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Abstra
tThis paper is 
on
erned with further developing and re�ning the analysis of a re
entalgorithmi
 paradigm for nonlinear approximation termed \Push-the-Error" s
heme.It is espe
ially designed to deal with L1 approximation in a multilevel framework. Theoriginal version is extended 
onsiderably to 
over all 
ommonly used multiresolutionframeworks. The main 
on
eptually new result is the proof of the quasi-semi-additivityof the fun
tional N(") 
ounting the number of terms needed to a
hieve a

ura
y ".This allows one to show that the improved s
heme 
aptures all rates of best n-termapproximation.Key Words: Uniform norm approximation, multilevel expansions, wavelet bases, best n-term approximation.AMS Subje
t Classi�
ation: 41A15, 41A17, 41A25, 41A46, 65D15, 46E35.
1 Introdu
tionThe understanding of nonlinear approximation has greatly bene�tted from re
ent multileveland wavelet 
on
epts. Norm equivalen
es indu
ed by wavelet bases in a Hilbert spa
e 
ontextplay a major role in the analysis of best n-term approximation part of whi
h 
an be evenretained for Lp norms for 1 < p < 1, see e.g. [18℄. Near best n-term approximationis simply obtained by keeping the (properly s
aled) n largest 
oeÆ
ients in the waveletexpansion. However, many appli
ations involve more 
omplex geometries for whi
h waveletbases with the desired properties are hard to 
onstru
t or even not available at all. In theabsen
e of su
h bases the realization of best n-term approximation is far less obvious, letalone approximation in L1. A signi�
ant advan
ement of best n-term approximation insettings where expli
it wavelet bases may not be available is o�ered by the approa
h in[16, 23, 25℄.�This work has been supported in part by the European Community's Human Potential Programme under
ontra
t HPRN-CT-202-00286, (BREAKING COMPLEXITY) and by the National S
ien
e FoundationGrant DMS-0200665.
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The situation is again quite di�erent when approximating in the uniform norm whi
h isthe primary 
on
ern and guiding issue in this paper. The \piling up" e�e
t of multilevelstru
tures is not well aligned with the L1-norm. This prin
ipal obstru
tion 
on
erns anysort of multilevel expansions, even those for \ideal" wavelet bases. Nevertheless, an eÆ
ientway of realizing optimal L1-approximation rates for approximation spa
es indu
ed by bestn-term approximation in the above mentioned 
exible settings is o�ered by another algo-rithmi
 paradigm, 
alled \Push-the-Error" algorithm. This has been developed in [24℄ forthe spe
i�
 
ase of nonlinear n-term approximation from Courant elements (pie
ewise linear�nite elements) in the uniform norm and dimension d = 2. The essen
e of this algorithmoriginates from [18℄. In view of its importan
e as a paradigm that works in the uniformnorm (even in the absen
e of good multilevel bases), it is interesting to explore the s
ope ofappli
ability of its 
on
eptual foundation.Our primary goal in this paper is therefore to further re�ne and extend this algorithm inseveral dire
tions. The key new steps in this arti
le are the following: (i) We generalize the\Push-the-Error" algorithm to nonlinear n-term approximation from the \s
aling fun
tions"of a general Multiresolution analysis (MRA) on 
ompa
t domains in R d . (ii) We re�ne thealgorithm from [24℄ and its analysis 
onsiderably. In parti
ular, we prove the quasi-semi-additivity of the fun
tional N(") 
ounting the number of terms in the approximation neededto a
hieve a

ura
y ". This enables us to show that the improved algorithm 
aptures allrates of the best n-term approximation.It should be stressed that the \Push-the-Error" paradigm is, in prin
iple, very 
exible inthat it essentially requires only re�nability of single s
ale basis fun
tions, i.e. has a potentialto work under fairly general 
ir
umstan
es. For instan
e, 
omplex domain geometries posemu
h less of an obstru
tion than for the 
onstru
tion of wavelet bases thresholding 
on
eptsin Lp are typi
ally based upon. The main idea is to 
omplement thresholding strategies,i.e. keeping terms with large 
oeÆ
ients, with transferring small terms to higher levels withthe aid of re�nement equations. This a

ounts for the fa
t that small terms may add upover di�erent levels to form after all a signi�
ant 
ontribution in the uniform norm be
auseeven the best multilevel bases are no longer able to properly separate the 
ontributions fromdi�erent length s
ales.In addition we brie
y relate our �ndings to the somewhat wider 
ontext of nonlinear n-term approximation in Lp. As mentioned before, for 1 < p <1 best n-term approximationis provided by thresholding wavelet expansions. We show here �rst that even for 0 < p <1the usual thresholding strategy 
an be utilized for nonlinear n-term approximation in Lp forthe more 
exible setting of multilevel s
aling fun
tion representations in general MRAs soas to 
apture the rate of the best n-term approximation. This thresholding s
heme 
an beshown to emerge from extending \Push-the-Error" to the Lp 
ase for 0 < p <1.In [24℄ there is another algorithm (named \Trim & Cut") developed for nonlinear n-termapproximation in Lp, 0 < p � 1. The idea of this algorithm originates in the proof ofthe Ja
kson estimate in [20℄. A similar algorithm has been suggested by Yu. Brudnyi andI. Kozlov as well (see [2℄ and the referen
es therein). The exe
ution of the \Trim & Cut"algorithm relies heavily on a 
oloring pro
edure used to represent the set of all supportsof basis fun
tions as a disjoint union of trees with respe
t to the in
lusion relation. Thisrenders the s
heme pra
ti
ally infeasible. Consequently, it is less valuable 
ompared to the\Push-the-Error" algorithm.
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Finally, we note that the \Push-the-Error" algorithm is not restri
ted only to approxima-tion from MRAs 
onsisting of 
ontinuous fun
tions. It 
an be su

essfully used for nonlinearapproximation of 
ontinuous fun
tions from dis
ontinuous (isotropi
 or anisotropi
) hierar-
hi
al bases in the L1-norm. All results from this arti
le have analogues in su
h settingsunder less restri
tive 
onditions. We shall not present the details here.The paper is organized as follows. In Se
tion 2 we 
olle
t some prerequisites. First, inSe
tion 2.1 we des
ribe a general multiresolution setting whi
h is designed to host all 
om-monly used setups. In doing so we extra
t the abstra
t requirements on su
h multiresolutionhierar
hies of spa
es that make \Push-the-Error" work and 
olle
t the tools needed in this
ontext. In Se
tion 2.2 we outline several examples 
overed by the general framework whilewe 
olle
t in Se
tion 2.3 some further 
onsequen
es and prerequisites for later use. In Se
tion2.4 we introdu
e a family of lo
al proje
tors that serve as a tool for forming multilevel de-
ompositions. In Se
tion 3 we introdu
e a s
ale of \Besov-like" spa
es (B-spa
es) asso
iatedwith the multiresolution analysis (MRA) needed to prove optimality of the \Push-the-Error"s
heme. In Se
tion 4 we 
hara
terize the approximation spa
es generated by nonlinear n-term approximation from the s
aling fun
tions of an MRA, pla
ing spe
ial emphasis on theL1-
ase. In Se
tion 5 we des
ribe the improved \Push-the-Error" algorithm, present its erroranalysis, and dis
uss its 
omplexity. In Se
tion 6 we des
ribe and give the error analysis ofthe "Threshold" algorithm for nonlinear n-term approximation in Lp, 0 < p <1, from thes
aling fun
tions of an MRA. In Se
tion 7 we give the proof of the main results 
on
erningthe quasi-semi-additivity of the fun
tional 
ounting the number of terms generated by thes
heme, and the error estimation theorem. Finally, Se
tion 8 is an appendix, where we pla
ethe proofs of the Bernstein estimate and the norm equivalen
e in the B-spa
es.Throughout the arti
le, we use the following notation: N := f1; 2; : : :g, N 0 := N [ f0g.For any set E � R d , 1E denotes the 
hara
teristi
 fun
tion of E, and jEj denotes theLebesgue measure of E while EÆ means the interior of E. For a �nite set E, #E denotes the
ardinality of E. Positive 
onstants are denoted by 
; 
1; 
�; : : : (if not spe
i�ed, they mayvary at every o

urren
e), A � B means 
1A � B � 
2B, and A := B or B =: A stands for\A is by de�nition equal to B". Whenever an Lp-norm refers to the �xed underlying domain
, we write brie
y k � kp, whereas kfkLp(G) indi
ates the referen
e to a parti
ular subdomainG � 
.
2 Preliminaries2.1 Multiresolution analysis (MRA) { Basi
 PropertiesWe 
onsider the general 
ase of a hierar
hy of spa
esV0 � V1 � � � � (2.1)on a 
ompa
t domain 
 � R d (d � 1) su
h that SVm = C(
) (usually 
 is a polyhedral(polygonal if d = 2) domain in R d). We setM := fVmgm�0. In what follows we shall spe
ifyour requirements on su
h hierar
hies. These assumptions are designed to a

ommodate all
ommonly used setups as well as possible further settings that 
ould be anti
ipated in thefuture.
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We assume that ea
h Vm is spanned by a basis �m = f��g�2�m, 
onsisting of 
ompa
tlysupported and 
ontinuous basis fun
tions, normalized in L1 (k��k1 = 1), whi
h should beviewed as s
aling fun
tions when dealing with the 
lassi
al wavelet setting. Here �m is anindex set and for 
onvenien
e we use these indi
es simultaneously to denote sets satisfyingsupp�� � � for � 2 �m. We denote � := Sm2N0 �m and � := Sm2N0 �m. At times we shallloosely 
all � the \support" of �� although supp�� may a
tually be stri
tly 
ontained in �.However, � and the true support will always \s
ale" in the same way whi
h will be madepre
ise later. In parti
ular, �m may 
ontain more than one (although always a uniformlybounded number) 
opy of a set �.More spe
i�
 properties of the single s
ale bases �m 
an typi
ally be related to someunderlying mesh or, more generally, to some partition of the spatial domain. We shallformalize next our requirements on su
h partitions that will 
over all 
ases of interest.Cells (
ubes, simplexes). We shall always assume that there is an underlying sequen
e ofpartitions of 
: P0;P1; : : : with P := Sm2N0 Pm whi
h satisfy the following 
onditions:(a) Every level Pm is a partition of 
, 
onsisting of �nitely many 
ompa
t 
onne
tedsets (
ells) with disjoint interiors. Usually these 
ells are 
ubes, simplexes (triangles) orpolyhedral subdomains of 
.(b) The partitions (Pm) are nested, i.e. Pm+1 is a re�nement of Pm.(
) Ea
h 
ell I 2 Pm has (
ontains) at least two and at most �0 
hildren in Pm+1 with�0 � 2 a uniform 
onstant.(d) There exist 
onstants 0 < r < � < 1 su
h that for ea
h I 2 P and any 
hild I 0 of IrjIj � jI 0j � �jIj: (2.2)(e) Lo
al quasi-uniformity: There exists a 
onstant # � 1 su
h that if I; J 2 Pm (m � 0)and I \ J 6= ;, then #�1 � jIj=jJ j � #: (2.3)Further properties of the \supports" � 2 � of the basis fun
tions �� 
an be spe
i�ed interms of these 
ells.(�) Ea
h � 2 �m as well as supp �� is a 
onne
ted 
ompa
t and 
an be \paved" by 
ellsfrom Pm, that is, � = SI2N� I, where N� � Pm and #N� � �1 with �1 a uniform 
onstant.For a given � 2 �, we denote by l(�) the level of �, i.e. l(�) = m if � 2 �m, and wesimilarly denote by l(I) the level of I 2 P.For later use it will be 
onvenient to re
ord for dire
t referen
e the following 
onsequen
esof the properties (a)-(e) and (�):(�) If I � � and l(I) = l(�), thenj�j � �0jIj; �0 = 
onstant: (2.4)(
) The interiors of at most �2 sets � 2 �m (m � 0) may interse
t at a time, where �2 isanother uniform 
onstant.(Æ) For ea
h � 2 �m (m � 0)#f� 2 �m+1 : � � �g � �3; �3 = 
onstant: (2.5)
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Remark 2.1. It is an important observation that the above 
onditions involve essentiallyonly measures of 
ells but not the shape of 
ells and 
onsequently 
over the 
ase of anisotropi
partitions of the types 
onsidered in [16, 23, 24, 27℄.Sin
e �m is a basis for Vm, ea
h f 2 Vm has a unique representationf = X�2�m 
�(f)��; (2.6)
where f
�(f)g�2�m are the dual fun
tionals, i.e. 
�(��0) = Æ�;�0 .Aside from the lo
ality of the ��'s, a 
ru
ial further requirement on the multiresolutionanalysisM 
on
erns the lo
ality of the dual fun
tionals. We assume that ea
h liner fun
tional
�(�) is supported on � and satis�es the 
ondition

j
�(g)j � �1j�j Z� jg(x)j dx for � 2 �m and g 2 Vm, (2.7)
where �1 is a uniform 
onstant. We shall assume that the linear fun
tionals 
�(�) are extendedto L1(
) (retaining the same notation) so thatj
�(f)j � �1j�j Z� jf(x)j dx for f 2 L1(
). (2.8)
Due to the Hahn-Bana
h Theorem this is always possible. We pause to re
ord a few impor-tant 
onsequen
es of (2.7).A �rst 
onsequen
e of (2.7) is the stability of the single s
ale bases (�m)m2N0 . Thereexists a 
onstant �2 � 1 su
h that for ea
h g 2 Vm with representation g =P�2�m 
���, wehave �2�1kgkp � � X�2�m k
���kpp�1=p � �2kgkp; 1 � p � 1; (2.9)
uniformly in m, with the usual modi�
ation when p = 1. Moreover, using also (2.3) andproperty (
) of the �m's, it follows that for any 0 < q � 1 and 
 2 R ,�XI2Pm(jIj
kgkLp(I))q�1=q � �X�2�m(j�j
k
���kp)q�1=q: (2.10)

