n+1/2 dg (4)
rn+1/2 0
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is the most important property to hold on the interface. Here, w"t/? represents the
discrete structural velocity that contributes in the energy balance.

Conservation of the energy is also the target of [9]. But in this reference the discussion
circumvents the time integrators used in fluid and structure and the resulting demands
drawn from (4) upon the coupling schemes. E.g., if methods with at least second oder in
time are used, as usually is the case, satisfaction of (4) cannot be achieved with the loose
coupling.

Other researchers tackle an improvement of the loose coupling by iteration between
fluid and structural solver to achieve converged states of higher order time discretizations
at the interface. This is done in [1] and [17] without attributing properties such as (2) or
(4) to the proposed schemes. Further, the actual convergence in each time step and com-
parisons with simpler coupling schemes are rarely documented. In [1] an airfoil section
with plunge and pitch degree—of-freedom in transonic flow is considered. The iteration
method is Jameson’s dual time-stepping, where a data-transfer between fluid and struc-
ture takes place at each pseudo time step. In [17] a low Mach number flow interacting
with an elastically mounted cylinder, where vortex shedding plays an important role, is
simulated and considerable improvements over the loose coupling are obtained for large
time step sizes. The iteration is a straight forward fixed—point-iteration, alternating sev-
eral times between fluid and structural solver within one time step, using as data for each
medium the most recent obtained in the other medium.

An entirely different approach, that relies on explicit time-integration-schemes, was
proposed by Bendiksen [2]. An explicit 5-stage Runge-Kutta-Scheme was applied to the
spacially discretized fluid-structure system, exchanging data at each Runge-Kutta stage.
It was applied in the transonic regime to the flutter of wing sections and to panel flutter
[5], [3]. The main draw back of Bendiksen’s method is that it is not applicable when the
time step limitations of an explicit scheme are prohibitive, as is often the case, especially
in applications involving viscous flow effects.

The design criterion used in the present work is to mimic the energy conservation
properties of the continuous problem on the discrete level. The continuous model, which
in our case does not contain any viscous effects, can be seen to possess the following global
energy balance:

d

o (Er + Es) = power generated at inflow/outflow boundary

+ power generated by pressure below the panel
Here Er, respectively EJg, is the energy contained in the fluid, respectively in the structure.

Thus we want to have a discretization that ensures

Ept' + B3t — B} — B3
At

= power generated at inflow/outflow boundary

+ power generated by pressure below the panel.

This requirement also enforces a conservative energy transfer across the interface as in
(4). At the same time we want to have a method where the time order present in fluid
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Figure 2: Representation of the interface in fluid and structure

and structural discretization are not reduced in the overall aeroelastic scheme due to
”bad” coupling. This is achieved in the sequel by employing a mid-point rule in time
over the spacially discretized fluid—structure system and additionally, in order to account
for the non—matching grids at the interface, an appropriate quadrature rule is chosen
to project the aerodynamic loads onto the panel. Thus, a set of nonlinear equations
implicitly coupled over the fluid and structure unknowns results and has to be solved in
each time step. This requires appropriate algorithmic tools. The ones employed here are
a fixed-—point iteration, that successively calls the time integrators of fluid and structure,
and a Newton—method that is applied to the nonlinear set of fluid—structure equations.

3 The continuous problem

Our aeroelastic model problem is the panel flutter problem [6]. It is made up of the 2D
Euler equations of gas dynamics and a strip of a simply supported von—Karman plate,
as described in section 2. It exhibits self-excited oscillations (limit cycle oscillations)
caused by the aerodynamic coupling of structural modes. This phenomena is known as
flutter. Other observed long time behaviours are steady states with either deflected
panel (divergence) or an undeflected panel (damped or stable behaviour). Further, the
aeroelastic system exhibits a transonic dip. This means that the dynamic pressure (kinetic
energy of the inflow) needed to obtain unstable behaviour (flutter or divergence) drops



considerably to a minimum at an inflow Mach number near unity. Another important
feature of panel flutter is that shock movements play a significant role in the unstable
mechanisms when the flow is transonic.

The fluid equations are

0
d _
| Udzdy + / Uw-#)Tnds = / Pl gs (5)
dt Q(t) o0(t) a9(t) —pn2
—pvin

for arbitraryly moving moving domains €2(¢). The conservative state vector U = (p, pu, pv,
plv*+ %)T is made up of the density p, the velocity vector v = (u,v)” and the pres-
sure p. On a point of the boundary 9Q(t), n = (ny,n2)" is the outward unit normal of
Q(t) and & is the velocity of a boundary point x(t).

