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Abstract
The mapping properties of the time evolution operator E(t) of nonlin-

ear hyperbolic scalar conservation laws is investigated. It is shown that this
operator is Lipschitz in the Hausdorff metric in one space dimension when-
ever the flux is convex and one of the initial conditions satisfies a one-sided
Lipschitz condition. The Hausdorff distance between the graphs of the so-
lutions measures the closeness in L∞ in the regions where the solutions are
smooth, as well as the closeness between the locations of shocks. A similar
result on Hausdorff stability is proved with respect to a perturbation of the
flux function. These results complement the well known L1 contractivity of
the solution operator. They are used in a subsequent paper to prove new
smoothness results for solutions to such conservation laws. Negative results
are proved in the case of non-convex and genuinly multidimensional fluxes.
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1. Introduction

A scalar hyperbolic conservation law on IRd is the initial value problem

∂tu+Divx(f(u)) = 0, t > 0, u(x, t = 0) = u0(x), (1)
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HPRN-CT-202-00286, “Breaking Complexity”
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where f : IR → IRd is a C1 function and u : IRd → IR is the solution.
There are generally infinitely many weak solutions to (1) but appending an
entropy condition, for example in the sense proposed by Kruzkov [5], extracts
a unique solution u(·, t). We shall always be referring to this entropy solution
when we speak of a solution to (1) and we shall denote by E(t) the solution
operator

E(t)u0 := u(·, t) (2)

The operator E(t) is a semigroup and has two fundamental properties:

1. Monotonicity : u0 ≤ v0 implies E(t)u0 ≤ E(t)v0.

2. L1-contractivity : ‖E(t)u0 − E(t)v0‖L1 ≤ ‖u0 − v0‖L1 .

For these and other properties of conservation laws we refer the reader to
one of the many excellent texts [2], [4], [8].
On the other hand, the solution to (1) lacks classical smoothness and

differentiability. For example, even if the initial condtion is smooth, the
solution can develop discontinuities (called shocks) in finite time. It is in-
teresting therefore to understand what can be said about the regularity of
solutions to (1). The most famous result in this direction is the variation
diminishing property:

|E(t)u0|BV ≤ |u0|BV (3)

which is easily derived from the L1 contractivity. Here BV = BV(IRd) is the
space of functions of bounded variation. In the univariate case, one can also
use the L1 contractivity to derive higher order Besov regularity [3], and error
estimates in the L1 norm for numerical schemes [6].
Due to the appearance of discontinuities in the solution, no similar sta-

bility result is to be expected in the L∞ norm. In many instances however,
one is interested in estimating the pointwise behavior of the solution. One
possibility is to study the behavior of the solution and its approximations
sufficiently away from the discontinuities, see in particular [10, 11, 12]. In
this paper, we propose to measure the closeness between solutions by the
Hausdorff distance between their graphs, i.e. given functions u, v on IRd, we
define

d(u, v) = dH(Gu, Gv), (4)
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where Gv denotes the graph of a function v (discussed in more detail below)
and

dH(A,B) := max{sup
a∈A
inf
b∈B
|a− b|, sup

b∈B
inf
a∈A
|a− b|} (5)

is the Hausdorff distance between sets (with | · | denoting the Euclidean
distance in IRd+1). The distance d(u, v) appears as a natural substitute for
the L∞ distance for discontinuous functions. For example for univariate
functions, it measures, on the one hand, their closeness in L∞ in the regions
where one of the functions (say u) is smooth enough since one easily checks
that

‖u− v‖L∞ ≤ d(u, v)[‖u
′‖L∞ + 1]. (6)