Condition (2.7) readily implies thatk��kp � j�j1=p�1=qk��kq; � 2 �; 1 � p; q � 1; (2.11)where the 
onstants of equivalen
e depend only �1.When dealing with nonlinear approximation in Lp, 0 < p � 1, we shall be additionallyassuming that for any g 2 Vm and I 2 Pm (m � 0)kgkLq(I) � jIj1=q�1kgkL1(I); 0 < q < 1; (2.12)with 
onstants independent of g and m. Evidently, this 
ondition yields (2.9)-(2.11) when0 < p < 1. 5



From (2.1) we know that ea
h element of �m 
an be written as a linear 
ombination ofelements in �m+1. Furthermore, due to the lo
ality of the dual fun
tionals, this expansionis lo
al, i.e. we have �� = X�2�m; ��� a�;���; � 2 �m�1: (2.13)
Moreover, by (2.7) and the L1-normalization of the ��, we have ja�;�j = j
�(��)j � �1.We 
on
lude our list of basi
 general assumptions by one whi
h 
an be viewed as strength-ening our assumptions on the dual fun
tionals. We shall assume that there exist 
onstants0 < Æ < 1 and �3 � 1 su
h that for ea
h g 2 Vm, I 2 Pm (m � 0), and any set E � I withjEj � ÆjIj, we have kgkL1(I) � �3kgkL1(InE): (2.14)This 
ondition is in essen
e the lo
al linear independen
e of the ��'s whi
h is known to holdin many 
ases of interest, see the examples below.For the purpose of nonlinear approximation in Lp, 0 < p <1, we shall assume that theLp analogue of (2.14) is valid: kgkLp(I) � �3kgkLp(InE): (2.15)The only use of (2.14) and (2.15) is in the proof of the 
orresponding Bernstein estimates(see Theorem 4.2 below).Depending on the domain 
 in some settings one 
an even 
onstru
t wavelet or priwaveletbases. For simpli
ity, whenever we assume in this arti
le the existen
e of wavelets we assumethe existen
e of a biorthogonal wavelet basis 	 = f � : � 2 Lg on 
 with a dual e	 = fe � :� 2 Lg, where L = [m2N0Lm is the index set of the \true" wavelets. Then ea
h f 2 Lp(
)(1 � p � 1) has the representationf = X�2�0 
�(f)�� + Xm2N0 X�2Lm 
�(f) �; 
�(f) := hf; e �i; (2.16)
whi
h is assumed to be un
onditional if 1 < p < 1. In addition, we assume that  �,e � are 
ompa
tly supported with supp �; supp e � � �, and � = [I2N�I, N� � �w with�w = 
onstant. Also, we assume that for � 2 Lm,  � 2 Vm+1, i.e.  � = P�2�m+1 a�;���,and ja�;�j � �4 with �4 a uniform 
onstant. Our last assumption is that  � are at least
ontinuous, k �k1 = 1, and ke �k1 <1.
2.2 Examples of MRAsIn this se
tion we brie
y outline some examples 
overed by the above framework. This listis by no means meant to be exhaustive.Shift invariant re�nable fun
tions: The 
lassi
al approa
h to 
onstru
ting wavelets on Ris based on hierar
hies of nested shift invariant spa
es spanned by the dilated translates�(2m � �k), k 2 Z, of a single s
aling fun
tion �, or more generally of a �nite number�i(2m � �k), i = 1; : : : ; r, k 2 Z, of multi-s
aling fun
tions, whi
h are re�nable, i.e.

� =Xk2Z ak�(2 � �k) or �i = rXj=1Xk2Z ajk�j(2 � �k)6



holds for some mask sequen
es (aik)k2Z. These translates are usually required to have somestability properties su
h as linearly independent integer translates, i.e. Pk2Z 
k�(� � k) = 0implies 
k = 0; k 2 Z. It is known that this latter fa
t implies the existen
e of lo
al dualfun
tionals in the sense of (2.7). For the most prominent examples, su
h as 
ardinal B-splines or the family of orthonormal Daube
hies s
aling fun
tions one even has that thedual fun
tionals are also re�nable s
aling fun
tions [14, 7℄. In this 
ase even lo
al linearindependen
e of the s
aling fun
tions is known to hold [5℄. This means that, whenever alinear 
ombination of su
h s
aling fun
tions vanishes on any given open neighborhood, the
oeÆ
ients of those s
aling fun
tions whose support interse
ts this neighborhood have to bezero. This setting hosts the well-known lo
al orthonormal or biorthogonal bases for L2(R ).As mentioned above, the lo
al independen
e implies property (2.14). Moreover, �xingany interval 
, say, we 
an take here�m = f�(2m � �k) : k 2 Z; supp�(2m � �k) � 
 (or (supp�(2m � �k))Æ \ 
 6= ;)g:Here Pm 
onsists of the dyadi
 intervals of length 2�m 
ontained in 
, while the � 2 �m areunions of �nitely many dyadi
 intervals.Of 
ourse, taking tensor produ
ts provides analogous multiresolution analyses on domains
 whi
h are �nite 
onne
ted unions of integer translates of the unit 
ube the 
ells beingdyadi
 
ubes now.A 
lassi
al 
lass of non-tensor produ
t shift-invariant multivariate MRAs satisfying theabove requirements is based on the notion of box-spline. In this 
ase stability, linear indepen-den
e, and lo
al linear independen
e are known to be equivalent properties whose validity
an be 
hara
terized 
ompletely in terms of the generating set of dire
tions, see e.g. [10℄.Wavelets on the interval: The biorthogonal or orthogonal shift-invariant multiresolutionanalyses on R 
an be used as a starting point for 
onstru
ting an MRA on a �xed �niteinterval [0;M ℄, say, along with 
orresponding biorthogonal or orthogonal bases, see e.g.[5, 9, 8℄. Instead of taking just basis fun
tions whose supports are 
ontained in a givendomain or its restri
tions to su
h a domain, one pro
eeds as outlined next �rst again for theunivariate 
ase and a �xed integer interval 
. The idea is to generate V0 as the span of allinteger translates of a s
aling fun
tion � whose supports are fully 
ontained in (0;M) and by�nitely many additional basis fun
tions near the end points of the interval, whi
h are formedas �nite linear 
ombinations of the �(� � k) so as to retain some polynomial exa
tness andre�nability. The Vj; j > 0, are obtained by s
aling. One still has lo
al biorthogonal basesso that (2.7) and (2.14) remain valid. These boundary adaptations allow one to 
onstru
ta dual pair of biorthogonal MRAs on 
 whi
h in turn lead to the 
onstru
tion of waveletbases on 
.Parametri
ally lifted MRA and Wavelets on domains: On
e boundary adapted MRAs ofthe above type are available, one 
an 
onstru
t MRAs on more 
ompli
ated domains whoseboundary is not ne
essarily aligned with the 
oordinate axes. In fa
t, on 
an deal withdomains of the type 
 = [�2K �(�);where � is again the unit d-
ub and the � are regular parametri
 mappings. Correspondingparametri
 liftings of the MRA� on � 
an be sti
hed together to form even a globally smooth7



MRA on 
 whi
h inherits the relevant properties of MRA�. For details the reader is referrede.g. to [3, 4, 11, 12, 6℄.Finite elements: Suppose that P0 is a lo
ally quasi-uniform, shape regular triangulationof the polyhedral domain 
 and ea
h Pm for m > 0 arises from P0 through m su

essiveregular subdivisions. Examples for d = 2 are based on de
omposing ea
h triangle into four
ongruent 
hildren or into two triangles by splitting the longest edge. Similar pro
eduresare known for d = 3. In this 
ase the 
ells are triangles or more generally simpli
es. Finiteelement spa
es of degree k on su
h partitions are usually de�ned as linear spans of nodalbasis fun
tions whi
h are (globally 
ontinuous, sometimes even C1) pie
ewise polynomialson these partitions whi
h are dual to suitable 
olle
tions of nodal values (point values orderivatives) at the verti
es or mid points of edges. The simplest examples are 
ontinuousLagrange �nite elements of degree k in the plane where the nodal values are asso
iated witha regular \k-mesh" whi
h is the re�ned triangulation obtained by subdividing ea
h trianglein Pm into k2 
ongruent subtriangles. Sin
e on ea
h 
ell the same number of basis fun
tionsoverlap, namely the dimension of the generated polynomial spa
e, lo
al linear independen
eand hen
e property (2.14) holds. Moreover, the 
onstru
tion of a lo
al dual basis, 
onsistingof (dis
ontinuous) pie
ewise polynomials of the same degree, is straightforward, so that allthe above assumptions 
an be veri�ed in this 
ase as well, see e.g. [13℄ for wavelet bases inthe �nite element 
ontext.Anisotropi
 spline bases over multilevel nested triangulations: For a given bounded polygonaldomain 
 � R 2, 
onsider a sequen
e of triangulations (Pm)m2N0 su
h that ea
h level Pm isa partition of 
 into triangles and a re�nement of the previous level Pm�1. Write P :=Sm2N0 Pm. Ea
h su
h sequen
e of triangulations generates an MRA of spa
es S0 � S1 � � � �
onsisting of pie
ewise linear fun
tions, where Sm (m � 0) is spanned by all Courant elements'� supported on 
ells � at the m-th level Pm. Natural mild 
onditions should be imposedon the triangulations in order that this MRA satisfy our 
onditions from x2.1 (see [23, 24℄for the exa
t 
onditions; P is then 
alled a lo
ally regular triangulation). These 
onditionsessentially do not allow the areas of the triangles to 
hange un
ontrollably when movingaway from a �xed triangle in P with regard to s
ale and spatial lo
ation. On the otherhand, the 
onditions still allow the triangles in P to 
hange in size, shape, and orientationqui
kly when moving around at a given level or a
ross the levels. In parti
ular, triangleswith arbitrarily sharp angles are permitted in any lo
ation and at any level. The abovedes
ribed hierar
hy of linear splines provides a simple example of an MRA whi
h may havea very anisotropi
 stru
ture.To give an example of more general anisotropi
 MRAs, 
onsider now the hierar
hyS0 � S1 � � � � ; where Sm := Sk;r(Pm) is the spa
e of all r-times di�erentiable pie
ewisepolynomials over the triangles of Pm of degree < k (k � 1). In [16℄, a 
onstru
tion of splinebasis �m in Sk;r(Pm) is given, whenever r � 1 and k > 4r + 1, in the 
ase of 
 = R 2 . Itis shown that under some reasonable 
onditions on the triangulations (Pm)m2Z of R 2 thebases (�m)m2Z satisfy our 
onditions on MRAs from x2.1. In parti
ular, these 
onditionsadmit arbitrarily sharp angles and o�er 
onsiderable 
exibility. The triangulations satisfyingthese 
onditions are 
alled strong lo
ally regular triangulations. If one 
onsiders sequen
e oftriangulations (Pm)m2N0 on a 
ompa
t domain 
 � R , then usual modi�
ations (see [15℄) of
8



the basis fun
tions 
orresponding to boundary edges or verti
es lead again to bases satisfyingour 
onditions. The 
onstru
tion in [16℄ 
an be extended to the spa
es Sk;r(Pm), k > r2d+1,in dimensions d > 2.MRAs 
onsisting of dis
ontinuous fun
tions: MRAs 
onsisting of (dis
ontinuous) pie
ewisepolynomials are 
ompletely legitimate as well. Su
h hierar
hies 
an be de�ned over regular(uniform) or irregular simpli
ial or other partitions of a 
ompa
t domain in R d . See [23,26℄ for more details in the anisotropi
 
ase. Due to the the more enhan
ed lo
ality of
orresponding basis fun
tions (e.g. supports and 
ells agree in this 
ase) the analysis be
omessimpler in many ways. In this arti
le we fo
us therefore our attention on MRAs 
onsistingof 
ontinuous or even more regular fun
tions.
2.3 Geometri
 Properties and Further PrerequisitsRe�ned properties of the above examples involve in one or another way the geometry of thesupports of the basis fun
tions. In spite of the di�eren
e of respe
tive geometri
 settings therelevant properties turn out to be governed by the same abstra
t me
hanism. The obje
tiveof this se
tion is to extra
t and bring out the essential me
hanism in order to allow us toprovide a uni�ed treatment of the above and many other 
ases.In order to deal with graph distan
es and neighborhood relations in su
h partitions underpossibly general 
ir
umstan
es it is 
onvenient to employ the notion of the m-th level starof a set. For a given set E � 
 and level m � 0, we de�neStar (m)(E) := Star (m)1 (E) := [fI 2 Pm : I \ E 6= ;gand indu
tively Star (m)j (E) := Star (m)1 (Star (m)j�1(E)); j > 1:One 
an easily show thatStar (m)j1+j2(E) = Star (m)j1 (Star (m)j2 (E)); j1; j2 � 1:We shall drop the the referen
e to m whenever the level is 
lear from the 
ontext whi
h is,for instan
e, the 
ase when the set E has a spe
i�
 level su
h as the indi
es � 2 �m or the
ells I 2 Pm. When E 
onsists of a single point x we write in a slight abuse of notationbrie
y Star (m)j (x) instead of Star (m)j (fxg).The extent to whi
h the supports � overlap 
an be 
onveniently expressed in terms ofstars as well. We re
ord for later use the following 
onsequen
e of (�):(") For ea
h � 2 �m, � � Star (m)�� (x) for x 2 �; (2.17)where �� � �1 is also a uniform 
onstant, see property (�) in Se
tion 2.1.The m-th level stars of sets generate a (graph) distan
e d(m)(x; y) in 
, de�ned byd(m)(x; y) := minfj : x 2 Star (m)j (y) and y 2 Star (m)j (x)g: (2.18)