For the formulation of the panel equation we introduce the space V := H?(0,1) N
H}(0,1) . The variational formulation is to find w(¢,z) satisfying

D (wxxa@zz) + N(w) ) (wmagpw) + m(w’(ﬂ) = = (pl — D2, QO) v pe v, (6)
where the nonlinear term models a restoring force due to the panel stretching with
Eh (!
Nw) = — [ wldz .
20 J,

The constants in the panel equation are the stiffness D = Fh?/12(1 — v?), the mass per
unit area m = psh, the panel thickness h and length [, the density p;, Young’s modulus
E and the Poisson ratio v.

Now the aeroelastic problem can be formulated. For convenience, all interface and
boundary conditions are given in the strong sense.

e the fluid domain at time ¢ is defined as the space above the deflecting panel and
solid wall and is denoted by Qr(t), i.e. for each fluid interface point x(t) associated
with a panel point & € [0,1],

2(0) = (£0)", =z(t) = (&w(tE)" (7)
e for all moving domains Q(t) C Qp(t) (5) holds,

e (6) holds with the r.h.s determined from the fluid pressure on top and p,, on the
bottom,

n(t,8) = pt&w(E),  £€[0] (8)
) = Poo
e at infinity we have p = po, U =1Uw, V=0, P = Pso,

e on the remaining boundary of Qp(¢) the fluid velocity in direction m equals the
velocity of the boundary in direction n, in particular on the fluid-structure interface,

vin = ¢'n = Wny 9)



Energy equation of the aeroelastic problem

The energy equations for fluid and structure are given by

d 1 D N T
—FEr + / (—p02+—) (v—&) nds = / —pv nds,
dt 20r(t) \2 v—1 o (t)
d l
—FEs = — b d
ar =S /O(pQ p1)w dx ,
where we have denoted the energy in fluid and structure by
1 p
Er(t)y = / —pv: + —— dz,
r(0) Qr(t) 2 v—1
l l 2
m D Eh (1
Es(t) = —? + =w? d — | = / 2d .
s(t) /02w+2wmx + 5] <2Owwx

The energy equation of the fluid is the fourth component of (5) and the energy equation of
the structure is derived by multiplying the strong formulation of (6) by «w and integrating
over the domain.

Summation of the two energy equations yields the energy equation of the aeroelastic
system. Here we restrict the fluid solution to a finite domain Qp(¢) with non—moving
inflow and outflow boundary. Due to the boundary and coupling conditions (7), (8), (9),
we end up with

d 1 pr T : .
— (Er+Es) = —/ <—pv2+—>vnds +/poowda:. (10)
dt ( ) N pin/out 2 Y- 1 0

4 Discretization

4.1 Flow discretization

The flow is discretized in space by the Finite Volume MUSCL scheme on polygonal grids,
applying a least-squares linear reconstruction and the Venkatakrishnan limiter on the
primitive fluid state vector. As a numerical flux function F' we use the van-Leer flux
vector splitting for moving edges. Let us write down the discrete flow equations for an
inner cell, when employing the mid—point rule in time.

QU — U+ A Y e R (U U ) = o

i » Y gt [k ] » "My
€;; CO8Y

Here, the fluxes are evaluated at the half time grid position "*'/2 = ("' +2")/2, with
the corresponding normal n%ﬂ/ ? and length |ez~"j+1/ ?| of the edge e?jﬂ/ 2

the cell §2; to its neighbour cell €2;. The edge’s velocity is given by

. 1 (e —gr  gnt! —gn
:Bn+1/2 — l l 4 Zr r

, Which connects

9 At At
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and corresponds to the constant velocity by which the edge’s mid point can be advanced
from its position at time level n to its position at time level n+ 1. Here, ; and x, are the
two end vertices of an edge. The half time geometry " *1/2 is used to apply reconstruction
and limiting on the averaged fluid state U"tY/2 = (U™*! 4 U™)/2 and as a result one
obtains the state UZ-H/ % inside the ith cell at the quadrature point of the edge e;;. With
this choice the scheme satisfies its discrete geometric conservation law (GCL) [7].

At inflow and outflow boundaries nonreflecting conditions according to [21] are imple-

mented. At impermeable boundaries the flux

0
¥ nZ],l
leij| - F(Uij, > &ij,mij) = eij| py g : (11)
nzg,2
. T
LT
is prescribed, which results from the slip-condition v'n = &'n.

Another time stepping scheme used in the experiments below is the important second
order backward differencing scheme. For this scheme the GCL may be satisfied with the
choice of edge normals and velocities as given in [14].

