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Abstract

In this paper, we present some interesting connections between a number of Riemann-
solver free approaches to the numerical solution of multi-dimensional systems of
conservation laws. As a main part, we present a new and elementary derivation of
Fey’s Method of Transport (MoT) (respectively the second author’s ICE version
of the scheme) and the state decompositions which form the basis of it. The only
tools that we use are quadrature rules applied to the moment integral used in the
gas kinetic derivation of the Euler equations from the Boltzmann equation, to the
integration in time along characteristics and to space integrals occuring in the finite
volume formulation. Thus, we establish a connection between the MoT approach
and the kinetic approach. Further more, Ostkamp’s equivalence result between her
Evolution Galerkin scheme and the Method of Transport is lifted up from the level
of discretizations to the level of exact evolution operators, introducing a new con-
nection between the MoT and the Evolution Galerkin approach. At the same time,
we clarify some important differences between these two approaches.
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1 Introduction

Many physical problems, for example the behaviour of a compressible fluid,
can be modelled as systems of hyperbolic conservation laws,

QU +V,  E(U) =0, (1.1)

if certain effects (for instance viscosity) are neglected. Here, z € R?, F : Q —
R™ 4 and U : R¢ x [0,00) — 2 C R™. Most classical numerical methods for
systems of hyperbolic conservation laws are based on solving one-dimensional
Riemann problems. Schemes for multi-dimensional systems are then obtained
by either performing a dimensional splitting or by a finite volume approach.
See for example the textbooks of LeVeque [18], Kroner [17], Godlewski and
Raviart [12], and Toro [32].

Since about 15 years, however, there is an ongoing discussion (see for exam-
ple Roe et al [29,7]) whether one-dimensional Riemann solvers do justice to
the multi-dimensional effects arising in such systems. As discussed e. g. in the
introduction of [23], there were a number of approaches which therefore pur-
posely dispensed with Riemann solvers. The following three of them form the
main subject of the current paper:



e the Method of Transport (MoT), originally developed by Fey [8-10] and
later modified by Noelle [23],

e the Evolution Galerkin (EG) approach of Butler [3], Morton et al [19] (ex-
ploiting the transport collapse operator of Brenier [2]), Ostkamp [24,25],
Lukacovd, Morton, Warnecke [20] as well as (based on this) the Finite Vol-
ume Evolution Galerkin (FVEG) approach of Lukd¢ova, Morton, Saibertova
and Warnecke [22,21], and

e the kinetic approach of Deshpande [6] and Perthame [26,27].

In this paper, we present some (new, as we hope) connections between these
approaches. As a main part of this paper, this includes a new derivation of
the second author’s [23] version of the MoT, called MoT-ICE, and the state
decompositions (called wave models in [23]) which form the basis of it. The
only tools used in this derivation are quadrature rules (some of them classical,
some of them new), applied to:

e the moment integral used in the gas kinetic derivation of the Euler equations
from the Boltzmann equation,

e the integration in time along characteristics, and

e space integrals occuring in the finite volume formulation.

We would like to spend some more words on the first item, because the other
two quadratures are standard in most numerical schemes.

It is a well-known fact that the Euler equations of gas dynamics (which we
will basically consider) are just a first order approximation of Boltzmann’s
equation, see for example Cercignani [4]. The idea to construct a numerical
scheme based on the kinetic formulation of gas dynamics is not new, see e. g.
Deshpande [6] and Perthame [26,27].

In the current paper, however, the kinetic theory is not utilized directly as
the basis for a scheme. Rather, we will see that there is a certain class of
quadratures of the moment integral all of which lead to decompositions (2.1)
and (2.2) of the vector of conservative variables U and the flux matrix F(U),
respectively. These decompositions, which we call flux-consistent state decom-
positions (briefly flux decompositions), form the basis of the MoT. If would
be interesting to see if flux decompositions could be constructed for general
systems of conservation laws via the BGK models constructed recently by
Bouchut [1].

The already mentioned EG and FVEG schemes by Ostkamp [24,25] and
Luka¢ovd, Morton, Saibertovd, Warnecke [20,22,21] are also derived from
an exact evolution operator using quadrature rules. This evolution operator
(which we will call the EG operator) is based on the classical characteristic
theory, see for example Courant and Hilbert [5]. Ostkamp already showed
that there is a close connection between her characteristic Galerkin scheme



and Fey’s [8] original version of the Method of Transport for the linearized,
constant coefficient Euler equations. We are now able to lift this connection up
from the level of schemes to the level of exact evolution operators. More pre-
cisely, we can find a canonical continuous state decomposition (derived from
the classical characteristic theory) for which our exact evolution operator be-
comes identical to the EG operator for linear, constant coefficient equations.

Having established this connection, we would also like to point out an impor-
tant difference between the EG approach and the MoT: The state decompo-
sition leading to the EG formulation is not flux-consistent, i.e. it is not a flux
decomposition. This shows that the two schemes which Ostkamp [24,25] was
able to identify are derived from rather different sources. In fact, Ostkamp’s
proof relies on a number of rather restrictive assumptions which seem to be
tailored to the equations of gas dynamics.

All important connections within and between the mentioned approaches are
schematically shown in the diagram in figure 1.1. As a side remark, we would
like to mention that our general evolution operator, applied to a trivial state
decomposition, leads to the standard integral form of conservation laws.