9



Clearly, Star (m)j (E) = fx 2 
 : d(m)(x;E) � jg:We 
an state now one more 
ondition on the 
ells whi
h guarantees that they are properlyre�ned, i.e. as in all our examples all \sides" of the 
ells are subdivided (in a weakly isotropi
fashion). We require that there exists a 
onstant ~� � 1 su
h that
d(m)(x; y) � 12 d(m+~�)(x; y) for x; y 2 
 and m � 0: (2.19)Evidently, this is equivalent to the 
onditionStar (m+~�)2 (E) � Star (m)1 (E); E � 
: (2.20)The fa
t that the supports � overlap 
auses some \spatial pollution" a
ross di�erent lev-els. The following notion helps us to quantify this e�e
t.Conne
ting by n-stars. For �; � 2 � with l(�) � l(�), we say that � is 
onne
ted with � byn-stars (n � 1) if there exist 
ells Ij, j = 1; : : : ; r, su
h that(i) l(I1) � l(�) + 1, l(Ij+1) � l(Ij) + 1, j = 1; : : : ; r � 1, l(Ir) � l(�),(ii) I1 � Star (l0)n (�), I2 � Star (l1)n (I1), . . . , Ir � Star (lr�1)n (Ir�1),� � Star (lr)n (Ir), where l0 := l(�), lj := l(Ij).Lemma 2.2. If �; � 2 � with l(�) � l(�), and � is 
onne
ted with � by n-stars, thenindependently of the number of the 
onne
ting 
ells� � Star (m)2~�n(�); m := l(�); (2.21)where ~� is from (2:19).Proof: The 
laimed in
lusion follows almost immediately from (2.19) (or (2.20)). We skipthe formal proof but indi
ate only the following rough line of argument. Mar
hing from Ijto Ij+1 the spatial step size does not in
rease but halves by at least 1=2 in every ~�n steps.Then a geometri
 series argument shows that one 
annot go farther away than the length ofour �rst step �2~�n.The possibly signi�
ant overlap of the supports � is a severe obstru
tion to lo
alizingestimates. In order to be still able to manage su
h pollution e�e
ts, we require an auxiliarymultilevel system of overlapping 
ells that are on one hand simple enough to be disentangledwhile, on the other hand, they essentially s
ale like the a
tual supports.Extended 
ells. We assume the existen
e of a 
olle
tion of overlapping extended 
ellsO = [m2N0 Om

with the following properties:(i) Every level Om is a 
over of 
, i.e. 
 = [!2Om!:10



(ii) Ea
h extended 
ell ! 2 Om 
an be \paved" by 
ells from the same level Pm, i.e.! = [I2N!I with N! � Pm.(iii) If ! 2 Om, then ! � Star (m)�4 (x) for x 2 !; (2.22)where �4 is a uniform 
onstant satisfying 1 � �4 � ��.(iv) For every ! � Om, m � 1, there exists !0 2 Om�1 su
h that ! � !0.(v) For every !1 � O there exists !2 2 O su
h thatStar 1(!1) � !2 and l(!2) � l(!1)� �5; (2.23)whenever l(!1) � �5, where �5 � 1 is a uniform 
onstant and l(!) denotes the level of !.(vi) Coloring property. The set O 
an be represented as a �nite disjoint union of subsetsfOjgJj=1 su
h that ea
h set Oj is a tree with respe
t to the in
lusion relation, that is, if!0; !00 2 Oj and (!0)Æ \ (!00)Æ 6= ;, then either !0 � !00 or !00 � !0.The 
oloring property (vi) of the extended 
ells is the reason for introdu
ing them here.It is not 
lear whether it holds dire
tly for the supports �. One should think of extended
ells ! 2 Om as simple regions of type ! = Star (m)1 (v) with v a point in 
 (whi
h in the 
aseof Courant elements agrees with the sets �) or ! = Star (m)1 (I) with I 2 Pm. This is the 
asein all examples mentioned in Se
tion 2.2. In the 
ase when P 
onsists of dyadi
 
ubes in R d ,the 
oloring property is established in [20℄, and in the 
ase when P 
onsists of triangles (inR 2), su
h a result is proved in [24℄. The proof of the 
oloring lemma from [24℄ 
an be 
arriedover to spatial dimensions d � 3.Our �nal assumption on the supports �, whi
h is also satis�ed in the examples listed inSe
tion 2.2, 
ouples the system of extended 
ells with the supports �.(�) For ea
h ! 2 Om (m � 0) there exists � 2 �m su
h that ! � �.
Lemma 2.3. Suppose m � jK, where j � 1 and K := ���5. For any � 2 �m there exists! 2 O su
h that Star (m)j (�) � ! and l(!) = m� jK: (2.24)Moreover, Star (m)j (�) � Star (m�jK)�4 (x) for x 2 �: (2.25)Proof: In view of (2.23), it suÆ
es to prove the lemma only in the 
ase j = 1. ChooseI 2 P and ! 2 O so that l(I) = l(!) = l(�), I � � and I � !. Then by (2.17),Star 1(�) � Star ��(I) � Star ��(!):Using (2.23), there exist extended 
ells !0 := !; !1; : : : ; !�� su
h thatStar 1(!i) � !i+1 and l(!i+1) � l(!i)� �5:and hen
e Star ��(�) � !�� and l(!��) � l(�)� ���5;11



whi
h implies (2.24).Fix x 2 �. By (2.24) and (2.22), we obtain Star (m)j (�) � ! � Star (m�jK)�4 (x):In the following all 
onstants will depend on r, �, #, Æ, �0; : : : ; �4, �0; : : : ; �5, ~�, ��, �w,and #�0 (or at least some of them), whi
h are not 
ompletely independent. We shall referto them as parameters of the MRA whi
h is being 
urrently used.
2.4 Lo
al Approximation from Vm and Proje
torsAs in [16, 23, 24℄ a s
ale of B-spa
es indu
ed by the multiresolution hierar
hy will play anessential role in the subsequent analysis. The lo
al approximation from the spa
es Vm willbe an important element in the de�nition of these B-spa
es. We �rst de�ne, for a given 
ellI 2 Pm (m � 0), the extension bI by bI := [�2�m: I�� �: (2.26)
Clearly, jbIj � 
jIj with 
 depending only on the parameters of the MRA.For given fun
tion f 2 Lq(
) and I 2 Pm (m � 0), the error of Lq-approximation to fon bI from Vm is de�ned by E(f; bI)q := infg2Vm kf � gkLq(bI) : (2.27)We de�ne Qm(f) := X�2�m 
�(f)��; f 2 L1(
); (2.28)
where 
�(f) are extensions of the linear fun
tionals from (2.6) whi
h satisfy (2.8). Clearly,Qm : L1(
)! Vm is a linear proje
tor onto Vm.Lemma 2.4. If f 2 Lq(
), 1 � q � 1, and I 2 Pm, m � 0, thenkQm(f)kLq(I) � 
[kfkLq(bI) (2.29)and kf �Qm(f)kLq(I) � 
[E(f; bI)q; (2.30)where 
[ depends only on q and the parameters of the MRA.Proof: The estimates (2.29)-(2.30) readily follow by property (2.8) of the linear fun
tionals
�(f) (see also [16, 23℄).We use the proje
tors Qm for de
omposing a given fun
tion into multilevel 
omponents.We denote by qm := Qm �Qm�1; where Q�1 := 0; (2.31)the \detail" of f between the levels m and m� 1. Whenever a wavelet basis is available, qmis understood to arise from the asso
iated 
anoni
al proje
tors, i.e.qm(f) = X�2Lm�1 
�(f) �; 
�(f) := hf; ~ �i:
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In general, for a given fun
tion f 2 L1(
) one has qm(f) 2 Vm and hen
eqm(f) =: X�2�m b�(f)��: (2.32)
From the approximation properties of the spa
es Vm, we therefore know that for f 2 Lq(
),1 � q � 1, the expansion f = Xm2N0 qm(f) = Xm2N0 X�2�m b�(f)�� (2.33)

onverges in Lq.For the purposes of nonlinear approximation in Lp, 0 < p � 1, we modify the above
onstru
tion in a standard way as des
ribed in the following. Denote by V 0m the linear spa
eof all pie
ewise Vm-fun
tions over Pm, i.e. g 2 V 0m if g =PJ2Pm gJ � 1J ; where gJ 2 Vm. Fora given I 2 Pm, let PI;q : Lq(I)! VmjI be a (nonlinear) proje
tor su
h thatkf � PI;q(f)kLq(I) � 
E(f; I)q with E(f; I)q := infg2Vm kf � gkLq(I) :We now de�ne the operator (proje
tor) pm;q : Lq(
)! V 0m bypm;q(f) := XJ2Pm PI;q(f) � 1J :Finally, we 
onsider the operator Qm;q : Lq(
)! Vm de�ned by Qm;q(f) := Qm(pm;q(f)). Itis easy to see that Qm := Qm;q satis�es (2.29)-(2.30) if 0 < q � 1. In going further, we setqm := qm;q := Qm;q �Qm�1;q with Q�1;q := 0, and de�ne fb�;q(f)g�2�m similarly as in (2.32).Now, we have the following representation of any f 2 Lq(
), 0 < q � 1:f = Xm2N0 qm;q(f) = Xm2N0 X�2�m b�;q(f)�� in Lq. (2.34)
See [16℄ for more details of the above in the spline 
ase.
3 B-spa
es and Besov spa
esWe �rst introdu
e the B-spa
es, whi
h will be an important vehi
le in showing that the\Push-the-Error" algorithm 
aptures the rates of the best nonlinear n-term approximation.As elsewhere, we assume that 0 < p � 1, and � � 1 if p =1 and � > 0 if p <1. In both
ases, we set 1=� := �+ 1=p.The 
ase 1 < p � 1. Given an MRA M with a set of basis (s
aling) fun
tions � =Sm2N0 �m, we de�ne the B-spa
e B�� = B�� (M) as the set of all f 2 L1(
) su
h that

jf jB�� (M) := �XI2P(jIj���1+1=�E(f; bI)1)��1=� <1; (3.1)
13



where E(f; bI)1 denotes the error of L1-approximation to f on bI from Vm if I 2 Pm (see(2.27)). Clearly, j � jB�� (M) is a semi-norm if � � 1 and semi-quasi-norm if � < 1. For di�erentpurposes it will be 
onvenient to employ di�erent equivalent norms. We shall next introdu
ethese variants.The lo
al approximation in L1 above 
an be repla
ed by approximation in Lq with anarbitrary q < p (but not with q � p). Namely, for 1 � q < p, we de�ne
jf jEqB�� (M) := �XI2P(jIj���1=q+1=�E(f; bI)q)��1=� � jf jB�� (M): (3.2)

For the proof of the above equivalen
e, see Theorem 3.3 below.By (3.10) below, it follows that B�� is embedded in Lp and hen
e it is natural to de�ne a(quasi-)norm in B�� by kfkB�� := kfkp + jf jB�� : (3.3)We also set kfkEqB�� := kfkp + jf jEqB�� : (3.4)The spa
e B�� has an atomi
 de
omposition. We de�ne
kfkAB�� (M) := inff=P�2� a����X�2�(j�j���1+1=�ka���k1)��1=� ; (3.5)

where the in�mum is over all representations of f in L1(
). By (2.11), we have
kfkAB�� (M) � inff=P�2� a����X�2� ka���k�p�1=� : (3.6)

Another important fa
t is that the norm in B�� 
an be realized by de
ompositions usingsimple proje
tors. Let f =P�2� b�(f)�� be the de
omposition of f from (2.33). We de�ne
kfkQB�� (M) := �X�2�(j�j���1+1=�kb�(f)��k1)��1=� : (3.7)

The norm equivalen
e (2.11) yields
kfkQB�� (M) � �X�2� kb�(f)��k�p�1=� : (3.8)

Finally, the B-spa
es have equivalent norms through wavelets or prewavelets, wheneverthe latter are available. Suppose a wavelet basis exists and satis�es the 
onditions from x2.1.Let f 2 L1(
) and f = X�2�0 
��� +X�2L 
� �:We de�ne kfkWB�� (M) := �X�2�0 k
���k�p +X�2L k
� �k�p�1=� : (3.9)
14



The 
ase 0 < p � 1. We re
all our standing assumptions: � > 0 and 1=� := � + 1=p. Inthis 
ase we de�ne jf jEqB�� (M) , 0 < q < p, as in (3.2) and set jf jB�� (M) := jf jE�B�� (M). We alsode�ne the quasi-norms kfkB�� (M) and kfkEqB�� (M) as in (3.3)-(3.4). Further, we introdu
e theatomi
 quasi-norm kfkAB�� (M) by the quantity on the right-hand-side in (3.6) and de�ne thequasi-norm kfkQB�� (M) by the right-hand-side quantity in (3.8) with b�(f) repla
ed by b�;q(f)from (2.34) for some 0 < q < p.Remark 3.1. In the above de�nition of kfkEqB�� (M), kfkB�� (M) := kfkE1B�� (M) (q = 1), andkfkQB�� (M) via fb�;q(f)g or fb�(f)g (q = 1) it is imperative to have q < p. Therefore, itis important that (Qm) satisfy (2:29) � (2:30) for some q < p, whi
h essentially follows by
ondition (2:8) on the duals f
�(�)g. In turn, 
ondition (2:8) 
an be relaxed somewhat; it 
anbe repla
ed by j
�(�)j � 
j�j�1=qkfkq with 1 < q < p.The following embedding result, proved in [23, 26℄, will play an important role.Theorem 3.2. For any 
olle
tion of real numbers f
�g�2� and 0 < � < p < 1 or p = 1and 0 < � � 1, we have 


X�2� j
�j��


p � 
�X�2� k
���k�p�1=� ; (3.10)
where 
 depends only on � , p, and the parameters of the MRA.The announ
ed equivalen
e result reads now as follows.Theorem 3.3. For a given MRA the norms k � kB�� , k � kEqB�� , k � kAB�� , k � kQB�� , and k � kWB�� if(pre)wavelets exist and p > 1, are equivalent with 
onstants of equivalen
e depending only onp, �, and the parameters of the MRA.The proof of this theorem is quite similar (but not identi
al) to the proofs of the 
orre-sponding results in [16, 23℄. For 
ompleteness, we give it in the appendix.The following Sobolev type embedding result follows immediately by (3.6) or (3.8): If0 < �0 < �1 and �j := (�j + 1=p)�1, j = 0; 1, then B�1�1 (M) � B�0�0 (M), i.e. if f 2 B�1�1 (M),then f 2 B�0�0 (M) and kfkB�0�0 (M) � 
kfkB�1�1 (M).Sin
e the B-spa
es are essentially sequen
e spa
es (retra
ts of sequen
e spa
es [1℄) theyare easy to interpolate. In parti
ular, the analogue of Theorem 2.12 from [16℄ holds with asimilar proof. We skip the details.For a given MRA M more general B-spa
es B�pq(M), 0 < p; q � 1, � > 0, 
an bede�ned similarly as in [23℄ and then B�� (M) = B��� (M). The B-spa
es should be viewedas non
lassi
al smoothness spa
es whi
h are spe
i�
ally designed for the needs of nonlinearn-term approximation. A 
ru
ial property of the B-spa
es is that the basis fun
tions f��g�2�of an MRA M are in�nitely smooth with respe
t to the s
ale of the B-spa
es B�� (M). Thisis re
e
ted by the estimate k��kB�� (M) � 
k��kp for 0 < � <1 (see Theorem 4.2 below). Asa 
onsequen
e, our dire
t, inverse, and 
hara
terization theorems as well as our algorithmsimpose no restri
tion on the rates of approximation.In regular settings the s
ale of Besov spa
es Bs� (L� (
)), 1=� = s=d+1=p, usually arises innonlinear approximation in Lp(
) (see e.g. [17℄). Note that the smoothnes parameters of the15



