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AbstratThis paper is onerned with further developing and re�ning the analysis of a reentalgorithmi paradigm for nonlinear approximation termed \Push-the-Error" sheme.It is espeially designed to deal with L1 approximation in a multilevel framework. Theoriginal version is extended onsiderably to over all ommonly used multiresolutionframeworks. The main oneptually new result is the proof of the quasi-semi-additivityof the funtional N(") ounting the number of terms needed to ahieve auray ".This allows one to show that the improved sheme aptures all rates of best n-termapproximation.Key Words: Uniform norm approximation, multilevel expansions, wavelet bases, best n-term approximation.AMS Subjet Classi�ation: 41A15, 41A17, 41A25, 41A46, 65D15, 46E35.
1 IntrodutionThe understanding of nonlinear approximation has greatly bene�tted from reent multileveland wavelet onepts. Norm equivalenes indued by wavelet bases in a Hilbert spae ontextplay a major role in the analysis of best n-term approximation part of whih an be evenretained for Lp norms for 1 < p < 1, see e.g. [18℄. Near best n-term approximationis simply obtained by keeping the (properly saled) n largest oeÆients in the waveletexpansion. However, many appliations involve more omplex geometries for whih waveletbases with the desired properties are hard to onstrut or even not available at all. In theabsene of suh bases the realization of best n-term approximation is far less obvious, letalone approximation in L1. A signi�ant advanement of best n-term approximation insettings where expliit wavelet bases may not be available is o�ered by the approah in[16, 23, 25℄.�This work has been supported in part by the European Community's Human Potential Programme underontrat HPRN-CT-202-00286, (BREAKING COMPLEXITY) and by the National Siene FoundationGrant DMS-0200665.
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The situation is again quite di�erent when approximating in the uniform norm whih isthe primary onern and guiding issue in this paper. The \piling up" e�et of multilevelstrutures is not well aligned with the L1-norm. This prinipal obstrution onerns anysort of multilevel expansions, even those for \ideal" wavelet bases. Nevertheless, an eÆientway of realizing optimal L1-approximation rates for approximation spaes indued by bestn-term approximation in the above mentioned exible settings is o�ered by another algo-rithmi paradigm, alled \Push-the-Error" algorithm. This has been developed in [24℄ forthe spei� ase of nonlinear n-term approximation from Courant elements (pieewise linear�nite elements) in the uniform norm and dimension d = 2. The essene of this algorithmoriginates from [18℄. In view of its importane as a paradigm that works in the uniformnorm (even in the absene of good multilevel bases), it is interesting to explore the sope ofappliability of its oneptual foundation.Our primary goal in this paper is therefore to further re�ne and extend this algorithm inseveral diretions. The key new steps in this artile are the following: (i) We generalize the\Push-the-Error" algorithm to nonlinear n-term approximation from the \saling funtions"of a general Multiresolution analysis (MRA) on ompat domains in R d . (ii) We re�ne thealgorithm from [24℄ and its analysis onsiderably. In partiular, we prove the quasi-semi-additivity of the funtional N(") ounting the number of terms in the approximation neededto ahieve auray ". This enables us to show that the improved algorithm aptures allrates of the best n-term approximation.It should be stressed that the \Push-the-Error" paradigm is, in priniple, very exible inthat it essentially requires only re�nability of single sale basis funtions, i.e. has a potentialto work under fairly general irumstanes. For instane, omplex domain geometries posemuh less of an obstrution than for the onstrution of wavelet bases thresholding oneptsin Lp are typially based upon. The main idea is to omplement thresholding strategies,i.e. keeping terms with large oeÆients, with transferring small terms to higher levels withthe aid of re�nement equations. This aounts for the fat that small terms may add upover di�erent levels to form after all a signi�ant ontribution in the uniform norm beauseeven the best multilevel bases are no longer able to properly separate the ontributions fromdi�erent length sales.In addition we briey relate our �ndings to the somewhat wider ontext of nonlinear n-term approximation in Lp. As mentioned before, for 1 < p <1 best n-term approximationis provided by thresholding wavelet expansions. We show here �rst that even for 0 < p <1the usual thresholding strategy an be utilized for nonlinear n-term approximation in Lp forthe more exible setting of multilevel saling funtion representations in general MRAs soas to apture the rate of the best n-term approximation. This thresholding sheme an beshown to emerge from extending \Push-the-Error" to the Lp ase for 0 < p <1.In [24℄ there is another algorithm (named \Trim & Cut") developed for nonlinear n-termapproximation in Lp, 0 < p � 1. The idea of this algorithm originates in the proof ofthe Jakson estimate in [20℄. A similar algorithm has been suggested by Yu. Brudnyi andI. Kozlov as well (see [2℄ and the referenes therein). The exeution of the \Trim & Cut"algorithm relies heavily on a oloring proedure used to represent the set of all supportsof basis funtions as a disjoint union of trees with respet to the inlusion relation. Thisrenders the sheme pratially infeasible. Consequently, it is less valuable ompared to the\Push-the-Error" algorithm.
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Finally, we note that the \Push-the-Error" algorithm is not restrited only to approxima-tion from MRAs onsisting of ontinuous funtions. It an be suessfully used for nonlinearapproximation of ontinuous funtions from disontinuous (isotropi or anisotropi) hierar-hial bases in the L1-norm. All results from this artile have analogues in suh settingsunder less restritive onditions. We shall not present the details here.The paper is organized as follows. In Setion 2 we ollet some prerequisites. First, inSetion 2.1 we desribe a general multiresolution setting whih is designed to host all om-monly used setups. In doing so we extrat the abstrat requirements on suh multiresolutionhierarhies of spaes that make \Push-the-Error" work and ollet the tools needed in thisontext. In Setion 2.2 we outline several examples overed by the general framework whilewe ollet in Setion 2.3 some further onsequenes and prerequisites for later use. In Setion2.4 we introdue a family of loal projetors that serve as a tool for forming multilevel de-ompositions. In Setion 3 we introdue a sale of \Besov-like" spaes (B-spaes) assoiatedwith the multiresolution analysis (MRA) needed to prove optimality of the \Push-the-Error"sheme. In Setion 4 we haraterize the approximation spaes generated by nonlinear n-term approximation from the saling funtions of an MRA, plaing speial emphasis on theL1-ase. In Setion 5 we desribe the improved \Push-the-Error" algorithm, present its erroranalysis, and disuss its omplexity. In Setion 6 we desribe and give the error analysis ofthe "Threshold" algorithm for nonlinear n-term approximation in Lp, 0 < p <1, from thesaling funtions of an MRA. In Setion 7 we give the proof of the main results onerningthe quasi-semi-additivity of the funtional ounting the number of terms generated by thesheme, and the error estimation theorem. Finally, Setion 8 is an appendix, where we plaethe proofs of the Bernstein estimate and the norm equivalene in the B-spaes.Throughout the artile, we use the following notation: N := f1; 2; : : :g, N 0 := N [ f0g.For any set E � R d , 1E denotes the harateristi funtion of E, and jEj denotes theLebesgue measure of E while EÆ means the interior of E. For a �nite set E, #E denotes theardinality of E. Positive onstants are denoted by ; 1; �; : : : (if not spei�ed, they mayvary at every ourrene), A � B means 1A � B � 2B, and A := B or B =: A stands for\A is by de�nition equal to B". Whenever an Lp-norm refers to the �xed underlying domain
, we write briey k � kp, whereas kfkLp(G) indiates the referene to a partiular subdomainG � 
.
2 Preliminaries2.1 Multiresolution analysis (MRA) { Basi PropertiesWe onsider the general ase of a hierarhy of spaesV0 � V1 � � � � (2.1)on a ompat domain 
 � R d (d � 1) suh that SVm = C(
) (usually 
 is a polyhedral(polygonal if d = 2) domain in R d). We setM := fVmgm�0. In what follows we shall speifyour requirements on suh hierarhies. These assumptions are designed to aommodate allommonly used setups as well as possible further settings that ould be antiipated in thefuture.
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We assume that eah Vm is spanned by a basis �m = f��g�2�m, onsisting of ompatlysupported and ontinuous basis funtions, normalized in L1 (k��k1 = 1), whih should beviewed as saling funtions when dealing with the lassial wavelet setting. Here �m is anindex set and for onveniene we use these indies simultaneously to denote sets satisfyingsupp�� � � for � 2 �m. We denote � := Sm2N0 �m and � := Sm2N0 �m. At times we shallloosely all � the \support" of �� although supp�� may atually be stritly ontained in �.However, � and the true support will always \sale" in the same way whih will be madepreise later. In partiular, �m may ontain more than one (although always a uniformlybounded number) opy of a set �.More spei� properties of the single sale bases �m an typially be related to someunderlying mesh or, more generally, to some partition of the spatial domain. We shallformalize next our requirements on suh partitions that will over all ases of interest.Cells (ubes, simplexes). We shall always assume that there is an underlying sequene ofpartitions of 
: P0;P1; : : : with P := Sm2N0 Pm whih satisfy the following onditions:(a) Every level Pm is a partition of 
, onsisting of �nitely many ompat onnetedsets (ells) with disjoint interiors. Usually these ells are ubes, simplexes (triangles) orpolyhedral subdomains of 
.(b) The partitions (Pm) are nested, i.e. Pm+1 is a re�nement of Pm.() Eah ell I 2 Pm has (ontains) at least two and at most �0 hildren in Pm+1 with�0 � 2 a uniform onstant.(d) There exist onstants 0 < r < � < 1 suh that for eah I 2 P and any hild I 0 of IrjIj � jI 0j � �jIj: (2.2)(e) Loal quasi-uniformity: There exists a onstant # � 1 suh that if I; J 2 Pm (m � 0)and I \ J 6= ;, then #�1 � jIj=jJ j � #: (2.3)Further properties of the \supports" � 2 � of the basis funtions �� an be spei�ed interms of these ells.(�) Eah � 2 �m as well as supp �� is a onneted ompat and an be \paved" by ellsfrom Pm, that is, � = SI2N� I, where N� � Pm and #N� � �1 with �1 a uniform onstant.For a given � 2 �, we denote by l(�) the level of �, i.e. l(�) = m if � 2 �m, and wesimilarly denote by l(I) the level of I 2 P.For later use it will be onvenient to reord for diret referene the following onsequenesof the properties (a)-(e) and (�):(�) If I � � and l(I) = l(�), thenj�j � �0jIj; �0 = onstant: (2.4)() The interiors of at most �2 sets � 2 �m (m � 0) may interset at a time, where �2 isanother uniform onstant.(Æ) For eah � 2 �m (m � 0)#f� 2 �m+1 : � � �g � �3; �3 = onstant: (2.5)
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Remark 2.1. It is an important observation that the above onditions involve essentiallyonly measures of ells but not the shape of ells and onsequently over the ase of anisotropipartitions of the types onsidered in [16, 23, 24, 27℄.Sine �m is a basis for Vm, eah f 2 Vm has a unique representationf = X�2�m �(f)��; (2.6)
where f�(f)g�2�m are the dual funtionals, i.e. �(��0) = Æ�;�0 .Aside from the loality of the ��'s, a ruial further requirement on the multiresolutionanalysisM onerns the loality of the dual funtionals. We assume that eah liner funtional�(�) is supported on � and satis�es the ondition

j�(g)j � �1j�j Z� jg(x)j dx for � 2 �m and g 2 Vm, (2.7)
where �1 is a uniform onstant. We shall assume that the linear funtionals �(�) are extendedto L1(
) (retaining the same notation) so thatj�(f)j � �1j�j Z� jf(x)j dx for f 2 L1(
). (2.8)
Due to the Hahn-Banah Theorem this is always possible. We pause to reord a few impor-tant onsequenes of (2.7).A �rst onsequene of (2.7) is the stability of the single sale bases (�m)m2N0 . Thereexists a onstant �2 � 1 suh that for eah g 2 Vm with representation g =P�2�m ���, wehave �2�1kgkp � � X�2�m k���kpp�1=p � �2kgkp; 1 � p � 1; (2.9)
uniformly in m, with the usual modi�ation when p = 1. Moreover, using also (2.3) andproperty () of the �m's, it follows that for any 0 < q � 1 and  2 R ,�XI2Pm(jIjkgkLp(I))q�1=q � �X�2�m(j�jk���kp)q�1=q: (2.10)

Condition (2.7) readily implies thatk��kp � j�j1=p�1=qk��kq; � 2 �; 1 � p; q � 1; (2.11)where the onstants of equivalene depend only �1.When dealing with nonlinear approximation in Lp, 0 < p � 1, we shall be additionallyassuming that for any g 2 Vm and I 2 Pm (m � 0)kgkLq(I) � jIj1=q�1kgkL1(I); 0 < q < 1; (2.12)with onstants independent of g and m. Evidently, this ondition yields (2.9)-(2.11) when0 < p < 1. 5



