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CONVERGENCE ANALYSIS OF A MULTIGRID METHOD FOR A
CONVECTION-DOMINATED MODEL PROBLEM

MAXIM A. OLSHANSKII* AND ARNOLD REUSKEN 1

Abstract. The paper presents a convergence analysis of a multigrid solver for a system of
linear algebraic equations resulting from the disretization of a convection-diffusion problem using a
finite element method. We consider piecewise linear finite elements in combination with a streamline
diffusion stabilization . We analyze a multigrid method that is based on canonical inter-grid transfer
operators, a “direct discretization” approach for the coarse-grid operators and a smoother of line-
Jacobi type. A robust (diffusion and h-independent) bound for the contraction number of the two-grid
method and the multigrid W-cycle are proved for a special class of convection-diffusion problems,
namely with Neumann conditions on the outflow boundary, Dirichlet conditions on the rest of the
boundary and a flow direction that is constant and aligned with gridlines. Our convergence analysis
is based on modified smoothing and approximation properties. The arithmetic complexity of one
multigrid iteration is optimal up to a logarithmic term.
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1. Introduction. Concerning the theoretical analysis of multigrid methods dif-
ferent fields of application have to be distinguished. For linear selfadjoint elliptic
boundary value problems the convergence theory is well developed (cf. [5, 9, 35, 36]).
In other areas the state of the art is (far) less advanced. For example, for convection-
diffusion problems the development of a multigrid convergence analysis is still in its
infancy. In this paper we present a convergence analysis of a multilevel method for a
special class of 2D convection-diffusion problems.

An interesting class of problems for the analysis of multigrid convergence is given by
{ —eAu+b-Vu = f in Q=(0,1) (11)
u = g on 0F, '

with € > 0 and b = (cos¢,sin¢), ¢ € [0,2mr). The application of a discretization
method results in a large sparse linear system which depends on a mesh size parameter
hy. For a discussion of discretization methods for this problem we refer to [28, 1, 2]
and the references therein. Note that in the discrete problem we have three interesting
parameters: hy (mesh size), € (convection-diffusion ratio) and ¢ (flow direction). For
the approximate solution of this type of problems robust multigrid methods have
been developed which are efficient solvers for a large range of relevant values for
the parameters hg, €, ¢. To obtain good robustness properties the components in
the multigrid method have to be chosen in a special way because in general the
“standard” multigrid approach used for a diffusion problem does not yield satisfactory
results when applied to a convection-dominated problem. To improve robustness
several modifications have been proposed in the literature, such as “robust” smoothers,
matrix-dependent prolongations and restrictions and semicoarsening techniques. For
an explanation of these methods we refer to [9, 33, 4, 13, 14, 18, 19, 37]. These
modifications are based on heuristic arguments and empirical studies and rigorous
convergence analysis proving robustness is still missing for most of these modifications.
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Related to the theoretical analysis of multigrid applied to convection-diffusion
problems we note the following. In the literature one finds convergence analyses
of multigrid methods for nonsymmetric elliptic boundary value problems which are
based on perturbation arguments [6, 9, 17, 32]. If these analyses are applied to the
problem in (1.1) the constants in the estimates depend on ¢ and the results are not
satisfactory for the case e < 1. In [11, 25] multigrid convergence for a 1D convection-
diffusion problem is analyzed. These analyses, however, are restricted to the 1D
case. In [23, 26] convection-diffusion equations as in (1.1) with periodic boundary
conditions are considered. A Fourier analysis is applied to analyze the convergence
of two- or multigrid methods. In [23] the problem (1.1) with periodic boundary
conditions and ¢ = 0 is studied. For the discretization the streamline diffusion finite
element method on a uniform grid is used. A bound for the contraction number of a
multigrid V-cycle with point Jacobi smoother is proved which is uniform in € and Ay
provided € ~ hy, is satisfied. Note that due to the fact that a point Jacobi smoother
is used one can not expect robustness of this method for hy > ¢ | 0. In [26] a two-
grid method for solving a first order upwinding finite difference discretization of the
problem (1.1) with periodic boundary conditions is analyzed and it is proved that
the two-grid contraction number is bounded by a constant smaller than one which
does not depend on any of the parameters ¢, hy, ¢. In [3] the application of the
hierarchical basis multigrid method to a finite element discretization of problems as
in (1.1) is studied. The analysis there shows how the convergence rate depends on
¢ and on the flow direction, but the estimates are not uniform with respect to the
mesh size parameter hy. In [27] the convergence of a multigrid method applied to a
standard finite difference discretization of the problem (1.1) with ¢ = 0 is analyzed.
This method is based on semicoarsening and a matrix-dependent prolongation and
restriction. It is proved that the multigrid W-cycle has a contraction number smaller
than one independent of hjy and €. The analysis in [27] is based on linear algebra
arguments only and is not applicable in a finite element setting. Moreover, the case
with standard coarsening, which will be treated in the present paper, is not covered
by the analysis in [27].

In the present paper we consider the convection-diffusion problem

—eAu+tu, =f in Q:=(0,1)
%:0 on I'g:={(z,9)€Q|x=1} (1.2)

u=0 on IN\Tg

In this problem we have Neumann boundary conditions on the outflow boundary and
Dirichlet boundary conditions on the remaining part of the boundary. Hence, the
solution may have parabolic layers but exponential boundary layers at the outflow
boundary do not occur. For this case an a priori regularity estimate of the form
llull gz < ce™ Y| f|lL> holds, whereas for the case with an exponential boundary layer
one only has |Jul| g2 < ce™ 2| f| 2.

Due to the Dirichlet boundary conditions a Fourier analysis is not applicable.

For the discretization we use conforming linear finite elements. As far as we know
there is no multigrid convergence analysis for convection-dominated problems known
in the literature that can be applied in a finite element setting with nonperiodic
boundary conditions and yields robustness for the parameter range 0 < ¢ < hy < 1.
In this paper we present an analysis which partly fills this gap. We use the streamline
diffusion finite element method (SDFEM). The SDFEM ensures a higher order of
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accuracy than a first order upwind finite difference method (cf. [28, 38]). In SDFEM
a mesh-dependent anisotropic diffusion, which acts only in streamline direction, is
added to the discrete problem. Such anisotropy is important for the high order of
convergence of this method and also plays a crucial role in our convergence analysis of
the multigrid method. In this paper we only treat the case of a uniform triangulation
which is taken such that the streamlines are aligned with gridlines. Whether our
analysis can be generalized to the situation of an unstructured triangulation is an
open question.

We briefly discuss the different components of the multigrid solver.
For the prolongation and restriction we use the canonical inter-grid transfer operators
that are induced by the nesting of the finite element spaces.
The hierarchy of coarse grid discretization operators is constructed by applying the
SDFEM on each grid level. Note that due to the level-dependent stabilization term
we have level-dependent bilinear forms and the Galerkin property Ap—1 = riArpk
does not hold.
Related to the smoother we note the following. First we emphasize that due to a
certain crosswind smearing effect in the finite element discretization the x-line Jacobi
or Gauss-Seidel methods do not yield robust smoothers (i.e., they do not result in
a direct solver in the limit case ¢ = 0, c¢f. [9]). This is explained in more detail in
remark 6.1 in section 6. In the present paper we use a smoother of z-line-Jacobi type.
These components are combined in a standard W-cycle algorithm.

The convergence analysis of the multigrid method is based on the framework
of the smoothing- and approximation property as introduced by Hackbusch [9, 10].
However, the splitting of the two-grid iteration matrix that we use in our analysis is
not the standard one. This splitting is given in (6.8). It turns out to be essential to
keep the preconditioner corresponding to the smoother (Wj in (6.8)) as part of the
approximation property. Moreover, in the analysis we have to distinguish between
residuals which after presmoothing are zero close to the inflow boundary and those
that are nonzero. This is done by using a cut-off operator (®; in (6.8)). The main
reason for this distinction is the following. As is usually done in the analysis of the
approximation property we use finite element error bounds combined with regularity
results. In the derivation of a L? bound for the finite element discretization error
we use a duality argument. However, the formal dual problem has poor regularity
properties, since the inflow boundary of the original problem is the outflow boundary
of the dual problem. Thus Dirichlet outflow boundary conditions would appear and
we obtain poor estimates due to the poor regularity. To avoid this, we consider a
dual problem with Neumann outflow and Dirichlet inflow conditions. To be able to
deal with the inconsistency caused by these “wrong” boundary conditions we assume
the input residuals for the coarse grid correction to be zero near the inflow boundary.
Numerical experiments from section 11 related to the approximation property show
that such analysis is sharp.