Besov spa
es and B-spa
es are normalized di�erently. Thus the Besov spa
es Bd�� (L�(
))
orresponds to the B-spa
e B�� (M). The Besov regularity of the basis fun
tions f��g deter-mines the smoothness range where the Besov spa
e 
an be used in nonlinear approximation.To be more pre
ise, assume that in the setting des
ribed in x2.1 all Pm are regular parti-tions of 
, that is, for ea
h 
ell I 2 Pm there exist balls Br1, Br2 of radii r1, r2 su
h thatBr1 � I � Br2 and r2 � 
r1 with 
 a uniform 
onstant. It is not hard to be seen that iffor some � > 0, k��kBd�� (L� (
)) � 
k��kp for all �� 2 �, then B�� (M) � Bd�� (L�(
)) andkfkBd�� (L� (
)) � 
kfkB�� (M) (see [16, 23℄ for the spline 
ase).In anisotropi
 setups, when basis fun
tions of strongly elongated supports are involved,the Besov spa
es are no longer suitable for 
hara
terization of the rates of nonlinear approx-imation whereas the B-spa
e 
on
ept still applies.B-spa
es have been used impli
itly or expli
itly elsewhere, see e.g. [25℄, [2℄. They aresystemati
ally developed and used in the 
ase of anisotropi
 MRAs generated by pie
ewisepolynomials in [16, 23, 24, 26, 27℄.
4 Best Nonlinear n-term ApproximationOur primary goal in this se
tion is to 
hara
terize the approximation spa
es generated bynonlinear n-term approximation from the s
aling fun
tions of an MRA.We let �n denote the nonlinear set 
onsisting of all fun
tions g of the formg =X�2� a���;where � � �, #� � n, and � is allowed to vary with g. We denote by �n(f)p the error ofbest Lp-approximation to f 2 Lp(
) from �n:�n(f)p := infg2�n kf � gkp:To 
hara
terize the approximation spa
es generated by (�n(f)p), we shall use the ma
hineryof Ja
kson-Bernstein estimates 
ombined with interpolation (see e.g. [19, 28℄).As elsewhere, our standing assumption is that 0 < p � 1 and � � 1 for p = 1 and� > 0 if p <1; in both 
ases we set 1=� := �+ 1=p.Theorem 4.1. [Ja
kson estimate℄ If f 2 B�� (M), then�n(f)p � 
n��kfkB�� (M) (4.1)where 
 depends only on �, p, and the parameters of the MRA.Estimate (4.1) follows from the basi
 estimates of the error of the \Push-the-Error"algorithm (p =1) and \Threshold" algorithm (0 < p <1), stated in Theorems 5.6 and 6.1below.Theorem 4.2. [Bernstein estimate℄ If g 2 �n, thenkgkB�� (M) � 
n�kgkp (4.2)where 
 depends only on �, p, and the parameters of the MRA.16



To avoid a major diversion from the presentation of our 
entral results we postpone theproof of this theorem to the appendix.One 
an now follow the standard lines to obtain \regularity-free error estimates". Tothis end, denote by K(f; t)p := K(f; t;Lp(
);B�� (M)) (L1(
) := C(
)) the K-fun
tionalde�ned by K(f; t)p := infg2B�� kf � gkp + tkgkB�� ; t > 0: (4.3)By standard arguments (see e.g. [28℄), the Ja
kson and Bernstein estimates (4.1)-(4.2)imply the following dire
t and inverse estimates: For f 2 Lp(
) one has�n(f)p � 
K(f; n��)p (4.4)and K(f; n��)p � 
n���h nX�=1 1� (����(f)p)��i1=�� + kfkp�; (4.5)
where � � := minf�; 1g.We de�ne the approximation spa
e A
q = A
q (�; Lp) to be the set of all fun
tions f 2Lp(
) su
h that kfkA
q := kfkp + � 1Xn=1(n
�n(f)p)q 1n�1=q <1 (4.6)
with the usual modi�
ation when q =1.The following 
hara
terization of the approximation spa
es A
q is immediate from esti-mates (4.4)-(4.5).Theorem 4.3. If 0 < 
 < � and 0 < q � 1, thenA
q (�; Lp) = (Lp(
);B�� (M)) 
� ;qwith equivalent norms, where (Lp;B�� (M)) 
� ;q is the real interpolation spa
e between Lp andB�� (M) (see e.g. [1℄).In one spe
i�
 
ase the approximation spa
e A�q (Lp) 
an be identi�ed as a B-spa
e:Theorem 4.4. Assuming that � > 0 if p <1 and � > 1 if p =1, and 1=� := � + 1=p inboth 
ases, we have A�� (�; Lp) = B�� (M) (4.7)with equivalent norms.Proof: The proof is a mere repetition of the proof of Theorem 3.4 in [16℄ and will be omitted.We next turn to a 
onstru
tive realization of best n-term approximation.
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5 \Push-the-Error" Algorithm5.1 Des
ription of the AlgorithmFor a given fun
tion f 2 C(
), we use the de
omposition s
heme from (2.33) to represent fin the form f =X�2� b�(f)�� = Xm2N0 X�2�m b�(f)��; (5.1)
where the 
oeÆ
ients b� := b�(f) depend linearly on f and the series 
onverges uniformlyon 
. As elsewhere in this arti
le, the basis fun
tions �� are normalized in L1, i.e k��k1 = 1.Whenever f has a wavelet expansion (see (2.16)), we rewrite the wavelets in terms of s
alingfun
tions to obtain (5.1). We shall drop the referen
e to f at times when this is 
lear fromthe 
ontext.For the purpose of designing an algorithm 
apable of a
hieving the rates of the best n-term approximation from f��g in the uniform norm, the initial de
omposition (5.1) shouldprovide an eÆ
ient representation of f . In our 
ase this means that the terms in (5.1) should
hara
terize the norm in B�� (M), � � 1, � := 1=�, as in (3.7)-(3.8), whi
h we a
hieve byemploying simple proje
tors onto the spa
es (Vm) (see x2.4 and x3).To des
ribe the \Push-the-Error" algorithm we need a few preliminaries that help us todevelop substitutes for simple thresholding 
on
epts that would work in Lp, p <1.For any �; � 2 � with l(�) > l(�), we say that � is 
onne
ted with � via sets from � ifthere exists a sequen
e of elements � =: �0; �1; : : : ; �k := � with k := l(�)� l(�) su
h that(i) l(�i) = l(�i+1) + 1; i = 0; : : : ; k � 1;(ii) �i sits on �i+1, i = 0; : : : ; k � 1, i.e. �Æi \ �Æi+1 6= ;.Given � 2 �, we de�neU 0� := f� 2 � : l(�) > l(�); � is 
onne
ted with �g and (5.2)U� := U 0� [ f�g: (5.3)Note that � 2 U� implies that U� � U�; and hen
e, by Lemma 2.2 and (2.17),� 2 U� =) � � StarN�(�); N� := 2~���: (5.4)In order to 
ompress the representation (5.1), it would not be reasonable to threshold the
oeÆ
ients b�(f), due to the la
k of stability a
ross levels. Therefore we need more subtleindi
ators and introdu
e lo
al error terms byE(f; �) = E(�) := jb�(f)j+ 


X�2U 0� b�(f)��




1: (5.5)
Remark 5.1. Sin
e by (2:9), one has for � 2 �mjb�(f)j � �2k(Qm �Qm�1)fk1 � �2�kQm(f)� fk1 + kf �Qm�1(f)k1�; (5.6)
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and 


X�2U 0� b�(f)��



1 � kQm(f)� fk1; (5.7)

the assumed uniform 
onvergen
e of (5:1) and (2:30) ensure that for ea
h f 2 C(
) andevery " > 0 there exists an M 2 N su
h that E(f; �) < " for � 2 �m, m > M .For ea
h � 2 �, we de�ne its \
on
rete" 
� by
� := StarN�+4��(�); (5.8)where �� is from (2.17) and N� is from (5.4).Also, for a given � 2 �, we de�neX� := f� 2 �m : �Æ \ 
Æ� 6= ;g with m := l(�): (5.9)We shall 
all the elements of X� the neighbors of �. By (2.17) and (5.8),� 2 X� =) � � StarN�+5��(�): (5.10)We are now prepared to des
ribe the \Push-the-error" algorithm whi
h in a slight abuseof terminology will play two di�erent roles. On one hand, it will be used as a theoreti
al toolthat o�ers a 
onstru
tive way of identifying n-term approximations realizing optimal rates.In this role it will be applied to an arbitrary in�nite expansion of the form (5.1), althoughthe error terms E(f; �) would then not be pra
ti
ally a

essible. In a pra
ti
al 
ontext thes
heme should be thought of as applied to some initial approximation 
onsisting of a �niteexpansion of the form (5.1). We shall brie
y dis
uss 
orresponding pra
ti
al rami�
ationslater and work here �rst with the 
on
eptual version of the �rst form:PTE ["; f ℄! A"(f)p produ
es for a given fun
tion f 2 C(
) and any target a

ura
y " > 0an approximation A"(f) = A"(f) = X�2�(f;") d�(f)��by the following steps:Step 1. [De
omposition℄ We represent f in the form (5.1) (see also (2.33)).Step 2. [\Prune the shrubs"℄ We dis
ard all terms b��� su
h thatE(f; �) � "; 8 � 2 U�: (5.11)We denote by � = �(f; ") the set of all elements of � whi
h have not been dis
arded andwrite f� :=X�2� b���: (5.12)
From Remark 5.1 we know that there exists some M 2 N su
h thatE(f; �) < " 8 � 2 �m; m > M; (5.13)
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i.e. � is a �nite set.Step 3. [\Push the error"℄ This step is a variation of Step 3 of the \Push the error" algorithmdes
ribed in [24℄.Let ~�0 be the set of all � 2 �0\� su
h that jb�(f)j > " and set �0 := ([�2~�0X�)\�. Wede�ne A0 := X�2�0 b���:Using the re�nement equations (2.13), we represent (rewrite) ea
h of the remaining termsb���, � 2 (�0 \ �) n �0, as a linear 
ombination of f��g�2�1 and add to the resulting termsthe existing terms b���, � 2 �1 \�. As a result we obtain a representation of f� in the form
f� = A0 + X�2�1n� d��� + X�2�1\� d��� +

MXm=2 X�2�m\� b���:Further, we de�ne ~�1 as the set of all � 2 �1\� su
h that jd�j > " and set �1 := ([�2~�1X�)\�.Then we de�ne A1 := X�2�1 d���:Similarly as above, we rewrite all remaining terms d���, � 2 (�1 \ �) n �1, at the next leveland add to them the existing terms b���, � 2 �2 \ �. We obtain
f� = A0 +A1 + X�2�1n� d��� + X�2�2n� d��� + X�2�2\� d��� +

MXm=3 X�2�m\� b���:We pro
ess in the same way all other levels until we rea
h the �nest level �M . We de�ne~�M , �M , and AM as above.We obtain as an output the set ~�(f; ") := SMm=0 ~�m of the "-signi�
ant indi
es (withjd�(f)j > "), the set �(f; ") := SMm=0 �m 
ontaining also the neighbors of the elements in~�(f; ") identi�ed by the 
on
rete 
�, and the approximation
A" = A"(f) := MXm=0Am = X�2�(f;") d���:We next estimate the error 
aused by Step 2 and then Step 3 of the above s
heme.Lemma 5.2. We have kf � f�k1 � �2" (5.14)with �2 the 
onstant from property (
) of the elements of �, x2.1.Proof: To see this, let x 2 
 and set C(x;�) := f� 62 � : x 2 �Æ; l(�) is minimalg. IfC(x;�) = ;, then f�(x) = f(x). Suppose C(x;�) 6= ;. By property (
), #C(x;�) � �2.Then for any �0 2 C(x;�),jf(x)� f�(x)j � X�2C(x;�) jb�j+ 