On the other hand, it measures how accurately a sharp transition in u (as a
function of x) is matched by a sharp transition in v.
Since, by necessity, we are dealing with discontinuous functions, some

care must be taken in defining their graphs. Our positive results are proved
for univariate functions and, in this case, we shall limit ourselves to functions
v which are continuous except for a countable number of isolated discontinu-
ities. At each such discontinuity x0, we assume that v has both right and left
hand limits. We shall call such functions v admissible. The graph Gv of such
a function v is the collection of points {(x, v(x) : x ∈ IR} together with the
line segments Lx0 := {(x0, y) : ymin ≤ y ≤ ymax} where ymin is the smallest
and ymax is the largest of the left and right limits of v at x0. For example,
if v is a monotone function, or more generally if v is of bounded variation,
then v is admissible and Gv is well defined in this way. We should remark
that admissibility is a natural condition since even if an initial condition u0
is not admissible the solution will be admissible at later time t > 0 because
of the Oleinik entropy condition.
Our main results concern the univariate problem (1). One result shows

that if the flux f is convex and one of the initial conditions u0, v0 is one-sided
Lipschitz (which implies it is admissible) and the other is admissible, then
the entropy solutions u and v at time t satisfy

d(u, v) ≤ C(t)d(u0, v0), (7)

where C(t) grows at most linearly with time. Similar to the results of [9] for
the L1 norm, we also prove that if u and v are solutions of (1) with strictly

3



convex flux functions f and g respectively and identical admissible initial
values, then

d(u, v) ≤ C(t)‖f ′ − g′‖L∞ . (8)

These results are limited to univariate conservation laws with convex fluxes.
We shall exhibit counterexamples in the case of non-convex functions and in
the multivariate case as well.
These stability properties can be used to prove new smoothness results

for conservation laws. In [1], high order Besov smoothness for the graphs
of solutions of (1) is established based on (7), following an approach similar
to [3]. An interesting open question is to establish error estimates in the
Hausdorff distance for numerical schemes such as Godunov, Lax-Friedrich,
Minmod, ENO and WENO.
This paper is organized as follows. To orient the reader, we first treat

the simple case of the 1D Burgers equation in §2. We then prove (7) for
more general convex 1D fluxes in §3. We finally prove (8) in §4. In §5, we
show that Hausdorff stability does not hold for non-convex fluxes. In §6, we
give our negative results for for multidimensional fluxes which are not the
product of a fixed vector with a one dimensional convex function.

2. Hausdorff stability for the 1D Burgers equa-

tion

We begin in this section by treating the one dimensional Burgers equation
which is (1) with flux f(u) = u2/2. We say that a function v on IR is one-
sided Lipschitz if there is an e ∈ {−1, 1} and some constant M > 0 such
that

v(x+ he)− v(x) ≤Mh, h > 0. (9)

Any function satisfying such a one-sided Lipschitz condition with bounded
support is necessarily of bounded variation and therefore admissible.

Theorem 1. If u0 is any function with compact support which is one sided
Lipschitz then for all admissible v0 we have

d(u, v) ≤ C(t)d(u0, v0), t > 0, (10)
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with C(t) = [(1 + M̃t)2 + M̃2]1/2 and M̃ := 2M + 1.

Before proving this result, we shall show that the one sided Lipschitz con-
dition (9) is unavoidable. To see this consider for some δ << 1 the initial
data

u0 := χ[0,δ] and v0 := χ[0,δ2]. (11)

We obviously have d(u0, v0) ≤ δ. At time t = 1, the entropy solutions are
given by

u(x, 1) = xχ[0,(2δ)1/2](x) and v(x, 1) = xχ[0,√2δ](x), (12)

so that d(u, v) is of the order δ1/2 >> δ. This proves that the stability prop-
erty does not hold.