From (2.1) we know that eah element of �m an be written as a linear ombination ofelements in �m+1. Furthermore, due to the loality of the dual funtionals, this expansionis loal, i.e. we have �� = X�2�m; ��� a�;���; � 2 �m�1: (2.13)
Moreover, by (2.7) and the L1-normalization of the ��, we have ja�;�j = j�(��)j � �1.We onlude our list of basi general assumptions by one whih an be viewed as strength-ening our assumptions on the dual funtionals. We shall assume that there exist onstants0 < Æ < 1 and �3 � 1 suh that for eah g 2 Vm, I 2 Pm (m � 0), and any set E � I withjEj � ÆjIj, we have kgkL1(I) � �3kgkL1(InE): (2.14)This ondition is in essene the loal linear independene of the ��'s whih is known to holdin many ases of interest, see the examples below.For the purpose of nonlinear approximation in Lp, 0 < p <1, we shall assume that theLp analogue of (2.14) is valid: kgkLp(I) � �3kgkLp(InE): (2.15)The only use of (2.14) and (2.15) is in the proof of the orresponding Bernstein estimates(see Theorem 4.2 below).Depending on the domain 
 in some settings one an even onstrut wavelet or priwaveletbases. For simpliity, whenever we assume in this artile the existene of wavelets we assumethe existene of a biorthogonal wavelet basis 	 = f � : � 2 Lg on 
 with a dual e	 = fe � :� 2 Lg, where L = [m2N0Lm is the index set of the \true" wavelets. Then eah f 2 Lp(
)(1 � p � 1) has the representationf = X�2�0 �(f)�� + Xm2N0 X�2Lm �(f) �; �(f) := hf; e �i; (2.16)
whih is assumed to be unonditional if 1 < p < 1. In addition, we assume that  �,e � are ompatly supported with supp �; supp e � � �, and � = [I2N�I, N� � �w with�w = onstant. Also, we assume that for � 2 Lm,  � 2 Vm+1, i.e.  � = P�2�m+1 a�;���,and ja�;�j � �4 with �4 a uniform onstant. Our last assumption is that  � are at leastontinuous, k �k1 = 1, and ke �k1 <1.
2.2 Examples of MRAsIn this setion we briey outline some examples overed by the above framework. This listis by no means meant to be exhaustive.Shift invariant re�nable funtions: The lassial approah to onstruting wavelets on Ris based on hierarhies of nested shift invariant spaes spanned by the dilated translates�(2m � �k), k 2 Z, of a single saling funtion �, or more generally of a �nite number�i(2m � �k), i = 1; : : : ; r, k 2 Z, of multi-saling funtions, whih are re�nable, i.e.

� =Xk2Z ak�(2 � �k) or �i = rXj=1Xk2Z ajk�j(2 � �k)6



holds for some mask sequenes (aik)k2Z. These translates are usually required to have somestability properties suh as linearly independent integer translates, i.e. Pk2Z k�(� � k) = 0implies k = 0; k 2 Z. It is known that this latter fat implies the existene of loal dualfuntionals in the sense of (2.7). For the most prominent examples, suh as ardinal B-splines or the family of orthonormal Daubehies saling funtions one even has that thedual funtionals are also re�nable saling funtions [14, 7℄. In this ase even loal linearindependene of the saling funtions is known to hold [5℄. This means that, whenever alinear ombination of suh saling funtions vanishes on any given open neighborhood, theoeÆients of those saling funtions whose support intersets this neighborhood have to bezero. This setting hosts the well-known loal orthonormal or biorthogonal bases for L2(R ).As mentioned above, the loal independene implies property (2.14). Moreover, �xingany interval 
, say, we an take here�m = f�(2m � �k) : k 2 Z; supp�(2m � �k) � 
 (or (supp�(2m � �k))Æ \ 
 6= ;)g:Here Pm onsists of the dyadi intervals of length 2�m ontained in 
, while the � 2 �m areunions of �nitely many dyadi intervals.Of ourse, taking tensor produts provides analogous multiresolution analyses on domains
 whih are �nite onneted unions of integer translates of the unit ube the ells beingdyadi ubes now.A lassial lass of non-tensor produt shift-invariant multivariate MRAs satisfying theabove requirements is based on the notion of box-spline. In this ase stability, linear indepen-dene, and loal linear independene are known to be equivalent properties whose validityan be haraterized ompletely in terms of the generating set of diretions, see e.g. [10℄.Wavelets on the interval: The biorthogonal or orthogonal shift-invariant multiresolutionanalyses on R an be used as a starting point for onstruting an MRA on a �xed �niteinterval [0;M ℄, say, along with orresponding biorthogonal or orthogonal bases, see e.g.[5, 9, 8℄. Instead of taking just basis funtions whose supports are ontained in a givendomain or its restritions to suh a domain, one proeeds as outlined next �rst again for theunivariate ase and a �xed integer interval 
. The idea is to generate V0 as the span of allinteger translates of a saling funtion � whose supports are fully ontained in (0;M) and by�nitely many additional basis funtions near the end points of the interval, whih are formedas �nite linear ombinations of the �(� � k) so as to retain some polynomial exatness andre�nability. The Vj; j > 0, are obtained by saling. One still has loal biorthogonal basesso that (2.7) and (2.14) remain valid. These boundary adaptations allow one to onstruta dual pair of biorthogonal MRAs on 
 whih in turn lead to the onstrution of waveletbases on 
.Parametrially lifted MRA and Wavelets on domains: One boundary adapted MRAs ofthe above type are available, one an onstrut MRAs on more ompliated domains whoseboundary is not neessarily aligned with the oordinate axes. In fat, on an deal withdomains of the type 
 = [�2K �(�);where � is again the unit d-ub and the � are regular parametri mappings. Correspondingparametri liftings of the MRA� on � an be stihed together to form even a globally smooth7



MRA on 
 whih inherits the relevant properties of MRA�. For details the reader is referrede.g. to [3, 4, 11, 12, 6℄.Finite elements: Suppose that P0 is a loally quasi-uniform, shape regular triangulationof the polyhedral domain 
 and eah Pm for m > 0 arises from P0 through m suessiveregular subdivisions. Examples for d = 2 are based on deomposing eah triangle into fourongruent hildren or into two triangles by splitting the longest edge. Similar proeduresare known for d = 3. In this ase the ells are triangles or more generally simplies. Finiteelement spaes of degree k on suh partitions are usually de�ned as linear spans of nodalbasis funtions whih are (globally ontinuous, sometimes even C1) pieewise polynomialson these partitions whih are dual to suitable olletions of nodal values (point values orderivatives) at the verties or mid points of edges. The simplest examples are ontinuousLagrange �nite elements of degree k in the plane where the nodal values are assoiated witha regular \k-mesh" whih is the re�ned triangulation obtained by subdividing eah trianglein Pm into k2 ongruent subtriangles. Sine on eah ell the same number of basis funtionsoverlap, namely the dimension of the generated polynomial spae, loal linear independeneand hene property (2.14) holds. Moreover, the onstrution of a loal dual basis, onsistingof (disontinuous) pieewise polynomials of the same degree, is straightforward, so that allthe above assumptions an be veri�ed in this ase as well, see e.g. [13℄ for wavelet bases inthe �nite element ontext.Anisotropi spline bases over multilevel nested triangulations: For a given bounded polygonaldomain 
 � R 2, onsider a sequene of triangulations (Pm)m2N0 suh that eah level Pm isa partition of 
 into triangles and a re�nement of the previous level Pm�1. Write P :=Sm2N0 Pm. Eah suh sequene of triangulations generates an MRA of spaes S0 � S1 � � � �onsisting of pieewise linear funtions, where Sm (m � 0) is spanned by all Courant elements'� supported on ells � at the m-th level Pm. Natural mild onditions should be imposedon the triangulations in order that this MRA satisfy our onditions from x2.1 (see [23, 24℄for the exat onditions; P is then alled a loally regular triangulation). These onditionsessentially do not allow the areas of the triangles to hange unontrollably when movingaway from a �xed triangle in P with regard to sale and spatial loation. On the otherhand, the onditions still allow the triangles in P to hange in size, shape, and orientationquikly when moving around at a given level or aross the levels. In partiular, triangleswith arbitrarily sharp angles are permitted in any loation and at any level. The abovedesribed hierarhy of linear splines provides a simple example of an MRA whih may havea very anisotropi struture.To give an example of more general anisotropi MRAs, onsider now the hierarhyS0 � S1 � � � � ; where Sm := Sk;r(Pm) is the spae of all r-times di�erentiable pieewisepolynomials over the triangles of Pm of degree < k (k � 1). In [16℄, a onstrution of splinebasis �m in Sk;r(Pm) is given, whenever r � 1 and k > 4r + 1, in the ase of 
 = R 2 . Itis shown that under some reasonable onditions on the triangulations (Pm)m2Z of R 2 thebases (�m)m2Z satisfy our onditions on MRAs from x2.1. In partiular, these onditionsadmit arbitrarily sharp angles and o�er onsiderable exibility. The triangulations satisfyingthese onditions are alled strong loally regular triangulations. If one onsiders sequene oftriangulations (Pm)m2N0 on a ompat domain 
 � R , then usual modi�ations (see [15℄) of
8



the basis funtions orresponding to boundary edges or verties lead again to bases satisfyingour onditions. The onstrution in [16℄ an be extended to the spaes Sk;r(Pm), k > r2d+1,in dimensions d > 2.MRAs onsisting of disontinuous funtions: MRAs onsisting of (disontinuous) pieewisepolynomials are ompletely legitimate as well. Suh hierarhies an be de�ned over regular(uniform) or irregular simpliial or other partitions of a ompat domain in R d . See [23,26℄ for more details in the anisotropi ase. Due to the the more enhaned loality oforresponding basis funtions (e.g. supports and ells agree in this ase) the analysis beomessimpler in many ways. In this artile we fous therefore our attention on MRAs onsistingof ontinuous or even more regular funtions.
2.3 Geometri Properties and Further PrerequisitsRe�ned properties of the above examples involve in one or another way the geometry of thesupports of the basis funtions. In spite of the di�erene of respetive geometri settings therelevant properties turn out to be governed by the same abstrat mehanism. The objetiveof this setion is to extrat and bring out the essential mehanism in order to allow us toprovide a uni�ed treatment of the above and many other ases.In order to deal with graph distanes and neighborhood relations in suh partitions underpossibly general irumstanes it is onvenient to employ the notion of the m-th level starof a set. For a given set E � 
 and level m � 0, we de�neStar (m)(E) := Star (m)1 (E) := [fI 2 Pm : I \ E 6= ;gand indutively Star (m)j (E) := Star (m)1 (Star (m)j�1(E)); j > 1:One an easily show thatStar (m)j1+j2(E) = Star (m)j1 (Star (m)j2 (E)); j1; j2 � 1:We shall drop the the referene to m whenever the level is lear from the ontext whih is,for instane, the ase when the set E has a spei� level suh as the indies � 2 �m or theells I 2 Pm. When E onsists of a single point x we write in a slight abuse of notationbriey Star (m)j (x) instead of Star (m)j (fxg).The extent to whih the supports � overlap an be onveniently expressed in terms ofstars as well. We reord for later use the following onsequene of (�):(") For eah � 2 �m, � � Star (m)�� (x) for x 2 �; (2.17)where �� � �1 is also a uniform onstant, see property (�) in Setion 2.1.The m-th level stars of sets generate a (graph) distane d(m)(x; y) in 
, de�ned byd(m)(x; y) := minfj : x 2 Star (m)j (y) and y 2 Star (m)j (x)g: (2.18)
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Clearly, Star (m)j (E) = fx 2 
 : d(m)(x;E) � jg:We an state now one more ondition on the ells whih guarantees that they are properlyre�ned, i.e. as in all our examples all \sides" of the ells are subdivided (in a weakly isotropifashion). We require that there exists a onstant ~� � 1 suh that
d(m)(x; y) � 12 d(m+~�)(x; y) for x; y 2 
 and m � 0: (2.19)Evidently, this is equivalent to the onditionStar (m+~�)2 (E) � Star (m)1 (E); E � 
: (2.20)The fat that the supports � overlap auses some \spatial pollution" aross di�erent lev-els. The following notion helps us to quantify this e�et.Conneting by n-stars. For �; � 2 � with l(�) � l(�), we say that � is onneted with � byn-stars (n � 1) if there exist ells Ij, j = 1; : : : ; r, suh that(i) l(I1) � l(�) + 1, l(Ij+1) � l(Ij) + 1, j = 1; : : : ; r � 1, l(Ir) � l(�),(ii) I1 � Star (l0)n (�), I2 � Star (l1)n (I1), . . . , Ir � Star (lr�1)n (Ir�1),� � Star (lr)n (Ir), where l0 := l(�), lj := l(Ij).Lemma 2.2. If �; � 2 � with l(�) � l(�), and � is onneted with � by n-stars, thenindependently of the number of the onneting ells� � Star (m)2~�n(�); m := l(�); (2.21)where ~� is from (2:19).Proof: The laimed inlusion follows almost immediately from (2.19) (or (2.20)). We skipthe formal proof but indiate only the following rough line of argument. Marhing from Ijto Ij+1 the spatial step size does not inrease but halves by at least 1=2 in every ~�n steps.Then a geometri series argument shows that one annot go farther away than the length ofour �rst step �2~�n.The possibly signi�ant overlap of the supports � is a severe obstrution to loalizingestimates. In order to be still able to manage suh pollution e�ets, we require an auxiliarymultilevel system of overlapping ells that are on one hand simple enough to be disentangledwhile, on the other hand, they essentially sale like the atual supports.Extended ells. We assume the existene of a olletion of overlapping extended ellsO = [m2N0 Om

with the following properties:(i) Every level Om is a over of 
, i.e. 
 = [!2Om!:10



