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SUMMARY

The concept of fully adaptive multiscale finite volume methods has been developed to increase
spatial resolution and to reduce computational costs of numerical simulations. Here grid adaptation
is performed by means of a multiscale analysis based on biorthogonal wavelets. In order to update the
solution in time we use a local time stepping strategy that has been recently developed for hyperbolic
conservation laws.

The adaptive multiresolution scheme is now applied to two-dimensional shallow water equations
with source terms. The efficiency of the scheme is demonstrated on several problems with a
general geometry, including circular damp breaks, oblique hydraulic jump, supercritical channel flows
encountering sudden change in cross-section, and, finally, the bore wave and its interactions.

KEY WORDS: Shallow water equations; multiscale techniques; local grid refinement; finite volume
methods.

1. INTRODUCTION

Shallow water equations (SWESs) are used to describe many physical problems of interest often
encountered in environmental and hydraulic engineering: free surface flows caused by damp
breaking, hydraulic jumps, open channel flows, bore wave propagation, tidal flows in estuary
and costal zones are just a few examples. The SWEs are obtained through integration of
the Navier-Stokes system over the depth of the fluid body by assuming hydrostatic pressure
distribution.
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Various finite volume schemes developed to deal with Euler and Navier-Stokes systems have
been extended successfully to the SWEs. For instance, Roe’s scheme has been modified by
Bermidez and Vazquez [6] to include source terms. Anastasiou and Chan [2] developed and
tested a second-order upwind finite volume method on unstructured meshes. Chipada et al.
[13] used a Godunov-type method together with Roe’s approximate Riemann solver. Liska and
Wendroff [24] employed their composite scheme. Several numerical methods for SWEs have
been reported, and we refer the interested reader to the aforementioned papers and references
therein for specific details.

Typically, fluid flow problems contain a wide range of spatial scales such as shocks or wave
fronts in high activity regions and stagnation zones in low hydrodynamic activity regions.
To simulate accurately the different scales over large and complex domains a highly resolved
mesh is required. For multidimensional problems, in particular, uniform grids are not feasible.
However, due to the heterogeneity of the flow field high resolution is only needed in a small part
of the computational domain whereas a moderate resolution is sufficient elsewhere. Therefore
adaptive strategies can significantly improve the efficiency of the computation. Consequently,
a number of adaptive mesh strategies have been investigated by several researchers in the
past decade with the goal of concentrating cells only where they are most required, while
maintaining acceptable CPU time. A recent approach are multiresolution methods.

The multiresolution framework was first introduced by Harten [21, 20] for one-dimensional
conservation laws and later extended to multidimensional problems [7, 1, 16, 15, 29] on
Cartesian, curvilinear and unstructured meshes, respectively. The basic idea is to represent
cell averages associated with any given finite volume method into a different format that gives
insight on the local smoothness of the solution. With this approach the computational time is
reduced by using sophisticated numerical fluxes in regions where high resolution is needed and
cheap interpolations in regions requiring less resolution. The solution is adequately resolved
at the same accuracy of the reference scheme, i.e., the scheme on a given uniform highest level
of resolution (reference mesh).

Parallel to Harten’s approach a fully adaptive multiresolution method has been developed
by Miiller et al. [25, 14]. In this approach the cell average representation is used to adapt
the computational mesh. The advantage of this method includes a significant reduction of
the computational effort in terms of CPU time and memory requirements. In particular, the
accuracy of the reference solution on the reference mesh is maintained. This approach has
found many applications in compressible fluid flows, particularly, in steady- and unsteady-
state solutions [11, 32].

The present work now extends and tests the fully adaptive multiscale finite volume methods
to SWEs, combining a quadtree grid generation strategy based on B-splines and fully adaptive
multiresolution methods. In contrast to previous work we employ a locally varying time
stepping algorithm, recently developed in [26]. This algorithm uses different time steps at
different resolution levels such that a CFL condition is satisfied locally using the same CFL
number for all resolution levels. Furthermore, the number of grid adaptation steps is reduced
since we perform less time steps for the coarser cells. By various test cases we show the benefits
of the fully adaptive multiscale concept for several steady and unsteady flow problems with
general geometry.