Proof of Theorem 1: Let δ := d(u0, v0). We define

u−0 (x) := u0(x+ eδ)− M̃δ and u
+
0 (x) := u0(x− eδ) + M̃δ, (13)

and first prove that

u−0 ≤ u0 ≤ u
+
0 and u

−
0 ≤ v0 ≤ u

+
0 . (14)

For example, from the one-sided Lipschitz condition (9), we have

u0(x)− u
−
0 (x) = u0(x)− u0(x+ eδ) + M̃δ ≥ (M̃ −M)δ, (15)

so that the first lower inequality in (14) holds. The first upper inequality
follows similarly. To see the second set of inequalities, given a point P =
(x, v0(x)) from the graph of v0, there is a point Q = (y, u0(y)) at distance at
most δ from P . We then have

v0(x)− u
−
0 (x) ≥ u0(y)− u0(x+ eδ)− |u0(y)− v0(x)|+ M̃δ

≥ −M(2δ)− δ + M̃δ = 0, (16)

where we have used the one-sided Lipschitz condition (9) in bounding u0(y)−
u0(x+ eδ). A similar proof establishes that v0 ≤ u

+
0 .

By monotonicity, we are ensured that

u− ≤ u ≤ u+ and u− ≤ v ≤ u+, (17)
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at any later time t > 0, where u− and u+ are the corresponding entropy
solutions. Now u+ and u− have the explicit form

u−(x, t) = u(x+ eδ + M̃δt, t)− M̃δ, (18)

and
u+(x, t) = u(x− eδ − M̃δt, t) + M̃δ. (19)

Indeed, this follows from the translation invariance of the equation combined
with the following remark: if u is an entropy solution of Burgers equation
and a ∈ IR, then ũ defined by

ũ(x, t) = u(x− at, t) + a, (20)

both satisfies Burgers equation in the weak sense and the Oleinik entropy
condition, and is therefore the entropy solution for the initial condition ũ0 =
u0 + a. We thus have

d(u, v) ≤ max{d(u−, u), d(u+, u)} ≤ δ[(1 + M̃t)2 + M̃2]1/2, (21)

which concludes the proof. 2

3. Hausdorff stability for 1D conservation laws

and convex fluxes

We now consider the problem (1) with d = 1 and f(u) a C2 function such
that

0 ≤ f ′′(u) ≤ B. (22)

We shall use the following description of the solution u to (1) given by Lax
[7] based on results of Hopf. Given x and t > 0, we have

u(x, t) = u0(y(x, t)) (23)

where y = y(x, t) is a global minimizer of

F(u0,f)(y, x, t) := F (y, x, t) :=
∫ y

0
u0(s)ds+ tf

∗(
x− y

t
), (24)
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with f ∗ the Legendre transform of f . We recall that since f is convex and
C2, one has (f ∗)′ = (f ′)−1. The global minimum may not be uniquely at-
tained. This corresponds to the existence of shocks: in this case, u(·, t) is
multivalued at x and its graph above x coincides with the segment {x} ×
[u0(ymax), u0(ymin)] where ymin and ymax are the minimal and maximal values
of y(x, t) achieving the infimum of F (y, x, t). We begin with a lemma which
examines the effect on y(x, t) incurred from perturbations of the flux or the
initial condition.

Lemma 1. Let u0 be any admissible function and let f, g be strictly con-
vex fluxes satisfying

0 < A ≤ f ′′, g′′ ≤ B. (25)

Then for all x ∈ IR and t > 0 the following properties hold.
(i) If y(x, t) is a minimizer for (24) when F = F(u0,f) is defined with flux f
and initial condition u0, then for all η = ±1 there exists a minimizer ȳ(x, t)
for (24) when F̄ = F(u0,g) is defined with flux g and initial condition u0 such
that

ηy(x, t) ≤ ηȳ(x+ ηεtB/A, t), (26)

where
ε := ‖f ′ − g′‖L∞ . (27)

(ii) If y(x, t) is a minimizer for (24) when F = F(u0,f) is defined with flux f
and initial condition u0, then for all a ∈ IR there exists a minimizer ỹ(x, t)
for (24) when F̃ = F(u0+a,f) is defined with flux f and initial condition u0+a
such that

(sign a)y(x, t) ≤ (sign a)ỹ(x+ aBt, t). (28)

Proof: We prove (i) in the case η = 1; the case η = −1 is treated simi-
larly. It suffices to prove that for any z < y = y(x, t), we have