In our estimates there are terms that grow logarithmically if the mesh size pa-
rameter hy tends to zero. To compensate this the number of presmoothings has to
be taken level dependent. This then results in a two-grid method with a contraction
number ||Ti|lam4 < ¢ < 1 and a complexity O(Ny,(In Ny)*), with Ny = h; 2. Using
standard arguments we obtain a similar convergence result for the multigrid W-cycle.

The remainder of this paper is organized as follows. In section 2 we give the weak
formulation of the problem (1.2) and describe the SDFEM. In section 3 some useful
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properties of the stiffnes matrix are derived. In section 4 we prove some a priori esti-
mates for the continuous and the discrete solution. In section 5 we derive quantitative
results concerning the upstream influence of a righthand side on the solution. These
results are needed in the proof of the modified approximation property. Section 6
contains the main results of this paper. In this section we describe the multigrid al-
gorithm and present the convergence analysis. In the sections 7-10 we give proofs of
some important results that are used in the analysis in section 6. In section 11 we
present results of a few numerical experiments.

2. The continuous problem and its discretization. For the weak formu-
lation of the problem (1.2) we use the L?(2) scalar product which is denoted by
(+,-). For the corresponding norm we use the notation | - ||. With the Sobolev space
Vi={veH(Q) |v=0 on 9Q\T'g} the weak formulation is as follows: find
u € V such that

a(u,v) == e(ug, vz) + €(Uy, vy) + (g, v) = (f,v) forall veV (2.1)

(From the Lax-Milgram lemma it follows that a unique solution of this problem exists.
For the discretization we use linear finite elements on a uniform triangulation. For
this we use a mesh size hy, := 2% and grid points x; ; = (ihg, jhy), 0 < i,j < h,;l.
A uniform triangulation is obtained by inserting diagonals that are oriented from
south-west to north-east. Let V, C V be the space of continuous functions that
are piecewise linear on this triangulation and have zero values on 02 \ I'g. For the
discretization of (2.1) we consider the streamline-diffusion finite element method: find
uy € Vi, satisfying

(e+0khe)((ur)z, Vz) Fe((Ur)y, vy) + ((Ur)z,v) = (f, v+xhrvg) for all v e Vg (2.2)
with

5 if e >1
5, = H 2= (2.3)
0 otherwise

The stabilization parameter ¢ is a given constant of order 1. For an analysis of the
streamline diffusion finite element method we refer to [28, 15]. In this paper we assume
- 1

del=z,1]. (2.4)
3

The value % for the lower bound is important for our analysis. The choice of 1 for the

upper bound is made for technical reasons and this value is rather arbitrary.

The finite element formulation (2.2) gives rise to the (stabilized) bilinear form

ar(u,v) = (€ + 6phi) (Us, vz) + €(Uuy, vy) + (Uz,v), u,v €V (2.5)

Note the following relation for the bilinear form ag(-,-):

1
ar(v,v) = e||vy||® + (e + Sxhe)||va | + 5/ vidy for veEV. (2.6)
I'e
The main topic of this paper is a convergence analysis of a multigrid solver for the
algebraic system of equations that corresponds to (2.2). In this convergence analysis
the particular form of the righthand side in (2.2), which is essential for consistency in
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the streamline diffusion finite element method, does not play a role. Therefore for an
arbitrary f € L?(Q) we will consider the problems:

u €V such that : ag(u,v) = (f,v) forall veV (2.7)
ug € Vi such that :  ag(ug,vr) = (f,vr) for all v, € Vi (2.8)

Note that u and u; depend on the stabilization term in the bilinear form and that
these solutions differ from those in (2.1) and (2.2).

3. Representation of the stiffness matrix. We now derive a representation
of the stiffness matrix corresponding to the bilinear form ag(-,-) that will be used
in the analysis below. The standard nodal basis in Vj is denoted by {¢¢}ti<i<n,
with Ny, the dimension of the finite element space, Ny, := h; ' (h; ' — 1). Define the
isomorphism:

N,
P.: X =RV — Vi, Prx= Zﬂfz(bz
i=1
On X; we use a scaled Euclidean scalar product: (z,y), = h? Zi\icl z;9; and cor-
responding norm denoted by || - || (note that this notation is also used to denote

the L2(2) norm). The adjoint P} : Vi — X}, satisfies (Pyz,v) = (z, Pfv)y for all
z € Xg, v € Vi. The following norm equivalence holds

CYz|| < ||Pez|| < C|lz|| for all z € Xy, (3.1)
with a constant C independent of k. The stiffness matrix Ay on level k is defined by
(Arz,y)r = ap(Prax, Pry) for all z,y € X (3.2)

In an interior grid point the discrete problem has the stencil

0 —e 0 A
7z —er 2(ext+e) —ex | + - —% 0 % , eg =€+ Oxhy . (3.3)
k]l 0 —e 0 Bl 1 1
6 6

For a matrix representation of the discrete operator we first introduce some notation
and auxiliary matrices. Let ny := h,;l and

1
D, = h—tridiag(—l, 1,0) € R™ X"k
k

A, =DThy= | e R

1
A, = h—Qtridiag(—l, 2,—1) € R Dx(m=1)

J = e R™X ™ T := tridiag(0,0,1) € R™*" .



Furthermore, let I,,, be the m x m identity matrix. We finally introduce the following
N x N matrices

Dy =1y, ® D, , Ag =1, 1 ®A, = DfDr , Ay = Ay ®J
and the Nj x Nj blocktridiagonal matrix
B = blocktridiag([nk,éllnk,T) .

Using all this notation we consider the following representation for the stiffness matrix
Ap in (3.2):

1 1
A = (e+ (0 — g)hk)Ar +eAy + EBDI (3.4)
The latter decomposition can be written in stencil notation as
) 0 0 O . 0 -1 0 0 -1 1
- | -1 2 -1 |+-—=1]0 2 0|+—1| -4 40 (3.5)
2 2
Ml oo of Mo —10] |1 1 o0

with &, =& + (6x — 3)hi > 0.

Some properties of the matrices used in the decomposition (3.4) are collected in
the following lemma.

For B,C € R™ " we write B > C iff 27 Bx > 2T Cx for all € R™.

LEMMA 3.1. The following inequalities hold

A,D;1 >0 (3.6)
A,D;' >0 (3.7)
B>2I (3.8)
ApD; > %1 (3.9)
DA <3 (3.10)

Proof. To check (3.6) observe A,D;! = DI'D,D;! = DT. Now note that
DT + D, is symmetric positive definite.
To prove (3.7) it suffices to show that DI'4, > 0 holds. We have
K= DgAy = Ini—1 ®ﬁ5)(fiy®j) = Au ®Df )

with the matrix

:h_k S

2

Hence in the matrix K + KT = fly @ (DT + D) both factors A, and DT + D, are
symmetric positive definite. From this the result follows.

To prove (3.8) we define R := B — 4I and note that ||R||? < ||R||e||R]1 < 4.
Using this we get

(Bw,x)i = 4]lz|® + (Rz, 2)r > 4]l2l* — [|R|[|=]* > 2[|=[|

-
[N

which proves the desired result. Inequality (3.9) follows immediately from the repre-
sentation of Ay, in (3.4) and inequalities (3.6)—(3.8). ;From the result in (3.9) it follows
that DT A, > £ DT D,. This implies || Dyz|? < 3(Axz, Dox)i < 3| Apa||| Do/ for all
x € X}, and thus estimate (3.10) is also proved. O
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4. A priori estimates. In this paper we study the convergence of a multigrid
method for solving the system of equations

Akxk =b 5 (4.1)

with Ay the stiffness matrix from the previous section. As already noted in the
introduction our analysis relies on smoothing and approximation properties. For
establishing a suitable approximation property we will use regularity results and a
priori estimates for solutions of the continuous and the discrete problems. Such results
are collected in this section. In the remainder of the paper we restrict ourselves to
the convection-dominated case:

ASSUMPTION 4.1. We only consider values of k and € such that ¢ < %hk.