The unifying themes of the paper are state decompositions, flux decomposi-
tions and the corresponding exact and approximate evolution operators: In
section 2, we define state and flux decompositions and give some simple ex-
amples. As a more involved example, we derive flux-consistent state decompo-
sitions from gas-kinetic theory in section 3. Especially we will see that Fey’s
[10] discrete flux decomposition can be obtained this way. In section 4, we
derive exact and approximate evolution operators from state and flux decom-
positions, respectively. In section 5, we derive another more involved state
decomposition (which is not flux-consistent) from bicharacteristic theory and
use it to identify the EG operator with our general evolution operator (but
not with the MoT-ICE).

Extensive numerical tests [16] show that the MoT-ICE is a very diffusive
scheme and thus shares also experimental properties with the kinetic schemes.
Therefore, the current version of the MoT-ICE seems to be more of theoretical
than of practical interest.

We would like to thank Bill Morton, Maria Lukécovd-Medvidovd and Ger-
ald Warnecke for interesting discussions on Evolution Galerkin Schemes, and
Michael Fey and Rolf Jeltsch for sharing their insights into the Method of
Transport.
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Fig. 1.1. Overview of state decompositions (SDs), flux decompositions (FDs), the
classical bicharacteristic and the kinetic theories, the Evolution Galerkin (EG)
schemes and Fey’s Method of Transport (MoT).

2 Decompositions of hyperbolic systems

In this section, we will define state decompositions and flux-consistent state
decomposition for arbitrary systems of hyperbolic conservation laws (1.1), and
give some simple examples.

Definition 2.1 Let L € N, and for every |l = 1,...,L let S; be some R™-
valued and a; some R*-valued continuously differentiable functions on the set



Q of physical states U. The family (S, a;)i=1,..1 is called a state decomposition
for (1.1) if

Y. S(U)=U (2.1)

holds.

Definition 2.2 A state decomposition is called fluz-consistent if additionally
L
> S(U) - w(U) = FE(U) (22)
1=1

holds.

A flux-consistent state decompositions will sometimes simply be called a flux
decomposition. In section 5, we will also work with a continuous state decom-
position where the sum over [ is replaced with an integral.

We would like to emphasize that this is different from the Fluctuation Splitting
approach of Deconinck, Roe and Struijs [7] where the divergence V - F(U) is
decomposed rather than the flux matrix F itself.

Example 2.3 A very simple state decomposition for any system is given by
L=1,8, =U, a; = 0. It is not flux-consistent except in the trivial case
F=0.

In remark 4.3, we will recover the classical integral form of conservation laws
from this example.

Example 2.4 If we consider a one-dimensional system of conservation laws,
i.e. d =1, and further assume that F is homogeneous, i. e. F(U) = F'(U)-U,
then we can set L =m, 8; = r! and a; = \! where r' are the eigenvectors of
F'(U) (normalized such that they sum up to U) and \' are the corresponding
ergenvalues. The resulting state decomposition is fluz-consistent.

This decomposition has been used by Steger and Warming in their well-known
flux-vector splitting scheme [30].

Example 2.5 The previous example can be generalized to the multi-dimensional
case if one assumes the Jacobian matrices Fg to commute (i. e. to be simul-
taneously diagonalizable): If ' are the common eigenvectors and N, is the
corresponding I-th eigenvalue of the s-th Jacobian matriz F.(U), set 8; = r!
as before and a; = (X!, ..., \y). This again results in a fluz-consistent state
decomposition.



For the general case in which the Jacobian matrices are not simultaneously
diagonalizable, there does not seem to be such a simple mechanism to con-
struct a flux-consistent state decomposition. In the next section, we will show
that the kinetic theory quite naturally leads to a flux decomposition for Eu-
ler’s equations of gas dynamics, and in section 5, we will present a continu-
ous state decomposition—based on bicharacteristic theory—which is not flux-
consistent.

3 Gaskinetic derivation of flux-consistent state decompositions

In this section, we will briefly recall well-known facts about gaskinetic theory,
its connection to Euler’s equations of gas dynamics and the main idea of the
kinetic schemes based on it. Then, we will describe how quadrature rules quite
naturally lead to flux decompositions for Euler’s equations.

3.1 Euler’s equations

For the Euler equations, the vector of conservative variables reads

Here, p is the density, m = pu is the momentum (denoted as a line vector so
that m" is a column vector) and E is the total energy.

The flux matrix for Euler’s equations then reads

m
FU)=|m"u+pl
(E +pu
where p is the presure. We consider a polytropic gas with the following equa-
tion of state:
1 K +d P

1
= —ou? o =—m? E—
E SPU + — 5 PU +7_1

Here, K is the number of rotational degrees of freedom of a molecule (2 for
oxygen for example), d is the space dimension (usually 3, even in the case that



we consider solutions that only depend on one or two space dimensions), and
A is proportional to the inverse temperature and satisfies 1/2)\ = p/p. Finally,
7 is the adiabatic coefficient and equals 1 + 2/(K + d).

Euler’s equations now read

oU+V,-FU)=0. (3.1)
3.2  Boltzmann’s equation and kinetic schemes

Let f = f(z,t,u,&) be the density of particles at position z and time ¢ with
speed v and rotational momentum &. Boltzmann’s equation for the evolution
of fis

atf+ﬂ'v§f :Q(fa f)a (32)
where () is a function which models the interactions of particles.

For any macroscopic state U, there is a unique microscopic particle distribu-
tion g = g(U, v, £) which models the given equilibrium state,

g(U, v, &) = pMp (€)M} (u — u), (3.3)
where

A\ K72 A\ 4/2
My (€) = (—) e and M)(v—u) = (_) e~ Mz—u)?

™ ™

are Maxwell’s equilibrium functions. If @) is given by elastic binary collisions,
then Q(g,g) = 0, see Cercignani [4].