The paper is organized as follows. In Section 2, we present the governing equations together
with the reference finite volume method based on ENO reconstruction and Roe’s approximate
Riemann solver. The fully adaptive multiresolution method will be described in Section 3. In
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Figure 1. Quadrilateral finite control volume.

particular, we discuss the local grid adaptation and grid generation. Results of a collection of
numerical experiments are presented and discussed in Section 4.

2. 2D SHALLOW WATER EQUATIONS AND FINITE VOLUME DISCRETIZATION

The shallow water equations are obtained by integration of the Navier-Stokes system over
the depth of the fluid by assuming hydrostatic pressure distribution. Neglecting viscosity
and turbulence effects, the coriolis force, and the bed and shear stress, the two-dimensional
shallow water equations for any control volume V' with boundary 8V and outward unit normal
n = (ng,ny) on the surface element dS C OV can be written in integral form as

0
— [ u(t,x dV+/
ot Jy (&) s

f(u(t,x)) - n(x)dS = /Vs(x,u(t,x)) dv (1)

where u is the vector of conserved variables, f¢ = (f,g)? is the convective flux vector and s is

the vector of source terms. These are defined by

h hu hv 0
u=| hu |,f=| hu®?+1ign® |, g= huv ,s=gh| & (2)
ho huwv hv? +1gh? o

where h is the water depth, u and v are the velocity components, b is the partial depth between
a fixed reference level and the bed surface, and g is the acceleration due to gravity.

In the present approach, the physical domain 2 is discretized by a structured grid composed
of quadrilateral cells V; ; with volume |V; ;| := [}, ~1dV. For simplicity, the time is discretized
%,
by a constant time step size 7, i.e., t"t1 = t" + 7. For a quadrilateral finite control volume
Vi,j» see Fig. 1, the integral equation (1) can be rewritten in the evolutionary form

n T
wit =l = ey B + () (3)
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where we introduce the averages
gt

1
ugf].:Wf' / u(t",x)dx, b(t") = / / fao(u(™, X)) dSdt,  (4)
Lyl JVi T Jin Vi,
tn+1
S(t")Z%ﬁ i /V stxu",x) dx. (5)

Here the flux in normal direction is determined by £, := £ - n = f n, +gn,. Furthermore 9V; ;
denotes the boundary of the cell V; ;, and the superscript represents the time level. Equation
(4) is obtained by integrating the equation (1) over the control volume V; ; x [t",t" + 7].

From the evolution equation (3) we deduce the finite volume discretization
T
virt=vi; - Vil Bi; +78Si; (6)
i,
where we replace the flux balance b(¢") and the source term s(¢t") by approximations. The
numerical flux balance is approximated by

4
By, =) |Iy| Fp. (7)
=1

Here |T';| denotes the length of the cell side with normal vector n;, and Fj;, the corresponding
numerical flux in normal direction, see Fig. 1. Since the inviscid SWEs are similar to the Euler
system that governs inviscid compressible fluid flow, various numerical finite volume methods
developed to deal with the latter have been extended with great success to SWEs. In the
present work we use Roe’s approximate Riemann solver that has been extended to SWEs used
in [6]. In order to avoid non-physical expansion shocks we use Harten’s entropy fix [19]. The
spatial and temporal accuracy are improved by using a quasi one-dimensional second-order
ENO reconstruction according to [23]. Here the reconstruction is applied to the characteristic
variables instead of the conserved variables.
Finally, the numerical source term is approximated by

0
N _ b (4
S,Tfj = s(X;,5, vz'n:j) = thj 7z (Xij) (8)
db (4
a—y(xi,j )
where X; ; = ﬁ fV,- ; xdV denotes the centroid of V;;, and h7; approximates the water

depth.