If instead of the factor % in this assumption we take another constant C', our anal-

ysis can still be applied but some technical modifications are needed (to distinguish
between §; = ¢ and 6 = 0) which make the presentation less transparent.
We consider this convection-dominated case to be the most interesting one. Many
results that will be presented also hold for the case of an arbitrary positive € but
the proofs for the diffusion-dominated case often differ from those for the convection-
dominated case. In view of the presentation we decided to treat only the convection-
dominated case. Note that then

1 1 - 3
5k:5€[§,1] and ghk§8k=6+5hk§§hk . (4.2)
For the inflow boundary we use the notation 'y := { (,y) € Q | x = 0}. For the
continuous solution u the following a-priori estimates hold
THEOREM 4.1. For f € Lo(Q2) let u be the solution of (2.7). There is a constant
¢ independent of k and € such that:

l[ull + luell < cll£1, (4.3)

Velluyll < el £, (4.4)

hilluza|l + Vehil| vyl + elluyyll < cll £, (4.5)

/ u2dy—|—hk/ uidy—!—a/ u%dy§c||f||2. (4.6)
Te Tw g

Proof. Since f € Ly(Q), the regularity theory from [8] ensures that the solution
u of (2.7) belongs to H2(£2). Hence we can consider the strong formulation of (2.7)

—EUyy — EkUgy + Up = (4.7)

with boundary conditions as in (1.2). Now we multiply (4.7) with u, and integrate
by parts. Taking boundary conditions into account, we get the following terms:

9 9
el ue) = 51 = 5 [ by,
E

—ek(Ugg, Uy) = —g—k((ui)m 1) = E—k/ ui dy > chk/ ui dy, (we use (4.2))
2 2 T'w Tw
(U, ) = J|ua]|® > [Jull?,
1 9, 1 2
x < = ). x .
(f,ua) < 712 + el



From these relations the results (4.3) and (4.6), except the bound for fFE u? dy, easily
follow. Next we multiply (4.7) with u and integrate by parts to obtain

1
Elluy||2+€k||um||2+§/F u?dy = (f,u) < [ fllull < clfI%. (we use (4.3))
E

Estimate (4.4) and the remainder of (4.6) now follow. To prove (4.5) we introduce
F = f —u,. Due to (4.3) we have ||F|| < ¢|| f||. Moreover —euy, — €z, = F holds.
If we square both sides of this equality and integrate over {2 we obtain

e luyy|® + 2eer(uyy, tos) + eillusall* = [ FII* < c [ f]1*. (4.8)

Further note that for any sufficiently smooth function v, satisfying the boundary
conditions in (1.2), the relations

vww(x70) = U$a:(x7 1) =0, z€ (07 1)7 Uy(oay) = Uﬂ&y(lay) =0,y¢€ (07 1)7

hold, and thus

(vyya vww) = _(Uya vwwy) = (vaa va)'

Using a standard density argument we conclude that for the solution u € H2() of
(2.7) the relation (uyy, Ups) = (Uzy, Uzy) holds. Now (4.8) gives

62||uyy||2 + 2851@Hu$y”2 + €ﬁllumll2 <c ||f||2

In combination with (4.2) this yields (4.5). O

The next lemma states that the x-derivative of the discrete solution is also uniformly
bounded if the righthand side is from V.
LEMMA 4.2. For fi, € Vi, let ug, € Vi, be a solution to (2.8), then

[(ur)e |l < el fell- (4.9)

Proof. The result in (4.9) follows from the estimate (3.10) in lemma 3.1. To show
this we need some technical considerations.

First we show how the size of the z-derivative of a finite element function v € Vj,
can be determined from its corresponding coefficent vector P, v € X. Let T be the
index set {(4,7) |0 <i<mnp—1, 1<j<ng—1} For (i,j) € T let T(lm,) and
T(“i 5 be the two triangles in the triangulation which have the line between the grid
points x; ; and z;41,; as a common edge. Let v € Vi, be given. For 1 < j <mny —1

we introduce the vector v; = (v(z1,5),...,v(2n, ;))T. We then obtain
ol?= 3 ([, ety [ o2 daay)
@per T TG
v(@it1,5) — (i) \?
= 30 (Mt e g2 S (D) (D))
(i,5)€T k 1<j<nj—1

— 12 (Do Py )" (Do Py ) = || Do Py o)
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Therefore
|ve|| = || Do Py v|| for any v € V. (4.10)

For the discrete solution of (2.8) with f = fr we have the representation uj =
Py APy fi. Now from (3.10) and (4.10) it follows that

I(ur)a |l = 1D A By fiell < 3 1P fill < el fil

with a constant ¢ independent of k£ and €. O

The next lemma gives some bounds on the difference between discrete and con-
tinuous solutions

LEMMA 4.3. Define the error e, = u — u, where u and ug are solutions of
the problems (2.7) and (2.8) with righthand side f = fi € Vi. Then the following
estimates hold

Ien)zll < cll fxl (4.11)

1 h?
clen®+5 [ ety < T (4.12
I'g €

Proof. Estimate (4.11) directly follows from (4.3) and (4.9) by a triangle inequal-
ity. The proof of (4.12) is based on standard arguments: the Galerkin orthogonality,
approximation properties of Vj and a priori estimates from (4.5). Indeed

N 1 )
eller)yll? + (e + 0he) || (er)a|” + 3 / epdy = apler,ex) = inf ap(er,u — vg)
g vE €V

< it (ellen)y = vyl + (& + el (= vl + len)o i = vel)
< ¢ (e hull(er)yllull e + b2l ex)alllul o)

hi 2 € 2 hi 2
< e (hell(er)y I frll + ?”fk” ) < 3l Cex)yl +C?||fk” ,

The estimate (4.12) follows. O

5. Upstream influence of the streamline diffusion method. Consider the
continuous problem (2.7). The goal of this section is to estimate the upstream influ-
ence of the righthand side function f on the solution u. The same will be done for the
corresponding discrete problem. In the literature results of such type are known for
the problem with Dirichlet boundary conditions and typically formulated in the form
of estimates on the (discrete) Greens function (see, e.g., [31, 20, 16]). A typical result
is that the value of the solution at a point x is essentially determined by the values of
the righthand side in a “small” strip that contains x. This strip has a crosswind width
of size O(e*|In h|), where e* = max{e, h?}, and in the streamline direction it ranges
from the inflow boundary to a O(h|lnh|) upstream distance from z. In our analysis
we need precise quantitative results for the case with Neumann outflow boundary
conditions. In the literature we did not find such results. Hence we present proofs
of the results that are needed for the multigrid convergence analysis further on. Our
analysis uses the known technique of cut-off functions (e.g., [7, 16]), it avoids the use
of an adjoint problem and is based on the following lemma.

LEMMA 5.1. For ey = & + 0hy assume a function ¢ € HL (0,1), such that
0 < —epppy < ¢p. Denote by || - ||¢ a semi-norm induced by the scalar product (¢-,-).
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Then the solution u of (2.7) satisfies

luzlls < 2(1fllo

c4 6(0) / 2y < |12

1
Z||u||2_¢m +elluglly < (6 f,w).

(5.1)
(5.2)

(5.3)

Proof. We consider the strong formulation (4.7) and multiply it with ¢u, and

integrate by parts. We then get the following terms

9 9
(g bu) = Sl + 5000 [ vz 0.,
I'e

Ek Ek 1 €k
(e ) = =l o, + F000) [ u2dy = gl + Fo0) [y,

I'w

(Us, Pug) = ”uwni )

1
(f, ) < N fllglluzlls < UFIG + 7 lluall3.

Now (5.1) and (5.2) immediately follow. To obtain the estimate (5.3) we multiply

(4.7) with ¢ u and integrate by parts. We get the following terms:

—&(uyy, du) = g”“y”?&a

—ek(Ugz, Pu) = 516”“96”2) + ek (Uas Pz 1)

1
> exllusllg — kllualZy, — 7lulZe, = =3

L, ey
(0 = g, + 752 [ oty

Thus (5.3) follows. O

For arbitrary £ € [0, 1] consider the function

1 for x € [0,&],
de(w) = exp (—Ia—zf) for z € (&,1).

For any ¢ the function ¢¢(z) satisfies the assumptions of lemma 5.1. For0 < £ <n <1

we define the domains

Qe={(z,y) €eQ: <&, Q={(zy)eQ:z>n}.

Direct application of lemma 5.1 with ¢ = ¢, gives the following corollary.