Lemma 3.1 Let

s +&%)
Then,

U://ngdgdg and F(U) ://'gbygdyd§. (3.4)

The integrals in (3.4) are called moment integrals.

We omit the proof of the lemma, which is just a straight-forward computation.



Lemma 3.1 relates the moments of the particle distribution function f to
the conservative variables U and the fluxes F(U) of the Euler equations.
Indeed, a classical Hilbert or Chapman—Enskog expansion (see for example
Cercignani [4]) shows that the Euler equations are a first order approximation
of Boltzmann’s equation.

Deshpande [6] and Perthame [26,27] constructed kinetic schemes by consid-
ering (at the beginning of the time step) an initial particle distribution in
equilibrium, carrying out a collision free transport for some finite time step,
and finally projecting back the resulting particle distribution (which is not
in equilibrium anymore) onto the corresponding equilibrium distribution (at
the end of the time step). This may be interpreted as realizing all collisions
at once. The resulting schemes have the advantage of preserving positivity of
density and pressure, but are rather dissipative at contact discontinuities.

While Deshpande used the exact Maxwellian g, Perthame replaced it with an
approximate Maxwellian (U, v, &) which is chosen in a way such that (3.4)
still holds, i.e.

U = //"ﬁf]dydf and FU) = //¢Q§dyd§. (3.5)
3.8 Derivation of flux decompositions

For the present paper, the following remark is essential:

Remark 3.2 Note that (3.4) respectively (3.5) may be interpreted as contin-
uous flur decompositions, e. g. with parameter v € R¢ by setting

S.0) = [ $@OyUvedE  and a0 =u

Since we do not care about the integral with respect to £, which we carry out
exactly, we introduce the notation

Po() = [ o &)pM(€)

for any (vector- or scalar-valued) function ¢(v, £). Now we look at the weighted
integral with respect to v, which we abbreviate by

Iy(x) = [ x(@)M @ — ) du. (3.6)
Now, (3.4) can be rewritten as

U= IU(EU)? FU) = Iy(Yyv). (3.7)



The idea which will lead to our discrete flux decompositions is to replace the
exact integral Iy with a quadrature rule Iy in such a way that the consistency
relations (3.7) are still satisfied.

Lemma 3.3 Let Iy be a quadrature rule for the integral Iyy. Then, the con-
sistency relations

<

U = Iy (yy), E(U) = Iy (pyv) (3-8)

are satisfied if and only if Iy is exact for x(v) € {1,v,v v, v|v|*}.
PROOF. We simply note that all of the functions 9 and v occuring in (3.4)
are linear combinations of the polynomials ¢(v). (Note that vTv is a d x d

matrix.) O

Corollary 3.4 Equation (3.8) holds if any only if

[y(1) =1, (3.92)
v (v) = u, (3.9b)
v (v"y) = u'u+ %1, (3.9¢)
Iy (v]p?) = %(dnt 2) + ulul®. (3.9d)
Alternatively, equation (3.9d) can be replaced with
- 2
Tu((w - w)of?) = ?p@ (3.10)

PROOF. The right hand sides of (3.9) are just the results of Iy (p(v)) for
those functions ¢ given in the lemma. Equation (3.10) can easily be seen to
be equivalent to (3.10) when (3.9a) and (3.9¢) hold. O

We now specialize to fully discrete decompositions.
Lemma 3.5 Let
R L
Iy(p) =) wnp(l) (3.11)
1=0

where &, = @ (U) and u, = w(U) are called weights and nodes of the quadra-
ture formula. Then, the expressions

S|(U) = opy (), a =1

10



form a flur decomposition if and only if

L
dw =1, (3.12a)

L
> oty = u, (3.12b)
=0
< p
iy iy =u'u+ =1, (3.12¢)
1=0 P
L up
> iy = —7 (d+2) + v’u. (3.12d)
=0

L
P 2
> (@) (@ —u) = = (3.13)

L L n
Y S(U) =) apy () = Iv(Yy)
1=0 1=0
and
L Lo o
Z Sl(U)Ql = Z@le(@l)@l - IU("»bUQ)'
1=0 1=0

Thus, the defining equtions (2.1) and (2.2) of a flux decomposition hold if
and only if (3.8) holds. The assertion thus follows from inserting (3.11) into
corollary 3.4. O

In our examples below, we always choose one component Sy of the flux de-
composition traveling with the macroscopic velocity u (roughly corresponding
to the entropy wave). The other components discretize the mach cone.

Lemma 3.6 Let L. € N be fired and o« € R arbitrary. For | = 1,...,L let
n € R be any vectors of length v/d which satisfy

11



Then, the following choice of 4, and &, satisfies condition (3.5):

Go=1-a, al_%, I=1,.... L
N A C1y
iy = u, iy =u+ ; l=1,...,L,
NGo
where ¢ = \/yp/p is the speed of sound.
The proof just consists of checking conditions (3.12).
Example 3.7 (a« = 1/7) Let L =2¢ and
—1 1
aO:7—3 ('Dl:_’ lzla aLa
gl Loy
iy = u, y=u+en, 1=1,...;L, mne{(£l,...,£1)}.
Example 3.8 (a =1) Let L =2¢ and
. . 1
(.UO:O, wlzz, l:1, ..,L,
A A Cny
Uy = u, W =u-+ , l=1,...,L, n € {(£1,...,+£1)}.