(ii) Eah extended ell ! 2 Om an be \paved" by ells from the same level Pm, i.e.! = [I2N!I with N! � Pm.(iii) If ! 2 Om, then ! � Star (m)�4 (x) for x 2 !; (2.22)where �4 is a uniform onstant satisfying 1 � �4 � ��.(iv) For every ! � Om, m � 1, there exists !0 2 Om�1 suh that ! � !0.(v) For every !1 � O there exists !2 2 O suh thatStar 1(!1) � !2 and l(!2) � l(!1)� �5; (2.23)whenever l(!1) � �5, where �5 � 1 is a uniform onstant and l(!) denotes the level of !.(vi) Coloring property. The set O an be represented as a �nite disjoint union of subsetsfOjgJj=1 suh that eah set Oj is a tree with respet to the inlusion relation, that is, if!0; !00 2 Oj and (!0)Æ \ (!00)Æ 6= ;, then either !0 � !00 or !00 � !0.The oloring property (vi) of the extended ells is the reason for introduing them here.It is not lear whether it holds diretly for the supports �. One should think of extendedells ! 2 Om as simple regions of type ! = Star (m)1 (v) with v a point in 
 (whih in the aseof Courant elements agrees with the sets �) or ! = Star (m)1 (I) with I 2 Pm. This is the asein all examples mentioned in Setion 2.2. In the ase when P onsists of dyadi ubes in R d ,the oloring property is established in [20℄, and in the ase when P onsists of triangles (inR 2), suh a result is proved in [24℄. The proof of the oloring lemma from [24℄ an be arriedover to spatial dimensions d � 3.Our �nal assumption on the supports �, whih is also satis�ed in the examples listed inSetion 2.2, ouples the system of extended ells with the supports �.(�) For eah ! 2 Om (m � 0) there exists � 2 �m suh that ! � �.
Lemma 2.3. Suppose m � jK, where j � 1 and K := ���5. For any � 2 �m there exists! 2 O suh that Star (m)j (�) � ! and l(!) = m� jK: (2.24)Moreover, Star (m)j (�) � Star (m�jK)�4 (x) for x 2 �: (2.25)Proof: In view of (2.23), it suÆes to prove the lemma only in the ase j = 1. ChooseI 2 P and ! 2 O so that l(I) = l(!) = l(�), I � � and I � !. Then by (2.17),Star 1(�) � Star ��(I) � Star ��(!):Using (2.23), there exist extended ells !0 := !; !1; : : : ; !�� suh thatStar 1(!i) � !i+1 and l(!i+1) � l(!i)� �5:and hene Star ��(�) � !�� and l(!��) � l(�)� ���5;11



whih implies (2.24).Fix x 2 �. By (2.24) and (2.22), we obtain Star (m)j (�) � ! � Star (m�jK)�4 (x):In the following all onstants will depend on r, �, #, Æ, �0; : : : ; �4, �0; : : : ; �5, ~�, ��, �w,and #�0 (or at least some of them), whih are not ompletely independent. We shall referto them as parameters of the MRA whih is being urrently used.
2.4 Loal Approximation from Vm and ProjetorsAs in [16, 23, 24℄ a sale of B-spaes indued by the multiresolution hierarhy will play anessential role in the subsequent analysis. The loal approximation from the spaes Vm willbe an important element in the de�nition of these B-spaes. We �rst de�ne, for a given ellI 2 Pm (m � 0), the extension bI by bI := [�2�m: I�� �: (2.26)
Clearly, jbIj � jIj with  depending only on the parameters of the MRA.For given funtion f 2 Lq(
) and I 2 Pm (m � 0), the error of Lq-approximation to fon bI from Vm is de�ned by E(f; bI)q := infg2Vm kf � gkLq(bI) : (2.27)We de�ne Qm(f) := X�2�m �(f)��; f 2 L1(
); (2.28)
where �(f) are extensions of the linear funtionals from (2.6) whih satisfy (2.8). Clearly,Qm : L1(
)! Vm is a linear projetor onto Vm.Lemma 2.4. If f 2 Lq(
), 1 � q � 1, and I 2 Pm, m � 0, thenkQm(f)kLq(I) � [kfkLq(bI) (2.29)and kf �Qm(f)kLq(I) � [E(f; bI)q; (2.30)where [ depends only on q and the parameters of the MRA.Proof: The estimates (2.29)-(2.30) readily follow by property (2.8) of the linear funtionals�(f) (see also [16, 23℄).We use the projetors Qm for deomposing a given funtion into multilevel omponents.We denote by qm := Qm �Qm�1; where Q�1 := 0; (2.31)the \detail" of f between the levels m and m� 1. Whenever a wavelet basis is available, qmis understood to arise from the assoiated anonial projetors, i.e.qm(f) = X�2Lm�1 �(f) �; �(f) := hf; ~ �i:

12



In general, for a given funtion f 2 L1(
) one has qm(f) 2 Vm and heneqm(f) =: X�2�m b�(f)��: (2.32)
From the approximation properties of the spaes Vm, we therefore know that for f 2 Lq(
),1 � q � 1, the expansion f = Xm2N0 qm(f) = Xm2N0 X�2�m b�(f)�� (2.33)
onverges in Lq.For the purposes of nonlinear approximation in Lp, 0 < p � 1, we modify the aboveonstrution in a standard way as desribed in the following. Denote by V 0m the linear spaeof all pieewise Vm-funtions over Pm, i.e. g 2 V 0m if g =PJ2Pm gJ � 1J ; where gJ 2 Vm. Fora given I 2 Pm, let PI;q : Lq(I)! VmjI be a (nonlinear) projetor suh thatkf � PI;q(f)kLq(I) � E(f; I)q with E(f; I)q := infg2Vm kf � gkLq(I) :We now de�ne the operator (projetor) pm;q : Lq(
)! V 0m bypm;q(f) := XJ2Pm PI;q(f) � 1J :Finally, we onsider the operator Qm;q : Lq(
)! Vm de�ned by Qm;q(f) := Qm(pm;q(f)). Itis easy to see that Qm := Qm;q satis�es (2.29)-(2.30) if 0 < q � 1. In going further, we setqm := qm;q := Qm;q �Qm�1;q with Q�1;q := 0, and de�ne fb�;q(f)g�2�m similarly as in (2.32).Now, we have the following representation of any f 2 Lq(
), 0 < q � 1:f = Xm2N0 qm;q(f) = Xm2N0 X�2�m b�;q(f)�� in Lq. (2.34)
See [16℄ for more details of the above in the spline ase.
3 B-spaes and Besov spaesWe �rst introdue the B-spaes, whih will be an important vehile in showing that the\Push-the-Error" algorithm aptures the rates of the best nonlinear n-term approximation.As elsewhere, we assume that 0 < p � 1, and � � 1 if p =1 and � > 0 if p <1. In bothases, we set 1=� := �+ 1=p.The ase 1 < p � 1. Given an MRA M with a set of basis (saling) funtions � =Sm2N0 �m, we de�ne the B-spae B�� = B�� (M) as the set of all f 2 L1(
) suh that

jf jB�� (M) := �XI2P(jIj���1+1=�E(f; bI)1)��1=� <1; (3.1)
13



where E(f; bI)1 denotes the error of L1-approximation to f on bI from Vm if I 2 Pm (see(2.27)). Clearly, j � jB�� (M) is a semi-norm if � � 1 and semi-quasi-norm if � < 1. For di�erentpurposes it will be onvenient to employ di�erent equivalent norms. We shall next introduethese variants.The loal approximation in L1 above an be replaed by approximation in Lq with anarbitrary q < p (but not with q � p). Namely, for 1 � q < p, we de�ne
jf jEqB�� (M) := �XI2P(jIj���1=q+1=�E(f; bI)q)��1=� � jf jB�� (M): (3.2)

For the proof of the above equivalene, see Theorem 3.3 below.By (3.10) below, it follows that B�� is embedded in Lp and hene it is natural to de�ne a(quasi-)norm in B�� by kfkB�� := kfkp + jf jB�� : (3.3)We also set kfkEqB�� := kfkp + jf jEqB�� : (3.4)The spae B�� has an atomi deomposition. We de�ne
kfkAB�� (M) := inff=P�2� a����X�2�(j�j���1+1=�ka���k1)��1=� ; (3.5)

where the in�mum is over all representations of f in L1(
). By (2.11), we have
kfkAB�� (M) � inff=P�2� a����X�2� ka���k�p�1=� : (3.6)

Another important fat is that the norm in B�� an be realized by deompositions usingsimple projetors. Let f =P�2� b�(f)�� be the deomposition of f from (2.33). We de�ne
kfkQB�� (M) := �X�2�(j�j���1+1=�kb�(f)��k1)��1=� : (3.7)

The norm equivalene (2.11) yields
kfkQB�� (M) � �X�2� kb�(f)��k�p�1=� : (3.8)

Finally, the B-spaes have equivalent norms through wavelets or prewavelets, wheneverthe latter are available. Suppose a wavelet basis exists and satis�es the onditions from x2.1.Let f 2 L1(
) and f = X�2�0 ��� +X�2L � �:We de�ne kfkWB�� (M) := �X�2�0 k���k�p +X�2L k� �k�p�1=� : (3.9)
14



The ase 0 < p � 1. We reall our standing assumptions: � > 0 and 1=� := � + 1=p. Inthis ase we de�ne jf jEqB�� (M) , 0 < q < p, as in (3.2) and set jf jB�� (M) := jf jE�B�� (M). We alsode�ne the quasi-norms kfkB�� (M) and kfkEqB�� (M) as in (3.3)-(3.4). Further, we introdue theatomi quasi-norm kfkAB�� (M) by the quantity on the right-hand-side in (3.6) and de�ne thequasi-norm kfkQB�� (M) by the right-hand-side quantity in (3.8) with b�(f) replaed by b�;q(f)from (2.34) for some 0 < q < p.Remark 3.1. In the above de�nition of kfkEqB�� (M), kfkB�� (M) := kfkE1B�� (M) (q = 1), andkfkQB�� (M) via fb�;q(f)g or fb�(f)g (q = 1) it is imperative to have q < p. Therefore, itis important that (Qm) satisfy (2:29) � (2:30) for some q < p, whih essentially follows byondition (2:8) on the duals f�(�)g. In turn, ondition (2:8) an be relaxed somewhat; it anbe replaed by j�(�)j � j�j�1=qkfkq with 1 < q < p.The following embedding result, proved in [23, 26℄, will play an important role.Theorem 3.2. For any olletion of real numbers f�g�2� and 0 < � < p < 1 or p = 1and 0 < � � 1, we have X�2� j�j��p � �X�2� k���k�p�1=� ; (3.10)
where  depends only on � , p, and the parameters of the MRA.The announed equivalene result reads now as follows.Theorem 3.3. For a given MRA the norms k � kB�� , k � kEqB�� , k � kAB�� , k � kQB�� , and k � kWB�� if(pre)wavelets exist and p > 1, are equivalent with onstants of equivalene depending only onp, �, and the parameters of the MRA.The proof of this theorem is quite similar (but not idential) to the proofs of the orre-sponding results in [16, 23℄. For ompleteness, we give it in the appendix.The following Sobolev type embedding result follows immediately by (3.6) or (3.8): If0 < �0 < �1 and �j := (�j + 1=p)�1, j = 0; 1, then B�1�1 (M) � B�0�0 (M), i.e. if f 2 B�1�1 (M),then f 2 B�0�0 (M) and kfkB�0�0 (M) � kfkB�1�1 (M).Sine the B-spaes are essentially sequene spaes (retrats of sequene spaes [1℄) theyare easy to interpolate. In partiular, the analogue of Theorem 2.12 from [16℄ holds with asimilar proof. We skip the details.For a given MRA M more general B-spaes B�pq(M), 0 < p; q � 1, � > 0, an bede�ned similarly as in [23℄ and then B�� (M) = B��� (M). The B-spaes should be viewedas nonlassial smoothness spaes whih are spei�ally designed for the needs of nonlinearn-term approximation. A ruial property of the B-spaes is that the basis funtions f��g�2�of an MRA M are in�nitely smooth with respet to the sale of the B-spaes B�� (M). Thisis reeted by the estimate k��kB�� (M) � k��kp for 0 < � <1 (see Theorem 4.2 below). Asa onsequene, our diret, inverse, and haraterization theorems as well as our algorithmsimpose no restrition on the rates of approximation.In regular settings the sale of Besov spaes Bs� (L� (
)), 1=� = s=d+1=p, usually arises innonlinear approximation in Lp(
) (see e.g. [17℄). Note that the smoothnes parameters of the15