COROLLARY 5.2. Consider f € La(2) such that supp(f) € Q, and let u be the
corresponding solution of problem (2.7). Assumen —& > 2¢epp|lnhg|, p > 0. Then

we have
[zl a0 < PRI
SR
I'w

Velluyll o) < ver BRI
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Proof. The estimate ||f[|2 = (¢f, /o, < o) f[3, = ki’ f]? and (5.1), (5.2)
imply the results (5.4) and (5.5). We also have

(¢f7U)=(¢f7U)nnSskllflli+é(¢u,w = <ull I3 + (- e, e,

1
<exllf15 + 7lullZs,

Together with (5.3) this yields (5.6). O
We need an analogue of estimate (5.1) for the finite element solution uy of (2.8).
To this end consider a vector ¢ = (¢, ..., dn, ), such that ¢; > 0 for all i and

og—sk% <copi, i=1,...,mp (5.7)

with a constant ¢o € (0, %) and e, = € + Shy.

Define & := diag(di)i<i<n,, Pk = In,_1 ® O} with ¢; satisfying (5.7). Let
(e = (Prr, )k

LEMMA 5.3. There exists a constant ¢ > 0 independent of k and € such that

(Apz, Dyx)e > c||sz||fI, for all x € Xy,

Proof. We use similar arguments as in the proof of (3.10). We use the represen-
tation (3.4) of the stiffness matrix: Ay = £x A, + €Ay + § BD, . Note that

DY® A, = (I, 1 © DY) (I, 1 @ &) (A, © J) = A, @ DT®,.J.

The matrix Ay is symmetric p051tlve definite. Using ¢; < ¢;—1 and a Gershgorin

theorem it follows that DT<I>kJ +J <I>kDgc is symmetric positive definite, too. Hence,
D;FCD;@A > 0 holds, i.e.,

(Ayz,Dyx)e >0 for all z e Xj. (5.8)

From the assumption on ¢ it follows that ¢;—1 < (1+ %)d)i for all ¢. Using this and
the relation

l(ééﬁTéfé + Cif%ﬁ @é) = —trldla
5\ Pk P2 F kPP 2hy, g ¢1 ¢Z+1

it follows that

DT * >i(2—2 1+

I>——I>——I
— 2~

25k 28k

Cohk)
€k

holds. And thus
1
Ex(Ayx, Dyt)g = Ex (DT Dy, Dy) > —§CO<DIQ:,DI$>¢ for all = € X;. (5.9)
We decompose B as B = 41 — R. A simple computation yields

1 _1 h 3
||q’ziR<I>k2||1<1+\/@<1+\/1+3co<2+§%,
k

12



L1 L1
Similarly we get [|®2 R®, %||oc <2+ 3¢o and thus @2 R®, *|| < 2+ 3¢o. Hence
PR 3 3
®2BP, % > (4—(2+ 5co))I =(2- 5cO)I
and thus

1 1 1
E(BDwx,D$x>¢ > (§ - Zco)<Dwx,D$x>¢ for all = € Xy, (5.10)

Combination of the results in (5.8), (5.9) and (5.10) yields

1 3
(Apz, D)o > (§ — ZCQ)<DIJ),DI$>¢ > c¢(Dyx,Dyx)e  for all x € X

with a constant ¢ > 0 (use that ¢o € (0,7)). O

LEMMA 5.4. For f = fi € Vi, let uy, be the solution of the problem (2.8). Then
nE np—1 ) Wi i — Ui 1 2 nE nrg—1 ) -
o Wiy i—1, ,
)3 o (M) <0y > oni, G

holds. Here w;; is the nodal value of ui at the grid point x; ;, f 1s the vector of nodal
values of fr, My, is the mass matriz and ¢; satisfies (5.7).
Proof. Let uy, = P,;luk € Xj be the vector of nodal values of ug, then

Akﬂk = Mkf = l;k (512)

The diagonal matrices ®; and &’k are as jn 1Aemma 5.3. The statement of the lemma is
equivalent to (P D, g, Dytlg)r < ¢ {Prbi, bk)k, with a constant ¢ that is independent
of by. This is the same as

DA e < c. (5.13)

Note that (5.13) is a generalization of the result in (3.10). From lemma 5.3 we obtain
1 1
IDsallf, < —(Akz, Do)y < — || Agallal| Dzlla  for all € X,

and thus ||Dyz||e < é||Akx||e for all z. Hence we have proved the result in (5.13). O
For the discrete case we consider

{ 1 for ihy € [0, &,

exp (—%) for ihy > €.

¢; = (5.14)

It is straightforward to check that —(¢§ - ¢§_1) = (exp(3) — 1) ¢F if ihy > €
Therefore, using e < %hk,

0 — i _

0< —¢g 5 <
k

3 1
S(exp(=) = )¢b, i=1,2,... (5.15)
2 4
For any ¢ the vector qbf, 1 < i < ny, satisfies the condition (5.7) with ¢o = 2 (exp(3) —
1). This constant is less than 2. As a consequence of lemma 5.4 we obtain discrete

9
versions of the results in corollary 5.2:

13



COROLLARY 5.5. Consider f € Vi, such that supp(fi) € Q, and let ui be a the
corresponding solution of problem (2.8). Assumen —& > 8hyp|Inhg|, p> 0, then

1)zl a(0e) < chpllfell, (5.16)
1(wr)yll oo < cERYHIfll (5.17)

Proof. Estimate (5.16) is a consequence of (5.11). Indeed, observe the following
inequalities:

- 2
Uq Ui—1
w0l <o Z (i)
th<¢
ng Ui i — g1 ng npg—1
SV SCTI CE S I b s
1th<g j=1 i=1 j=1
ngk nk—l 9
< c(gg;;cmz Y B M) < clmaxan) |l < ch I
= i=1 j=1 =

Estimate (5.17) follows from an inverse inequality, the Friedrichs inequality and (5.16):

i)yl Laoe) < el ko) < €y (el ae) < c€RY |-

COROLLARY 5.6. Consider fr € Vi, such that supp(fx) € Q. Let u and uy be
the solutions (2.7) and (2.8), respectively. Assumen—& > 8hyp|Ilnhg|, p > 0. Then
for ex, = u — up, we have

[(er)zllLa(e) < chpllfrll,

er &
ICer)yllzaie) < ¢ max{y/—; h—k}hﬁﬂfkﬂ-

Proof. Direct superposition of estimates in the corollaries 5.2 and 5.5. O

The result in corollary 5.6 shows that the (H!-norm of) errors close to the inflow
boundary can be made arbitrarily small if the righthand side is zero on a sufficiently
large subdomain (2 \ €2,)) that is adjacent to this inflow boundary. In the proof of
the approximation property in section 10 we will need these estimates for the case
£ =hy and p = % Hence we take n = 4hy|In hg| + hi. Note that for the results in
the previous corollaries to be applicable we need righthand side functions f; which
are zero in '\ Q,. For technical reasons we take 2, such that the right boundary
of the domain Q \ Q, coincides with a grid line. We use |Inhi| = kIn2 and thus
4hg|Inhg| + by < (3k + 1)hy, and introduce the following auxiliary domains for each
grid level

Q= {(z,y) € Q| x < 3k + 1)hy }. (5.18)

As a direct consequence of the previous corollary we then obtain
14



COROLLARY 5.7. Consider fi € Vi, such that fy is zero on the subdomain Q4.
Let uw and uy, be the solutions of (2.7) and (2.8), respectively. Then for e = u — uy,
we have

1

[(er)allzaan,) < chi | fxll, (5.19)
hy

[(er)yllra(an, ) < Cﬁ|\fk||~ (5.20)

6. Multigrid method and convergence analysis. In this section we describe
the multigrid method for solving a problem of the form Axx = b with the stiffness
matrix Ay from section 2 and present a convergence analysis.

For the prolongation and restriction in the multigrid algorithm we use the canon-
ical choice:
1

P Xee1 = Xp, pr = Py ' Py, 1 = ZPE (6.1)

Let Wy : X — X be a nonsingular matrix. We consider a smoother of the form
2"V = Sp(2°',b) = 21 — wi Wi H(Aga®d — b), for 2 be Xy, (6.2)
with corresponding iteration matrix denoted by
Sp =1 —w, W, Ay (6.3)
The preconditioner Wy, we use is of line-Jacobi type:

4e

Wy = —

I+D, . (6.4)

Note that Wy is a blockdiagonal matrix with diagonal blocks that are ng x nj bidiag-
onal matrices. A suitable choice for the parameter wy, follows from the analysis below.

REMARK 6.1. In the literature it is often recommended to apply a so-called ro-
bust smoother for solving singularly perturbed elliptic problem using multigrid. Such
a smoother should have the property that it becomes a direct solver if the singular
perturbation parameter tends to zero (cf. [9], chapter 10). In the formulation (6.2)
one then must have a splitting such that Ay — Wy, = O(e) (the constant in O may
depend on k). Such robust smoothers are well-known for some anisotropic problems.
For anisotropic problems in which the anisotropy is aligned with the gridlines one
can use a line (Jacobi or Gauss-Seidel) method or an ILU factorization as a robust
smoother. Theoretical analyses of these methods can be found in [29, 30, 34].