K := F̄ (z, x+ εtB/A, t)− F̄ (y, x+ εtB/A, t) ≥ 0. (29)

Since f ′′, g′′ ≥ A and (f ∗)′ = (f ′)−1, (g∗)′ = (g′)−1, it follows that

‖(g∗)′ − (f ∗)′‖L∞ ≤ ‖f
′ − g′‖L∞/A = ε/A. (30)
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Hence,

K ≥ F̄ (z, x+ t εB/A, t)− F̄ (y, x+ t εB/A, t)

− F (z, x, t) + F (y, x, t)

=
∫ y

z

[

(g∗)′
(x+ t εB/A− s

t

)
− (f ∗)′

(x− s
t

)]

ds

≥
∫ y

z

[

(f ∗)′
(x+ t εB/A− s

t

)
− (f ∗)′

(x− s
t

)]

ds−
1

A
ε (y − z)

≥ inf(f ∗)′′ ε
B

A
(y − z)−

1

A
ε (y − z) ≥ 0,

where we use the minimizing property of y in the first inequality, (30) in
the second one, the hypothesis z ≤ y in the third one, and the fact that
inf(f ∗)′′ = 1/ sup(f)′′ in the last one. This completes the proof of (i).
The proof of (ii) is similar. We assume that a > 0 (the case a < 0 is

proved similarly). It suffices to show that for all z < y = y(x, t), we have

K := F̃ (z, x+ aBt, t)− F̃ (y, x+ aBt, t) ≥ 0. (31)

As above we obtain

K ≥ F̃ (z, x+ aBt, t)− F̃ (y, x+ aBt, t)− F (z, x, t) + F (y, x, t)

=
∫ y

z
(u0 − ũ0)(s) ds+ t

(
f ∗
(x− y
t

)
− f ∗

(x− z
t

)

+f ∗
(x− y + aBt

t

)
− f ∗

(x− z + aBt
t

))

= −a(y − z) +
∫ y

z

(
(f ∗)′

(x− s
t
+ aB

)
− (f ∗)′

(x− s
t

))
ds

≥ −a(y − z) +
∫ y

z
aB inf(f ∗)′′

≥ −a(y − z) + a(y − z) = 0,

where we have again used inf(f ∗)′′ = 1/ sup(f)′′. 2

We can now prove the following generalization of Theorem 1.

Theorem 2. If u0 satisfies the one-sided Lipschitz condition (9) then for
any admissible v0 we have

d(u, v) ≤ C(t)d(u0, v0), (32)
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for all t > 0, with C(t) = [(1+M̃Bt)2+(M̃B/A)2]1/2 and M̃ = (1+M2)1/2+
M .

Proof: We define u− and u+ in exactly the same way as in the proof of
Theorem 1 with δ := d(u0, v0). Then, as was shown in the proof in Theorem
1, we have

u− ≤ u, v ≤ u+ (33)

We cannot conclude as easily as in Theorem 1, since we do not have
an explicit formula for u− and u+ in terms of u. However, we have u± =
ũ±(· ∓ eδ) where ũ± is the solution with initial data ũ±0 := u0 ± a. We shall
first show that for all t > 0 and x ∈ IR, the graph of ũ+(·, t) passes through
the rectangle [x, x+ aBt]× [u(x, t), u(x, t) + aB/A] and the graph of ũ−(·, t)
passes through the rectangle [x+ aBt, x]× [u(x, t) + aB/A, u(x, t)].
We consider the case of ũ+, the case of ũ− being treated in a similar way.