Besov spaes and B-spaes are normalized di�erently. Thus the Besov spaes Bd�� (L�(
))orresponds to the B-spae B�� (M). The Besov regularity of the basis funtions f��g deter-mines the smoothness range where the Besov spae an be used in nonlinear approximation.To be more preise, assume that in the setting desribed in x2.1 all Pm are regular parti-tions of 
, that is, for eah ell I 2 Pm there exist balls Br1, Br2 of radii r1, r2 suh thatBr1 � I � Br2 and r2 � r1 with  a uniform onstant. It is not hard to be seen that iffor some � > 0, k��kBd�� (L� (
)) � k��kp for all �� 2 �, then B�� (M) � Bd�� (L�(
)) andkfkBd�� (L� (
)) � kfkB�� (M) (see [16, 23℄ for the spline ase).In anisotropi setups, when basis funtions of strongly elongated supports are involved,the Besov spaes are no longer suitable for haraterization of the rates of nonlinear approx-imation whereas the B-spae onept still applies.B-spaes have been used impliitly or expliitly elsewhere, see e.g. [25℄, [2℄. They aresystematially developed and used in the ase of anisotropi MRAs generated by pieewisepolynomials in [16, 23, 24, 26, 27℄.
4 Best Nonlinear n-term ApproximationOur primary goal in this setion is to haraterize the approximation spaes generated bynonlinear n-term approximation from the saling funtions of an MRA.We let �n denote the nonlinear set onsisting of all funtions g of the formg =X�2� a���;where � � �, #� � n, and � is allowed to vary with g. We denote by �n(f)p the error ofbest Lp-approximation to f 2 Lp(
) from �n:�n(f)p := infg2�n kf � gkp:To haraterize the approximation spaes generated by (�n(f)p), we shall use the mahineryof Jakson-Bernstein estimates ombined with interpolation (see e.g. [19, 28℄).As elsewhere, our standing assumption is that 0 < p � 1 and � � 1 for p = 1 and� > 0 if p <1; in both ases we set 1=� := �+ 1=p.Theorem 4.1. [Jakson estimate℄ If f 2 B�� (M), then�n(f)p � n��kfkB�� (M) (4.1)where  depends only on �, p, and the parameters of the MRA.Estimate (4.1) follows from the basi estimates of the error of the \Push-the-Error"algorithm (p =1) and \Threshold" algorithm (0 < p <1), stated in Theorems 5.6 and 6.1below.Theorem 4.2. [Bernstein estimate℄ If g 2 �n, thenkgkB�� (M) � n�kgkp (4.2)where  depends only on �, p, and the parameters of the MRA.16



To avoid a major diversion from the presentation of our entral results we postpone theproof of this theorem to the appendix.One an now follow the standard lines to obtain \regularity-free error estimates". Tothis end, denote by K(f; t)p := K(f; t;Lp(
);B�� (M)) (L1(
) := C(
)) the K-funtionalde�ned by K(f; t)p := infg2B�� kf � gkp + tkgkB�� ; t > 0: (4.3)By standard arguments (see e.g. [28℄), the Jakson and Bernstein estimates (4.1)-(4.2)imply the following diret and inverse estimates: For f 2 Lp(
) one has�n(f)p � K(f; n��)p (4.4)and K(f; n��)p � n���h nX�=1 1� (����(f)p)��i1=�� + kfkp�; (4.5)
where � � := minf�; 1g.We de�ne the approximation spae Aq = Aq (�; Lp) to be the set of all funtions f 2Lp(
) suh that kfkAq := kfkp + � 1Xn=1(n�n(f)p)q 1n�1=q <1 (4.6)
with the usual modi�ation when q =1.The following haraterization of the approximation spaes Aq is immediate from esti-mates (4.4)-(4.5).Theorem 4.3. If 0 <  < � and 0 < q � 1, thenAq (�; Lp) = (Lp(
);B�� (M)) � ;qwith equivalent norms, where (Lp;B�� (M)) � ;q is the real interpolation spae between Lp andB�� (M) (see e.g. [1℄).In one spei� ase the approximation spae A�q (Lp) an be identi�ed as a B-spae:Theorem 4.4. Assuming that � > 0 if p <1 and � > 1 if p =1, and 1=� := � + 1=p inboth ases, we have A�� (�; Lp) = B�� (M) (4.7)with equivalent norms.Proof: The proof is a mere repetition of the proof of Theorem 3.4 in [16℄ and will be omitted.We next turn to a onstrutive realization of best n-term approximation.
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5 \Push-the-Error" Algorithm5.1 Desription of the AlgorithmFor a given funtion f 2 C(
), we use the deomposition sheme from (2.33) to represent fin the form f =X�2� b�(f)�� = Xm2N0 X�2�m b�(f)��; (5.1)
where the oeÆients b� := b�(f) depend linearly on f and the series onverges uniformlyon 
. As elsewhere in this artile, the basis funtions �� are normalized in L1, i.e k��k1 = 1.Whenever f has a wavelet expansion (see (2.16)), we rewrite the wavelets in terms of salingfuntions to obtain (5.1). We shall drop the referene to f at times when this is lear fromthe ontext.For the purpose of designing an algorithm apable of ahieving the rates of the best n-term approximation from f��g in the uniform norm, the initial deomposition (5.1) shouldprovide an eÆient representation of f . In our ase this means that the terms in (5.1) shouldharaterize the norm in B�� (M), � � 1, � := 1=�, as in (3.7)-(3.8), whih we ahieve byemploying simple projetors onto the spaes (Vm) (see x2.4 and x3).To desribe the \Push-the-Error" algorithm we need a few preliminaries that help us todevelop substitutes for simple thresholding onepts that would work in Lp, p <1.For any �; � 2 � with l(�) > l(�), we say that � is onneted with � via sets from � ifthere exists a sequene of elements � =: �0; �1; : : : ; �k := � with k := l(�)� l(�) suh that(i) l(�i) = l(�i+1) + 1; i = 0; : : : ; k � 1;(ii) �i sits on �i+1, i = 0; : : : ; k � 1, i.e. �Æi \ �Æi+1 6= ;.Given � 2 �, we de�neU 0� := f� 2 � : l(�) > l(�); � is onneted with �g and (5.2)U� := U 0� [ f�g: (5.3)Note that � 2 U� implies that U� � U�; and hene, by Lemma 2.2 and (2.17),� 2 U� =) � � StarN�(�); N� := 2~���: (5.4)In order to ompress the representation (5.1), it would not be reasonable to threshold theoeÆients b�(f), due to the lak of stability aross levels. Therefore we need more subtleindiators and introdue loal error terms byE(f; �) = E(�) := jb�(f)j+ X�2U 0� b�(f)��

1: (5.5)
Remark 5.1. Sine by (2:9), one has for � 2 �mjb�(f)j � �2k(Qm �Qm�1)fk1 � �2�kQm(f)� fk1 + kf �Qm�1(f)k1�; (5.6)
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and X�2U 0� b�(f)��
1 � kQm(f)� fk1; (5.7)

the assumed uniform onvergene of (5:1) and (2:30) ensure that for eah f 2 C(
) andevery " > 0 there exists an M 2 N suh that E(f; �) < " for � 2 �m, m > M .For eah � 2 �, we de�ne its \onrete" 
� by
� := StarN�+4��(�); (5.8)where �� is from (2.17) and N� is from (5.4).Also, for a given � 2 �, we de�neX� := f� 2 �m : �Æ \ 
Æ� 6= ;g with m := l(�): (5.9)We shall all the elements of X� the neighbors of �. By (2.17) and (5.8),� 2 X� =) � � StarN�+5��(�): (5.10)We are now prepared to desribe the \Push-the-error" algorithm whih in a slight abuseof terminology will play two di�erent roles. On one hand, it will be used as a theoretial toolthat o�ers a onstrutive way of identifying n-term approximations realizing optimal rates.In this role it will be applied to an arbitrary in�nite expansion of the form (5.1), althoughthe error terms E(f; �) would then not be pratially aessible. In a pratial ontext thesheme should be thought of as applied to some initial approximation onsisting of a �niteexpansion of the form (5.1). We shall briey disuss orresponding pratial rami�ationslater and work here �rst with the oneptual version of the �rst form:PTE ["; f ℄! A"(f)p produes for a given funtion f 2 C(
) and any target auray " > 0an approximation A"(f) = A"(f) = X�2�(f;") d�(f)��by the following steps:Step 1. [Deomposition℄ We represent f in the form (5.1) (see also (2.33)).Step 2. [\Prune the shrubs"℄ We disard all terms b��� suh thatE(f; �) � "; 8 � 2 U�: (5.11)We denote by � = �(f; ") the set of all elements of � whih have not been disarded andwrite f� :=X�2� b���: (5.12)
From Remark 5.1 we know that there exists some M 2 N suh thatE(f; �) < " 8 � 2 �m; m > M; (5.13)
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i.e. � is a �nite set.Step 3. [\Push the error"℄ This step is a variation of Step 3 of the \Push the error" algorithmdesribed in [24℄.Let ~�0 be the set of all � 2 �0\� suh that jb�(f)j > " and set �0 := ([�2~�0X�)\�. Wede�ne A0 := X�2�0 b���:Using the re�nement equations (2.13), we represent (rewrite) eah of the remaining termsb���, � 2 (�0 \ �) n �0, as a linear ombination of f��g�2�1 and add to the resulting termsthe existing terms b���, � 2 �1 \�. As a result we obtain a representation of f� in the form
f� = A0 + X�2�1n� d��� + X�2�1\� d��� +

MXm=2 X�2�m\� b���:Further, we de�ne ~�1 as the set of all � 2 �1\� suh that jd�j > " and set �1 := ([�2~�1X�)\�.Then we de�ne A1 := X�2�1 d���:Similarly as above, we rewrite all remaining terms d���, � 2 (�1 \ �) n �1, at the next leveland add to them the existing terms b���, � 2 �2 \ �. We obtain
f� = A0 +A1 + X�2�1n� d��� + X�2�2n� d��� + X�2�2\� d��� +

MXm=3 X�2�m\� b���:We proess in the same way all other levels until we reah the �nest level �M . We de�ne~�M , �M , and AM as above.We obtain as an output the set ~�(f; ") := SMm=0 ~�m of the "-signi�ant indies (withjd�(f)j > "), the set �(f; ") := SMm=0 �m ontaining also the neighbors of the elements in~�(f; ") identi�ed by the onrete 
�, and the approximation
A" = A"(f) := MXm=0Am = X�2�(f;") d���:We next estimate the error aused by Step 2 and then Step 3 of the above sheme.Lemma 5.2. We have kf � f�k1 � �2" (5.14)with �2 the onstant from property () of the elements of �, x2.1.Proof: To see this, let x 2 
 and set C(x;�) := f� 62 � : x 2 �Æ; l(�) is minimalg. IfC(x;�) = ;, then f�(x) = f(x). Suppose C(x;�) 6= ;. By property (), #C(x;�) � �2.Then for any �0 2 C(x;�),jf(x)� f�(x)j � X�2C(x;�) jb�j+  X�2U 0�0 b���

1 � X�2C(x;�)E(�) � �2";
whih on�rms the laim. 20



Lemma 5.3. We have kf� �A"(f)k1 � " (5.15)with  = 2�22�1, where �1 is a bound of the oeÆients from (2:13).Proof: Fix x 2 
 and let C(x;�) := f� 62 � : x 2 �Æ; l(�) is minimalg as in the proof of theprevious lemma.Suppose �rst that C(x;�) 6= ;. Let �0 2 C(x;�) and set m := l(�0). Sine x 2 �0 and�0 62 �, then U 0�0 \ � = ; and, therefore, there is no ontribution to f� at x from levels > m.Thenf�(x) = A"(f)(x)+ X�2C(x;�) d���(x)+ X�2�m\�:x2� r���(x) =: A"(f)(x)+F1(x)+F2(x): (5.16)
Here the terms d���, � 2 C(x;�), are obtained from the rewriting of some terms d���,� 2 �m�1 so that x 2 � and jd�j � ". Denote by K(x;m) the set of their indies. By (2.13),�� =P�2�m; ��� a�;��� with ja�;�j � �1, and heneX�2K(x;m) d��� = X�2C(x;�)� X�2K(x;m) a�;�d����;whih yields d� = X�2K(x;m) a�;�d�:Therefore, jd�j � X�2K(x;m) ja�;�jjd�j � �2�1"; � 2 C(x;�);
and hene jF1(x)j � X�2C(x;�) jd�j � �22�1"; (5.17)
where �2 is from property (), x2.1.The terms r��� (if any) in the seond sum in (5.16) have indies � 2 �m \ � suh thatx 2 � and jr�j � " sine they have not been seleted in Am. Therefore,jF2(x)j � X�2�m\�: x2� jr�j � �2":
Combining this with (5.17) yields (5.15).It remains to onsider the ase when C(x;�) = ;. Now, we havef�(x) = A"(f)(x) + X�2�M\�: x2� d���(x);where d��� are terms whih have not been seleted in the approximant. Therefore, jd�j � "and (5.15) follows as above.Remark 5.4. Combining the estimates from Lemmas 5.2-5.3, we obtain the following errorbound for the \Push-the-Error" algorithm with target auray " > 0:kf �A"(f)k1 � ̂" (5.18)with ̂ < 3�22�1.
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5.2 Error Analysis of \Push-the-Error"Assuming that \Push-the-Error" is applied to a funtion f 2 C(
) with " > 0 and A"(f) isthe approximant obtained, we denoteN(") = Nf (") := #�(f; "); AN(")(f) := kf �A"(f)k1;and An(f) := inf">0fAN(")(f) : N(") � ng:The main oneptual tool is the following weak quasi-subadditivity of the ounting funtionalN("). We shall point out later in whih sense this may be regarded as a weak stabilityproperty.Theorem 5.5. There exist onstants � and ~ depending only on the parameters of the MRAsuh that if f = f0+f1, fj 2 C(
), and the \Push-the-Error" algorithm is applied to fj with"j > 0 (j = 0; 1) and to f with " := �("0 + "1), thenNf (") � ~(Nf0("0) +Nf1("1)): (5.19)The proof of this theorem is rather involved and will be postponed to x7.We shall make now preise in whih sense the \Push-the-Error" sheme gives rise to anoptimal approximation sheme.Theorem 5.6. If f 2 B�� (M), � � 1, � := 1=�, then for eah " > 0AN(")(f) � " and N(") � "��kfk�B�� (M) (5.20)and, therefore, An(f) � n��kfkB�� (M); n = 1; 2; : : : : (5.21)Moreover, for f 2 C(
), AN(")(f)1 � minf"; kfk1g: (5.22)Here the onstants depend only on � and the parameters of the MRA.The proof of this theorem is losely related to the one of the previous theorem and willalso be deferred to x7.We an now address the program outlined in Setion 4. Let us denote by K(f; t)1 theK-funtional generated by the spaes C(
) and B�� (M) with � := 1=�.Theorem 5.7. Suppose that f 2 C(
) and � � 1. Then one hasAn(f)1 � K(f; n��)1 (5.23)and, therefore,
�n(f)1 � An(f)1 � n���h nX�=1 1� (����(f)1)�i1=� + kfk1�; (5.24)

where  depends on �, and the parameters of the MRA.22



Proof: We need only prove (5.23), sine (5.24) follows by (5.23) and (4.5). Suppose g 2B�� (M) with kgkB�� 6= 0 and kf � gk1 6= 0. Choose "0 := 4�2[kf � gk1, where �2 and [ arethe onstants from (2.9) and (2.29). Further, hoose "1 := n��kgkB�� . Let " := �("0 + "1),where � is the onstant from Theorem 5.5. By (5.18) and Theorem 5.5, applied withf0 := f � g, f1 := g, we haveANf (")(f) � ("0 + "1) � (kf � gk1 + n��kgkB�� ) (5.25)and Nf (") � (Nf0("0) +Nf1("1));where  depends here on the onstant ̂ in (5.18) and on the onstants �; ~ in Theorem 5.5.We next show that Nf (") � n. Similarly to Remark 5.1, using (2.9) and (2.29), we havefor � 2 �m, jb�(f0)j � �2(kQm(f0)k1 + kQm�1(f0)k1) � 2�2[kf0k1and X�2U 0� b�(f0)��
1 � kf0 �Qm(f0)k1 � 2[kf0k1

and hene E(f0; �) � 4�2[kf0k1:Now, sine "0 := 4�2[kf0k1, then A"0(f0) = 0 and Nf0("0) = 0, due to Step 2 of thealgorithm. On the other hand, by Theorem 5.6, Nf1(") � "��1 kgk�B�� � n, where we haveexpressed "1 in terms of n aording to the above hoie, and hene Nf (") � n.Sine g was seleted arbitrarily in B�� (M), (5.25) yields An(f) � K(f; n��)1, whihimplies (5.23) (with a di�erent onstant ).The following result is an immediate onsequene of Theorem 5.7:Theorem 5.8. For f 2 C(
) and  > 0, An(f) = O(n�) if and only if �n(f)1 = O(n�).More generally, let Aq (�) = Aq (L1; �) be the approximation spaes generated by thenonlinear n-term approximation from the saling funtions of the MRA, de�ned in (4.6). LetAq (A) be the set of all funtions f 2 C(
) suh that
kfkAq (A) := kfk1 + � 1Xn=1(nAn(f))q 1n�1=q <1 (5.26)

with the usual modi�ation when q =1.Theorem 5.7 yields the following more general result:Theorem 5.9. For any  > 0 and 0 < q � 1, we have Aq (A) = Aq (�) and kfkAq (A) �kfkAq (�) for f 2 Aq (A) = Aq (�).
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5.3 Pratial aspets of \Push-the-Error"From a pratial perspetive the \Push-the-Error" algorithm an be applied only to �niteexpansions (5.1) sine otherwise Step 2 is not feasible. Therefore it an be viewed as aoarsening proedure that turns some initial (nonoptimal) approximation into a (nearly)optimal one. To make this more preise, suppose that f belongs to some spae VM so thatthe deomposition Step 1 of the sheme yields a representationf = X�2�0 b�(f)��;where �0 � Sm�M �m and thus N := #�0 � dimVM < 1. Suppose furthermore that f isan approximation to the (ideal) funtion f� 2 C(
) and thatkf � f�k1 � ": (5.27)From the proof of Theorem 5.7 we infer that there exist onstants 1; 2 � 1 suh that the(theoretial version of the)\Push-the-Error" sheme yields that for every n 2 N there exists"� > 0 suh thatAN("�)(f�) � 2K(f�; n��)1; N("�) � n; "� � 1K(f�; n��)1: (5.28)Now let n be the smallest positive integer for whih 2K(f�; n��)1 � ". One easily on�rmsthat then " � 22�K(f�; n��)1 � 2�": (5.29)Setting f�n := A"�(f�), one therefore learly has kf � f�nk1 � 2". Now we write f =(f � f�n) + f�n and set f0 := f � f�n; f1 := f�n; "0 := 8�2[":Next note thatK(f1; n��)1 � kf1 � f�k1 +K(f�; n��)1 � (1 + 2)K(f�; n��)1:Hene, by the same reasoning as above, there exists "�� > 0 suh that "�� � 1K(f1; n��)1 �1(1 + 2)", ANf1("��)(f1) � 2K(f1; n��)1 � 12(1 + 2)"; Nf1("��) � n: (5.30)Choose "1 = "��. We now apply Theorem 5.5 with the above seletion of f0, f1, "0, and "1to onlude that Nf (�("0 + "1)) � ~(Nf0("0) +Nf1("1))and, using (5.29),kf �A�("0+"1)(f)k1 � ("0 + "1) � 0" � K(f�; n��)1:But as in the proof of Theorem 5.7 one on�rms that, by (5.28), Step 2 of the algorithmreturns �f0 = ; and hene A"0(f0) = Nf0("0) = 0. Therefore, using (5.30),Nf (�("0 + "1)) � ~Nf1("��) � ~n:24



Consequently,kA�("0+"1)(f)� f�k1 � K(f�; n��)1; Nf (�("0 + "1)) � n:where K(f�; n��)1 � ". Thus a proper oarsening of f , obtained through the (pratialversion of the ) \Push-the-Error" sheme, yields a near optimal approximation to the idealf� whenever an initial error bound (5.27) is given. Suh situations arise in the ontext ofadaptive shemes. One also derives from the above onsiderations that, when f� 2 B�� (M)one has kA�("0+"1)(f)� f�k1 � "; Nf (�("0 + "1)) � "��kf�k�B�� (M);whih explains in whih sense the sheme deserves to be termed stable in L1.Complexity. Assume now that the funtion f (a surfae or multidimensional data) has aninitial representation (approximation) in some \�nest" spae VM of an MRA involving O(N)terms. Let us assume that the \Push the error" algorithm (as desribed in x5.1) is applied tothis f . The deomposition Step 1 of \Push-the-Error" will run in O(N) ops. Step 2 [\Prunethe shrubs"℄ of the algorithm an evidently be realized in O(N logN) ops by rewriting allterms of interest at the �nest level. Step 3 [\Push the error"℄ works in O(N) ops. Thereonstrution Step 4 runs also in O(N) ops. Therefore, the \Push-the-Error" algorithmappears to be an attrative oarsening sheme from a pratial point of view. Our next goalis to propose an even more eonomial version of the seond step of the algorithm.Salable seond version of Step 2 [\Prune the shrubs"℄. We de�ne a new loal error termeE(f; �) by eE(f; �) := jb�(f)j+maxv2� X�2U 0�: v2� jb�(f)j: (5.31)
Now, the ondition E(f; �) � " in (5.11) is replaed by the ondition eE(f; �) � " (see (5.5))whih is pratially easier to be veri�ed. The new version of Step 2 of the algorithm an berealized in O(N) ops by employing a well-know priniple of Dynami Programming. Weuse the oeÆient fb�(f)g obtained in Step 1 to omputeM(f; �) := maxv2� X�2U 0� : v2� jb�(f)j for every � 2 �:
To this end we proeed from �ner to ourser levels and ompute eah M(f; �) by using theoutome of the previous steps.It is easy to see that for this new version of \Push-the-Error" Theorem 5.6 remains validwith a slight modi�ation of the same proof. However, it is impossible for us to establishTheorem 5.5 in this ase, whih makes this version less attrative from a theoretial pointof view. In partiular, we fail to have estimates like (5.23).Further observations and pratial modi�ations. As already mentioned in the beginning ofx5.1, for an optimal performane of the \Push-the-Error" algorithm it is important to havean initial sparse representation of the funtion f being approximated. To this end the dualfuntionals f�(�)g should be bounded in Lq for some q <1 (see Remark 3.1). In turn, thismeans that deomposition methods based on interpolatory shemes do not provide eÆientrepresentations and should be avoided. 25



In the desription of Step 3 of \Push-the-Error", the neighbors of a given �0 2 � aredesribed as all �'s from the same level whih overlap with the onrete 
�0 of �0; all termsfd���g with suh indies are taken in the approximation whenever jd�0 j > ". For pratial im-plementations muh smaller onretes should be used and even one an onsider realizationswhere the neighbors are not (automatially) inluded at all.Finally, one an run the \Push-the-Error" algorithm without exeuting Step 2 at all. Analgorithm onsisting of only Step 1 and Step 2 is also reasonable in some situations. Othermodi�ations are also possible. However, one should be aware of the existene of severaltraps whih may defeat suh modi�ations of the algorithms (see [24℄).
6 \Threshold" Algorithm in Lp (p <1)Here we show that the usual threshold sheme used in nonlinear n-term approximation fromwavelets in Lp (1 < p < 1) an be suessfully utilized for n-term approximation from thesaling funtions of MRA in Lp (0 < p <1) (see also [24℄).We begin with a desription of the algorithm.Step 1. (Deomposition) We represent the funtion f being approximated by using thedeomposition (2.33) if 1 < p � 1 and (2.34) with 0 < q < p if 0 < p � 1. So, in both asesf =X�2� b�(f)�� in Lp(
): (6.1)
Step 2. (\Threshold") We �rst order the terms fb���g�2� in a sequene (b�j��j)j2N so thatkb�1��1kp � kb�2��2kp � � � � :Then we de�ne the approximant by An(f)p :=Pnj=1 b�j��j :We now turn to the error analysis of the \Threshold" algorithm. We de�ne the error ofthe algorithm by ATn (f)p := kf �An(f)pkLp(
):As elsewhere we assume that � > 0, 0 < p <1, and � := (�+ 1=p)�1.Theorem 6.1. If f 2 B�� (M), thenATn (f)p � n��kfkB�� (M): (6.2)Furthermore, AT2n(f)p � n��� 1Xj=n+1 kb�j��jk�p�1=� : (6.3)
Here  depends only on �, p, and the parameters of the MRA.Proof: Estimate (6.2) follows immediately by the general diret estimate of Theorem 3.4 in[23℄ and the equivalene kfkQB�� (M) � kfkB�� (M) established in Theorem 3.3. To prove (6.2)we apply again Theorem 3.4 from [23℄ but this time to the sequene (b�j��j )1j=n+1.