 X�2U 0�0 b���




1 � X�2C(x;�)E(�) � �2";
whi
h 
on�rms the 
laim. 20



Lemma 5.3. We have kf� �A"(f)k1 � 
" (5.15)with 
 = 2�22�1, where �1 is a bound of the 
oeÆ
ients from (2:13).Proof: Fix x 2 
 and let C(x;�) := f� 62 � : x 2 �Æ; l(�) is minimalg as in the proof of theprevious lemma.Suppose �rst that C(x;�) 6= ;. Let �0 2 C(x;�) and set m := l(�0). Sin
e x 2 �0 and�0 62 �, then U 0�0 \ � = ; and, therefore, there is no 
ontribution to f� at x from levels > m.Thenf�(x) = A"(f)(x)+ X�2C(x;�) d���(x)+ X�2�m\�:x2� r���(x) =: A"(f)(x)+F1(x)+F2(x): (5.16)
Here the terms d���, � 2 C(x;�), are obtained from the rewriting of some terms d���,� 2 �m�1 so that x 2 � and jd�j � ". Denote by K(x;m) the set of their indi
es. By (2.13),�� =P�2�m; ��� a�;��� with ja�;�j � �1, and hen
eX�2K(x;m) d��� = X�2C(x;�)� X�2K(x;m) a�;�d����;whi
h yields d� = X�2K(x;m) a�;�d�:Therefore, jd�j � X�2K(x;m) ja�;�jjd�j � �2�1"; � 2 C(x;�);
and hen
e jF1(x)j � X�2C(x;�) jd�j � �22�1"; (5.17)
where �2 is from property (
), x2.1.The terms r��� (if any) in the se
ond sum in (5.16) have indi
es � 2 �m \ � su
h thatx 2 � and jr�j � " sin
e they have not been sele
ted in Am. Therefore,jF2(x)j � X�2�m\�: x2� jr�j � �2":
Combining this with (5.17) yields (5.15).It remains to 
onsider the 
ase when C(x;�) = ;. Now, we havef�(x) = A"(f)(x) + X�2�M\�: x2� d���(x);where d��� are terms whi
h have not been sele
ted in the approximant. Therefore, jd�j � "and (5.15) follows as above.Remark 5.4. Combining the estimates from Lemmas 5.2-5.3, we obtain the following errorbound for the \Push-the-Error" algorithm with target a

ura
y " > 0:kf �A"(f)k1 � 
̂" (5.18)with 
̂ < 3�22�1.
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5.2 Error Analysis of \Push-the-Error"Assuming that \Push-the-Error" is applied to a fun
tion f 2 C(
) with " > 0 and A"(f) isthe approximant obtained, we denoteN(") = Nf (") := #�(f; "); AN(")(f) := kf �A"(f)k1;and An(f) := inf">0fAN(")(f) : N(") � ng:The main 
on
eptual tool is the following weak quasi-subadditivity of the 
ounting fun
tionalN("). We shall point out later in whi
h sense this may be regarded as a weak stabilityproperty.Theorem 5.5. There exist 
onstants 
� and ~
 depending only on the parameters of the MRAsu
h that if f = f0+f1, fj 2 C(
), and the \Push-the-Error" algorithm is applied to fj with"j > 0 (j = 0; 1) and to f with " := 
�("0 + "1), thenNf (") � ~
(Nf0("0) +Nf1("1)): (5.19)The proof of this theorem is rather involved and will be postponed to x7.We shall make now pre
ise in whi
h sense the \Push-the-Error" s
heme gives rise to anoptimal approximation s
heme.Theorem 5.6. If f 2 B�� (M), � � 1, � := 1=�, then for ea
h " > 0AN(")(f) � 
" and N(") � 
"��kfk�B�� (M) (5.20)and, therefore, An(f) � 
n��kfkB�� (M); n = 1; 2; : : : : (5.21)Moreover, for f 2 C(
), AN(")(f)1 � 
minf"; kfk1g: (5.22)Here the 
onstants depend only on � and the parameters of the MRA.The proof of this theorem is 
losely related to the one of the previous theorem and willalso be deferred to x7.We 
an now address the program outlined in Se
tion 4. Let us denote by K(f; t)1 theK-fun
tional generated by the spa
es C(
) and B�� (M) with � := 1=�.Theorem 5.7. Suppose that f 2 C(
) and � � 1. Then one hasAn(f)1 � 
K(f; n��)1 (5.23)and, therefore,
�n(f)1 � An(f)1 � 
n���h nX�=1 1� (����(f)1)�i1=� + kfk1�; (5.24)

where 
 depends on �, and the parameters of the MRA.22



Proof: We need only prove (5.23), sin
e (5.24) follows by (5.23) and (4.5). Suppose g 2B�� (M) with kgkB�� 6= 0 and kf � gk1 6= 0. Choose "0 := 4�2
[kf � gk1, where �2 and 
[ arethe 
onstants from (2.9) and (2.29). Further, 
hoose "1 := n��kgkB�� . Let " := 
�("0 + "1),where 
� is the 
onstant from Theorem 5.5. By (5.18) and Theorem 5.5, applied withf0 := f � g, f1 := g, we haveANf (")(f) � 
("0 + "1) � 
(kf � gk1 + n��kgkB�� ) (5.25)and Nf (") � 
(Nf0("0) +Nf1("1));where 
 depends here on the 
onstant 
̂ in (5.18) and on the 
onstants 
�; ~
 in Theorem 5.5.We next show that Nf (") � 
n. Similarly to Remark 5.1, using (2.9) and (2.29), we havefor � 2 �m, jb�(f0)j � �2(kQm(f0)k1 + kQm�1(f0)k1) � 2�2
[kf0k1and 


X�2U 0� b�(f0)��



1 � kf0 �Qm(f0)k1 � 2
[kf0k1

and hen
e E(f0; �) � 4�2
[kf0k1:Now, sin
e "0 := 4�2
[kf0k1, then A"0(f0) = 0 and Nf0("0) = 0, due to Step 2 of thealgorithm. On the other hand, by Theorem 5.6, Nf1(") � 
"��1 kgk�B�� � 
n, where we haveexpressed "1 in terms of n a

ording to the above 
hoi
e, and hen
e Nf (") � 
n.Sin
e g was sele
ted arbitrarily in B�� (M), (5.25) yields A
n(f) � 
K(f; n��)1, whi
himplies (5.23) (with a di�erent 
onstant 
).The following result is an immediate 
onsequen
e of Theorem 5.7:Theorem 5.8. For f 2 C(
) and 
 > 0, An(f) = O(n�
) if and only if �n(f)1 = O(n�
).More generally, let A
q (�) = A
q (L1; �) be the approximation spa
es generated by thenonlinear n-term approximation from the s
aling fun
tions of the MRA, de�ned in (4.6). LetA
q (A) be the set of all fun
tions f 2 C(
) su
h that
kfkA
q (A) := kfk1 + � 1Xn=1(n
An(f))q 1n�1=q <1 (5.26)

with the usual modi�
ation when q =1.Theorem 5.7 yields the following more general result:Theorem 5.9. For any 
 > 0 and 0 < q � 1, we have A
q (A) = A
q (�) and kfkA
q (A) �kfkA
q (�) for f 2 A
q (A) = A
q (�).
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5.3 Pra
ti
al aspe
ts of \Push-the-Error"From a pra
ti
al perspe
tive the \Push-the-Error" algorithm 
an be applied only to �niteexpansions (5.1) sin
e otherwise Step 2 is not feasible. Therefore it 
an be viewed as a
oarsening pro
edure that turns some initial (nonoptimal) approximation into a (nearly)optimal one. To make this more pre
ise, suppose that f belongs to some spa
e VM so thatthe de
omposition Step 1 of the s
heme yields a representationf = X�2�0 b�(f)��;where �0 � Sm�M �m and thus N := #�0 � dimVM < 1. Suppose furthermore that f isan approximation to the (ideal) fun
tion f� 2 C(
) and thatkf � f�k1 � ": (5.27)From the proof of Theorem 5.7 we infer that there exist 
onstants 
1; 
2 � 1 su
h that the(theoreti
al version of the)\Push-the-Error" s
heme yields that for every n 2 N there exists"� > 0 su
h thatAN("�)(f�) � 
2K(f�; n��)1; N("�) � n; "� � 
1K(f�; n��)1: (5.28)Now let n be the smallest positive integer for whi
h 
2K(f�; n��)1 � ". One easily 
on�rmsthat then " � 
22�K(f�; n��)1 � 2�": (5.29)Setting f�n := A"�(f�), one therefore 
learly has kf � f�nk1 � 2". Now we write f =(f � f�n) + f�n and set f0 := f � f�n; f1 := f�n; "0 := 8�2
[":Next note thatK(f1; n��)1 � kf1 � f�k1 +K(f�; n��)1 � (1 + 
2)K(f�; n��)1:Hen
e, by the same reasoning as above, there exists "�� > 0 su
h that "�� � 
1K(f1; n��)1 �
1(1 + 
2)", ANf1("��)(f1) � 
2K(f1; n��)1 � 
1
2(1 + 
2)"; Nf1("��) � n: (5.30)Choose "1 = "��. We now apply Theorem 5.5 with the above sele
tion of f0, f1, "0, and "1to 
on
lude that Nf (
�("0 + "1)) � ~
(Nf0("0) +Nf1("1))and, using (5.29),kf �A
�("0+"1)(f)k1 � 
("0 + "1) � 
0" � 
K(f�; n��)1:But as in the proof of Theorem 5.7 one 
on�rms that, by (5.28), Step 2 of the algorithmreturns �f0 = ; and hen
e A"0(f0) = Nf0("0) = 0. Therefore, using (5.30),Nf (
�("0 + "1)) � ~
Nf1("��) � ~
n:24



Consequently,kA
�("0+"1)(f)� f�k1 � 
K(f�; n��)1; Nf (
�("0 + "1)) � 
n:where K(f�; n��)1 � ". Thus a proper 
oarsening of f , obtained through the (pra
ti
alversion of the ) \Push-the-Error" s
heme, yields a near optimal approximation to the idealf� whenever an initial error bound (5.27) is given. Su
h situations arise in the 
ontext ofadaptive s
hemes. One also derives from the above 
onsiderations that, when f� 2 B�� (M)one has kA
�("0+"1)(f)� f�k1 � 
"; Nf (
�("0 + "1)) � 
"��kf�k�B�� (M);whi
h explains in whi
h sense the s
heme deserves to be termed stable in L1.Complexity. Assume now that the fun
tion f (a surfa
e or multidimensional data) has aninitial representation (approximation) in some \�nest" spa
e VM of an MRA involving O(N)terms. Let us assume that the \Push the error" algorithm (as des
ribed in x5.1) is applied tothis f . The de
omposition Step 1 of \Push-the-Error" will run in O(N) 
ops. Step 2 [\Prunethe shrubs"℄ of the algorithm 
an evidently be realized in O(N logN) 
ops by rewriting allterms of interest at the �nest level. Step 3 [\Push the error"℄ works in O(N) 
ops. There
onstru
tion Step 4 runs also in O(N) 
ops. Therefore, the \Push-the-Error" algorithmappears to be an attra
tive 
oarsening s
heme from a pra
ti
al point of view. Our next goalis to propose an even more e
onomi
al version of the se
ond step of the algorithm.S
alable se
ond version of Step 2 [\Prune the shrubs"℄. We de�ne a new lo
al error termeE(f; �) by eE(f; �) := jb�(f)j+maxv2� X�2U 0�: v2� jb�(f)j: (5.31)
Now, the 
ondition E(f; �) � " in (5.11) is repla
ed by the 
ondition eE(f; �) � " (see (5.5))whi
h is pra
ti
ally easier to be veri�ed. The new version of Step 2 of the algorithm 
an berealized in O(N) 
ops by employing a well-know prin
iple of Dynami
 Programming. Weuse the 
oeÆ
ient fb�(f)g obtained in Step 1 to 
omputeM(f; �) := maxv2� X�2U 0� : v2� jb�(f)j for every � 2 �:
To this end we pro
eed from �ner to 
ourser levels and 
ompute ea
h M(f; �) by using theout
ome of the previous steps.It is easy to see that for this new version of \Push-the-Error" Theorem 5.6 remains validwith a slight modi�
ation of the same proof. However, it is impossible for us to establishTheorem 5.5 in this 
ase, whi
h makes this version less attra
tive from a theoreti
al pointof view. In parti
ular, we fail to have estimates like (5.23).Further observations and pra
ti
al modi�
ations. As already mentioned in the beginning ofx5.1, for an optimal performan
e of the \Push-the-Error" algorithm it is important to havean initial sparse representation of the fun
tion f being approximated. To this end the dualfun
tionals f
�(�)g should be bounded in Lq for some q <1 (see Remark 3.1). In turn, thismeans that de
omposition methods based on interpolatory s
hemes do not provide eÆ
ientrepresentations and should be avoided. 25



In the des
ription of Step 3 of \Push-the-Error", the neighbors of a given �0 2 � aredes
ribed as all �'s from the same level whi
h overlap with the 
on
rete 
�0 of �0; all termsfd���g with su
h indi
es are taken in the approximation whenever jd�0 j > ". For pra
ti
al im-plementations mu
h smaller 
on
retes should be used and even one 
an 
onsider realizationswhere the neighbors are not (automati
ally) in
luded at all.Finally, one 
an run the \Push-the-Error" algorithm without exe
uting Step 2 at all. Analgorithm 
onsisting of only Step 1 and Step 2 is also reasonable in some situations. Othermodi�
ations are also possible. However, one should be aware of the existen
e of severaltraps whi
h may defeat su
h modi�
ations of the algorithms (see [24℄).
6 \Threshold" Algorithm in Lp (p <1)Here we show that the usual threshold s
heme used in nonlinear n-term approximation fromwavelets in Lp (1 < p < 1) 
an be su

essfully utilized for n-term approximation from thes
aling fun
tions of MRA in Lp (0 < p <1) (see also [24℄).We begin with a des
ription of the algorithm.Step 1. (De
omposition) We represent the fun
tion f being approximated by using thede
omposition (2.33) if 1 < p � 1 and (2.34) with 0 < q < p if 0 < p � 1. So, in both 
asesf =X�2� b�(f)�� in Lp(
): (6.1)
Step 2. (\Threshold") We �rst order the terms fb���g�2� in a sequen
e (b�j��j)j2N so thatkb�1��1kp � kb�2��2kp � � � � :Then we de�ne the approximant by An(f)p :=Pnj=1 b�j��j :We now turn to the error analysis of the \Threshold" algorithm. We de�ne the error ofthe algorithm by ATn (f)p := kf �An(f)pkLp(
):As elsewhere we assume that � > 0, 0 < p <1, and � := (�+ 1=p)�1.Theorem 6.1. If f 2 B�� (M), thenATn (f)p � 
n��kfkB�� (M): (6.2)Furthermore, AT2n(f)p � 
n��� 1Xj=n+1 kb�j��jk�p�1=� : (6.3)
Here 
 depends only on �, p, and the parameters of the MRA.Proof: Estimate (6.2) follows immediately by the general dire
t estimate of Theorem 3.4 in[23℄ and the equivalen
e kfkQB�� (M) � kfkB�� (M) established in Theorem 3.3. To prove (6.2)we apply again Theorem 3.4 from [23℄ but this time to the sequen
e (b�j��j )1j=n+1.
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We next show that in a sense the \Threshold" algorithm 
aptures the rates of the bestnonlinear n-term approximation in Lp, 0 < p < 1. For this denote by A�� (�; Lp) :=A�� (�; Lp) the approximation spa
e de�ned in (4.6) and by A
q (AT ; Lp) the set of all fun
tionsf 2 Lp(
) su
h that
kfkA
q (AT ;Lp) := kfkp + � 1Xn=1(n
An(f)p)q 1n�1=q <1 (6.4)

with the usual modi�
ation when q =1 (see also (5.26)).Theorem 6.2. For any � > 0 and 1=� = �+1=p, we have A�� (AT ; Lp) = B�� (M) = A�� (�; Lp)and for ea
h f in this spa
ekfkA�� (AT ;Lp) � kfkB�� (M) � kfkA�� (�;Lp): (6.5)Proof: The right-hand-side equivalen
e in (6.5) is the statement of Theorem 4.4 whenp <1. Clearly, to 
omplete the proof we need only show that
A := � 1X�=0[2��AT2� (f)p℄��1=� � 
kfkB�� (M): (6.6)