We will now introduce a slight generalization of our approach by which we can
also derive Fey’s [10] flux decomposition. The idea, which was already used
by Zimmermann [34] and Perthame [27], is to split ¢ into an interior and an

exterior part,

0 1

Y, =™ +v™w) =] 0 [+ |2" |,

IS4

N[
|

je

and then to use different quadrature formulas I%* and Ig* for integration of
these two parts. The condition for the resulting expression S; and g; to form

a flux decomposition is that

(3.12a)—(3.12d) hold for &wf** and 4§** whereas

only (3.12a) and (3.12b) have to be satiesfied for @™ and @"*. This enables us
to set 4" = 4™ even when @™ and @** are obtained from lemma 3.6 with

different values of «a:

12



Example 3.9 (/" =1, o®* =1/v) Let L =2% and

~int ~int
wy =0, W =7, lzl’ "’L’
0 ! L
-1 1
apt=12= ept=—,  I=1,...L
. ,y Lry
;z)nt,ext = u, ;znt,ext =u+ cny, | = 1, .. .,L, n <€ {(:tla ) :tl)}

This example results in Fey’s discrete state decomposition.

Remarks 3.10

(1) Using the same ideas, one can also derive partially or fully continuous fluz
decompositions. A physically motivated idea would be to have one compo-
nent with speed v and additionally an integral over a sphere around this
point. However, as lemma 3.6 already suggests, the radius of the sphere
would be by a factor of V/d larger than that of the Mach cone—or (com-
pensating this by a different choice of o) the weight of the middle point
would become unphysically (especially negative for d > ). For details see
Kriger [15].

(2) The results of this section extend work of Zimmermann [33,34]. See also
Junk [14] for related ideas.

4 Exact and approximate evolution operators for smooth solutions

We will now return to an arbitrary system of hyperbolic conservation laws
and assume that a state decomposition is given. Based on the state decom-
position, we will derive an exact evolution operator for the system. If further
more the state decomposition is flux-consistent, we will discretize the exact
evolution operator by the use of quadrature rules in time and space such that
the resulting scheme is just the MoT-ICE.

If a system (1.1) and a state decomposition (2.1) are given, we can write

0S(U)+ V- (Si(U)a) =-S|(U)V-E(U)+ V- (8(U)a) =: Ti(z,1),
(4.1)

where
a(z,t) == aU(z,1)).

The representation (4.1) can be considered as an advection equation for each
S;(U) with a right hand side.

13
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Fig. 4.1. The cell K is transported backwards in time along characteristics.

Lemma 4.1 For a fluz-consistent state decomposition, we have that Y ;T =
0.

PROOF.
L o L L
ST = ~50 Y S(U)V-FU)+ V-3 (Si(U)a)
I=1 = =1
oU
= —wV-E(U) +V-FEU)=0.
O

Define the [-th characteristic £, through the point (z, t,11) by

0:&,(1) = (& (7). 7), & (tar1) =z, (4.2)
and for any K C R? (with sufficiently smooth boundary) define
K'(r) = {&(r) 1z € K}
and

Q={E(r), 1)z €K, t, <7<t} CR' xR,

see figure 4.1. Then, integration of (4.1) over Q' yields

/Q Ty(z,7)dzdr = /Q (0:8:(U) + V- (Si(U)w)) dzdr

= S (U)(a, 1) - nds.
o

The boundary 9Q' of the tube Q' consists of the top K x {t,,1}, the bottom
K'(t,)x{t,} and the surface S := {(z,t) € Q' : t,, < t < t,,1}. At each point

14



(z,7) € S, we have that n is perpendicular to the characteristic (£, ,(7),7).
Due to (4.2), this means that the integral over S vanishes. Thus, we have

/Ql Ti(z,7) dsz:/KSl(U(Lth))dg—/ S)(U(z,t,))dz.  (4.3)

K(tn)

Summing over all [ yields

Z/ T(z,7) dxdT—/ZSl (x,tns1)) dx—Z/ U(z,t,))dz

l(tn

U(Qatn-'rl)

and thus gives rise to the following representation of the solution U:

Lemma 4.2 (Exact evolution operator) Let U be a smooth solution of (1.1)
and (Sy, ), be a (not necessarily fluz-consistent) state decomposition. Then,

/KU(:U tns1)d Z/Kl(tn Uz tn))di—klz:/ﬂl T)(z,7)dzdr. (4.4)

O

Remark 4.3 Choosing L = 1, S1(U) = U and a,(U) = 0 leads to the
standard integral form of the conservation law,

/KU(Lth)dQ:/KU( dx—/th/ V- F(U)dzdr,

which s the basis of classical finite volumne discretizations.
Note that this decomposition is not flux-consistent.

In section 5, we will show that lemma 4.2 also includes the EG operator, which
is derived from the classical characteristic theory.

4.1 Approzimate evolution operators

The exact evolution operator cannot be used in practice because it contains
a time integral over [t,,t,.1] and in a practical scheme one does not know
anything about the solution at those intermediate time levels. Application of
the trapezoidal rule to the time integral in the left hand side of (4.3) yields

At
—/Tl.ftn+1 d$+_/ $t
2 Jk Ki( tn)

= [ 81U tns1)) dz - / SUU (z,1.)) dz + O(APK]),
K Ki(tn)

15
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Fig. 4.2. The cell edges are transported backwards in time and approximated by
cellwise axiparallel lines. These define the cells K which consist of a union of finitely
many rectangles.

or

/K (SZ(U) - %TO (z, tn41) da

= (Sl(U) + %ﬂ) (z,tn) dz + O(AL|K]).