26



We next show that in a sense the \Threshold" algorithm aptures the rates of the bestnonlinear n-term approximation in Lp, 0 < p < 1. For this denote by A�� (�; Lp) :=A�� (�; Lp) the approximation spae de�ned in (4.6) and by Aq (AT ; Lp) the set of all funtionsf 2 Lp(
) suh that
kfkAq (AT ;Lp) := kfkp + � 1Xn=1(nAn(f)p)q 1n�1=q <1 (6.4)

with the usual modi�ation when q =1 (see also (5.26)).Theorem 6.2. For any � > 0 and 1=� = �+1=p, we have A�� (AT ; Lp) = B�� (M) = A�� (�; Lp)and for eah f in this spaekfkA�� (AT ;Lp) � kfkB�� (M) � kfkA�� (�;Lp): (6.5)Proof: The right-hand-side equivalene in (6.5) is the statement of Theorem 4.4 whenp <1. Clearly, to omplete the proof we need only show that
A := � 1X�=0[2��AT2� (f)p℄��1=� � kfkB�� (M): (6.6)

Choose �1 so that 0 < �1 < � and set �1 := (�1 + 1=p)�1. By (6.3) applied with � replaedby �1, it follows that
AT2�+1(f)p � 2���1� 1Xk=� 2kkb�2k��2kk�1p �1=�1: (6.7)

Denote briey �k := 2k=�1kb�2k��2kkp. Then by (6.7) for � � 0 and (6.2) with n = 1, weobtain A � �  1X�=0 h2�(���1)� 1Xk=� ��1k �1=�1i� �  1Xk=0(2k(���1)�k)� ;where we used the well-known Hardy inequality (see e.g. Lemma 3.4 from [19℄). Using nowthat �� �1 + 1=�1 = 1=� , we have
A � �  1Xk=0 2k(���1+1=�1)�kb�2k��2kk�p =  1Xk=0 2kkb�2k��2kk�p �  1X�=1 kb�����k�p;and (6.6) follows.Several remarks are in order. We �st observe that the \Threshold" algorithm in prin-iple annot be applied for approximation in the uniform norm beause of the \piling up"e�et: there an be a huge number of terms b��� with small oeÆients and with signi�antontribution to the norm of f at a ertain loation, whih the algorithm will fail to antiipate.As for the \Push-the-Error" algorithm, it is ritial to have an eÆient initial deom-position of the funtion f being approximated, i.e. representation (6.1) should provide adeomposition of the norm in B�� (M), 1=� = � + 1=p. For the \Threshold" algorithm thisis guaranteed by employing the deompositions from (2.33)-(2.34) with q < p.27



The estimate ATn (f)p � kfkp fails to be true in general (even if 1 < p < 1) sine theonvergene in the representation of the funtion f being approximated that is used (see(2.33)-(2.34)) is not assumed to be unonditional. (This problem does not arise in the asewhen wavelets exist.) Consequently, we are unable to prove the analog of estimate (5.23)and the right-hand-side of (5.24) for the \Threshold" algorithm. This is why the result fromTheorem 6.2 is somewhat weaker than the result from Theorem 5.9.It is possible to extend the \Push-the-Error" algorithm to approximation in Lp (p <1).However, the resulting algorithm is very lose to the \Threshold" algorithm. Therefore, the\Threshold" algorithm should be onsidered as a natural generalization of \Push-the-Error"in Lp.
7 Proof of the main resultsProof of Theorem 5.5: Our strategy will be to �nd for eah index from ~� := ~�(f; �") areferene index � in ~�0 [ ~�1 with ~�i = ~�(fi; "i), so that � 2 ~�0 [ ~�1 serves as a refereneindex for at most a uniformly bounded number of indies in ~�.In what follows the \Push-the-Error" algorithm is applied to g 2 ff; f0; f1g. We shalladhere to all the notation established in the previous setions, in partiular, �1, �2, ~�, ��,�0; : : : ; �5 (all of them � 1) denote the parameters of the underlying MRA (x2.1), and reallthat N� := 2~���, K := ���5.Our main tools are riteria for identifying indies in ~�(g; "). The simplest one is basedon a suÆiently large threshold for the oeÆients b�(g).Lemma 7.1. If jb�(g)j > ~" where ~ := 2�1�2, then � 2 ~�(g; "). Equivalently, if � 62 ~�(g; "),then jb�(g)j � ~".Proof: Sine ~ > 1, � annot be disarded in the pruning Step 2 of the \Push-the-Error"algorithm. Suppose that after proessing all levels � m � 1 with m := l(�) in Step 3, theurrent approximation to g has the formgm�1 := Xl�m�1Al(g) + X�2(�m�1\�)n�m�1 r��� + Xl(�)�m b�(g)��;where jr�j � " for every � 2 (�m�1 \ �) n �m�1, and Pl�m�1Al(g) is the approximationgenerated so far. Sine by (2.13) we have �� =Pl(�)=l(�)+1 a�;���; where ja�;�j � �1. HeneXl(�)=m�1 r��� = Xl(�)=m�X� a�;�r����;
so that we an rewrite gm�1 asgm�1 := Xl�m�1Al(g) + X�2�m\� d��� + Xl(�)>m;�2� b�(g)��:This implies d�(g) = Xl(�)=m�1: ��� a�;�r� + b�(g):
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Therefore,jd�(g)j � jb�(g)j � Xl(�)=m�1: ��� ja�;�jjr�j � jb�(g)j � �1X� jr�j > ~"� �1�2" > "
and hene � 2 ~�(g; ").Next we have to take into aount that trough rewriting small terms in Step 3 of thealgorithm new signi�ant terms may build up. The identi�ation of those terms will be basedon ertain subsets of indies in �, whih we all segments. For a given v 2 
 and integersk1 � k0 � 0, we de�ne the segment S(v; k0; k1) byS(v; k0; k1) := f� 2 � : v 2 �Æ and k0 � l(�) � k1g: (7.1)It is an important observation that for eah v 2 
 and � 2 � the set f� 2 U 0� : v 2 �Æg is asegment or empty.We all S = S(v; k0; k1) an "-segment for a given funtion g, ifFS(g) := ���X�2S b�(g)��(v)��� > ": (7.2)

Large segments imply the existene of signi�ant oeÆients in a ertain neighborhoodwhih is quanti�ed by the following Lemma.Lemma 7.2. Let L � 1 and � := 7L�22�1. Suppose that the \Push-the-Error" algorithmhas been applied to g with threshold " > 0 and let S = S(v; k0; k1) be a �"-segment for g.Then there exists �� 2 ~�(g; ") with the following properties:(a) k0 � l(��) � k1.(b) v 2 �� and k0 � l(��) < k0 + L, orv 2 StarN�+5��(��) and k0 + L � l(��) � k1:Proof: If S \ ~� 6= ; with ~� := ~�(g; "), then the assertion of the lemma obviously holds.Suppose now that S \ ~� = ;. Let m be the minimum of k1 and the lowest level sothat all indies � with v 2 �Æ, l(�) > m have been disarded in Step 2. Denote by Dmthe set of all indies � 2 S with l(�) = m, whih have been disarded in Step 2 as well.Thus Dm = S \ �m \ �, where � is the omplement of � := �(g; "). By our assumption,(S \ �m) n Dm 6= ; and all � 2 S with l(�) < m belong to �. Now sine by assumptionS \ ~� = ;, we have for eah � 2 Dm that jb�(g)j + kP�2U 0� b�(g)��k1 � ": Using this andthe fat that, by the hypotheses of the lemma,FS(g) := ���X�2S b�(g)��(v)��� > �"; (7.3)
we obtain��� X�2S\� b�(g)��(v)��� � ���X�2S b�(g)��(v)���� X�2Dm jb�(g)j � X�2U 0� b�(g)��

1� (� � �2 � 1)"; (7.4)29



where � is an arbitrary index from Dm.Sine S \ ~� = ;, by Lemma 7.1, jb�(g)j � ~" for � 2 S and heneX�2S; l(�)<k0+L jb�(g)j � L�2~": (7.5)
Sine � � �2 � 1 > L�2~, it follows by (7.4){(7.5) that k0 + L � m � k1.From (7.4){(7.5), we obtain��� X�2S\�; l(�)�k0+L b�(g)��(v)��� � ��� X�2S\� b�(g)��(v)���� X�2S; k0�l(�)<k0+L jb�(g)j� (� � �2 � 1� L�2~)": (7.6)Suppose now that after having proessed all levels < k0 + L in Step 3 of \Push-the-Error",we havegk0+L�1(v) = Xl<k0+LA(g; v) + Xl(�)=k0+L: v2�Æ r���(v) + X�2S\�; l(�)�k0+L b�(g)��(v)=: A(v) + g1(v) + g2(v);where A(v) is the approximation generated so far. As before, the r� arise from rewritingsmall lower level terms and an thus be estimated as jr�j � �1�2". Hene, the seond suman be bounded by jg1(v)j � �1�22". Using this and (7.6), we obtainjg1(v) + g2(v)j � jg2(v)j � jg1(v)j � (� � 1� �2(1 + �1�2 + L~))": (7.7)Suppose now that none of the indies � 2 S \ �, l(�) � k0 + L, has a neighbor in ~�.Then we an write g1(v) + g2(v) = X�2S\�m d�(g)��(v)and hene jg1(v) + g2(v)j �  X�2S\�m d�(g)��1 � �2 max�2S\�m jd�(g)j:This together with (7.7) yieldsmax�2S\�m jd�(g)j � ��12 (� � 1� �2(1 + �1�2 + L~))" > "; (7.8)
beause, realling the de�nition of ~ from Lemma 7.1, ��12 (�� 1� �2(1 + �1�2 +L~)) > 1 ifand only if � > 1 + �2(2 + �1�2 + L~) = 1 + 2�2 + �1�22(2L+ 1);and 1 + 2�2 + �1�22(2L + 1) � 6L�1�22 . Sine therefore (7.8) ontradits the assumptionS \ ~� = ;, there exists � 2 S \�, l(�) � k0+L, with a neighbor �� 2 ~�. Then, using (5.10),v 2 StarN�+5��(��) and the assertion of the lemma holds.
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We have olleted now the neessary tools for deteting referene elements in ~�(f0; "0)[~�(f1; "1) from ~�(f; �("0 + "1)). We shall verify the laim for� := 14�1�2~��22(N� + 7��)K; where N� := 2~���; K := ���5; (7.9)whih is ertainly far from being optimal (and we make no attempt of determining optimalonstants here). For the rest of the proof, we assume that the hypotheses of Theorem 5.5are ful�lled.It is an important observation that the oeÆients b�(f) from the deomposition of Step 1of the algorithm (see (5.1)) are linear funtionals and hene b�(f) = b�(f0) + b�(f1).In what follows we shall use the abbreviations ~� := ~�(f; �("0 + "1)) and ~�i = ~�(fi; "i),i = 0; 1.We shall use two detetion devies. The following �rst one says that one an for any� 2 ~� always �nd an element �� in ~�0 [ ~�1 whih is spatially loated nearby � but haspossibly higher level. This devie is, for instane, useful for the leaves in ~�.Lemma 7.3. For any � 2 ~� there exists an index �� 2 ~�0 [ ~�1 suh that�� � StarN�+��(�) and l(��) � l(�):Proof: From Step 3 of the algorithm, ~� � �(f; �("0 + "1)). Then, by Step 2, for every� 2 ~� there is � 2 U� suh that E(f; �) > �("0 + "1). Sine E(f; �) � E(f0; �) + E(f1; �),we must have either E(f0; �) > �"0 or E(f1; �) > �"1. Suppose that the �rst inequality istrue, so that � 2 �(f0; �"0). Then either jb�(f0)j > �"0=2 or P�2U 0� b�(f0)��1 > �"0=2.If the �rst happens to be true, we set �� := �. We use Lemma 7.1 and the fat that �=2 � ~to onlude that �� 2 ~�(f0; "0). By (5.4), we know that �� � StarN�(�). Thus �� has thelaimed properties.Consider now the seond ase P�2U 0� b�(f0)��1 > �"0=2 of a signi�ant segment.Then for some point v and S(v) := f� 2 U 0� : v 2 �Æg, we have FS(f) > �"0=2. ChooseL := (N� + 6��)K with K := ���5. One easily veri�es that �=2 � � with � := 7L�22�1.This allows us to apply Lemma 7.2 to f0 with the above segment S(v) to �nd �� 2 ~�0suh that l(��) � l(�) and either v 2 �� or v 2 StarN�+5��(��) and l(��) � l(�) + L. If wedenote m := l(�) and m� := l(��), then from the above hoie of L, we have m� � m+ L =m+ (N� + 6��)K. Employing Lemma 2.3, we obtain�� � Star (m�)N�+6��(v) � Star (m)�4 (v) � Star (m)N�+��(�);whih ompletes the proof.We need a seond somewhat re�ned devie for elements in ~� whose neighborhood is hitby some higher level elements in ~�. In this ase we need to ap the referene element fromabove.Lemma 7.4. Suppose �0; �1 2 ~� satisfy the following: l(�0) < l(�1) and �1 � Star j(�0),where j � N� + 2��. Then there exists �� 2 ~�0 [ ~�1 suh that�� � Star j+2��(�0) and l(�0) � l(��) � l(�1). (7.10)
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Proof: Let l0 := l(�0), l1 := l(�1) and onsider the setT := f� 2 � \ � : � � Star j+2��(�0) and l0 < l(�) � l1gof indies whih are sandwihed by �0 and �1, and where we have to searh for ��.If jb�(f)j > ~("0+ "1) for some � 2 T , then sine b�(f) = b�(f0) + b�(f1) either jb�(f0)j >~"0 or jb�(f1)j > ~"1. Applying Lemma 7.1, it follows that � 2 ~�0 [ ~�1 and the lemma holds.Suppose jb�(f)j � ~("0 + "1) for � 2 T : (7.11)Choose L̂ := 2~�(N� + 6��)K (7.12)and split T into a lower part T � := f� 2 T : l(�) < l0+L̂g and an upper part T + := T nT �.We �rst show that, under the assumption (7.11), the lower part T � annot interset ~�so that l1 � l0 + L̂. To this end, �x � 2 T � and denoteT� := f� 2 � : � � � and l0 < l(�) < l(�)g:From the de�nition of � in Step 2, it follows that T� � �. Moreover, if � 2 �, then all � 2 �with l(�) < l(�) whih are onneted to � via sets from � belong to �.Now a possible soure of signi�ant oeÆients d�(f) in T � is through rewriting smalllower level terms in Step 3. However, the important point here is that, sine � � StarN�+2��(�0)(it suÆes to have � � StarN�+3��(�0)) and the \onrete" of �0 2 ~� is 
�0 := StarN�+4��(�0),there are no ontributions to d�(f) (obtained in Step 3) from levels � l0. (Sine �0 2 ~�,all neighbors of �0 are taken in the approximant.) Therefore, a signi�ant oeÆient d�(f)ould only be fed from T� whih, however, turns out to be prevented by the bound (7.11).In fat, using (2.9), (7.11), and property () of �, we obtainjd�(f)j � jb�(f)j+ �2 X�2T�: ��� b�(f)��1� �2�jb�(f)j+ l(�)�1Xm=l0+1 X�2T�\�m: ��� jb�(f)j�� �2L̂�2~("0 + "1) < �("0 + "1);where we have used � > �2L̂�2~ (see (7.9)). Therefore, � 62 ~� and T � \ ~� = ;.Thus, under the assumption (7.11), it suÆes to searh in the upper part T +. For agiven � 2 T +, we distinguish again an upper setionT +� := f� 2 � : � � � and l0 + L̂ � l(�) < l(�)gand a lower setion T �� := f� 2 � : � � � and l0 < l(�) < l0 + L̂g;whih may build up d�(f). Notie that, by the same reasoning as above, T �� � �.
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We next show that there exists �� 2 ~� with the following properties: (P1) l0 + L̂ �l(��) � l1, �� � Star j+��(�0), and (P2) neither � 2 T +�� has a neighbor in ~�. Indeed, if noneof the � 2 T +�1 has a neighbor in ~�, then �� := �1 has the laimed properties sine (P1)holds by assumption. Otherwise, using (5.10) there is �1 2 T + \ ~� with l(�1) < l1 suh that�1 � Star n�(�1), where n� := N� + 5��. If none of the � 2 T +�1 has a neighbor in ~�, i.e.(P2) holds, we set �� := �1. If (P2) is not true we proeed further in the same way and �ndindies �2; �3; : : : with stritly dereasing levels. After �nitely many steps, this proess willtherefore terminate and we �nd an index �r 2 T + \ ~� suh that either eah � 2 T +�r has noneighbor in ~�, thus satisfying (P2), or l(�r) = l0+ L̂. In this latter ase T +�r = ; so that (P2)is trivially satis�ed. We de�ne �� := �r and show next that �� also satis�es (P1). To thisend, note that �� (as well as every other �j j = 1; 2; : : : ; r � 1) is n�-star onneted with �1and hene, by Lemma 2.2, �1 � Star (m�)2~�n�(��), where m� := l(��). Now, using (2.17), we have�� � Star (m�)2~�n�+��(�1). Further, taking into aount that m� � l0 + L̂ � l0 + (2~�n� + ��)K(see (7.12)), we apply Lemma 2.3 (see (2.25)) to obtain�� � Star (m�)2~�n�+��(�1) � Star (l0)�4 (�1) � Star (l0)j+��(�0) (�� � �4):Thus �� satis�es (P1) as well and thus �� has the desired properties.Consider �rst the ase when m� := l(��) > l0 + L̂. As was argued above, sine �� �StarN�+3��(�0) then there are no ontributions to d��(f) (obtained in Step 3) from levels� l0. Then using (2.9), property () of �, and (7.11), we obtainjd��(f)j � �2� X�2T ��� jb�(f)j+
 X�2T +�� b�(f)��

1 + jb��(f)j�
� �2�L̂�2~("0 + "1) +  X�2T +�� b�(f)��

1 + jb��(f)j�: (7.13)
This will allow us to �nd a large oeÆient b�(f) or a signi�ant segment and either asewill lead to a ��. In fat, sine �� 2 ~�, jd��(f)j � �("0 + "1). Combining with (7.13), weobtain  X�2T +�� b�(f)��

1 + jb��(f)j � (��2�1 � L̂�2~)("0 + "1) =: \("0 + "1):
If jb��(f)j � \2 ("0 + "1), then either jb��(f0)j � \2 "0 or jb��(f1)j � \2 "1. Using that\=2 > ~ and Lemma 7.1, we infer that �� 2 ~�0 \ ~�1 and the lemma follows.If kP�2T +�� b�(f)��k1 � \2 ("0 + "1), then X�2T +�� b�(f0)��

1 � \2 "0 or  X�2T +�� b�(f1)��
1 � \2 "1:

Therefore, there exists a \2 "i-segment (i = 0 or 1) S(v) for f0 or f1 with v 2 ��. Nowapplying Lemma 7.2 with L = 1, there exists �� 2 ~�0 [ ~�1 suh that l0 + L̂ � l(��) � l1 and
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either (��)Æ \ (��)Æ 6= ; or StarN�+5��(��)\ (��)Æ 6= ;. In the latter ase, we obtain as above,using that L̂ � (N� + 6��)K,�� � Star (m�)N�+6��(��) � Star (l0)�4 (��) � Star (l0)j+2��(�0); m� := l(��):The proof of Lemma 7.4 is omplete.Finally, we are in a position to omplete the proof of Theorem 5.5. An important vehilefor proving this theorem will be the oloring property of the extended ells (x2.1). Webegin with some additional oloring type preproessing of the subsets fOjgJj=1 of O. ByLemma 2.3, for eah � 2 � there exists ! 2 O suh that
� := StarN�+4��(�) � ! and l(!) = l(�)� ~K with ~K := (N� + 4��)K; (7.14)whenever l(�) � ~K. We assoiate ! with �. Note that eah ! 2 O an be assoiated inthis way with no more than ~N := � ~K3 indies � 2 �. In fat, reall that, by property (�)of � (x2.1), there is �� suh that ! � ��, and ~N is a rough upper bound for the number ofelements � 2 � at level l(�) = l(!)+ ~K whih are ontained in any �� with l(��) = l(!). Wetake ~N opies of eah lass Oj, denoting them byOj;n; n = 1; 2; : : : ; ~N ; j = 1; 2; : : : ; J:From above, it is lear that we an establish an one-to-one orrespondene between �0 :=Sm� ~K �m and a subset of Sj;nOj;n.The set � n �0 is �nite with #� n �0 � (#�0) � � ~K3 , whih is a onstant that an beabsorbed by the onstant  in (5.19) and hene � n�0 an be ignored.To simplify the notation, we denote by O� an arbitrary lass Oj;n and also we denote by�� the orresponding subset of �0 whih is in one-to-one orrespondene with a subset ofO�. Thus we an assoiate with eah � 2 �� an !� 2 O� suh that StarN�+4��(�) � !� andl(!) = l(�)� ~K. In addition, if �0; �00 2 O�, �0 6= �00, and !�0 � !�00 , then l(�0) > l(�00).ClearlyO� inherits the tree struture of the orresponding Oj. Setting ~�� := ~�(f; ")\��,the theorem will be proved if we show that #~�� � (#~�0 +#~�1).We now introdue a partial order (�) in ~��: �1 � �2 if !�1 � !�2 . With this partial order~�� beomes a tree as well.We next introdue several subsets of ~��. We denote by ~��̀ the set of all leaves in ~��(� 2 ~��̀ if � has no hildren in ~��) and by ~��b the set of all branhing elements in ~��(elements in ~�� with at least two hildren in ~��). Also, we denote ~��h := ~�� n (~��̀ [ ~��b)whih is the set of all hain elements in ~�� (elements of ~�� with exatly one hild in ~��).After this ground work, we proeed with estimating #~��̀, #~��b , and #~��h. By Lemma 7.3,for eah � 2 ~��̀ there exists �� 2 ~�0 \ ~�1 suh that �� � StarN�+��(�) � !�. We assign suh�� as a referene index for �. Clearly, the extended ells !� assoiated with leaves � 2 ~��̀ areleaves in the orresponding subtree of O� and hene are with disjoint interiors. Therefore,the ��'s whih are assoiated to indies in ~��̀ are distint and hene#~��̀ � #~�0 +#~�1: (7.15)Evidently, in any tree the number of the branhing elements does not exeed the numberof the leaves. Therefore, #~��b � #~��̀ � #~�0 +#~�1: (7.16)34



It remains to show that #~��h � (#~�0 + #~�1). To this end, deompose #~��h into atmost ~K subsets #~��h;l suh that for eah l � ~K, �0 � � implies l(�0) � l(�) + ~K. It suÆesto show that #~��h;l � (#~�0 + #~�1), l � ~K. Fix � 2 ~��h;l and let �0 � � be the onlydesendent of � in the tree ~�� \ ~��h;l and hene �0 2 ~�. Let m := l(�). Then !�0 � !� andl(�0) � m+ ~K. Two ases present themselves here:Case 1: �0 � Star (m)N�+2��(�). Then by Lemma 7.4 and (7.14), there exists �� 2 ~�0 \ ~�1suh that �� � Star (m)N�+4��(�) � !� and l(�) � l(��) � l(�0):We assign �� as a referene index to �.Case 2: �0 6� Star (m)N�+2��(�). By Lemma 7.3, there exists �� 2 ~�0 \ ~�1 suh that�� � Star (m)N�+��(�) � !� and l(��) � l(�):We assign �� as a referene index to �. Sine �0 6� Star (m)N�+2��(�), there exists a pointv 2 �0 \ (Star (m)N�+2��(�)), and hene(Star (m)�� (v))Æ \ (Star (m)N�+��(�))Æ = ;:Further, using (2.22), we have �0 � !�0 � Star (l(�0)� ~K)�� (v) � Star (m)�� (v). Therefore, �� �!� n !�0 :To summarize, we have assigned to eah � 2 ~��h;l (with desendent �0 in ~��) an index�� 2 ~�0\ ~�1 suh that either �� � !� and l(�) � l(��) � l(�0) or �� � !�n!�0 and l(��) � l(�).Realling that the !�'s are from a tree with respet to the inlusion relation, it follows thateah �� 2 ~�0 \ ~�1 an be a referene index to at most two indies from ~��h;l and hene#~��h � 2 ~K(#~�0 +#~�1):Combining this with (7.15)-(7.16), gives #~�� � 2(1+ ~K)(#~�0+#~�1); whih ompletes theproof of Theorem 5.5.Proof of Theorem 5.6: We shall follow the sheme of the proof of Theorem 5.5, but every-thing will be muh easier. We adopt all neessary notation from the proof of Theorem 5.5.Denote briey ~� := ~�(f; ").The following two trivial lemmas an be onsidered as analogues of Lemmas 7.3-7.4.Lemma 7.5. For any � 2 ~� there exists a segment S = S(v; k0; k1) suh that�S :=[f� : � 2 S(v; k0; k1)g � StarN�(�); k0 � l(�); and X�2S jb�(f)j > "=2:
Proof: If � 2 ~�, then � 2 �(f; ") and hene there exists �0 2 U� suh that E(f; �0) > ". Thisimmediately implies that either jb�0(f)j > "=2 or there exists a segment �S � StarN��0 suhthat FS(f) > "=2, whih yields P�2S jb�(f)j � FS(f) > "=2:
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Lemma 7.6. Let �0; �1 2 ~� be so that l(�0) < l(�1) and �1 � StarN�+3��(�0). Let l0 := l(�0),l1 := l(�1), and S = S(�1; l0; l1) := f� 2 � : �1 � � and l0 < l(�) � l1g:Then X�2S jb�(f)j > "=�2:
Proof: Sine �1 � StarN�+3��(�0), there is no ontribution to d�1(f) from levels� j0. Denoteby S 0 the set of all terms b�(f)�� whih ontribute to d�1(f). Clearly, S 0 � S and using (2.9)," < jd�1(f)j � �2 X�2S0: �1�� b�(f)��1 � �2X�2S jb�(f)jand the lemma follows.To omplete the proof of Theorem 5.6 we shall utilize the oloring onstrution from theproof of Theorem 5.5. Aording to this onstrution (with slight hange of notation), ~� anbe represented as a disjoint union ~� = �SJj=1 ~�j�[ Æ� and there exists a olletion fOjgJj=1of subsets of O with the following properties:(i) # Æ�� onstant.(ii) There is an one-to-one orrespondene between ~�j and Oj (1 � j � J). If we denoteby !� the extended ell in Oj whih orresponds to � 2 ~�j , then StarN�+��(�) � !�.(iii) Eah set Oj is a tree with respet to the inlusion relation whih we often indiate bywriting (Oj;�). Moreover, if �0; �00 2 ~�j , �0 6= �00, and !�0 � !�00 , then l(�0) > l(�00).We introdue a partial order (�) in ~�j: �0 � �00 if !�0 � !�00 . Sine Oj (�) is a tree, then ~�j(�) beomes a tree as well.As in the proof of Theorem 5.5, we introdue the following subsets of ~�j : ~�j̀ the set ofall leaves in ~�j, ~�jb the set of all branhing elements in ~�j, and ~�jh := ~�j n (~�j̀ [ ~�jb) the setof all hain elements in ~�j .We denote briey (see (3.8))