If the convection-diffusion problem (1.2) is discretized using standard finite differences
it is easy to see that an appropriate line solver yields a robust smoother. However,
in the finite element setting such line methods do not yield a robust smoother. This
is clear from the stencil in (3.3). For ¢ — 0 the diffusion part yields an z-line dif-
ference operator which can be represented exactly by an z-line smoother, but in the
convection stencil the [0 — £ 4] and [-1 % 0] parts of the difference operator are
not captured by such a smoother. It is not clear to us how for the finite element

discretization, with a stencil as in (3.3), a robust smoother can be constructed.
15



In multigrid analyses for reaction-diffusion or anisotropic diffusion problems one usu-
ally observes a ¢~ ! dependence in the standard approximation property that is then
compensated by an ¢ factor from the smoothing property (cf. [21, 22, 29, 30, 34]).
However, we can not apply a similar technique, due to the fact that for our problem
class a robust smoother is not available. Instead, we use another splitting of the iter-
ation matrix of the two-grid method, leading to modified (e-independent) smoothing
and approximation properties. 0

We consider a standard multigrid method with pre- and postsmoothers of the
form as in (6.2), (6.4). In the analysis we will need different damping parameters for
the pre- and postsmoother. Thus we introduce

Skpr =1 — wipe Wi " Ay Skopo i= T — Wi poWy, " A
We also define the transformed iteration matrices
Skpr = ApSkpr ALY, Skopo = ApSkpo AL
We will analyze a standard two-grid method with iteration matrix

T, = SZZ)O (I —pkA];_llT‘kAk)Suk

k,p (65)

For the corresponding multigrid W-cycle the iteration matrix (cf. [10]) is given by

Mye™ =0, M™8™ =Ty + )% pe (M8 )2 Al ri ApSEE k> 1 (6.6)

In the convergence analysis of this method the auxiliary inflow domain Qi defined in
(5.18) plays a crucial role. As in the analysis of the upstream influence in section 5
we will use a cut-off function in z-direction. We define diagonal matrices @, Py as
follows:

€= (3k+Dhy, & :=diag(¢],....85,), @ :=ILn_1 @Dy, (6.7)

here ¢§ is the cut-off function defined in (5.14) with £ = (3k + 1)hj. For notational

simplicity we drop the superscript £ in ¢§ in the remainder. Note that the diagonal
matrix @y, is positive definite.
For any symmetric positive definite matrix C' € R™*™ we define

1 1
(@y)c=2"Cy, |all&=(z,2)c, [IBlc:=|C?BC%||

with 2,y € R™, B € R™*™, Note that if C = ET E for some nonsingular matrix E
then || B||c = ||[EBE!|].
The convergence analysis is based on the following splitting, with A := Ay:

ITicllara = 1350 (I = PrAL 10 AR) S| a7 4

= HSVk (AI;I — pkAlzfllrk)((I — (I’E) + (I,E)Aksﬂk ||ATA

k,po k,pr
<182 (A = peAt i) — B2 ARSLE [l ara
HUSE o (AL — peAit ) ®F ARSI a7 a
< 157 AW WAL = peAitr) (= )15 1 (6.8)
IS I = Agpr Azt e[| @F 2% |
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REMARK 6.2. Note that the splitting in (6.8) differs from the usual splitting
that is used in the theory based on the smoothing and approximation property intro-
duced by Hackbusch (cf. [10]). In this theory the approximation property of the form
At —pr At 7kl < Ca g(hg, €) is combined with a smoothing property of the form
[ArSih,ll < n(ur) g(hi,e)~! with some n(uy) such that n(ur) — 0, px — oo uni-
formly with respect to hj and . In numerical experiments we observed that bounds
of this type are not likely to be valid. Due to the fact that the smoother is not an
exact solver for € | 0 (cf. remark 6.1), it is essential to have the preconditioner Wi,
as part of the approximation property. Furthermore it turns out that for obtaining
an appropriate bound for ||[Wj (A,;1 — pkA,;_llrk)ka the righthand side function f%
must vanish near the inflow boundary. We illustrate this by numerical experiments
in section 11. This motivates the introduction of the “cut-off” matrix ®; in the de-
composition.

We now formulate the main results on which the convergence analysis will be based.
The proofs of these results will be given further on.
THEOREM 6.1. The following holds:

WAt > <1 for k=1,2,... (6.9)

|~

Proof. Given in section 7. O

LEMMA 6.2. From (6.9) it follows that

1
I —wA W, Y| <1 for all welo, Z] .

Proof. Elementary. 0O
ASSUMPTION 6.1. In the postsmoother Sk po we take wi po = % .

We note that the analysis below applies for any fixed wg o € (0, %] We obtain
the following smoothing property:
COROLLARY 6.1. There exists a constant ¢ independent of k and € such that

Sye AW < S 1
HSk,po EVVE ||7 \/V—k (6 0)

Proof. Follows from lemma 6.2 and theorem 10.6.8 in [10] (or results in [12, 24]).

The result holds with ¢; = \/3727 O

We now turn to the presmoother:
THEOREM 6.3. There exist constants d; > 0,dy > 0 independent of k and € such
that

dy
k2

1 d
AW P <1 -2 (6.11)

o (1 o

Proof. Given in section 8. 0O
ASSUMPTION 6.2. In the presmoother Sy pr we take wy py := min{ 1, Z—é .

REMARK 6.3. The result in (6.11) can be written as || — %AkaAH@k <1- Z—Z .
Hence, we have a contraction result in the almost degenerated norm ||-||g, . This norm,
17



however, coincides with the Euclidean one for the vectors that have a support only
in Q3. Hence the result in (6.11) indicates that the presmoother is a fast solver near
the inflow boundary. (cf. section 11).

Concerning the approximation property the following result holds:
THEOREM 6.4. There exists a constant co independent of k and € such that

1
||Wk(A,;1 —pkA,;_llrk)(I -2 <o for k=2,3,... (6.12)

Proof. Given in section 10. 0O

Finally we present two results related to stability of the coarse grid correction. It
is well-known that for the canonical restriction operator the inequality

]l < e

holds with a constant ¢, independent of k. The second stability result is:
THEOREM 6.5. There exists a constant cs independent of k and € such that

|Arpr At | <es for k=2,3,... (6.13)

Proof. Given in section 9. [0

We now obtain a two-grid convergence result:
THEOREM 6.6. For the two-grid method we then have

C1Co dg
HTk”ATA < \/—V—k + (1 + Cr03)(1 _ H)#k

Proof. The proof is based on results from (6.9), (6.11), (6.12) and (6.13). We use
the splitting in (6.8). From the assumptions 6.1 and 6.2 and lemma 6.2 it follows that
[1Sk.pr|l < 1 and ||Skpol| < 1. From assumption 6.2, theorem 6.3 and ||®x| < 1 we
obtain

1. _1 1 da.,,
| < (2g Skpr @y 2 ) 12 < (1 )

1 -
@2 50 -

k,pr

Combine these bounds with the results in corollary 6.1, theorem 6.4, theorem 6.5. O
Using the two-grid result of theorem 6.6 we derive a multigrid W-cycle convergence
result based on standard arguments:

THEOREM 6.7. In addition to the assumptions of theorem 6.6 we assume that the
number of smoothing steps on every grid level is sufficiently large:

Vi > Cpo, Mk > Cpr k4

with suitable constants cpo, cpr. Then for the contraction number of the multigrid
W-cycle the inequality

M | ara < €7 (6.14)

holds, with a constant £* < 1 independent of k and €.
18



Proof. Define &, := ||M,zngm||AgAk. Using the recursion relation (6.6) for M,"#™
it follows that

& < I Tull az a, + 11Sk.poll ™ | Arpr A 1R 2 el ke 1

< ||Tk||A{Ak + C3Cr51371

Now use the two-grid bound given in theorem 6.6 and a fixed point argument. O

REMARK 6.4. We briefly discuss the arithmetic work needed in one W-cycle
iteration. The arithmetic work for a matrix vector multiplication on level & is of order
O(Ng) = O(n2). The work needed in one smoothing iteration is of order O(Ny). The
number of smoothings behaves like vy, +py, ~ k*. Using a standard recursive argument
it follows that for a multigrid W-cycle iteration the arithmetic complexity is of the
order N (In Nj)*. Hence this multigrid method has suboptimal complexity.