K(tn)

If we again sum over all [ and now assume the state decomposition to be
flux-consistent, the term T'; on the left hand side cancels and we get:

Lemma 4.4 (Approximate evolution operator I) For a smooth solution
U and a fluz-consistent state decomposition of (1.1),

(Sl(U) + %TZ) (2, ) dz + O(AB|K]). (4.5)

/KU(L thtr) dz = lé/K

O

H(tn)

In general, K'(t,) has a curvilinear boundary and cannot be determined ex-
actly. In [23, section 3], we approximated the cell by aset K ! which is a union
of finitely many rectangles? , see figure 4.2. For this K', the following estimate
holds:

Lemma 4.5 Suppose that the velocity field a; is smooth. Let K be the ap-
prozimation to K'(t,) used by the second order MoT-ICE (cf. [23, section 3]).
Then,

/Kl(tn) ¢(z) dz = /fd ¢(z) dz + O(AL*|K])

for any smooth function ¢.

2 Similar approximations were developed by M. Fey and coworkers (private com-
munication).

16



PROOF. Suppose that ¢ is the initial function of an advection problem at
time ¢,, and ® is the exact solution at ¢,,;1, then [, (tn) ¢ = [, ¥ and as shown
in [23, theorem 3.2], [ ¥ = [z ¢ +O(A#*|K|). This implies the assertion. O

Especially, we have

At At
/ (s,(U) - 7:rl> (@ tp)dz= [ | (Sl(U) + 7T,) (@) dz + O(AP|K)).
Using this approximation we obtain:

Lemma 4.6 (Approximate evolution operator II) Let

8 = \K|/< Tl>(§,tn)d§. (4.6)
Then,

L
O(A#) 4.
|K|/ (z,tne1)d ; t (4.7)

for a smooth solution U and a fluz-consistent state decomposition of (1.1).

PROOF. We have that

5= 1 / (sl )(x tne1) dz + O(AF), (4.8)
thus,
ﬁ— /( —ﬁiT)xt )dz + O(AP)
2T 2 5
——

0

= 3 g
|K|/I(U(Ltn+1)d£+0(At ).

We would like to point out that we are now able to determine the coupling
terms T'; at the new time level implicitely from the numerical data: Suppose
T,(z,t,) is known. First, use (4.7) to approximate U (z, t,,+1). Then, from (4.8)
we get

At A
o7l [ T - At?).
2K Jx (&, tnt) d |K‘/ Si(U)(z, tns1) dz — 81 + O(A)

The advantage of this procedure is that the explicit formula 4.1 does not have
to be coded. That is to say, this formula can become extremely complicated,
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see for example von Térne et al [31,11] for the equations of magnetohydro-
dynamics. However, although this idea in principal works, there are several
unsolved problems with this construction which we observed in our numerical
experiments, for example the question of limiting of the coupling terms or their
treatment at the boundary. For details see [15]. The numerical results shown
in our companion paper [16] are therefore based on the explicit formula (4.1).

5 Comparison with the EG evolution operator

In this section, we will show that the evolution operator derived in lemma 4.2
is closely related to the one developed by Ostkamp [24,25] and later used by
Lukacovd, Morton and Warnecke [20] for the derivation of their new EG 3
scheme. This evolution operator, which we call EG operator in the following,
is based on the classical characteristic theory, see [3,5,28].

Ostkamp already showed that there is a close connection between her char-
acteristic Galerkin scheme and Fey’s version of the Method of Transport. We
will now show that there is a canonical continuous state decomposition (de-
rived from the classical characteristic theory) for which our exact evolution
operator (4.4) becomes identical to the EG operator. In other words, the con-
nection between the two approaches is lifted up from the level of schemes to
the level of exact evolution operators, and lemmas 5.1 and 5.3 below can be
considered as the fundamental interface between the two ideas.

Note that in [24,25,20,22,21] the EG operator has only been used for linear or
linearized systems. Thus, to compare both evolution operators, we will restrict
ourselves to the linear, constant coefficient case. Hence, let

d
U +> A0, U=0 (5.1)
s=1

be a linear system of hyperbolic conservation laws. Here, A; are m X m ma-
trices.

The consistency condition of a state decomposition, for a linear system, reads

> S(U)=U, (5.2)

and flux-consistency would additionally require
L

Y S(U) - a,,(U) = AU, (5.3)

=1
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where a; 5, s = 1,. .., d denote the single components of the speeds g;. It seems
to be sensible for linear systems that a;,(U) should not depend on U (i.e.
only on [ and s). As a consequence, the characteristics §lx are straight lines,
€ (1) = 2+ (T —tny1)a- In this case, by considering the limit of a one-point set
K,i.e. K — {z}, the exact evolution operator (4.4) can be stated pointwise
as

L L tnt1
Uz, tair) =3 Si(U(z — At -a,t,)) + Z/t T+ (7 — tsd)as, ) dr
=1 =17t
(5.4)

Here the state decomposition still has to be specified. One can construct a
continuous state decomposition (i.e. the sum in (2.1) is replaced with an inte-
gral or, more general, a sum of integrals) in which S;(U) are the eigenvectors
of the Jacobian of F(U) (when a certain normal direction in the z space
is given) and the velocities g, are the associated ray velocities arising from
the characteristic theory (see Courant and Hilbert [5] or Jeffry and Taniuti
[13]): Consider a characteristic surface of the linearized system in the (z,t)
space which at a given time level (say, at ¢ = ;) concentrates in one point.
Then construct the intersection of this surface with the ¢ = ¢, + 1 plane, see
figure 5.1 for an example (such a diagram is called Friedrichs diagram). If a
normal direction is given, the ray velocity is the position vector of the point on
the Friedrichs diagram in which the tangential plane is orthogonal to the given
normal direction. It must not be confused with the normal velocity. The nor-
mal velocity always points into the normal direction, the ray velocity doesn’t,
but the projection of the ray velocity onto the normal direction equals the
normal velocity.