Choose �1 so that 0 < �1 < � and set �1 := (�1 + 1=p)�1. By (6.3) applied with � repla
edby �1, it follows that
AT2�+1(f)p � 
2���1� 1Xk=� 2kkb�2k��2kk�1p �1=�1: (6.7)

Denote brie
y �k := 2k=�1kb�2k��2kkp. Then by (6.7) for � � 0 and (6.2) with n = 1, weobtain A � � 
 1X�=0 h2�(���1)� 1Xk=� ��1k �1=�1i� � 
 1Xk=0(2k(���1)�k)� ;where we used the well-known Hardy inequality (see e.g. Lemma 3.4 from [19℄). Using nowthat �� �1 + 1=�1 = 1=� , we have
A � � 
 1Xk=0 2k(���1+1=�1)�kb�2k��2kk�p = 
 1Xk=0 2kkb�2k��2kk�p � 
 1X�=1 kb�����k�p;and (6.6) follows.Several remarks are in order. We �st observe that the \Threshold" algorithm in prin-
iple 
annot be applied for approximation in the uniform norm be
ause of the \piling up"e�e
t: there 
an be a huge number of terms b��� with small 
oeÆ
ients and with signi�
ant
ontribution to the norm of f at a 
ertain lo
ation, whi
h the algorithm will fail to anti
ipate.As for the \Push-the-Error" algorithm, it is 
riti
al to have an eÆ
ient initial de
om-position of the fun
tion f being approximated, i.e. representation (6.1) should provide ade
omposition of the norm in B�� (M), 1=� = � + 1=p. For the \Threshold" algorithm thisis guaranteed by employing the de
ompositions from (2.33)-(2.34) with q < p.27



The estimate ATn (f)p � 
kfkp fails to be true in general (even if 1 < p < 1) sin
e the
onvergen
e in the representation of the fun
tion f being approximated that is used (see(2.33)-(2.34)) is not assumed to be un
onditional. (This problem does not arise in the 
asewhen wavelets exist.) Consequently, we are unable to prove the analog of estimate (5.23)and the right-hand-side of (5.24) for the \Threshold" algorithm. This is why the result fromTheorem 6.2 is somewhat weaker than the result from Theorem 5.9.It is possible to extend the \Push-the-Error" algorithm to approximation in Lp (p <1).However, the resulting algorithm is very 
lose to the \Threshold" algorithm. Therefore, the\Threshold" algorithm should be 
onsidered as a natural generalization of \Push-the-Error"in Lp.
7 Proof of the main resultsProof of Theorem 5.5: Our strategy will be to �nd for ea
h index from ~� := ~�(f; 
�") areferen
e index � in ~�0 [ ~�1 with ~�i = ~�(fi; "i), so that � 2 ~�0 [ ~�1 serves as a referen
eindex for at most a uniformly bounded number of indi
es in ~�.In what follows the \Push-the-Error" algorithm is applied to g 2 ff; f0; f1g. We shalladhere to all the notation established in the previous se
tions, in parti
ular, �1, �2, ~�, ��,�0; : : : ; �5 (all of them � 1) denote the parameters of the underlying MRA (x2.1), and re
allthat N� := 2~���, K := ���5.Our main tools are 
riteria for identifying indi
es in ~�(g; "). The simplest one is basedon a suÆ
iently large threshold for the 
oeÆ
ients b�(g).Lemma 7.1. If jb�(g)j > ~
" where ~
 := 2�1�2, then � 2 ~�(g; "). Equivalently, if � 62 ~�(g; "),then jb�(g)j � ~
".Proof: Sin
e ~
 > 1, � 
annot be dis
arded in the pruning Step 2 of the \Push-the-Error"algorithm. Suppose that after pro
essing all levels � m � 1 with m := l(�) in Step 3, the
urrent approximation to g has the formgm�1 := Xl�m�1Al(g) + X�2(�m�1\�)n�m�1 r��� + Xl(�)�m b�(g)��;where jr�j � " for every � 2 (�m�1 \ �) n �m�1, and Pl�m�1Al(g) is the approximationgenerated so far. Sin
e by (2.13) we have �� =Pl(�)=l(�)+1 a�;���; where ja�;�j � �1. Hen
eXl(�)=m�1 r��� = Xl(�)=m�X� a�;�r����;
so that we 
an rewrite gm�1 asgm�1 := Xl�m�1Al(g) + X�2�m\� d��� + Xl(�)>m;�2� b�(g)��:This implies d�(g) = Xl(�)=m�1: ��� a�;�r� + b�(g):
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Therefore,jd�(g)j � jb�(g)j � Xl(�)=m�1: ��� ja�;�jjr�j � jb�(g)j � �1X� jr�j > ~
"� �1�2" > "
and hen
e � 2 ~�(g; ").Next we have to take into a

ount that trough rewriting small terms in Step 3 of thealgorithm new signi�
ant terms may build up. The identi�
ation of those terms will be basedon 
ertain subsets of indi
es in �, whi
h we 
all segments. For a given v 2 
 and integersk1 � k0 � 0, we de�ne the segment S(v; k0; k1) byS(v; k0; k1) := f� 2 � : v 2 �Æ and k0 � l(�) � k1g: (7.1)It is an important observation that for ea
h v 2 
 and � 2 � the set f� 2 U 0� : v 2 �Æg is asegment or empty.We 
all S = S(v; k0; k1) an "-segment for a given fun
tion g, ifFS(g) := ���X�2S b�(g)��(v)��� > ": (7.2)

Large segments imply the existen
e of signi�
ant 
oeÆ
ients in a 
ertain neighborhoodwhi
h is quanti�ed by the following Lemma.Lemma 7.2. Let L � 1 and 
� := 7L�22�1. Suppose that the \Push-the-Error" algorithmhas been applied to g with threshold " > 0 and let S = S(v; k0; k1) be a 
�"-segment for g.Then there exists �� 2 ~�(g; ") with the following properties:(a) k0 � l(��) � k1.(b) v 2 �� and k0 � l(��) < k0 + L, orv 2 StarN�+5��(��) and k0 + L � l(��) � k1:Proof: If S \ ~� 6= ; with ~� := ~�(g; "), then the assertion of the lemma obviously holds.Suppose now that S \ ~� = ;. Let m be the minimum of k1 and the lowest level sothat all indi
es � with v 2 �Æ, l(�) > m have been dis
arded in Step 2. Denote by Dmthe set of all indi
es � 2 S with l(�) = m, whi
h have been dis
arded in Step 2 as well.Thus Dm = S \ �m \ �
, where �
 is the 
omplement of � := �(g; "). By our assumption,(S \ �m) n Dm 6= ; and all � 2 S with l(�) < m belong to �. Now sin
e by assumptionS \ ~� = ;, we have for ea
h � 2 Dm that jb�(g)j + kP�2U 0� b�(g)��k1 � ": Using this andthe fa
t that, by the hypotheses of the lemma,FS(g) := ���X�2S b�(g)��(v)��� > 
�"; (7.3)
we obtain��� X�2S\� b�(g)��(v)��� � ���X�2S b�(g)��(v)���� X�2Dm jb�(g)j � 


X�2U 0� b�(g)��




1� (
� � �2 � 1)"; (7.4)29



where � is an arbitrary index from Dm.Sin
e S \ ~� = ;, by Lemma 7.1, jb�(g)j � ~
" for � 2 S and hen
eX�2S; l(�)<k0+L jb�(g)j � L�2~
": (7.5)
Sin
e 
� � �2 � 1 > L�2~
, it follows by (7.4){(7.5) that k0 + L � m � k1.From (7.4){(7.5), we obtain��� X�2S\�; l(�)�k0+L b�(g)��(v)��� � ��� X�2S\� b�(g)��(v)���� X�2S; k0�l(�)<k0+L jb�(g)j� (
� � �2 � 1� L�2~
)": (7.6)Suppose now that after having pro
essed all levels < k0 + L in Step 3 of \Push-the-Error",we havegk0+L�1(v) = Xl<k0+LA(g; v) + Xl(�)=k0+L: v2�Æ r���(v) + X�2S\�; l(�)�k0+L b�(g)��(v)=: A(v) + g1(v) + g2(v);where A(v) is the approximation generated so far. As before, the r� arise from rewritingsmall lower level terms and 
an thus be estimated as jr�j � �1�2". Hen
e, the se
ond sum
an be bounded by jg1(v)j � �1�22". Using this and (7.6), we obtainjg1(v) + g2(v)j � jg2(v)j � jg1(v)j � (
� � 1� �2(1 + �1�2 + L~
))": (7.7)Suppose now that none of the indi
es � 2 S \ �, l(�) � k0 + L, has a neighbor in ~�.Then we 
an write g1(v) + g2(v) = X�2S\�m d�(g)��(v)and hen
e jg1(v) + g2(v)j � 


 X�2S\�m d�(g)��


1 � �2 max�2S\�m jd�(g)j:This together with (7.7) yieldsmax�2S\�m jd�(g)j � ��12 (
� � 1� �2(1 + �1�2 + L~
))" > "; (7.8)
be
ause, re
alling the de�nition of ~
 from Lemma 7.1, ��12 (
�� 1� �2(1 + �1�2 +L~
)) > 1 ifand only if 
� > 1 + �2(2 + �1�2 + L~
) = 1 + 2�2 + �1�22(2L+ 1);and 1 + 2�2 + �1�22(2L + 1) � 6L�1�22 . Sin
e therefore (7.8) 
ontradi
ts the assumptionS \ ~� = ;, there exists � 2 S \�, l(�) � k0+L, with a neighbor �� 2 ~�. Then, using (5.10),v 2 StarN�+5��(��) and the assertion of the lemma holds.
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We have 
olle
ted now the ne
essary tools for dete
ting referen
e elements in ~�(f0; "0)[~�(f1; "1) from ~�(f; 
�("0 + "1)). We shall verify the 
laim for
� := 14�1�2~��22(N� + 7��)K; where N� := 2~���; K := ���5; (7.9)whi
h is 
ertainly far from being optimal (and we make no attempt of determining optimal
onstants here). For the rest of the proof, we assume that the hypotheses of Theorem 5.5are ful�lled.It is an important observation that the 
oeÆ
ients b�(f) from the de
omposition of Step 1of the algorithm (see (5.1)) are linear fun
tionals and hen
e b�(f) = b�(f0) + b�(f1).In what follows we shall use the abbreviations ~� := ~�(f; 
�("0 + "1)) and ~�i = ~�(fi; "i),i = 0; 1.We shall use two dete
tion devi
es. The following �rst one says that one 
an for any� 2 ~� always �nd an element �� in ~�0 [ ~�1 whi
h is spatially lo
ated nearby � but haspossibly higher level. This devi
e is, for instan
e, useful for the leaves in ~�.Lemma 7.3. For any � 2 ~� there exists an index �� 2 ~�0 [ ~�1 su
h that�� � StarN�+��(�) and l(��) � l(�):Proof: From Step 3 of the algorithm, ~� � �(f; 
�("0 + "1)). Then, by Step 2, for every� 2 ~� there is � 2 U� su
h that E(f; �) > 
�("0 + "1). Sin
e E(f; �) � E(f0; �) + E(f1; �),we must have either E(f0; �) > 
�"0 or E(f1; �) > 
�"1. Suppose that the �rst inequality istrue, so that � 2 �(f0; 
�"0). Then either jb�(f0)j > 
�"0=2 or 


P�2U 0� b�(f0)��


1 > 
�"0=2.If the �rst happens to be true, we set �� := �. We use Lemma 7.1 and the fa
t that 
�=2 � ~
to 
on
lude that �� 2 ~�(f0; "0). By (5.4), we know that �� � StarN�(�). Thus �� has the
laimed properties.Consider now the se
ond 
ase 