4.2 Structural discretization

Conformal elements in one dimension for fourth order operators are constructed from the
Hermite shape functions on the unit interval, £ € [0,1],

sou(§) = (1+2¢)(1-¢)?,
sor(6) = (3—20)¢,
s(€) = £(1-¢)7,
sip(6) = —(1-6¢&.

We have n — 1 inner nodes, so that 2(n — 1)+ 2 basis functions ¢;(z) are constructed from
these shape functions when the panel is simply supported. We plug

w(t,z) = Z o (t) du()

into (6) and test with the basis functions; further we introduce 3, = & to obtain a first
order system of ODEs:

> Doy, dr)2 +  N(wy) (61, 66)1 + m By (¢, 66)0 = — (pr— P2, dk)o Y &,
.

o = By V.

Here, we have used abbreviations for the inner products,

(¢7 ¢)0 = (¢: w)a
(¢7 w)l = (¢x7 %),
(¢7 ¢)2 = (¢ww> www)



The set of 4(n — 1) + 4 ODEs may now be integrated in time with any kind of Runge-
Kutta-scheme to approximately solve for discrete values of the coefficients «,(t), 5(%).
The following second order implicit rule will be used below in the construction of an
aeroelastic scheme with correct energy transfer:

n+1 _ 2n
Z Da7+1/2 (¢Z,¢k)2 + a?+1/2 NTH/2 (¢z,¢k)1 + mthﬁl (¢l,¢k)0 —
l

= - ((Pl - p2)n+l/2, ¢k)o vV

gt —ap _ n+1/2 vk
At -k
Here we have set (...)"*'/2 = ((...)"*! + (...)")/2. In particular, the nonlinearity is

evaluated with a trapezoidal rule. Defining w"(z) = >, o] ¢y(x) and introducing the
velocity w"(z) =Y, 5" 4u(z), this system reads

N2 = (N(w") + N(w™))/2 )
At D (w2 ¢p)y + At N2 (@12 gy +

+ m ("t — " gp)o = — At ((pr—p)" T2, k)0 p (12)
atl—ap = AtgptY?
for all k& )

4.3 Mimicing the energy budget of the continuous problem on
the discrete level

By definition of the Finite Volume Method as a conservative scheme, the energy conser-
vation properties are carried over from the continuous to the discrete level in the fluid.
In the structure, the choice of the time integrator decides if the energy conservation is
reflected correctly in the discrete scheme. Here, after the spacial FEM discretization, the
time integration scheme (12) is a scheme with the desired property, as will be seen below.
Further, the use of non-matching interface representations has to be taken care of, so that
the energy exchange at the interface is conservative. These points will be adressed in the
following construction of the aeroelastic scheme. This scheme is constructed such that
the energy conservation properties of the continuous problem, compare (10), are mimiced
on the discrete level.

Employing the mid-point rule in time, the energy balance for a cell can be written as

E}fﬂfl _ER, = —At Z |€n+1/2| -F4(L{-"-+1/2 Y2 g1/ n@grl/Q) .

ij j L 1 » Vg » g
€5 COQ;

Here F is the fourth component of the numerical flux F' and all its arguments are taken
at the edge center. The energy contained in the ith cell at time level n is Ef; = [QF -

10



(pP|v}[?/2 + p} /(v — 1)) . The discrete fluid energy is Ef = >, Ef;. We can divide

the energy production into the contribution 8E1T§1/ 2 coming from the interface and the

contribution GEZH/ ? from the remaining boundary. Thus we have

EX —En = QERLP 4 9ERTV?

Further the energy flux at impermeable non—-moving boundary parts vanishes due to
n+1/2

(11). Thus the only contribution remaining in 0Ep comes from inflow and outflow
boundaries, so that we can write
EMT—ER = QENLVNP 4 9EMTMZ (13)

in/out flow
The energy flux at an interface edge is given by

F4(un+1/2 . a-:nj»l/2 nn+1/2) = p;;+1/2 (:i:Z-H/Q)TnZ-H/Q ’

7 ) » g s P99
and summing over all edges on the interface, we obtain

n+1/2  _ n+1/2 n+1/2 ; «n+1/2\T n+1/2
OEpg = —-A¢ E : ‘eij ‘ " Pij (a’ij ) n;; .
eijClrg

Let us look at a single edge e = T;x, C ['pg with end vertices «;, x,, omitting the

1j-indices for the moment, compare Fig. 3. Then "2 g given by
Fntl/2 = 1 3’?“ —x n ;' — 2}
2 At At )

Further from z? = (§,w!)T, w! = w"(§) for some & € [0,1], and correspondingly for
the right point ', we get

(d:n-l—l/Z)T,nn—f—l/Z _ 1 wszrl —wy' + w,’?“ — wy nit1/2

2 At At 2
Looking again at specific edges, adding the indices ij, using |e?j+1/2\ = —(fr,ij—&,ij)/n;;jlm
and denoting A&;; = & — &5, We obtain

OERs'? =
iz L[ (65) —w (&) | W (Gnig) — w™(&ri) | (14)
= At Zeij Cl'rs Aé‘” pij+ / 5 { JAt =t ]At : .