Since by monotonicity, we have ũ+(x, t) ≥ u(x, t), the rectangle [x, x+aBt]×
[u(x, t), u(x, t)+aB/A] is certainly intersected by the graph of ũ+ if this graph
contains a point on the half vertical line {x+ aBt}×]−∞, u(x, t) + aB/A].
In other words, we want to prove that

ũ+(x+ aBt) ≤ u(x, t) + aB/A, (34)

where ũ+(x + aBt) might be one of the multiple values of ũ+ at x + aBt in
the case of a discontinuity at this point.
We now invoke Lemma 1 part (ii) where y = y(x, t) is the minimizer for

F in (24) with flux f and initial condition u0 that gives u(x, t) = u0(y) and
ỹ is a minimizer for F̃ = F(u+0 ,f)(·, x + aBt, t) with flux f , initial condition

ũ+0 = u0 + a that gives ũ
+(x + aBt, t) = ũ+0 (ỹ). The Lemma ensures that

we can choose ỹ such that y = y(x, t) ≤ ỹ(x + aBt). Since y and ỹ satisfy
x− y = tf ′(u0(y)) and x+ aBt− ỹ = tf ′(ũ

+
0 (ỹ)), we infer that

f ′(ũ+0 (ỹ))− f
′(u0(y)) ≤ aB. (35)

which clearly implies (38) since f ′′ ≥ A.
By what we have shown, we conclude that for any point (x, u(x, t)) on

the graph of u(·, t), there is a point Q on the graph of u+ at a distance at
most C(t)d(u0, v0) from P . By reversing the roles of u

+
0 and u0 we conclude

that for any Q on the graph of u+ there is a point P on the graph of u at
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distance at most C(t)d(u0, v0) from Q. Hence d(u, u
+) ≤ C(t)d(u0, v0). Sim-

ilar reasoning gives d(u, u−) ≤ C(t)d(u0, v0). In view of (33) we have proven
the theorem. 2

Remark 1: In the statement of Theorem 2, we can take for A and B the
minimum and maximum of f ′′ restricted to the interval I := [min(u0) −
M̃d(u0, v0),max(u0) + M̃d(u0, v0)].

Remark 2: Theorem 2 gives Theorem 1 with a slightly better constant
in the case of Burgers equation for which A = B = 1.

Theorem 2 can be generalized to convex fluxes.

Theorem 3. If the flux f satisfies

0 ≤ f ′′ ≤ B (36)

and the initial condition u0 satisfies the one-sided Lipschitz condition (9)
with e = 1, then

d(u, v) ≤ C(t)d(u0, v0), (37)

for all admissible v0 and all t > 0, with C(t) = [(1 + M̃Bt)
2 + (M̃(1 +

tMB))2]1/2 and M̃ = (1 +M2)1/2 +M .

Proof: The proof follows the lines of Theorems 1 and 2. We define u±0 =
u0(· ∓ eδ)± a and ũ

±
0 := u0 ± a with again a := M̃δ and δ := d(u0, v0). We

follow the proof of Theorem 2 by showing that the graphs of the solutions
ũ± intersect specified rectangles. For example in the case of ũ+, we want to
show that this graph intersects the rectangle [x, x+aBt]× [u(x, t), u(x, t)+
a(1+ tMB)]. Therefore, we want to prove that for any y = y(x, t) and some
ỹ = ỹ(x+ aBt, t),

ũ0(ỹ) ≤ u(x, t) + a(1 + tBM) = u0(y) + a(1 + tBM). (38)

Since (x− y)/t = f ′(u0(y)) and (x+ aBt− ỹ)/t = f ′(ũ
+
0 (ỹ)), we have either

ỹ − y ≤ atB, or f ′(ũ+0 (ỹ)) ≤ f
′(u0(y)). If the latter holds, the convexity of

f implies ũ+0 (ỹ) ≤ u0(y) and (38) is done. On the other hand, if we assume
that ỹ − y ≤ atB, we use one-sided Lipschitz condition to find

ũ+0 (ỹ)− u0(y) = a+ u0(ỹ)− u0(y) ≤ a+M(ỹ − y)
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≤ a(1 + tBM)

which is (38). The case ũ−0 = u0− a is treated similarly and the proof of the
Theorem is completed. 2