In symbols, the state decomposition is defined as follows: Let p € R? be the
normal direction, p # 0. From the hyperbolicity of the system we know that
the matrix

d
A(p) =) ps A,
s=1

is diagonalizable with real eigenvalues. Let r’; be the right (column) eigenvec-
tors, l’; the left (row) eigenvectors and )\’; the eigenvalues—where k = 1,...,m.
We only consider these terms for |p| = 1, but it is important to understand
that they are defined as well for other values of p so that derivatives of )\’; with
respect to a component p, are defined. The eigenvectors are assumed to be
normalized such that R, = (L,) ! where R, and L, are the matrices whose

columns are r’; or whose rows are l’;, respectively.
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N

Fig. 5.1. Example for a Friedrichs diagram for the linearized equations of magneto-
hydrodynamics.

Now, set
——rkry, (5.5)

where S4' C R? is the unit sphere. These S5 (U) are the components of a
continuous state decomposition. In fact, (5.2) is satisfied:

k — kyk .
/Sd_l kglsg(v) dp = R /Sd_l kglrglngU = [5a1] /Sd_l R,L,dpU
=U.
Then set
=gy = Vgx\l;, (5.6)

this is the gradient of )\’; with respect to p. These are the ray velocities that
arise from the Friedrich diagrams. Note that the normal velocities in our no-
tation are p - )\’;. Although this may seem somewhat artificial, we would like
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to emphasize that it is in fact the most natural choice of the velocities: Re-
call that the ray velocities are precisely those velocities with which a point
disturbance propagates (see figure 5.1).

The so-defined state decomposition is in general not flux-consistent in the
sense of definiton 2.2. This can be seen, for example, for the Euler equations
in the case d > 1, by an elementary but involved calculation. See Kroger [15]
for details. Nevertheless, the exact evolution operator (4.4) applies anyway,
since lemma 4.2 does not require flux-consistency.

Using the state decomposition (5.5) and (5.6) in lemma 4.2, we will now iden-
tify our exact evolution operator with the EG operator.

Inserting (5.5) and (5.6) into (5.4), we get:

Lemma 5.1 For a smooth solution U of the linear system (5.1) of hyperbolic
conservation laws, we have

U(z,thi1) = Sd 1 /Sd 1 Z ’Pklk U(z— At - VQ/\S,tn) dp (5.7)

m

/Sdlz

where T is given in (5.9). O

tn+1

T’“ (4 (7 — tns1) VpAs, 7) dr dp (5.8)

We now translate the EG evolution operator (cf. [20, section 3, especially
equation (3.6)]) into our notation. First, we note the following result:

Lemma 5.2 The term bj;(n) in the notation of Lukdcovd, Morton, Warnecke
[20, (3.4)] corresponds to V,\k = ay in our notation.

PROOF. Just translating the notation, we get that the b%,(n) in [20] (where
we use k instead of j, s instead of k¥ and p instead of n) equals the k-th
diagonal element of the matrix LBASR,_,, and that is l’;Asr’;. We thus have to
show that -

kA ok k
I, A, = 0y Ap.

But differentiating the identity

d

s=1
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with respect to p, yields

d
0—(8,,3115 <)\’]_§-1—2p3 )'r' —i—l’“()\’c I—Zps >8psr)

s§= PN s=1 ,
0 0
+ 15 (0p N1 — A )
= Op, Al — l';Asr’; O

Using this result, we get that the EG operator in our notation takes the form

Uz, tos) = Sd y /Sd IZ (U (2 — At~V 5 1,))rk dp

m tn+1

/Sd . Z Zk (z+ (1 — tn+1)V2)\z, 7)drdp

where Z’; is some coupling term to be studied more precisely in a moment.
Since l’;U(. ..) is a scalar value and therefore commutes with the vector 7},
we see that the first term is the same in both evolution operators. If we now
show that Z'; = T’; then both evolution operators coincide. We have that

Ty(z,t) = — ET ';l’;ZA 8y, U (,1) + K 1|Za Nerht50,,U (2, 1)
1
= 5o ’;l’;zwpsx,ﬁ-1—As)a$sU(z,t). (5.9)

For Z Z, if we translate everything in our notation, we get

1 d
Zb(z,t) = W’rﬁ _1((A£,s — LA, R,);L,0,,U (z,1))
where
Op Ay
oL O, N
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and (-), means the k-th row of a matrix-valued term. Computing this gives

d

|S4-1] p (8 )‘klk_lkAst_sz_))awsU(Lt)

1
|Sd 1] Izillzi Z(aps/\]; -1—A,)0,,U(z,1).
s=1

k
Z,(z,t) =

Hence, T’pc = Z’If, and thus we have:

Lemma 5.3 For a smooth solution U of the linear system (5.1) of hyperbolic
conservation laws, we have that our evolution operator (5.7) where S’; and Q’;
are given by (5.5) and (5.6) is identical with the EG operator. 0O -

We would like to recall that an overview of these connections has been given
in figure 1.1.

Remarks 5.4

(1) The continuous state decomposition (5.5)—(5.6) can also be introduced for
the non-linear case. Also, the exact evolution operator (4.4) remains valid
in that case. We have therefore found a generalisation of the EG operator
to non-linear systems.

(2) Since the continuous state decomposition is in general not fluz-consistent,
a discretisation as in lemmas 4.4 and 4.6 would not lead to a consistent
scheme for (1.1). Indeed, we are convinced that this scheme (for the lin-
ear, constant coefficient case) would coincide with Ostkamp’s ‘inconsis-
tent’ scheme.