We turn to the discrete panel equations (12) and have to specify the load term due to the
coupling conditions and its evaluation through a quadrature rule, which we choose as

— At ((pl - p2)n+1/2 ’ ¢k)0 = —At (p(ga wn—|—1/2(§)) — Poo 5 ¢k(§))0 =~ (15)
N ALY, s A& P = poo) {0k (Eig) + Dk (&) } /2 -
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Note that most summands do not contribute anything since & ;;,&i; ¢ supp(¢x) in most
cases. For the inner products on the L.h.s. of (12) we may use a different quadrature rule,
let us assume that this rule is exact. Plugging the quadrature formula (15) into (12),

n+1/2 ( n+1

multiplying the resulting equation with 3, ap” —ap)/At and summing over all

k we obtain

At D (wn-l-l/Z’ wn+1/2)2 + At Nn+1/2 ( n+1/2 n+1/2) +m (,u-]n-f-l_wn’ ,u-)n+1/2)0

n+1 N an B
= — At Z Afzg pz+l/2 Oo) 1 {w (glﬂ]) w (gl,m) +

2 At

€ij Cl'rs

n W (&) — w"(fr,z‘j)} .

At
From the third equation of (12) we have

whtt — " = At"t2

Differentiating s times with respect to z, multiplying by aZH/ 2¢k , respectively its deriva-
tives, summing over all £ and integrating, gives

1
5 (wn—H _ wn’ wntt + wn)s = At (,u-)n—l—l/Q, wn+1/2)s for s = 0,1,2,
or
1
5 {(wn—l—l’ wn—l—l)s _ (wn’ wn)s} = At (u-)n+1/2’ wn+1/2)s for s = 0,1,2 .

Note that N™+1/2 = BB f(yn+1 4y +1) 4 (w™, w™),} /2 and thus

21
At Nn+1/2 ( n+1/2 n+1/2) Eh (wn-l-l’ wn—}-l)1 + (wn’ wn)l (wn—}-l’ ’I,Un+1)1 _ (wn’ wn)l

21 2 2
_ E h (wn—i—l’ wn—l—l)% _ (,wn’ wn)%
21 4
With the discrete panel energy
n m. .n .n Eh (wn’wn)l ? D n ,.n
EY = E(M’w)0+2l< 5 —|—5(w,w)2,
the energy change on the discrete level is
B3 - By =
A&; (oo — D5 . . . (16)
= Yeores — 5 {0 &) — 0" (E) + 0" () — " (Erg)}

Now, from (13), (14), and (16) we see that in the energy change of the discrete fluid-
structure-system, Ep™' + E%™' — (E% + E%), the contributions from the interface cancel,
so that the following theorem holds:

12



| |
&,ij &rij '3 x

Figure 3: Representation of the interface in fluid and structure, the IV; are panel nodes.

Theorem: The numerical scheme

ot — pop + )
+1/2 n+1/2 7m+1/2 .n+l/2  n+1/2
+ AtZEijcani ‘ez / ‘F(Uij / ’sz' / 7‘”% / ,TLZ- / ) = 0 ’
with the boundary treatment (11), > (17)
n n T n n T
Ly = (fl,z’j,w (@,z’j)) y o Ly = (fm'j,w (fr,z'j))
for all flow edges e;; on the panel, J

AtD (w"+1/2;¢k)2 + At N™H/2 (wn+1/2,¢1c)1 + m(wn+1 - w";¢k)o =
= —AtY, cr, AGpLT {ok(&s) + &)} /2 Y, (18)
aftl—ar = AtV vk,

approximating the aeroelastic initial-boundary-value-problem of section 3, satisfies the
GCL in the fluid and carries over the energy balance from the continuous level (10) to
the discrete level. All its time discretization steps are of second order.