7. Proof of theorem 6.1. We recall the representation of the stiffness matrix
in (3.4)

- 1 1
Ap=(e+ (0 — g)hk)Aaj + EAy + EBDJC.

We will need the following lemma

LEMMA 7.1. The inequality BD, > 0 holds.

Proof. The matrix $ BD, — thxA, is the stiffness matrix corresponding to the
bilinear form (u,v) — fQ uzv dxdy. For any x € X}, we get

1 1
6<BDzm,$>k — §<hkArx,x>k = /

1
(Ppx)s(Prx) dedy = 5/ (Pyx)? dady >0
Q

T'e

Since the matrix A, is symmetric positive definite the result now follows. O
We now consider the preconditioner W = ﬁ—g[ + D,, as in (6.4).
k

THEOREM 7.2 (=theorem 6.1). The inequality Wi A" > 1 holds.
Proof. First note that

PN ~ ~ 1 N N
thchf:Dw—f—Df—h—(l,O,...,O)T(l,O,...70)§D$+D;‘f
k

and thus hkl?fémﬁfﬁm < DT(D, 4+ DT)D, holds. Using A, = DT D, this results
in hpA2 <2DT A, and thus:
1
ghkAg <DTA, (7.1)
Note that the following inequality holds for any a,b,c € R and o1, 09,03 > O:
(a+b+c)? <(I+og+o3a>+ (1 +oz+0; )0+ (1401 +oy b))
We apply this inequality with o2 = 2,01 = 03 = 1. Also using ||A4,| < 4k, % and
||B]| < 6 we get for any z € X
2 2 2 922 2, 91 2
1Ak ]| < e[| Ayel|® + 3ei[| Asl|” + 5|l z BDax|

3

glﬁ(h
k

2 . )
) (Ayz, o)) + 3€illwaH2 + 5”Dwx”2
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We recall that &, = e — 0hy, < %hk. Now apply the result (7.1) and the estimates in
lemma 3.1, lemma 7.1 to obtain

Wiz, Apa)s — (:—%x + Do, eAyz + ex Ay + éBDmk
( )

( )

(32(

(

1
? (Ayz, )i + Ex (D, Azx)i + (D, EBDIx>k

2 3
(Ayz, ), + skHAxxHQ —||Dgcm|\2

2 24
) (Ayw, x)p + 751€HAr z? + ||Dr33|‘2)

| = ool

> (16

£
hi
9

h_) (Ayz, x)), + 38%|| Ag]|* + —HDMHQ)

Combination of this with the inequality in (7.2) proves the theorem. O

8. Proof of theorem 6.3. We start with an elementary known result on the
convergence of basic iterative methods:

LEMMA 8.1. Assume C, A, W € R™"™ with C symmetric positive definite. If
there are constants cqg > 0, ¢1 such that

co(Ay, Ay)e < (Wy,Wy)c < a(Wy, Ay)c  for all y € R" (8.1)

then for arbitrary d € [0, 1] we have

||I—aZ—0AW_1||c§1/1—dZ—g if 1-vVI_d<a<1+v1I_d
1 1

Proof. Let D := AW ~!. From (8.1) we get

(Dy,y)c > i (y,y)e . (Dy,Dy)c < cg'{y,y)c forall y

Note that

C _
(I — afAW YyllE = (W, y)c — 2a—<Dy Yo +a? <Dy,Dy>

<(1-2a2 = 0 +a? C“)nync = (1 ~(20—a )E)Hyl\%

and 2a—a?>d if 1-yV/1-d<a<1l++1-d. 0O
Below we use the scalar product (-, )¢ := (P, )i with @) defined in (6.7). We
recall the result proved in lemma 5.3

Apz,Dyx)e > ¢||Dyz||3  for all z € X, 8.2
P

with ¢ > 0 independent of k and of e.
We introduce the diagonal projection matrix J := I,,,—1 ® jk with jk the ng X ng
diagonal matrix with (jk)“ =1if (@k)” =1 and (jk)“ = 0 otherwise.

LEMMA 8.2. There exist a constant ¢ > 0 independent of k and € such that

9
Wiallg < ck? (5

(I =Tzl + [ Dealg)  for all @ e X
k
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Proof. Note that

| Jkzlle = [|JxDy Tk Dezllo < |Jk Dy Jillo || Dazlo
= | JxD; " Ji ||| Dolle < (3K + 1)hy|| Dozl @

And thus, using & < $hy, we get

4e 4e 4e
[Wiz|le = ||ﬁ9€ + Dyzlle < = J)zlle + oo llJuzlle + | Dzlle
k k k

4e 4e
< h_g"(l — Ji)z||o + ck||Daz|o < ck(h—ill(f — Ji)zlle + || Dozl|s)

Squaring this result and using (%)2 < %EE'{ completes the proof. [

We define ®,, := hikdiag(@ — Pit1)1<i<n, With ¢; = qbf as in (6.7). Consider the

diagonal matrix @, := I, _1 ® &’x Note that &, > 0.
LEMMA 8.3. The following estimate holds:

1 1
(Apz,z)e > %H(I)%tz for all e Xy

Proof. Recall
1
Ap = Ay +eAy + EBDI (8.3)

Note that
DAy = (In, 1@ D) (A, @ J) = A, @ O] >0 (8.4)

We consider the term £,Pr A, = &, (Ip, -1 ® (i’kflz). Note that &, A, = ékﬁfﬁm. A
simple computation yields &, D! — DT'd; = —®,T , with T := tridiag(0,0,1) , and
thus

ék(i)kfiw = Ekﬁfékﬁm — Ekqswj—'ﬁw (8.5)
From the Cauchy-Schwarz inequality it follows that

1 .1
§||c1>éy||2 forall y eR™  (8.6)

=& T 298t an o
E6(PeT Doy, y) < &7 |22 T Dayll” +
Using the property (5.15) we get
TTd,T < & teody, (8.7)

Combination of the results in (8.5), (8.6), (8.7) and using ¢y < 4 yields

P o 9. 1, .1
S(®rAy,y) 2 Sl Dayly, — 2cqeoll Dyl — Iyl

A1
> ——||®2y||* forall y € R™
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And thus
1
e PrLAL > —5@90 (8.8)

holds. Finally we consider the term % (BD,z,z)e. First we note

-1 1

A PN A 1
BD, = blocktridiag(D,,4D,,,S;), Sz :i=-— . .
hi -1 1

and thus K := %(kaDm = %blocktridiag(ti’kﬁr,4<i>kDr, @kgx) Hence

1 A A PO A oA PN ~
(K+K") = Eblocktridiag(tﬁkDm + ST @y, 4(2k Dy + DI D), @15, + DL dy)

N =

A simple computation yields
oD, + DIdy =0, + h—tmdlag(—(bi, Gi + Git1, —Pit1)1<i<n, = Pz + R (8.9)
k

and .5, + DI &), = &, T + h—llchnenez, with n := ny and e,, the n-th basis vector in
R™. Thus we obtain

1 JU A A A
(K +K7T) = Eblocktridiag(TTCI)w, 40,,0,7)

N | =

1 1 1
+ Eblocktridiag(h—k bn enez:, 4R, h_k (bnenef)

1 JUN A A A
> Eblocktridiag(TTCI)w, 40,,0,7)

By &;! (®;!) we denote the pseudo inverse of &, (®,). We then have
1 1 -1 1 PO R | Al a1
50 HK+ KT, > 5blocktridiag (@ 2PTH2 41 3 TH, ?)