(8) Perhaps the techniques of Lukdcovd, Morton and Warnecke [20] can be
used to construct yet another EG scheme out of this generalized evolution
operator in the nonlinear case. Unfortunately, for the non-linear case the
coupling terms T = T’C would become extremely complicated due to the
fact that 'r’;, l’pc and )\k in general also depend on U. The coupling terms
now read

g 1 Ky k k kT, T | gk
T} = gy ((r,_, O)EOW) + rEO) (™ W)U)" + lE(U)))
((VAO)(v0)) =V, F©))

+ri O U)U - tr(vU(ngg)T(U)VQUw

where tr A denotes the trace of a matriz A, and A* denotes the transposed
of A, and' denotes the derivative with respect to U.

As Ostkamp pointed out, her consistent scheme coincides with Fey’s original
MoT [8] for the linearized, constant coefficient Euler equations. Note that for
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Euler’s equations, however, we have that m = d + 2 and we get the very
special situation that (for appropriate numbering) Q}, = a™, and all other Q’;
(k=2,...,m —1) are equal and do not depend on p. Using these facts the
continuous state decomposition (5.5)—(5.6) can be simplified by combining
S}, and S, to one component and integrating all the S’; components (for
k=2,...,m—1and p € S*") to one single component. If this is done and
further more the p-dependent part of Szl, = S§™, is multiplied by the space
dimension d, one gets exactly Fey’s continuous state decomposition used in
[8], and therefore, one get’s Ostkamp’s consistent scheme. This state decom-
position is flux-consistent, but only because some special part of S’; has been
multiplied by a factor d in some places. Ostkamp [24] derived this factor d
systematically, but this derivation relies on a number of rather restrictive as-
sumptions which seem to be tailored to the equations of gas dynamics. For a
general system of conservation laws, it does not seem to be able to make the
continuous state decomposition flux-consistent this way.

Even though Ostkamp was able to identify her EG scheme and Fey’s original
MoT, we would like to suggest that the two approaches are fundamentally
different.® As we see it, the main difference between the MoT and the EG
approach is that the state decomposition which leads to the EG operator is not
flux-consistent. The MoT approximates the evolution operator in lemma 4.2
exploiting the flux-consistency of a given state decomposition (see especially
the approximate evolution operator of lemma 4.4), while the EG schemes
use an approximation technique which does not rely on the flux-consistency.
However, this has the consequence that the coupling terms T°; become more
essential in the EG approach. In the MoT-ICE, if the T'; are neglected, one
still gets a first order scheme; this can be seen in (4.5) by recognizing that
the sets K'(t,) differ from K only by sets of Lebesque measure O(At|K]|),
and Y, [ Tydz = 0 by lemma 4.1. So, the error made if T'; is neglected
in (4.5) is of order O(A#?|K|), thus the scheme would still be of first order. In
distinction to that, if the coupling terms are neglected in the EG operator, one
gets an inconsistent scheme. In fact, this is just what Ostkamp [24,25] did in
her ‘inconsistent’ scheme (which would be first order consistent on Ostkamp’s
terminology).

Neglecting the coupling terms in the first order Mo'T seems to be closely related
to dropping the interaction terms Q(f, f) in Boltzmann’s equation (3.2) during
a time step, which leads to the first order version of the kinetic schemes.
One could suggest that the second order MoT corresponds to approximating
Q(f, f) in a suitable way.

3 Quoting D. Adams’ ‘The Hitch Hiker’s Guide to the Galaxy’ (Random House
Value Publishing Inc., 1979), we are tempted to claim that the MoT is ‘almost, but
not quite, entirely unlike’ the EG schemes.
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6 Conclusion

We presented some new (as we hope) connections between a number of Riemann-
solver free approaches to numerics for systems of hyperbolic conservation laws.
The concept of state decompositions, flux decompositions and evolution op-
erators, which is the natural framework for the Method of Transport, can be
derived from the kinetic theory by just applying some quadrature rule to the
moment integral. This establishes a connection between the MoT and the ki-
netic schemes—especially there is a close relation between the kinetic schemes
and the first order MoT-ICE, in which the coupling terms T'; are neglected.

On the other hand, we illustrated that the choice of a special, physically rea-
sonable, but continuous state decomposition lets our exact evolution operator
become identical to the EG evolution operator used by Ostkamp [24,25] and
by Lukacovd, Morton and Warnecke [20] in the linear, constant coefficient
case. Thus, we introduced a new connection between the MoT and the EG
schemes at the level of exact evolution operators. However, there is still an
essential difference, namely the concept of flux-consistency: To construct a
MoT-like scheme out of our exact evolution operator the state decomposition
is required to be flux-consistent, and also, state decompositions obtained from
the kinetic theory automatically are flux-consistent. But the EG approach is
based on a non-flux-consistent state decomposition obtained from the charac-
teristic theory.

Thus, the concepts of state decompositions and flux decompositions help to
clarify similarities and differences between the kinetic approach and the MoT
on one hand and the EG approach (and even standard finite volume schemes,
see remark 4.3) on the other hand.

Extensive numerical tests of the MoT-ICE are presented in [16].

References

[1] F. Bouchut, Construction of BGK Models with a Family of Kinetic Entropies
for a Given System of Conservation Laws, J. Statist. Phys. 95 (1999), no. 1-2,
113-170.

[2] Y. Brenier, Average multivalued solutions for scalar conservation laws, SIAM
J. Numer. Anal. 21 (1984), 1013-1037.