5 Algorithms

An algorithm that solves the discrete flow equations (17) with a prescribed boundary
movement, may serve as a fluid time integrator. Similarly, a structural time integrator

13
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Figure 4: Loose Coupling (left) and Staggered Coupling (right). In the Staggered Cou-
pling, in step 2, the grid position of time level 1 is determined by z' = z° + Atw!/? and

accordingly, in step 5, the grid position of time level 2 is determined by z2 = z* + At w3/

is given if the equations (18) can be solved when a load is prescribed. In both cases
our solution strategy is a matrix—free Newton-GMRes method. With the resulting fluid
time integrator and structural time integrator, the aeroelastic problem can be tackled
with all partitioned schemes. Amongst the partitioned schemes we have implemented,
are the loose coupling, the staggered coupling and a strong coupling scheme that solves
the coupled set (17) & (18) via a fixed point iteration. The latter method applies the
fluid integrator and the structural integrator several times within one time step. They
are successively applied in the sequence given by the loose coupling with the purpose of
diminishing the residual of the coupled system (17) & (18). The loose coupling and the
staggered coupling are schematically depicted in Fig. 4. In the figure the time axis goes
from left to right and the first three time levels are shown. The encircled numbers give the
order in which structural time integration (bottom line), fluid grid movement (vertical
lines) and fluid time integration (top line) are performed. Further, we have indicated
from which time level the fluid pressure is taken as the load to perform a structural
time integration. Further, we have indicated how the grid position is transferred at the
interface from structure (w) to fluid (z) in order to move the grid. As an example for a
higher order time integrator in the fluid we have chosen the mid—point rule and indicated
from which time level the fluid flux is taken.

The matrix—free Newton-GMRes solves a nonlinear system G(z) = 0 by applying a
Newton iteration and employing GMRes [20] as a linear solver. Since the GMRes iteration
only needs to know the evaluation of matrix vector products G'(z*)z, with the Jacobian
G', the determination and storage of G' may be avoided by approximating

G(z* +ex) — G(z*) -

G'(z")z =~ ;

Here € should be chosen big enough to avoid cancellation and small enough to keep the
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approximation accurate. In all matrix—free Newton—-GMRes iterations we have used

1/2
eps . .
€ = 2] where eps is the machine-accuracy,
Z||2

which was also recommended in [19]. To accelerate convergence in the linear solvers, a
block symmetric Gauss—Seidel preconditioner based on a first order spacial discretization
is used in the fluid, whereas a block symmetric Jacobi preconditioner is used in the
structure.

Further, we propose to achieve a strong coupling by applying the matrix—free Newton—
GMRes method to the discrete fluid—structure system (17) & (18). The discrete fluid—
structure system may be written in compact form as

n+1 n+1, 9 /m n — 7'LF (un—f—l’ Wn+1; un, Wn) _
H(u ;W ,Z/{ ;W ) = ( %S(un—i—l’wn—f—l;un,Wn) ) - 0.
Here the states of fluid &4™ and structure W" at the beginning of the time step are given.
We have to solve for U™ and W™, In the evaluation of the structural equations Hg
only the pressures from the fluid states U™+, U™ are needed to determine the loads,
whereas in Hp only the deflections from W"*!, W" are needed to determine the fluid
grid positions at the new and old time level. An evaluation of H proceeds as follows —
the fluid grid movement is shortly discussed at the end of this section:

e determine the new grid from Wn+!

e determine the grid velocities

e reconstruction and limitation of the fluid state ¢"+'/2

e determine the fluxes

e Mz is given according to (17)

e from the reconstructed pressure determine the structural load
e g is given according to (18)

In principle, this evaluation of the nonlinearity is all we need to apply the matrix—free
Newton GMRes iteration. The issue of preconditioning is adressed in a decoupled fashion.
This means that a preconditioning step to approximately solve H'- (Vp, Vs)T = (bp, bs)T
consists of applying the fluid preconditioner to the r.h.s. by to obtain Vy and the structural
preconditioner to the r.h.s. bg to obtain Vs.

Convergence criterion for strong coupling

As an initial guess for the strong coupling, the result of a loose coupling step is used. The
loose coupling first solves the structural equations with the wrong fluid load and then
solves the fluid equations due to the obtained structural deflections. Thus the structural
equations of the loose coupling and of (18) do not coincide, whereas the fluid equations
of the loose coupling and of (17) do coincide. This means that, when plugging the initial
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guess into the system (17) and (18), the error is only visible in the residual of the structural
equations. Thus, the convergence criterion is to reduce the structural residual below a
given threshold. If the residual threshold in the fluid equation is already small enough in
the initial guess, then a stagnation of the fluid residual in the strong coupling iteration can
be accepted. These considerations hold for the strong coupling via fixed point iteration
as—well as via the Newton—-iteration.

Unfortunately, sometimes a considerable increase in the fluid residual can be observed.
A device we propose to enforce the reduction of both residuals in the Newton iteration,
is to weight the residuals of fluid and structure within the iteration process, such that
they are of equal size in the initial guess. We call this version of the Newton iteration to
achieve a strong coupling the Weighted Newton method.