kfkB�� := �X�2� jb�(f)j��1=� : (7.17)
Here � = 1=�, � � 1, and kfkB�� = kfkQB�� (M) � kfkB�� (M), using (3.7) and Theorem 3.3.We �rst estimate #~�j̀. By Lemma 7.5, for eah � 2 ~�j̀ there is a segment S� suh thatS� � StarN�(�) � !� andX�2S� jb�(f)j > "=2; and sine � � 1, ("=2)� � X�2S� jb�(f)j� :
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Clearly, the extended ells !� assoiated with leaves � 2 ~�j̀ are leaves in Oj and hene arewith disjoint interiors. As a onsequene, the segments fS�g�2~�j̀ are disjoint. From this and(7.17), kfk�B�� � X�2~�j̀ X�2S� jb�(f)j� � (#~�j̀)("=2)�
and, therefore, #~�j̀ � "��kfk�B�� and #~�jb � #~�j̀ � "��kfk�B�� : (7.18)It remains to estimate #~�jh. To this end, we shall assoiate with the indies � 2 ~�jhsegments S� whih essentially do not overlap and have signi�ant (� "� ) ontribution tokfk�B�� . For a given � 2 ~�jh, let �0 be the only hild of � in ~�j. Set m := l(�). Two ases areto be onsidered here:Case 1: �0 � StarN�+��(�). Then we assoiate with � the segment S� := f�0; l(�0); l(�)g.By Lemma 7.6,X�2S� jb�(f)j � "=�2; and sine � � 1, ("=�2)� � X�2S� jb�(f)j� : (7.19)

Case 2: �0 6� StarN�+��(�). Then by Lemma 7.3, there exists a segment S� = S(v; k0; k1)suh that S� � StarN�(�), k0 � l(�), andX�2S jb�(f)j > "=2; and hene ("=2)� � X�2S� jb�(f)j� : (7.20)
Choose a point v 2 �0 n StarN�+��(�). Then, using (2.22), �0 � !�0 � Star ��(v) and(Star ��(v))Æ \ (StarN�(�))Æ = ;:Therefore, S� � !� n !�0 .Taking into aount that Oj is a tree with respet to the inlusion relation, it is easyto see that the set of all segments S� whih were assoiated with indies � 2 ~�jh has theproperty that any two segments may have a ommon element only if the one is obtained fromCase 1 followed immediately by the other obtained from Case 2. Using this and (7.19)-(7.19),we infer kfk�B�� � (1=2) X�2~�jh

X�2S� jb�(f)j� � (1=2)(#~�jh)("=2�2)�
and hene #~�jh � "�kfk�B�� :Combining this with (7.18), yields #~�j � "�kfk�B�� ; whih implies N(") � "�kfk�B�� .The latter estimate, in turn, oupled with (5.18) establishes (5.20).For the proof of (5.22), denote "0 := 4�2[kfk1. Exatly as in the proof of Theorem 5.7E(f; �) � "0 for eah � 2 � and hene A"0(f) = 0. Consequently, kf � A"0(f)k1 =kfk1, whih oupled with the left-hand-side estimate in (5.20) implies (5.22). The proof ofTheorem 5.6 is omplete.
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8 AppendixProof of Theorem 3.3: We shall onsider only the ase when 1 < p � 1. The proof inthe ase 0 < p � 1 is similar to the proof of the orresponding results in [16, 23℄.Evidently, if kfkQB�� <1, then kfkAB�� � kfkQB�� : (A.1)Our seond step is to prove that if kfkEqB�� <1, thenkfkQB�� � kfkEqB�� : (A.2)To this end, we �rst observe that by (2.11) and (2.10),
(kfkQB�� )� � X�2�0 k�(f)��k�p +

1Xm=1 XI2Pm(jIj���1+1=�kgm(f)kL1(I))� ; (A.3)
where gm(f) is de�ned in (2.31). By (2.8) it follows thatX�2�0 k�(f)��k�p � kfkp;  := (#
0; �; p): (A.4)
On the other hand, for m � 1 by H�older's inequality and Lemma 2.4,kgm(f)kL1(I) � jIj1�1=qkgm(f)kLq(I)� jIj1�1=q(kf �Qm(f)kLq(I) + kf �Qm�1(f)kLq(I?))� jIj1�1=q(E(f; bI)q + E(f; bI?)q);where I? is the only parent of I in Pm�1 (I � I?). Using this and (A.4) in (A.3), we obtain(A.2).We next prove that if kfkAB�� <1, thenkfkEqB�� � kfkAB�� ; 1 � q < p: (A.5)By H�older's inequality, kfkEqB�� � kfkE�B�� if 1 � q � � . So, it suÆes to prove (A.5), onlywhen maxf1; �g < q < p. By Theorem 3.2, kfkp � kfkAB�� . Sine 1=� := � + 1=p we have,by (3.2), jf jEqB�� := �XI2P jIj�(1=p�1=q)E(f; bI)�q�1=� : (A.6)
Evidently, E(g; bI)q = 0 for I 2 Pm if g 2 Vm, and E(f; bI)q � kfkLq(bI) if f 2 Lq. For I 2 Pm,denote eI := [f� 2 �m : �Æ \ bIÆ 6= ;g. Let f = P�2� a��� be any representation of fin L1 (and hene in Lp) suh that �P�2� ka���k�p�1=� � kfkAB�� : Then using the above,
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Theorem 3.2, and (2.11), we obtain
E(f; bI)�q �  1Xj=m+1 X�2�j a����Lq(bI) �  1Xj=m+1 X�2�j ; ��eI ka���k�q�  1Xj=m+1 X�2�j ; ��eI j�j�(1=q�1=p)ka���k�p:Substituting this in (A.6), gives(jf jEqB�� )� � XI2P jIj�(1=p�1=q) X�2�; ��eI j�j�(1=q�1=p)ka���k�p� X�2� ka���k�p XI2P: ��eI(j�j=jIj)�(1=q�1=p);where we have swithed the order of summation one. By the properties of ells and supportsof bases funtions, #fI 2 P� : � � eIg �  < 1 and j�j � �� jIj if � � eI, � 2 �j, andI 2 Pj�� . Using this and that 1=q � 1=p > 0, we obtainXI2P: ��eI(j�j=jIj)�(1=q�1=p) �  1Xj=0 ��(1=q�1=p) �  <1:

Therefore, (jf jEqB�� )� � P�2� ka���k�p; whih ompletes the proof of (A.5).In view of (3.8) and (3.9), the equivalene of k�kWB�� and k�kB�� is an immediate onsequeneof the relationsjb�(f)j � Cmax fj�(f)j : �Æ \ � 6= ;g; j�(f)j � Cmax fjb�(f)j : �Æ \ �Æ 6= ;g;whih follow by taking salar produts of both sides of the relationX�2�m+1 b�(f)�� = X�2Lm �(f) �with the dual funtions ~ �0 or applying the dual funtionals �0 .Proof of Theorem 4.2 [Bernstein estimate℄: We shall give the proof of estimate (4.2)only in the ase p =1. We shall utilize the idea of the proof of the Bernstein estimates in[16, 24℄, where the ase of pieewise polynomials is treated. The proof in the ase p < 1an be arried out in a similar way (see the proofs of the Bernstein estimates in [16, 23℄) andwill be omitted.Suppose g 2 �n and g =: P�2� a���, where � � � and #� � n. Let K0 be the setof all ells in P whih are involved (overed) in all sets � 2 �. Then g = PI2K0 gI , wheregI =: 1I � vI , vI 2 Vm with m := level (I). Evidently, #K0 � �1#� � n.The proof of (4.2) hinges on the tree struture in P indued by the inlusion relation:Eah I 2 Pm has at most �0 hildren in Pm+1 and one parent in Pm�1, if m � 1. We denote39



by T0 the set of all ells I 2 P for whih there exists J 2 K0 suh that J � I, whih isthe minimal subtree of P ontaining K0 with its root(s) in P0. We denote by Tb the setof all branhing ells in T0 (ells in T0 with at least two hildren in T0) and by T +b the setof all hildren of branhing ells in P (whih may or may not belong to T0). We de�neT := T0 [ T +b , whih is again a subtree of P.We next introdue several subsets of T whih will be needed later on. We denote byT` the set of all leaves in T (I 2 T` if I does not ontain any other J 2 T ) and Th :=T n (K0 [ Tb [ T +b [ T`) the set of all hain ells in T . (Notie that eah I 2 Th has onlyone hild whih belongs to T .)Let � be the smallest positive integer suh that �� � Æ, where 0 < Æ < 1 is the onstantfrom (2.14). For eah I 2 Th, we denote by I� the unique ell I� 2 K0 [ Tb [ T` suh thatI� � I and I� is of the least possible level. Let T 1h be the set of all I 2 Th suh thatlevel (I�)� level (I) � �, and T 0h := Th n T 1h.Clearly, #Tb � #(T0)` � #K0 � n, whih implies #T +b � M0#Tb � n, #T` �#K0 +#T +b � n, and #T 1h � �#(K0 [ Tb [ T`) � n. Notie that #T 0h an be huge.We now extend K0 to K := K0 [Tb [T +b [ T 1h. From above #K � #K0+#Tb+#T +b +#T 1h � n. Evidently, g an be represented in the form g =PI2K gI with gI similar to thegI 's from above.After this ground work, we next estimate jgj�B�� := PI2P jIj��E(g; bI)�1, where � := 1=�(see (3.1)) and bI is de�ned in (2.26). We denotegm := X�2�; level (�)�m a���; m � 0:
A key fat is that E(g; bI)1 = E(g � gm; bI)1 � kg � gmkL1(bI); I 2 Pm: (A.7)We also have E(g; bI)1 � kgkL1(bI).Let L := fI 2 Pm : I � bJ for some J 2 K \ Pmg and L := Sm�0Lm. Evidently,#L � �1#K � n.We shall split up the sum in the de�nition of jgj�B�� above into two sums: over I 2 L andover I 2 P n L.(a) If I 2 Lm, then there is J 2 K\Pm suh that I � bJ and (see (2.26)) jIj��E(g; bI)�1 �jIj��kgk�L1(bI) � kgk�1: Therefore, we haveXI2L jIj��E(g; bI)�1 � Xm�0 XI2Lm E(g; bI)�1 � kgk�1Xm�0#Lm= kgk�1#L � nkgk�1: (A.8)(b) Let I 2 Pm n Lm. Then bI = S�Ii=1 Ji for some Ji 2 (T 0h \ Pm) [ (Pm n T ), where�I � �1 (see x2.1). We have by (A.7)

E(g; bI)�1 � �IXi=1 kg � gmk�L1(Ji) (� � 1):
40



Clearly, if Ji 2 PmnT , then gjJi = gmjJi and hene kg�gmkL1(Ji) = 0. Suppose Ji 2 T 0h\Pmand let J�i be the unique largest element of K ontained in Ji (see the de�nition of T 0habove). We have gjJinJ�i = gmjJinJ�i = 1JinJ�i � vi for some vi 2 Vm. On the other hand,level (J�i )� level (Ji) > � and hene jJ�i j � ��jJij � ÆjJij. Therefore, using (2.14),kvikL1(J�i ) � kvikL1(Ji) � kvikL1(JinJ�i ) � kgk1:We use the above to obtainkg � gmkL1(Ji) = kg � gmkL1(J�i ) � jJ�i j(kgk1 + kvikL1(J�i )) � jJ�i jkgk1:Therefore, jIj��E(g; bI)�1 � kgk1 X1�i��I ; Ji2T 0h\Pm(jJ�i j=jJij)�and hene XI2PmnLm jIj��E(g; bI)�1 � kgk�1 XJ2T 0h\Pm(jJ�j=jJ j)� :Summing over m � 0, we obtainXI2PnL jIj��E(g; bI)�1 � kgk�1 XJ2T 0h(jJ�j=jJ j)� � kgk�1 XJ 02K XJ2P: J 0�J(jJ 0j=jJ j)�� kgk�1 XJ 02K 1Xm=0 ��m � kgk�1#K � nkgk�1;
where we used (2.2). The above estimates and (A.8) imply (4.2).
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