Remark 3: the L1 distance ‖v − w‖L1 between two admissible functions
v and w is always controlled by the Hausdorff distance d(v, w) provided
that one of them (say v) satisfies a one sided condition (9). Indeed with
δ = d(v, w), we define v+ := v(x + eδ) − M̃δ and v− := w(x − eδ) + M̃δ as
in the proof of Theorem 1, and since v− ≤ v, w ≤ v+, we have

‖v − w‖L1 ≤ ‖v
+ − v−‖L1(S), (39)

where S = Supp(v) ∪ Supp(w). Using the fact that v has bounded total
variation |v|BV ≤ 2M |S|, we have

‖v+− v−‖L1(S) ≤ 2M̃ |S|δ+ ‖v(·+ eδ)− v(· − eδ)‖L1 ≤ 2(M̃ +M)|S|δ, (40)

and therefore
‖v − w‖L1 ≤ 2(M̃ +M)|S|d(v, w). (41)

4. Hausdorff stability with respect to a per-

turbation of the flux

We now consider the solution v of a perturbation of (1) according to

∂tv +Divx(g(v)) = 0, t > 0, v(x, t = 0) = u0(x), (42)

where g is a perturbation of f . We assume that both f and g satisfiy

0 < A ≤ g′′(z), f ′′(z) ≤ B, z ∈ IR. (43)

We then have the following result.

Theorem 4. Let the fluxes f, g satisfy (43) and let u0 be any admissible
function. If u and v are the solutions of (1) and (42) respectively with the
same initial value u0, then, we have the estimate

d(u, v) ≤ C(t)‖f ′ − g′‖L∞ , t > 0 (44)
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with C(t) = [(tB/A)2 + Λ2]1/2 and Λ := (B/A+ 1)/A.

Proof : As earlier, we define

ε := ‖f ′ − g′‖L∞ . (45)

Let us first observe that it is enough to prove that

η[v(x+ ηt εB/A, t)− u(x, t)] ≤ εΛ, for η ∈ {−1, 1}. (46)

with Λ = (B/A + 1)/A as defined above. Indeed, these two estimates in-
form us that the graph of v(·, t) passes through the rectangle with center
{x, u(x, t)} and upper right corner {x+ tεB/A, u(x, t) + εΛ}. Hence,

dist({x, u(x, t)}, Gv) ≤ ε [(tB/A)
2 + Λ2]1/2, (47)

and reversing the roles of u and v shows that the same inequality holds for
dist({x, v(x, t)}, Gu).
It remains to prove (46). For this, we let y = y(x, t) and ỹη = ỹ(x +

ηεtB/A, t). Since u(x, t) = u0(y) and v(x+ ηt εB/A, t) = u0(ỹη), we need to
show that

η[u0(ỹη)− u0(y)] ≤ εΛ. (48)

This inequality is trivial if η[u0(ỹη) − u0(y)] ≤ 0. In the remaining case, we
write x−y = tf ′(u0(y)) and x+η ε tB/A− ỹη = tg′(u0(ỹη)). From Lemma 1,
part (i), we know that we can choose ỹη such that η(ỹη−y) ≥ 0 and therefore

ε tB/A+ ηt[f ′(u0(y))− g
′(u0(ỹη))] = η(ỹη − y) ≥ 0. (49)

That is,
η[g′(u0(ỹη)− f

′(u0(y))] ≤ εB/A (50)

Using this with (27) gives

η[f ′(u0(ỹη))− f
′(u0(y))] ≤ ε(B/A+ 1) (51)

In the remaining case η[u0(ỹη) − u0(y)] ≥ 0, the strict convexity (43) of f
gives that the left side of (51) is larger than η[u0(ỹη) − u0(y)]/A and so the
proof is complete. 2
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5. Non-convex fluxes

In this section, we shall prove that Hausdorff stability cannot hold when f ′′(u)
has a sign change. The idea for constructing counterexamples to the Haus-
dorff stability is to take a smooth initial condition u0 which gives a solution
u which for some later time T > 0 has two independent shock waves mov-
ing towards one another. The topological character of the solution changes
when the two shocks collide. Perturbing the initial condition has the effect
of changing the collision time and destroys Hausdorff stability. The details
are given in the following theorem.