Grid movement

In general applications, the grid movement algorithm, which assigns the vertex positions
according to the given boundary movement, may require the solution of a system of
equations as-well. In our case, the computational domain has a simple geometry, also
when it deforms in the aeroelastic simulation. A simple algebraic rule to stretch the grid
suffices and is implemented here.

6 Numerical experiments

Our main interest is the behaviour of different coupling schemes with respect to At.
Therefore a sufficiently accurate spacial resolution of 80 fluid cells on the panel and 26
panel nodes was chosen for all computations presented, compare [5], [10], [12]. In total
the fluid grid consists of 8998 quadrilateral cells, reaching the in— and outflow boundaries
at 6 panel lengths away from the panel. Away from the panel, the cells are stretched
towards the in— and outflow boundaries.

Throughout we use aluminium as panel material, thus fixing the panel parameters
ps = 2700 kg/m3, E = 7.1-10° Pa and v = 0.34. In the dimensionless form all
coefficients of the panel equation are determined, when the ratio h/l is specified, which
will be done in each of the following cases. The fluid parameters may be defined in
two ways: Either we assign the inflow Mach number M, the fluid structure mass ratio
i = pool/(psh) and the dimensionless dynamic inflow pressure A = po, u2, 13/D or we
assign M, and all remaining flow conditions as those found in the atmosphere at a certain
altitude.

6.1 Transonic and supersonic panel flutter

Let us first envision some qualitative properties of the flutter solutions. We look at a
transonic flutter case with Mo, =1, h/l =0.004537, = 0.1, A = 260 and a supersonic
flutter case defined through A/l = 0.004 and an inflow of M, = 1.2 at 20000 feet altitude.
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Figure 6: Mach numbers along the panel during one period of the limit cycle

These cases were also considered in [5]. The periodic panel deflections resulting in these
cases are visualized in Fig. 5 by the deflection at 25%, 50% and 75% chord of the panel.

In Fig. 6 the development of the Mach number distribution on the panel over a flutter
cycle is shown. We can observe that the Mach number on the panel has a moving shock in
the limit cycle in the transonic case, whereas in the supersonic case the fluid quantities are
smooth along the panel. In the supersonic case shocks periodically build up and disappear
at the trailing and the leading edge. Higher harmonics in the panel deflection are more
pronounced in the transonic case in contrast to the supersonic case. In the transonic case
we can relate the shock speed to the CFL number in the fluid, and for the given grid, at
a CFL number of 35, the shock moves about one cell during a time step. Further, this
CFL number corresponds to 112 time steps per flutter period.
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Figure 7: Panel mid point deflection for loose and strong coupling at different At.

6.2 Flutter at M, =1

The transonic flutter case described in the above section is considered. Here we compare
the behaviour of the solutions obtained with the loose and the strong coupling as At — 0.
As the strong coupling algorithm we use the FPI with a loose coupling step as initial guess
and require the structural residual to drop by one order of magnitude. Increasing the fluid
CFL number from 10, 30, 50 to 70, we can observe in Fig. 7 how time accuracy is lost
in the loose coupling. We even obtain a bifurcation from flutter to divergence, when
changing from CFL = 50 to CFL = 70. In contrast, the results obtained with strong
coupling remain very good in accuracy even at a CFL number of 70. A direct comparison
in Fig. 8 further shows the continuing improvement of the loose coupling in accuracy when
decreasing the CFL number to 0.7, whereas the strong coupling’s solution at CFL = 50
has the same accuracy. The staggered scheme delivers plots that look very similar to the
one given for the loose coupling.

Let us further note, that the bifurcation observed in the loose coupling when changing
from CFL = 50 to CFL = 70 at A = 260 considerably overestimates the bifurcation
point. Using the strong coupling, a bifurcation from divergence to flutter can be observed
at M, = 1 when we increase the nondimensional dynamic pressure from A = 160 to
A=170.

One may also ignore the time accuracy of the solutions and shift the interest to the ob-
tained periodic behaviour. Some quantities characterizing the flutter cycle are the flutter
period and the amplitudes. In Fig. 9 we compare the periods and negative amplitudes of
the flutter cycles resulting from the loose and strong coupling when decreasing the CFL
number. We observe very fast convergence in the flutter period with the strong coupling
in contrast to the loose coupling. The strong coupling’s superiority is less pronounced
when considering the negative amplitude. As the loose coupling exhibits the bifurcation
above CFL = 50, as indicated in the picture, a quantitative comparison does not make
sense.
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6.3 Flutter at M, =1.2

A separation of the solutions, as observed in the transonic case for the loose coupling
(Fig. 7), does not occur in this supersonic flutter case. As seen before, here the fluid data
remains smooth along the panel. A calculation with CFL = 55, which corresponds to
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only 20 time steps per flutter period, determines the amplitudes and flutter periods with
a relative error of less than 5% for all coupling schemes. Improvements due to strong
coupling can hardly be noticed in this case.