P�2U 0� b�(f0)��


1 > 
�"0=2 of a signi�
ant segment.Then for some point v and S(v) := f� 2 U 0� : v 2 �Æg, we have FS(f) > 
�"0=2. ChooseL := (N� + 6��)K with K := ���5. One easily veri�es that 
�=2 � 
� with 
� := 7L�22�1.This allows us to apply Lemma 7.2 to f0 with the above segment S(v) to �nd �� 2 ~�0su
h that l(��) � l(�) and either v 2 �� or v 2 StarN�+5��(��) and l(��) � l(�) + L. If wedenote m := l(�) and m� := l(��), then from the above 
hoi
e of L, we have m� � m+ L =m+ (N� + 6��)K. Employing Lemma 2.3, we obtain�� � Star (m�)N�+6��(v) � Star (m)�4 (v) � Star (m)N�+��(�);whi
h 
ompletes the proof.We need a se
ond somewhat re�ned devi
e for elements in ~� whose neighborhood is hitby some higher level elements in ~�. In this 
ase we need to 
ap the referen
e element fromabove.Lemma 7.4. Suppose �0; �1 2 ~� satisfy the following: l(�0) < l(�1) and �1 � Star j(�0),where j � N� + 2��. Then there exists �� 2 ~�0 [ ~�1 su
h that�� � Star j+2��(�0) and l(�0) � l(��) � l(�1). (7.10)
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Proof: Let l0 := l(�0), l1 := l(�1) and 
onsider the setT := f� 2 � \ � : � � Star j+2��(�0) and l0 < l(�) � l1gof indi
es whi
h are sandwi
hed by �0 and �1, and where we have to sear
h for ��.If jb�(f)j > ~
("0+ "1) for some � 2 T , then sin
e b�(f) = b�(f0) + b�(f1) either jb�(f0)j >~
"0 or jb�(f1)j > ~
"1. Applying Lemma 7.1, it follows that � 2 ~�0 [ ~�1 and the lemma holds.Suppose jb�(f)j � ~
("0 + "1) for � 2 T : (7.11)Choose L̂ := 2~�(N� + 6��)K (7.12)and split T into a lower part T � := f� 2 T : l(�) < l0+L̂g and an upper part T + := T nT �.We �rst show that, under the assumption (7.11), the lower part T � 
annot interse
t ~�so that l1 � l0 + L̂. To this end, �x � 2 T � and denoteT� := f� 2 � : � � � and l0 < l(�) < l(�)g:From the de�nition of � in Step 2, it follows that T� � �. Moreover, if � 2 �, then all � 2 �with l(�) < l(�) whi
h are 
onne
ted to � via sets from � belong to �.Now a possible sour
e of signi�
ant 
oeÆ
ients d�(f) in T � is through rewriting smalllower level terms in Step 3. However, the important point here is that, sin
e � � StarN�+2��(�0)(it suÆ
es to have � � StarN�+3��(�0)) and the \
on
rete" of �0 2 ~� is 
�0 := StarN�+4��(�0),there are no 
ontributions to d�(f) (obtained in Step 3) from levels � l0. (Sin
e �0 2 ~�,all neighbors of �0 are taken in the approximant.) Therefore, a signi�
ant 
oeÆ
ient d�(f)
ould only be fed from T� whi
h, however, turns out to be prevented by the bound (7.11).In fa
t, using (2.9), (7.11), and property (
) of �, we obtainjd�(f)j � jb�(f)j+ �2


 X�2T�: ��� b�(f)��


1� �2�jb�(f)j+ l(�)�1Xm=l0+1 X�2T�\�m: ��� jb�(f)j�� �2L̂�2~
("0 + "1) < 
�("0 + "1);where we have used 
� > �2L̂�2~
 (see (7.9)). Therefore, � 62 ~� and T � \ ~� = ;.Thus, under the assumption (7.11), it suÆ
es to sear
h in the upper part T +. For agiven � 2 T +, we distinguish again an upper se
tionT +� := f� 2 � : � � � and l0 + L̂ � l(�) < l(�)gand a lower se
tion T �� := f� 2 � : � � � and l0 < l(�) < l0 + L̂g;whi
h may build up d�(f). Noti
e that, by the same reasoning as above, T �� � �.
32



We next show that there exists �� 2 ~� with the following properties: (P1) l0 + L̂ �l(��) � l1, �� � Star j+��(�0), and (P2) neither � 2 T +�� has a neighbor in ~�. Indeed, if noneof the � 2 T +�1 has a neighbor in ~�, then �� := �1 has the 
laimed properties sin
e (P1)holds by assumption. Otherwise, using (5.10) there is �1 2 T + \ ~� with l(�1) < l1 su
h that�1 � Star n�(�1), where n� := N� + 5��. If none of the � 2 T +�1 has a neighbor in ~�, i.e.(P2) holds, we set �� := �1. If (P2) is not true we pro
eed further in the same way and �ndindi
es �2; �3; : : : with stri
tly de
reasing levels. After �nitely many steps, this pro
ess willtherefore terminate and we �nd an index �r 2 T + \ ~� su
h that either ea
h � 2 T +�r has noneighbor in ~�, thus satisfying (P2), or l(�r) = l0+ L̂. In this latter 
ase T +�r = ; so that (P2)is trivially satis�ed. We de�ne �� := �r and show next that �� also satis�es (P1). To thisend, note that �� (as well as every other �j j = 1; 2; : : : ; r � 1) is n�-star 
onne
ted with �1and hen
e, by Lemma 2.2, �1 � Star (m�)2~�n�(��), where m� := l(��). Now, using (2.17), we have�� � Star (m�)2~�n�+��(�1). Further, taking into a

ount that m� � l0 + L̂ � l0 + (2~�n� + ��)K(see (7.12)), we apply Lemma 2.3 (see (2.25)) to obtain�� � Star (m�)2~�n�+��(�1) � Star (l0)�4 (�1) � Star (l0)j+��(�0) (�� � �4):Thus �� satis�es (P1) as well and thus �� has the desired properties.Consider �rst the 
ase when m� := l(��) > l0 + L̂. As was argued above, sin
e �� �StarN�+3��(�0) then there are no 
ontributions to d��(f) (obtained in Step 3) from levels� l0. Then using (2.9), property (
) of �, and (7.11), we obtainjd��(f)j � �2� X�2T ��� jb�(f)j+



 X�2T +�� b�(f)��




1 + jb��(f)j�
� �2�L̂�2~
("0 + "1) + 


 X�2T +�� b�(f)��




1 + jb��(f)j�: (7.13)
This will allow us to �nd a large 
oeÆ
ient b�(f) or a signi�
ant segment and either 
asewill lead to a ��. In fa
t, sin
e �� 2 ~�, jd��(f)j � 
�("0 + "1). Combining with (7.13), weobtain 


 X�2T +�� b�(f)��




1 + jb��(f)j � (
��2�1 � L̂�2~
)("0 + "1) =: 
\("0 + "1):
If jb��(f)j � 
\2 ("0 + "1), then either jb��(f0)j � 
\2 "0 or jb��(f1)j � 
\2 "1. Using that
\=2 > ~
 and Lemma 7.1, we infer that �� 2 ~�0 \ ~�1 and the lemma follows.If kP�2T +�� b�(f)��k1 � 
\2 ("0 + "1), then


 X�2T +�� b�(f0)��




1 � 
\2 "0 or 


 X�2T +�� b�(f1)��



1 � 
\2 "1:

Therefore, there exists a 
\2 "i-segment (i = 0 or 1) S(v) for f0 or f1 with v 2 ��. Nowapplying Lemma 7.2 with L = 1, there exists �� 2 ~�0 [ ~�1 su
h that l0 + L̂ � l(��) � l1 and
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either (��)Æ \ (��)Æ 6= ; or StarN�+5��(��)\ (��)Æ 6= ;. In the latter 
ase, we obtain as above,using that L̂ � (N� + 6��)K,�� � Star (m�)N�+6��(��) � Star (l0)�4 (��) � Star (l0)j+2��(�0); m� := l(��):The proof of Lemma 7.4 is 
omplete.Finally, we are in a position to 
omplete the proof of Theorem 5.5. An important vehi
lefor proving this theorem will be the 
oloring property of the extended 
ells (x2.1). Webegin with some additional 
oloring type prepro
essing of the subsets fOjgJj=1 of O. ByLemma 2.3, for ea
h � 2 � there exists ! 2 O su
h that
� := StarN�+4��(�) � ! and l(!) = l(�)� ~K with ~K := (N� + 4��)K; (7.14)whenever l(�) � ~K. We asso
iate ! with �. Note that ea
h ! 2 O 
an be asso
iated inthis way with no more than ~N := � ~K3 indi
es � 2 �. In fa
t, re
all that, by property (�)of � (x2.1), there is �� su
h that ! � ��, and ~N is a rough upper bound for the number ofelements � 2 � at level l(�) = l(!)+ ~K whi
h are 
ontained in any �� with l(��) = l(!). Wetake ~N 
opies of ea
h 
lass Oj, denoting them byOj;n; n = 1; 2; : : : ; ~N ; j = 1; 2; : : : ; J:From above, it is 
lear that we 
an establish an one-to-one 
orresponden
e between �0 :=Sm� ~K �m and a subset of Sj;nOj;n.The set � n �0 is �nite with #� n �0 � (#�0) � � ~K3 , whi
h is a 
onstant that 
an beabsorbed by the 
onstant 
 in (5.19) and hen
e � n�0 
an be ignored.To simplify the notation, we denote by O� an arbitrary 
lass Oj;n and also we denote by�� the 
orresponding subset of �0 whi
h is in one-to-one 
orresponden
e with a subset ofO�. Thus we 
an asso
iate with ea
h � 2 �� an !� 2 O� su
h that StarN�+4��(�) � !� andl(!) = l(�)� ~K. In addition, if �0; �00 2 O�, �0 6= �00, and !�0 � !�00 , then l(�0) > l(�00).ClearlyO� inherits the tree stru
ture of the 
orresponding Oj. Setting ~�� := ~�(f; ")\��,the theorem will be proved if we show that #~�� � 
(#~�0 +#~�1).We now introdu
e a partial order (�) in ~��: �1 � �2 if !�1 � !�2 . With this partial order~�� be
omes a tree as well.We next introdu
e several subsets of ~��. We denote by ~��̀ the set of all leaves in ~��(� 2 ~��̀ if � has no 
hildren in ~��) and by ~��b the set of all bran
hing elements in ~��(elements in ~�� with at least two 
hildren in ~��). Also, we denote ~��
h := ~�� n (~��̀ [ ~��b)whi
h is the set of all 
hain elements in ~�� (elements of ~�� with exa
tly one 
hild in ~��).After this ground work, we pro
eed with estimating #~��̀, #~��b , and #~��
h. By Lemma 7.3,for ea
h � 2 ~��̀ there exists �� 2 ~�0 \ ~�1 su
h that �� � StarN�+��(�) � !�. We assign su
h�� as a referen
e index for �. Clearly, the extended 
ells !� asso
iated with leaves � 2 ~��̀ areleaves in the 
orresponding subtree of O� and hen
e are with disjoint interiors. Therefore,the ��'s whi
h are asso
iated to indi
es in ~��̀ are distin
t and hen
e#~��̀ � #~�0 +#~�1: (7.15)Evidently, in any tree the number of the bran
hing elements does not ex
eed the numberof the leaves. Therefore, #~��b � #~��̀ � #~�0 +#~�1: (7.16)34



It remains to show that #~��
h � 
(#~�0 + #~�1). To this end, de
ompose #~��
h into atmost ~K subsets #~��
h;l su
h that for ea
h l � ~K, �0 � � implies l(�0) � l(�) + ~K. It suÆ
esto show that #~��
h;l � 
(#~�0 + #~�1), l � ~K. Fix � 2 ~��
h;l and let �0 � � be the onlydes
endent of � in the tree ~�� \ ~��
h;l and hen
e �0 2 ~�. Let m := l(�). Then !�0 � !� andl(�0) � m+ ~K. Two 
ases present themselves here:Case 1: �0 � Star (m)N�+2��(�). Then by Lemma 7.4 and (7.14), there exists �� 2 ~�0 \ ~�1su
h that �� � Star (m)N�+4��(�) � !� and l(�) � l(��) � l(�0):We assign �� as a referen
e index to �.Case 2: �0 6� Star (m)N�+2��(�). By Lemma 7.3, there exists �� 2 ~�0 \ ~�1 su
h that�� � Star (m)N�+��(�) � !� and l(��) � l(�):We assign �� as a referen
e index to �. Sin
e �0 6� Star (m)N�+2��(�), there exists a pointv 2 �0 \ (Star (m)N�+2��(�))
, and hen
e(Star (m)�� (v))Æ \ (Star (m)N�+��(�))Æ = ;:Further, using (2.22), we have �0 � !�0 � Star (l(�0)� ~K)�� (v) � Star (m)�� (v). Therefore, �� �!� n !�0 :To summarize, we have assigned to ea
h � 2 ~��
h;l (with des
endent �0 in ~��) an index�� 2 ~�0\ ~�1 su
h that either �� � !� and l(�) � l(��) � l(�0) or �� � !�n!�0 and l(��) � l(�).Re
alling that the !�'s are from a tree with respe
t to the in
lusion relation, it follows thatea
h �� 2 ~�0 \ ~�1 
an be a referen
e index to at most two indi
es from ~��
h;l and hen
e#~��
h � 2 ~K(#~�0 +#~�1):Combining this with (7.15)-(7.16), gives #~�� � 2(1+ ~K)(#~�0+#~�1); whi
h 
ompletes theproof of Theorem 5.5.Proof of Theorem 5.6: We shall follow the s
heme of the proof of Theorem 5.5, but every-thing will be mu
h easier. We adopt all ne
essary notation from the proof of Theorem 5.5.Denote brie
y ~� := ~�(f; ").The following two trivial lemmas 
an be 
onsidered as analogues of Lemmas 7.3-7.4.Lemma 7.5. For any � 2 ~� there exists a segment S = S(v; k0; k1) su
h that�S :=[f� : � 2 S(v; k0; k1)g � StarN�(�); k0 � l(�); and X�2S jb�(f)j > "=2:
Proof: If � 2 ~�, then � 2 �(f; ") and hen
e there exists �0 2 U� su
h that E(f; �0) > ". Thisimmediately implies that either jb�0(f)j > "=2 or there exists a segment �S � StarN��0 su
hthat FS(f) > "=2, whi
h yields P�2S jb�(f)j � FS(f) > "=2:
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Lemma 7.6. Let �0; �1 2 ~� be so that l(�0) < l(�1) and �1 � StarN�+3��(�0). Let l0 := l(�0),l1 := l(�1), and S = S(�1; l0; l1) := f� 2 � : �1 � � and l0 < l(�) � l1g:Then X�2S jb�(f)j > "=�2:
Proof: Sin
e �1 � StarN�+3��(�0), there is no 
ontribution to d�1(f) from levels� j0. Denoteby S 0 the set of all terms b�(f)�� whi
h 
ontribute to d�1(f). Clearly, S 0 � S and using (2.9)," < jd�1(f)j � �2