Theorem 5. Assume that f ′′ is C1 and has a sign change. Then there
exists K,T > 0 and a smooth initial data u0 such that for all δ > 0, there
exists another smooth initial data v0 such that d(u0, v0) ≤ δ and such that at
time T , the entropy solutions of (1) with such initial data satisfy d(u, v) ≥ K.

Proof: Without loss of generality, we assume that there exist three val-
ues a < b < c such that f ′′(a) > 0, f ′′(b) = 0 and f ′′(c) < 0, and such
that that f ′′ ≥ 0 over [a, b] and f ′′ ≤ 0 over [b, c]. We can also assume
without loss of generality that f ′(a) = 0, since the entropy solutions of (1)
with f ′ replaced by f ′ − f ′(a) are given by ũ(x, t) := u(x − f ′(a)t, t) and
ṽ(x, t) := v(x− f ′(a)t, t) and that obviously d(u, v) = d(ũ, ṽ).
Consider a smooth initial data ul0 such that u

l
0(x) = b for x ≤ 0, u

l
0(x) = a

for x ≥ 1 and ul0 is nonincreasing over [0, 1]. After some finite time T1, this
initial data becomes a pure shock wave : for t > T1, one has

ul(x, t) = bχx≤yl+vlt(x) + aχx≥yl+vlt(x), (52)

where yl is fixed and vl = (f(b)− f(a))/(b− a) > 0.
Consider next a smooth initial data ur0 such that u

r
0(x) = c for x ≥ 0,

ur0(x) = a for x ≤ −1 and u
r
0 is nondecreasing over [−1, 0]. By choosing a

sufficiently close to b, we may assume that (f(c) − f(a))/(c − a) < 0. It
follows that after some finite time T2, this initial data also becomes a pure
shock wave : for t > T2, one has

ur(x, t) = aχx≤yr+vrt(x) + cχx≥yr+vrt(x), (53)

where yr is fixed and vr = (f(c)− f(a))/(c− a) < 0.
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We now define the initial data u0 by

u0(x) := u
l
0(x) + u

r
0(x− z), (54)

where z is a real number which satisfies z > yl−yr+(vl−vr)max(T1, T2). This
condition ensures that the two shock waves begin to interact only after they
are completely developed: for max(T1, T2) ≤ t ≤ T3 with yr−yl+(vr−vl)T3 =
z, we have

u(x, t) = ul(x, t) + ur(x− z, t). (55)

At time T3, the two waves meet at the point y = y
l + vlT3 = y

r + vrT3 − z,
and for t > T3, the solution becomes a single shock wave

u(x, t) = bχx≤y+v(t−T3)(x) + cχx≥y+v(t−T3)(x), (56)

with v = (f(c)− f(b))/(c− b) < 0.
For any arbitrarily small δ > 0, we define

v0(x) := u
l
0(x+ δ) + u

r
0(x− z) (57)

which is a perturbation of u0. Then,

v(x, t) = ul(x+ δ, t) + ur(x− z, t), (58)

for max(T1, T2) ≤ t ≤ T δ3 with y
r− yl+(vr− vl)T δ3 = z− δ. It follows clearly

that for T3 < t < T
δ
3 , we have d(u, v) ≥ K = (b − a) while d(u0, v0) ≤ δ,

which concludes the proof. 2

6. The multidimensional case

We finally consider the multidimensional case, namely equation (1) with a
flux function f(u) = (f1(u), · · · , fd(u)). We say that a multivariate function
v is one-sided Lipschitz in the direction of b ∈ IRd if

v(x+ sb)− v(x) ≤M |b|s, s > 0 (59)

with M > 0 a fixed constant. The following theorem shows that Hausdorff
stability only holds in the case of fluxes which are inherently one dimensional
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up to a linear advection part.