6.4 A bifurcation at M, = 0.95

Another numerical experiment in the transonic regime addresses the determination of a
bifurcation point with different coupling schemes, algorithms and time step sizes. Increas-
ing the dynamic pressure at fixed Mach number a bifurcation from divergence to flutter
occurs, where strong shocks move along the panel in the flutter solution. An aluminium
panel with A/l = 0.002 is considered and we fix My, = 0.95 and p = 0.1. The nondi-
mensional dynamic pressure is varied in the range 2400 < A < 3600. The qualitative
results obtained are shown in the table of Fig. 10 and reveal a strong variation of the
bifurcation point depending on the coupling scheme, when using moderate CFL numbers.
Here, a CFL number of 50 corresponds to 115 time steps per flutter period. Clearly, the
loose coupling overestimates the dynamic pressure at the bifurcation point immensely at
CFL = 50 and does not seem to be converged yet at CFL = 10. At CFL = 50, the strong
coupling via fixed point iteration (FPI) has already converged in the quantity of interest.
The strong coupling via Newton—iteration shows slight variations as CFL is reduced from
50 to 10.

Note also, that using a strong coupling scheme, the change to flutter is detected at
A = 2500 in [10].

Convergence histories

We have picked the case with A = 2700 at CFL = 20 to compare the different strong
coupling algorithms. In Fig. 12 the behaviour of the structural residual over a range of
1500 time steps can be seen. After each fluid-structure loop the residual is plotted in the
diagram. At each time step we have at least two entries, the one from the initial guess
and the one from the following iteration loop. For example, in case of the FPI the initial
guess, stemming from a loose coupling step, lies around 1071, This can be red off from
the accumulation of dots producing a wavy shape on top of the diagram, whereas after
a single FPI iteration the residual is around 1073, as red off from the wavy shape on
the bottom. A similar behaviour can be found for the Newton iteration and the weighted
Newton iteration, indicating less regular behaviour and some trouble between time steps
400 and 500. A close—up look, Fig. 11, reveals what actually happens: Throughout, the
FPI reduces the structural residual below 1073, whereas the Newton iterations are less
reliable. In order to see this the residuals are connected in order of appearance in the
calculation, e.g. the first residual in time step 447, the one from the inital guess, is the
one that is connected to the last residual of time step 446 and lies around 10! for the
weighted Newton method. The iteration does not converge in time step 447, as the last
residual is around 1. From the symbol marking this residual a connection is drawn to the
residual in the initial guess of time step 448, and so on. Similar convergence problems
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Figure 11: Close—up of structural residual

can be found in time steps 450 to 454 for the (unweighted) Newton method.

Analogous plots for the fluid residuals can be found in Fig. 13 and Fig. 14. As men-
tioned before, a stagnation in the fluid residual may be accepted. We can observe in
Fig. 13 that the FPI keeps the fluid residual below 1077, the assigned threshold in the
fluid solver. The Newton method frequently pushes the fluid residual towards 10~%; the
residual of its initial guess is always below 10~7. Finally, we observe that the weighting in
the Newton method works well, keeping the residual below 10~7 except for two outliers.
In Fig. 14 we clearly see that in the (unweighted) Newton iteration, the fluid residual
grows, whereas in the weighted Newton iteration the fluid residual drops (except for two
outliers in the observed 1500 time steps).

As a conclusion, the FPI seems to offer the best compromise. It is robust, reducing
the significant residual, namely the structural residual, fastest, keeping the fluid residual
sufficiently low. In contrast, the (unweighted) Newton shows convergence problems in a
few time steps, with considerable increases in fluid residual. The latter may be avoided by
weighting the Newton iteration. But let us note that the weighted Newton iteration needs
about three times as much GMRes iterations than the (unweighted) Newton method.

Going back to the table (Fig. 10) discussed above, these observations for the conver-
gence histories seem to have a noticeable effect on the obtained solutions. The FPI seems
to predict the bifurcation correctly at the largest time step size.
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6.5 Stability chart

We consider the case of a simply supported aluminium panel of thickness h/l = 0.004537
in a flow of air with fluid-structure mass ratio of y = 0.1. The corresponding stability
boundary was determined numerically in [5] and reconfirmed in [12].