[3] D.S. Butler, The numerical solution of hyperbolic systems of partial differential

equations in three independent variables, Proc. Roy. Soc. 255A (1960), 232-
252.

25



[4] C. Cercignani, The Boltzmann equation and its applications. Springer, New
York (1988).

[5] R. Courant, D. Hilbert, Methods of Mathematical Physics, Volume II: Partial
Differential Equations. Interscience Publishers, New York (1962).

[6] S.M. Deshpande, A Second-Order Accurate Kinetic-Theory-Based Method for
Inviscid Compressible Flows, NASA Technical Paper 2613 (1986).

[7] H. Deconinck, P.L. Roe, R. Struijs, A multidimensional generalization of Roe’s
flux difference splitter for the Euler equations, Comput. & Fluids 22 (1993), no.
2-3, 215-222.

[8] M. Fey, Ein echt mehrdimensionales Verfahren zur Losung der Eulergleichungen
(Dissertation), Ziirich (1993).

[9] M. Fey, Multidimensional upwinding. I. The method of transport for solving
the Euler equations, J. Comput. Phys. 143 (1998), 159-180.

[10] M. Fey, Multidimensional upwinding. II. Decomposition of the Euler equations
into advection equations, J. Comput. Phys. 143 (1998), 181-199.

[11] M. Fey, S. Noelle, C. v. Térne, The MoT-ICE: a new multi-dimensional wave-
propagation-algorithm based on Fey’s method of transport. With application to
the Euler- and MHD-equations, Internat. Ser. Numer. Math. 140, 141 (2001),
373-380.

[12] E. Godlewski, P.-A. Raviart, Numerical Approzimation of Hyperbolic Systems
of Conservation Laws, Applies Mathematical Sciences, 118. Springer, New York
(1996).

[13] A. Jeffrey, T. Taniuti, Non-Linear Wave Propagation. Academic Press, New
York (1964).

[14] M. Junk, A Kinetic Approach to Hyperbolic Systems and the Role of Higher
Order Entropies, Internat. Ser. Numer. Math. 140, 141 (2001), 583-592.

[15] T. Kroger, Dissertation, RWTH Aachen, Germany, in preparation.

16] T. Kroger, S. Noelle, Numerical Comparison of the Method of Transport to a
ger,
Standard Scheme, IGPM Preprint no. 229, submiitted to Comp. Fluids.

[17] D. Kroner, Numerical Schemes for Conservation Laws. John Wiley & Son Ltd.,
Stuttgart (1997).

[18] R.J. LeVeque, Numerical Methods for Conservation Laws, Lectures in
Mathematics. Birkhauser, Basel (1990).

[19] P. Lin, K. W. Morton, E. Sili, Characteristic Galerkin Schemes for Scalar
Conservation Laws in Two and Three Space Dimensions, SIAM J. Numer.
Anal. 34, no. 2 (1997), 779-796.

[20] M. Luk4covi-Medvidova, K. W. Morton, G. Warnecke, Evolution Galerkin
methods for hyperbolic systems in two space dimensions, Math. Comp. 69
(2000), 1355-1384.

26



[21] M. Luk4covi-Medvidova, K. W. Morton, G. Warnecke, Finite Volume Evolution
Galerkin (FVEG) Methods Hyperbolic Sytems, Preprint, (2002).

[22] M. Lukéacova-Medvidova, J. Saibertovd, G. Warnecke, Finite volume evolution
Galerkin methods for nonmlinear hyperbolic sytems, Preprint No. 02-02,
Magdeburg (2002), to appear in J. Comp. Phys.

[23] S. Noelle, The MoT-ICE: A New High-Resolution Wave-Propagation Algorithm
for Multidimensional Systems of Conservation Laws Based on Fey’s Method of
Transport, J. Comput. Phys. 164, (2000), no. 2, 283-334.

[24] S. Ostkamp, Multidimensional Characteristic Galerkin Schemes and Evolution
Operators for Hyperbolic Systems (Dissertation), Hannover (1995).

[25] S. Ostkamp, Multidimensional Characteristic Galerkin Methods for Hyperbolic
Systems, Math. Meth. Appl. Sci. 20, 1111 (1997).

[26] B. Perthame, Boltzmann Type Schemes for Gas Dynamics and the Entropy
Property, SIAM J. Numer. Anal. 27, No. 6 (1990), 1405-1421.

[27] B. Perthame, Second-Order Boltzmann Schemes for Compressible Euler
Equations in One and Two Space Dimensions, SIAM J. Numer. Anal. 29,
No. 1 (1992), 1-19.

[28] P. Prasad, Nonlinear hyperbolic waves in multi-dimensions. Chapman & Hall/
CRC, New York (2001).

[29] P. Roe, Discrete models for the numerical analysis of time-dependent
multidimensional gas dynamics, J. Comput. Phys. 63 (1986), 458-476.

[30] J. L. Steger, R.F. Warming, Flux vector splitting of the inviscid gasdynamic
equations with application to finite-difference methods, J. Comput. Phys. 40,
No. 2 (1981), 263-293.

[31] C. v. Térne, MOTICE - Adaptive, Parallel Numerical Solution of Hyperbolic
Conservation Laws (Dissertation), Bonner Mathematische Schriften, Nr. 334
(2000).

[32] E. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. A
Practical Introduction, Second edition. Springer, Berlin (1999).

[33] S. Zimmermann, Properties of the Method of Transport for the Euler Equations
(Dissertation), Ziirich (2001).

[34] S. Zimmermann, The Method of Transport for the Euler Equations Written as
a Kinetic Scheme, Internat. Ser. Numer. Math. 141 (2001), 999-1008.

27