 X�2S0: �1�� b�(f)��


1 � �2X�2S jb�(f)jand the lemma follows.To 
omplete the proof of Theorem 5.6 we shall utilize the 
oloring 
onstru
tion from theproof of Theorem 5.5. A

ording to this 
onstru
tion (with slight 
hange of notation), ~� 
anbe represented as a disjoint union ~� = �SJj=1 ~�j�[ Æ� and there exists a 
olle
tion fOjgJj=1of subsets of O with the following properties:(i) # Æ�� 
onstant.(ii) There is an one-to-one 
orresponden
e between ~�j and Oj (1 � j � J). If we denoteby !� the extended 
ell in Oj whi
h 
orresponds to � 2 ~�j , then StarN�+��(�) � !�.(iii) Ea
h set Oj is a tree with respe
t to the in
lusion relation whi
h we often indi
ate bywriting (Oj;�). Moreover, if �0; �00 2 ~�j , �0 6= �00, and !�0 � !�00 , then l(�0) > l(�00).We introdu
e a partial order (�) in ~�j: �0 � �00 if !�0 � !�00 . Sin
e Oj (�) is a tree, then ~�j(�) be
omes a tree as well.As in the proof of Theorem 5.5, we introdu
e the following subsets of ~�j : ~�j̀ the set ofall leaves in ~�j, ~�jb the set of all bran
hing elements in ~�j, and ~�j
h := ~�j n (~�j̀ [ ~�jb) the setof all 
hain elements in ~�j .We denote brie
y (see (3.8))

kfkB�� := �X�2� jb�(f)j��1=� : (7.17)
Here � = 1=�, � � 1, and kfkB�� = kfkQB�� (M) � kfkB�� (M), using (3.7) and Theorem 3.3.We �rst estimate #~�j̀. By Lemma 7.5, for ea
h � 2 ~�j̀ there is a segment S� su
h thatS� � StarN�(�) � !� andX�2S� jb�(f)j > "=2; and sin
e � � 1, ("=2)� � X�2S� jb�(f)j� :
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Clearly, the extended 
ells !� asso
iated with leaves � 2 ~�j̀ are leaves in Oj and hen
e arewith disjoint interiors. As a 
onsequen
e, the segments fS�g�2~�j̀ are disjoint. From this and(7.17), kfk�B�� � X�2~�j̀ X�2S� jb�(f)j� � (#~�j̀)("=2)�
and, therefore, #~�j̀ � 
"��kfk�B�� and #~�jb � #~�j̀ � 
"��kfk�B�� : (7.18)It remains to estimate #~�j
h. To this end, we shall asso
iate with the indi
es � 2 ~�j
hsegments S� whi
h essentially do not overlap and have signi�
ant (� 
"� ) 
ontribution tokfk�B�� . For a given � 2 ~�j
h, let �0 be the only 
hild of � in ~�j. Set m := l(�). Two 
ases areto be 
onsidered here:Case 1: �0 � StarN�+��(�). Then we asso
iate with � the segment S� := f�0; l(�0); l(�)g.By Lemma 7.6,X�2S� jb�(f)j � "=�2; and sin
e � � 1, ("=�2)� � X�2S� jb�(f)j� : (7.19)

Case 2: �0 6� StarN�+��(�). Then by Lemma 7.3, there exists a segment S� = S(v; k0; k1)su
h that S� � StarN�(�), k0 � l(�), andX�2S jb�(f)j > "=2; and hen
e ("=2)� � X�2S� jb�(f)j� : (7.20)
Choose a point v 2 �0 n StarN�+��(�). Then, using (2.22), �0 � !�0 � Star ��(v) and(Star ��(v))Æ \ (StarN�(�))Æ = ;:Therefore, S� � !� n !�0 .Taking into a

ount that Oj is a tree with respe
t to the in
lusion relation, it is easyto see that the set of all segments S� whi
h were asso
iated with indi
es � 2 ~�j
h has theproperty that any two segments may have a 
ommon element only if the one is obtained fromCase 1 followed immediately by the other obtained from Case 2. Using this and (7.19)-(7.19),we infer kfk�B�� � (1=2) X�2~�j
h

X�2S� jb�(f)j� � (1=2)(#~�j
h)("=2�2)�
and hen
e #~�j
h � 
"�kfk�B�� :Combining this with (7.18), yields #~�j � 
"�kfk�B�� ; whi
h implies N(") � 
"�kfk�B�� .The latter estimate, in turn, 
oupled with (5.18) establishes (5.20).For the proof of (5.22), denote "0 := 4�2
[kfk1. Exa
tly as in the proof of Theorem 5.7E(f; �) � "0 for ea
h � 2 � and hen
e A"0(f) = 0. Consequently, kf � A"0(f)k1 =kfk1, whi
h 
oupled with the left-hand-side estimate in (5.20) implies (5.22). The proof ofTheorem 5.6 is 
omplete.
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8 AppendixProof of Theorem 3.3: We shall 
onsider only the 
ase when 1 < p � 1. The proof inthe 
ase 0 < p � 1 is similar to the proof of the 
orresponding results in [16, 23℄.Evidently, if kfkQB�� <1, then kfkAB�� � kfkQB�� : (A.1)Our se
ond step is to prove that if kfkEqB�� <1, thenkfkQB�� � 
kfkEqB�� : (A.2)To this end, we �rst observe that by (2.11) and (2.10),
(kfkQB�� )� � X�2�0 k
�(f)��k�p +

1Xm=1 XI2Pm(jIj���1+1=�kgm(f)kL1(I))� ; (A.3)
where gm(f) is de�ned in (2.31). By (2.8) it follows thatX�2�0 k
�(f)��k�p � 
kfkp; 
 := 
(#
0; �; p): (A.4)
On the other hand, for m � 1 by H�older's inequality and Lemma 2.4,kgm(f)kL1(I) � jIj1�1=qkgm(f)kLq(I)� jIj1�1=q(kf �Qm(f)kLq(I) + kf �Qm�1(f)kLq(I?))� 
jIj1�1=q(E(f; bI)q + E(f; bI?)q);where I? is the only parent of I in Pm�1 (I � I?). Using this and (A.4) in (A.3), we obtain(A.2).We next prove that if kfkAB�� <1, thenkfkEqB�� � 
kfkAB�� ; 1 � q < p: (A.5)By H�older's inequality, kfkEqB�� � 
kfkE�B�� if 1 � q � � . So, it suÆ
es to prove (A.5), onlywhen maxf1; �g < q < p. By Theorem 3.2, kfkp � 
kfkAB�� . Sin
e 1=� := � + 1=p we have,by (3.2), jf jEqB�� := �XI2P jIj�(1=p�1=q)E(f; bI)�q�1=� : (A.6)
Evidently, E(g; bI)q = 0 for I 2 Pm if g 2 Vm, and E(f; bI)q � kfkLq(bI) if f 2 Lq. For I 2 Pm,denote eI := [f� 2 �m : �Æ \ bIÆ 6= ;g. Let f = P�2� a��� be any representation of fin L1 (and hen
e in Lp) su
h that �P�2� ka���k�p�1=� � 
kfkAB�� : Then using the above,
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Theorem 3.2, and (2.11), we obtain
E(f; bI)�q � 


 1Xj=m+1 X�2�j a���


�Lq(bI) � 
 1Xj=m+1 X�2�j ; ��eI ka���k�q� 
 1Xj=m+1 X�2�j ; ��eI j�j�(1=q�1=p)ka���k�p:Substituting this in (A.6), gives(jf jEqB�� )� � 
XI2P jIj�(1=p�1=q) X�2�; ��eI j�j�(1=q�1=p)ka���k�p� 
X�2� ka���k�p XI2P: ��eI(j�j=jIj)�(1=q�1=p);where we have swit
hed the order of summation on
e. By the properties of 
ells and supportsof bases fun
tions, #fI 2 P� : � � eIg � 
 < 1 and j�j � 
�� jIj if � � eI, � 2 �j, andI 2 Pj�� . Using this and that 1=q � 1=p > 0, we obtainXI2P: ��eI(j�j=jIj)�(1=q�1=p) � 
 1Xj=0 ��(1=q�1=p) � 
 <1:

Therefore, (jf jEqB�� )� � 
P�2� ka���k�p; whi
h 
ompletes the proof of (A.5).In view of (3.8) and (3.9), the equivalen
e of k�kWB�� and k�kB�� is an immediate 
onsequen
eof the relationsjb�(f)j � Cmax fj
�(f)j : �Æ \ � 6= ;g; j
�(f)j � Cmax fjb�(f)j : �Æ \ �Æ 6= ;g;whi
h follow by taking s
alar produ
ts of both sides of the relationX�2�m+1 b�(f)�� = X�2Lm 
�(f) �with the dual fun
tions ~ �0 or applying the dual fun
tionals 
�0 .Proof of Theorem 4.2 [Bernstein estimate℄: We shall give the proof of estimate (4.2)only in the 
ase p =1. We shall utilize the idea of the proof of the Bernstein estimates in[16, 24℄, where the 
ase of pie
ewise polynomials is treated. The proof in the 
ase p < 1
an be 
arried out in a similar way (see the proofs of the Bernstein estimates in [16, 23℄) andwill be omitted.Suppose g 2 �n and g =: P�2� a���, where � � � and #� � n. Let K0 be the setof all 
ells in P whi
h are involved (
overed) in all sets � 2 �. Then g = PI2K0 gI , wheregI =: 1I � vI , vI 2 Vm with m := level (I). Evidently, #K0 � �1#� � 
n.The proof of (4.2) hinges on the tree stru
ture in P indu
ed by the in
lusion relation:Ea
h I 2 Pm has at most �0 
hildren in Pm+1 and one parent in Pm�1, if m � 1. We denote39



by T0 the set of all 
ells I 2 P for whi
h there exists J 2 K0 su
h that J � I, whi
h isthe minimal subtree of P 
ontaining K0 with its root(s) in P0. We denote by Tb the setof all bran
hing 
ells in T0 (
ells in T0 with at least two 
hildren in T0) and by T +b the setof all 
hildren of bran
hing 
ells in P (whi
h may or may not belong to T0). We de�neT := T0 [ T +b , whi
h is again a subtree of P.We next introdu
e several subsets of T whi
h will be needed later on. We denote byT` the set of all leaves in T (I 2 T` if I does not 
ontain any other J 2 T ) and T
h :=T n (K0 [ Tb [ T +b [ T`) the set of all 
hain 
ells in T . (Noti
e that ea
h I 2 T
h has onlyone 
hild whi
h belongs to T .)Let � be the smallest positive integer su
h that �� � Æ, where 0 < Æ < 1 is the 
onstantfrom (2.14). For ea
h I 2 T
h, we denote by I� the unique 
ell I� 2 K0 [ Tb [ T` su
h thatI� � I and I� is of the least possible level. Let T 1
h be the set of all I 2 T
h su
h thatlevel (I�)� level (I) � �, and T 0
h := T
h n T 1
h.Clearly, #Tb � #(T0)` � #K0 � 
n, whi
h implies #T +b � M0#Tb � 
n, #T` �#K0 +#T +b � 
n, and #T 1
h � �#(K0 [ Tb [ T`) � 
n. Noti
e that #T 0
h 
an be huge.We now extend K0 to K := K0 [Tb [T +b [ T 1
h. From above #K � #K0+#Tb+#T +b +#T 1
h � 
n. Evidently, g 
an be represented in the form g =PI2K gI with gI similar to thegI 's from above.After this ground work, we next estimate jgj�B�� := PI2P jIj��E(g; bI)�1, where � := 1=�(see (3.1)) and bI is de�ned in (2.26). We denotegm := X�2�; level (�)�m a���; m � 0:
A key fa
t is that E(g; bI)1 = E(g � gm; bI)1 � kg � gmkL1(bI); I 2 Pm: (A.7)We also have E(g; bI)1 � kgkL1(bI).Let L := fI 2 Pm : I � bJ for some J 2 K \ Pmg and L := Sm�0Lm. Evidently,#L � �1#K � 
n.We shall split up the sum in the de�nition of jgj�B�� above into two sums: over I 2 L andover I 2 P n L.(a) If I 2 Lm, then there is J 2 K\Pm su
h that I � bJ and (see (2.26)) jIj��E(g; bI)�1 �
jIj��kgk�L1(bI) � 
kgk�1: Therefore, we haveXI2L jIj��E(g; bI)�1 � Xm�0 XI2Lm E(g; bI)�1 � 
kgk�1Xm�0#Lm= 
kgk�1#L � 
nkgk�1: (A.8)(b) Let I 2 Pm n Lm. Then bI = S�Ii=1 Ji for some Ji 2 (T 0
h \ Pm) [ (Pm n T ), where�I � �1 (see x2.1). We have by (A.7)

E(g; bI)�1 � �IXi=1 kg � gmk�L1(Ji) (� � 1):
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Clearly, if Ji 2 PmnT , then gjJi = gmjJi and hen
e kg�gmkL1(Ji) = 0. Suppose Ji 2 T 0
h\Pmand let J�i be the unique largest element of K 
ontained in Ji (see the de�nition of T 0
habove). We have gjJinJ�i = gmjJinJ�i = 1JinJ�i � vi for some vi 2 Vm. On the other hand,level (J�i )� level (Ji) > � and hen
e jJ�i j � ��jJij � ÆjJij. Therefore, using (2.14),kvikL1(J�i ) � kvikL1(Ji) � kvikL1(JinJ�i ) � 
kgk1:We use the above to obtainkg � gmkL1(Ji) = kg � gmkL1(J�i ) � jJ�i j(kgk1 + kvikL1(J�i )) � 
jJ�i jkgk1:Therefore, jIj��E(g; bI)�1 � 
kgk1 X1�i��I ; Ji2T 0
h\Pm(jJ�i j=jJij)�and hen
e XI2PmnLm jIj��E(g; bI)�1 � 
kgk�1 XJ2T 0
h\Pm(jJ�j=jJ j)� :Summing over m � 0, we obtainXI2PnL jIj��E(g; bI)�1 � 
kgk�1 XJ2T 0
h(jJ�j=jJ j)� � 
kgk�1 XJ 02K XJ2P: J 0�J(jJ 0j=jJ j)�� 
kgk�1 XJ 02K 1Xm=0 ��m � 
kgk�1#K � 
nkgk�1;
where we used (2.2). The above estimates and (A.8) imply (4.2).
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