In Fig. 15, we see that we have agreement with the result of [5] in the subsonic range,
but a clear deviation for Mach numbers above 1. The result was obtained with the strong
coupling and CFL = 50. At CFL = 10 the same stability boundary results. With the
loose coupling, all computations performed to produce the stability boundary seemed to
predict the same long time behaviour as the strong coupling. But in all computations,
after the long time behaviour seemed to be reached, a numerical instability was triggered
in the loose coupling. These instabilities will be shown in the following section.

Still it is not clear what to attribute to the deviations from the results of [5]. The
different amount of numerical diffusion used in the fluid solver may be a reason.

6.6 Numerical instabilities with loose coupling

Trying to determine the stability boundary of the previous section with the loose coupling,
we have encountered numerical long time instabilities. Such instabilities are also observed
in [10]. When the solution seems to have reached its long time behaviour, a numerical
instability is triggered. The instability seems to occur the sooner the larger the time
lag is between the pressures acting on fluid and panel. Namely, using the second order
BDF in the fluid and the trapezoidal rule in the panel, we have a time lag of At and
the instability typically occurrs around a dimensionless time ¢/t* = 1000. The instability
causes the panel to oscillate with growing amplitudes. Around ¢/t* = 3000 the algorithm
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Figure 15: Stability boundary found here and the one from Davis and Bendiksen [5].

finally fails. The same instabilities also appear at CFL = 10. Exchanging the fluid time
integrator with the mid—point rule, the time lag reduces to At/2 and the instabilities are
triggered later.

These instabilities do not occur with the staggered coupling or the strong coupling.
We show the instabilities for a physically stable case, a divergence case and a flutter case.

Applying the loose coupling with the BDF-scheme in the fluid to the case M, = 0.85,
A = 18, Fig. 16, the mid point deflection suggests a physically stable case until ¢/¢t* = 700.
When the calculations are continued, a numerical instability occurs and the algorithm fails
around t/t* = 2700. With the mid—point rule in the fluid the instability is triggered later.
With the staggered coupling or the strong coupling the numerical instability is not present.

At M, = 0.95, XA = 13, calculated again with the loose coupling and CFL = 50
(Fig. 17), up to a dimensionless time of 900 the obtained solution makes you believe
that a divergence with small amplitude is detected. Then the deflection suddenly drops,
and up to a dimensionless time of 1500 the system seems to be stable, but suddenly a
numerical instability is encountered again, finally leading to the failure of the algorithm.
Again, using the mid-point rule in the fluid, the instability is triggered much later

At My = 1.25, XA = 19 flutter occurs and a CFL number of 50 corresponds to 25
time steps per flutter period. In Fig. 18 we see that at a dimensionless time of 1300, the
loose, the staggered and the strong coupling have settled to a limit cycle. A pronounced
disagreement in the flutter amplitudes can be observed. Continuing the calculations, the
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Figure 16: Numerical long time instability of loose coupling in a physically stable case.
The strong and the staggered coupling both predict the same ”slight divergence”.
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limit cycles are maintained in the staggered and the strong coupling. With the loose
coupling the amplitude suddenly diminishes at a dimensionless time of 1600 and soon
after blows up.

7 Conclusions

The panel flutter problem was considered as a model problem to investigate upon numer-
ical methods for nonlinear aeroelastic problems. We have proposed a strong coupling to
numerically solve the problem. This means that the discretization of the aeroelastic intial
boundary value problem was designed such that the energy conservation property of the
continuous model is carried over to the discrete model and that all discretization steps
employed are of second order in time and space. The resulting scheme is implicit over the
fluid and structure unknowns. A matrix—free Newton-GMRes method was proposed as
a solution procedure using the separate preconditioners of the two media. A fixed point
iteration is seen to be more robust and shows faster convergence. Convergence problems
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in the fluid residual, encountered with the Newton method, could be removed by intro-
ducing a simple weighting of fluid and structure residual during the iteration process.
But still the fixed point method is to be preferred. In contrast to simpler strategies such
as the loose or the staggered coupling our discretization achieves a higher order in time
at the fluid-structure interface. This could be demonstrated clearly through numerical
experiments. The comparisons show that the loose and the staggered coupling show the
same accuracy as the time step size diminishes. A striking superiority of the strong cou-
pling over the loose and staggered coupling is observed already at moderate time step
sizes in transonic aeroelastic cases with strong shocks. This was observed by numerical
experiments when determining a bifurcation point in the corresponding physical regime.
Further, the loose coupling exhibits a numerical long time instability. In the loose cou-
pling, the choice of time integrators used in fluid and structure determines the time lag
between the action of the pressure on the fluid and the structure. From the comparisons
made,’ one may conclude that the instability is triggered the sooner, the larger the time
lag is. The instability was not observed with both the staggered and the strong coupling.
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