Note that

1
D RPN | Al a1 R N
1022078} oo = 93707 oo = max (271 9)F
i23k+2 \ @ — Pit1

_1 _1
And thus we get 1@, 2(K + KT)®, % > L(4 - 2e%)1. Hence

1 1
GOBD: = K > (2~ e5)d, (8.10)

Combination of the results in (8.3), (8.4), (8.8) and (8.10) yields

1 1 1
Bpdp > (—5+ (2~ e5))d, > 55

O
Using the previous two lemmas we can show a result as in the second inequality
in (8.1):
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THEOREM 8.4. There exists a constant ¢y independent of k and € such that

(Wi, Wx)e < c1k*> (Wi, Agz)e  for all z € X,

Proof. From lemma 8.3 and (8.2) we get

4e
(Wi, Agx)e = h—<$7Ak$>q> + (Dyx, Apz)o

2
b (8.11)
> o7 (o, 2)i + | Daz3)
k

with ¢ > 0 independent of k and . Using ¢; — ¢iy1 = (1 —e*i)qbi > %@ fori > 3k+1
we get

1 1
(Pow, 2} > gh21<(1 — ) Pr, )k = gh;ZlH(f— Ir)z|3 (8.12)
From (8.11) and (8.12) we obtain

(Wi, Apz)e > (5511 = Jo)zllg + [ Dezl3)

l
hi}
Now combine this with the result in lemma 8.2. 0O

We now consider the first inequality in (8.1):
THEOREM 8.5. There exists a constant cg > 0 independent of k and € such that

co{Agz, Apz)e < (Wix, Wiz)e for all x € X

Proof. The constants ¢ that appear in the proof are all strictly positive and
independent of k and e. First note that || Apz|le < &l|Asz|lo+e|Ayz|lo+ || BDoz|o.
We have

~Llo4 ~ A1 o o 4
l4ylle = Un,—1 ® 2£)(Ay @ J)Ln, -1 ® 2, 2| = Ay @ J|| < 75
k
Al a1
Note that |¢;¢; 5| < e and thus |87 DT®, ?|| < ch,* holds. From this it follows
that || DX |le < chy' holds. With a similar argument we get ||Blle < c. Thus we
obtain, using &, < 3hy, :

_ 4e
[ Aczlle < &kl|DEllol|Dazlle + ﬁ||$||<1> + ¢[| D] o
k

. (8.13)
< C(pllxllé + || Dyl 2)
k
From (8.9) it follows that (D,z,z)e > 0 holds. Using this we get
16¢2 16¢
[Wia||3 = FHxH?p + h—2<D$x,x>¢ + || Daz||3
k b (8.14)

2
9
> C(h—%llxllé + |1 Dsll3)

Now combine (8.13) with (8.14). O
Combination of the results of theorem 8.4, theorem 8.5 with the second result in
lemma 8.1 shows that theorem 6.3 holds.
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9. Proof of theorem 6.5. Let g1 € Xj;_; be given and define g1 :=
(P,;[l)_lgk—l € Vi_1. Let ug_1 € Vi_1 be such that

ap—1(Uk—1,Vk—1) = (gr—1,vk—1) for all vg_q1 € Vi_1.

Then A,;_llgk,l = P,;_lluk,l holds. The corresponding continuous solution v € V
satisfies ax—1(u,v) = (gk—1,v) for all v € V. Now note that

Arpe Py uk—1, )k _
||AkpkA1:,11gk—1|| = Inax Aep bl LY < ¢ max 7%(% L Uk)
yEXs Iyl veeVi okl
< ¢ max ap—1(Uk—1, Vk) 4 ¢ max ar(Uk—1, V) — ap—1(Uk—1, Vk)
vk €V [lvwl vk €V [lvwl
(9.1)
Define ep_1 := u — ug—1. For the first term in (9.1) we get, using the results of

lemma 4.3 :

ap—1(Uk—1, V) < |ag—1(ex—1, V)| + |ar—1(u, vy)|
< chgll(er—1)allll (V)2 + ell(ex—1)y [l W)y | + I (ex—1)z vkl + [(gr—1, vi)|
€
<e(ller—1)all + h—kll(ek—l)yll)llvkﬂ + lgk—1llllvgl

< cllgr—1llllvell < ellgr—1llllvxll (9.2)

For the second term in (9.1) we have, using lemma 4.2 :

lak (uk—1,0%) — ak—1(uk—1,0%)| = Ohg|((wr—1)z, (Vi )z)|
< el (ur—1)z|l vkl (9.3)
< cllge-1llllvell < cllgp—1lllvell

Combination of the results in (9.1), (9.2) and (9.3) yields || Axpr A, " gr—1] < cllgr—1]]
and thus the result in theorem 6.5 holds. O

10. Proof of theorem 6.4. We briefly comment on the idea of the proof. As
usual to prove an estimate for the error in the L2-norm we use a duality argument.
However, the formal dual problem has poor regularity properties, since in this dual
problem T'g is the "inflow” boundary and I'y is the ”outflow” boundary. Thus
Dirichlet outflow boundary conditions would appear and we obtain poor estimates
due to the poor regularity. To avoid this, we consider a dual problem with Neumann
outflow and Dirichlet inflow conditions. To be able to deal with the inconsistency
caused by these “wrong” boundary conditions we assume the righthand side is zero
near the boundary I'yyy. In order to satisfy this assumption we use the cut-off operator
with matrix ®.

A further problem we have to deal with is the fact that due to the level dependent
stabilization term we have to treat k-dependent bilinear forms.

We introduce the space
V) = {vx € Vi | vp(z) =0 forall z€Q"}

Let by, € Xj be given. In view of theorem 6.4 we must prove an estimate ||Wj (At -
Ayt ) (I — ®p)by|l < cl|by|| with a constant ¢ that is independent of k,e and
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~ 1 A
bi. Note that (PF)~'(I — ®2)by, =: fi € V) holds. For this fr € V{ we define
corresponding discrete solutions and continuous solutions as follows:

up € V. : ak(uk,vi) = (f,vk) for all v, € Vg,
ueV: ar(u,v) = (fr,v) forall veV (10.1)
Up—1 € Vie—1: ap—1(Uk—1,—1) = (fr,vp—1) forall vp_1 € Vi )
weV: ak—1(t,v) = (fx,v) forall veV

In the proof of lemma 4.2 we showed that ||v,|| = || D, P, 'v|| holds for all v € Vj. We
use that Wy = 751 + D, and obtain
k

Wi (AL = prAi L ) (T — @)l

4e _ _ 1. _ 1. _ 1.
< h—iH(Ak1 — A ) (I — @2)be|| + | Do AN (T — @2 )bi|| + | Dapr Ayt k(1 — ©F )bi|

9
hS C(h—%llw = up— ||+ [ ()|l + [ (ur-1)z 1))

= C(h%(”“ — i+ i = w4 = @)+ )l lea)ol)  (10.2)

From lemma 4.2 we get

[(ur)all + [[(ur—1)all < ¢l fxl (10.3)

From the result in theorem 10.1 below it follows that

- h?
lJur = ull + [lup—1 —af < c ?k [ fl (10.4)

Finally, from theorem 10.4 we have
lu—all < chgl fil (10.5)
If we insert the results (10.3),(10.4) and (10.5) in (10.2) we get
1 A 1 ~ ~
IWi(A = oA ) (1= @2)biell < el fiell < ell(B) M — @2 [[[1be]] < cflby]

and thus the result of theorem 6.4 is proved.
It remains to prove the results in the theorems 10.1 and 10.4.

THEOREM 10.1. For f, € V9 let u and uy, be as defined in (10.1). Then

hi
llu = ukll < e == (1 fil (10.6)
holds.
Proof. Define ey, := u — ug. Let w € H?(Q) be such that
—EWyy — ExWez — We = €k (10.7)
with
wy=0onTyw, w=0onIl\Ty. (10.8)
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Note that for this problem I'g is the ”inflow” boundary and I'y is the ”outflow”
boundary. We multiply (10.7) with e, and integrate by parts to get

lexl2 = £((en)yr wy) + ex((ex)ar w2) — £ / woer dy + ((e)e,w)

= ax(ex, w) — €k/ weey dy
I'e
We use (4.6) with w and ey, instead of u and f, respectively, and (4.12) to estimate

1 1
1 3
6k/ wwekdy‘<€;§ <€k/ wfcdy) (/ eidy) <Ch2||€1c|| NIl (10.9)
I'g I'g I'g \/—

From this estimate and the Galerkin orthogonality for the error it follows that for any
Vi € Vk

lexll* < e ((ex)y, (W —vk)y) + ek ((€r)as (W — Vi)a)

(10.10)

+ ((er)zr w —vg) + ¢ lex]] \/—Ilfkll

Let Qp, := Qp, be as defined in (5.4), i.e., £ is the set of triangles with at least one
vertex on I'y. In the remainder of the domain, w = Q\Q, we take v as a nodal
interpolant to w and we put vy = 0 on I'yy to ensure vy € Vi. Note that vy is a
proper interpolant of w everywhere in 2 except in ;. Therefore we will estimate
scalar products in (10.10) over w and 25, separately. We continue (10.10) with:

lexl® < ce hull(er)yllwllwll ey + cer hrll(en)ollwllwl 2 w)
+ehll(en)sllwllwl a2 w>+0||6k||\f||fk||+lah
< chi IIkaI—IIekII +1Iaq,. (10.11)

The term Iq, collects integrals over €2:

Lo, = e ((ex)y, (W = vk)y)g, + ek ((er)e, (W = vk)a)q, + ((er)z; w — vk)g,

To estimate I, we use corollary 5.7 and the following auxiliary estimate for the
interpolant vi, € Vi, of w, with wy, = {(z,y) € Q: z € (hg, 2hy)}:

vella, < cllville, < cllfwllw, + llve — wllw)

2hy x 2 %
—C // /wn(n,y)dn} dwdy) +||vk—w||w)
hi 0

1 k2
([ w?an)® el + Wolle) < efnf + 2)lesl.
w
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We proceed estimating terms from Ig, , where we use the previous result:

e ((er)y, (w = vk)y)q, <eller)ylla, (lwyll +[1(vr)yllan)
< cezhyllfull 2 lexl + g lvellan)

1 1 -1 h 2
<cerhpllfell(€72 + Ry * + f)llekH < c(hi 713)||fk||||€k||

e ((er)as (W = vi)a)g, <erll(er)allan (lwall + l[(vr)allc)

lolc

< cherllfall Ulexll + by Hlvelle,) < e (he + ?")Ilfkllllekll

((er)z,w —vi)g, < [[(er)sllo, (lwlla, + llvklle,)

< enl Il (h;( [ vt o, + ||vk||gh)
w

%
c(hy + ?k)llfk||||€k||

Inserting this estimates into (10.11) and using € < %hk we obtain

5
2 hi hi | i hi
llexll™ < e —Ffellllerll + e (he + == + )l fellllex] < e = frllllell-

Ve e
and thus the theorem is proved.
d

For the proof of theorem 10.4 we first formulate two lemmas.

LEMMA 10.2. Consider a function g € H(2). The solution of
—ERUgy — EUyy + Uz = Ga (10.12)

with boundary conditions as in (1.2) satisfies

/ u?dy <c (h,;l lgll? +/ g% dy + hy, |9w|2> . (10.13)
FE FE

Proof. We multiply (10.12) with u and integrate by parts to get

1
erlluzl|? + elluy||* + 5/ u?dy = —(g,uz) —|—/ gudy. (10.14)
FE FE
For the righthand side in (10.14) we have

(9, ua)l < llglllluall < ellglllgall < e (hi " llgl® + hillgz )

1
/ gudyg/ gzdy—k—/ u? dy.
g g 4 I'e

Combining these estimates and (10.14) the lemma is proved. O
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LEMMA 10.3. Assume g € H' and g|r, = 0, let u be the corresponding solution
of (10.12). Then the following holds:

Jull < e (lgl+ Aol + ([ g?an)* + ([

F'w

1
u2 dy) 2) (10.15)
(Note that the standard a priori estimates would give only HuH <cllgzll.)
Proof. Consider the auxiliary function v(x,y) fo u(&,y) d€. Tt satisfies
—ERUgy — EVyy + Vg = g + €k Win + Gin, (10.16)

with w;pn(z,y) = u.(0,y) and gin = g(0,y). The corresponding boundary conditions
are

vy =u(l,y)onT'g, v=00n 90N\ TIg. (10.17)

Then the estimate (10.15) is equivalent to

1
ool < e (ol + el + [ ga)> 4 ([
T'w r

The estimate (10.18) is proved by the following arguments. We multiply (10.16) with
v, and integrate by parts to obtain

u? dy)é). (10.18)

w

€ €k
ool 5 [ @y [ @ dy
FE 1—‘W
= (9,vz) + €k(Win, Vz) + (Gin, Vz) + %k/ (v2)? dy. (10.19)
I'e

Since g|r, = 0 the estimate (10.13) yields

/ (v2)? dy = / w?dy < c (hy ' |lgll? + R (|92 11) - (10.20)
FE FE

Now (10.18) follows from (10.19) by applying the Cauchy inequality and estimate
(10.20). O
Using these lemmas we can prove the final result we need.

THEOREM 10.4. For f € VY let u and @ be the continuous solutions defined in
(10.1). Then the following holds

lu —al < chgl fell- (10.21)

Proof. The difference e := u — @ solves the equation
—Ejegs — ECyy + €z = Ga , (10.22)

with g = —0hy i, and boundary conditions as in (1.2). Now the result of lemma 10.3
can be applied. We obtain

el Sc(llnghkllgle (/ g dy)* +hk(/ eidy)ﬁ)
FW FW
gchk(|\aw||+hk|\am||+(/ uidy)%—k(/ i dy)%)
FW FW
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To estimate the norms ||| and ||t..| we use a priori bounds from theorem 4.1.
Further we use the fact that fi =0 in Qi". Due to the choice of Qi (cf. (5.18)) we
can apply corollary 5.2 with £ = hg, n = | Ilnhg| + hy and p = % Using (5.5) and
er > shy we get [ uidy < c | fil/>. The same estimate holds for [. @3 dy. Thus
we obtain |le|| < chg|fx|l. O

11. Numerical experiments. In this section we present results of a few nu-
merical experiments to illustrate that in a certain sense our analysis is sharp. In
particular it will be shown that the nonstandard splitting in (6.8) which forms the
basis of our convergence analysis reflects some important phenomena.

In the experiments we use the following parameters. For § in (2.4) we take § = 1.
The pre- and postsmoother are as in (6.2), (6.4) with w, = 1. We take a random
righthand side vector and a starting vector equal to zero. For the stopping criterion
we take a reduction of the relative residual by a factor 10° . Thus in the tables below

convergence is measured in the norm | - || 4z 4. We use the notation Pej, := 2.

First we present results for a standard V-cycle with pu, = v, = 2. In table 11.1 we
give the number of iterations needed to satisfy the stopping criterion and (between
brackets) the average residual reduction per iteration. These results clearly show
robustness of the multigrid solver.

TABLE 11.1
Multigrid convergence: V-cycle with v, = vy = 2

h
Pey, 1/8 1/32 1/128 1/512
1 8(0.06) 10(0.12) 11(0.13) 11(0.13)
10 7(0.04)  8(0.07)  8(0.07)  8(0.07)
le+3  8(0.05) 11(0.14) 11(0.14)  11(0.14)

le+5  7(0.04) 11(0.14) 11(0.14) 11(0.14)

Number of iterations and average reduction factor

If we only consider the smoother and do not use a coarse grid correction, then for e ~ h
this method has an h-dependent convergence rate. This is illustrated in table 11.2.

TABLE 11.2
h-dependence of convergence of the smoothing iterations

h
Pey, 1/8 1/32 1/128 1/512

1 119(0.83)  244(0.91) 533(0.94)  1495(0.986)
10 26(0.44)  51(0.61)  66(0.72) 173(0.88)

Number of iterations and average reduction factor

We consider the standard splitting in the convergence analysis based on the smoothing
and approximation property. For e = h? some results are presented in table 11.3. The
estimates that are given in this table result from the computation of

I(A; = pAginfl A4S
171 17
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with f € Vj, a discrete point-source in the grid point (1,1). These results indicate

O(h~') behavior for the smoothing property (as expected) and O(v/h) behavior for
the approximation property. Hence this splitting is not satisfactory for proving a ro-
bustness result.

TABLE 11.3
Standard splitting for approximation and smoothing properties.

h
Estimates for 1/8 1/32 1/128 1/512
4, " —pAglrll  84e2  5.0e2  2.7e2  lde2
|ALS2]] 1.25 4.48 17.7 70.8

The proof of the modified approximation property is based on the result in theo-
2

rem 10.1. In that theorem a % bound is proved provided the righthand side function

[ is zero close to the inflow boundary. We performed an experiment with a function

fx which has values equal to one in all grid points (hg,jhr), j =1,...,nk, and zero
1

elsewhere. Results are given in table 11.4. We observe an h,, 2 effect. This justifies
the splitting using the cut-off operator ®y.

TABLE 11.4
Approximation property if fr has support near inflow

h
Pe, 1/8 1/32 1/128 1/512
1 0.31 060 1.23 253
10 0.07 017 023  0.46

2 _ _
Values of %H(Ah to pA2th)f||/||f||

Finally we performed a numerical experiment related to the result in theorem 6.3.
For the smoother we computed residual reduction factors in the almost degenerated

1
norm |[®7 - || with @y := I, _, ® diag(¢) and

b = 1 for 1 <i <5,
T exp(d—1) forb<i<ny

For the relaxation parameter w in the smoother we take the value w = 1.2. The
results in table 11.5 show h-independent and “fast” convergence of the smoother in
this norm.
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