Theorem 6. Assume that the flux f is of the form f = (g1, · · · , gd) + ag
where the gi are affine functions, a is a fixed unit vector of IR

d and g is a C2

function of one variable such that 0 ≤ g′′(u) ≤ B.
If u0 is continuous and satisfies the one-sided Lipschitz condition (59) in

all directions b such that 〈b, a〉 ≥ 0, then for each continuous v0 we have

d(u, v) ≤ C(t)d(u0, v0), (60)

for t > 0, with C(t) = [(1 + M̃Bt)2 + (M̃(1 + tBM))2]1/2 and M̃ = (1 +
M2)1/2 +M .
If the flux f is not of the above form, then there exists K,T > 0 and

a smooth initial data u0 with the above properties such that for all δ > 0,
there exists another smooth initial data v0 such that d(u0, v0) ≤ δ and such
that at time T , the entropy solutions of (1) with initial data u0, v0 satisfy
d(u, v) ≥ K.

Proof : For the first part of theorem, we can assume that gi = 0 for all i, since
we have u(x, t) = ũ(x − (g1, · · · , gd)t, t) and v(x, t) = ṽ(x − (g1, · · · , gd)t, t),
with ũ and ṽ solutions of (1) with f − (g1, · · · , gd) in place of f and since
clearly d(u, v) = d(ũ, ṽ). Setting u±0 := u0(·∓aδ)±M̃δ, we observe that con-
dition (59) in all directions b such that 〈b, a〉 ≥ 0 implies that if δ := d(u0, v0)
then

u−0 ≤ u0, v0 ≤ u
+
0 . (61)

We denote by u+ and u− the solutions corresponding to these initial data.
We now remark that for all x ∈ (aIR)⊥, the function u(x)(s, t) := u(x +

sa, t) with s ∈ IR is an entropy solution of the one dimensional conservation
law (1) with g as the flux function. From the one dimensional theory, we
know that s 7→ u(x)(s, t) is admissible in the sense given in the introduction
and we can define its graph Gu(x) . Moreover, since u0 is assumed to be
continuous, we have

d(u(x)(·, t), u(x̃)(·, t)) ≤ C(t)d(u(x)(·, 0), u(x̃)(·, t))→ 0 as x̃→ x. (62)

This shows that at any time t > 0, the graph of Gu of u can be defined from
the graphs Gu(x) by

Gu = ∪{(x+ as, y) ; (s, y) ∈ Gu(x) ; x ∈ (aIR)
⊥, (63)
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i.e. Gu is the union of all its one dimensional sections in the direction a. The
graphs of v, u+ and u− can be defined in a similar way. We can then use
Theorem 3 to derive

d(u, v) ≤ max{d(u−, u), d(u+, u)}

≤ sup
x∈(aIR)⊥

max{d((u(x))−, u(x)), d((u(x))+, u(x))}

≤ C(t)δ = C(t)d(u0, v0),

which concludes the first part of the theorem.
To see that the condition on f is necessary, we suppose that f is any flux

function. If b is any vector of unit length, we consider the function

u(x, t) = u(b)(〈x, b〉, t), (64)

with u(b) a one-dimensional entropy solution of (1) with fb := 〈f, b〉 as a flux

function and some u
(b)
0 as the initial value. Then, one easily verifies that

u is a solution to (1) with flux f and initial condition u0(x) = u
(b)
0 (〈b, x〉).

At any time t > 0, the function u(b) is admissible in the sense given in the
introduction, and this allows us to define its graph as well as the graph
of u. According to Theorem 5, we can construct unstable solutions in the
Hausdorff metric as soon as f ′′b has a sign change. This means that stability
in the Hausdorff metric requires that for all unit vectors b, the function
〈f ′′, b〉 =

∑
bif
′′
i has no sign change. This implies that f

′′ is of the form ag′′

with a a fixed unit vector and g′′ a positive one-dimensional function, and
therefore f has the announced form. 2
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