3. THE ADAPTIVE MULTISCALE METHOD

The efficiency of the finite volume scheme presented in Section 2 is now to be improved by
employing local grid refinement. For this purpose, we employ recent multiresolution techniques
first proposed by Harten in the context of finite volume schemes for hyperbolic conservation
laws, cf. [21]. In contrast to Harten’s original idea, we do not use these techniques to control
the flux computation but to trigger the grid adaptation process. For details we refer the reader
to the book [25]. In the following we confine only to the basic ideas.
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3.1. Multiscale analysis

In order to analyze the local regularity behavior of the flow field we employ a multiresolution
analysis. For this purpose we may use the concept of biorthogonal wavelets [12] or the concept
of prediction and reconstruction, cf. [3].

The fundamental idea is to present cell averages on a given uniform highest level of resolution
(reference mesh) associated with any given finite volume discretization (reference scheme) as
cell averages on some coarse level where the fine scale information is encoded in arrays of detail
coefficients of ascending resolution. This decomposition is performed on a hierarchy of nested
grids. In the present work we confine to structured two-dimensional grids though the general
framework is not restricted to this configuration but can also be applied to unstructured grids
and irregular grid refinements in arbitrary space dimensions. Since the meshes are assumed to
be structured we may enumerate the cells on each level [ by a multi-index, i.e., k = (k1, k2).
Then a hierarchy of partitions G; = {V} g}res, with increasing resolution I = 0,..., L of the
computational domain Q C R?,i.e., Q = Uke 1, Vi,k» s determined by dyadic grid refinement,
ie.,

Vik = U Viniokte, o= {0,137 )
eckE

See Figure 2 for an illustration. Relative to the partitions G; we introduce the cell averages of
a scalar, integrable function u € L!(Q), i.e.,

1
Uy g = o5 u(x) de. (10)
Vil Jv,

Now the ultimate goal is to transform the array of cell averages uy, := (i, g)ger, corresponding
to a finest uniform discretization level L into a sequence of coarse grid data uo := (g g)ker,
and details d; := (d;g)ker,, | = 0,...,L — 1, representing the successive update from a
coarse resolution to a high resolution. This is to be realized successively by a multiresolution
transformation where we proceed levelwise from fine to coarse, i.e.,

Z |V2+1 2k+e|

|Vl Ui+1,2k+e> dz,k: = Z Qp ﬂz+1,2k+r (11)

eckE rcA

where the first relation results from the nestedness of the grids and the linearity of the
integration operator. Then (11) provides an equivalent representation which can be reversed
by the inverse multiresolution transformation

gk = Y Brlykpojar + D Vi (k2] 4r- (12)
reB recC



Here the coefficients ap, By and v, only depend on the geometric data but not on u. However,
they may depend on the level [ and the position k. The same holds true for the sets A, B and
C. Furthermore, we emphasize that there are 24~ (here d=2) detail coefficients corresponding
to one cell. Therefore the coefficients d, j, in principle represent a vector of details. In Figure
3 we sketch graphically the procedure of the multiscale transformation.

Note that the construction of an appropriate multiresolution analysis is subject to three
conditions, namely, (i) reversibility, i.e., transformations (11) and (12) are equivalent, (ii)
efficiency, i.e., the cardinality of the index sets A, B and C is uniformly bounded, and (iii)
stability, i.e., the linear multiresolution operator is uniformly bounded in the spectral norm.

3.2. Local grid adaptation

It can be shown that the details become small with increasing refinement level when the
underlying function is smooth. This motivates to neglect all sufficiently small details in order
to compress the original data. The idea is simply to discard all coefficients d; j that fall in
absolute value below a certain threshold. For this purpose, we introduce the index set

Drei={(Lk); |digl >e, k€L, 1€{0,...,L —1}}

corresponding to what will be referred to as significant details. Here £, = 2!~L¢ is a level-
dependent threshold value. By means of the set Dr . a locally refined grid is determined.
For this purpose, we recursively check proceeding levelwise from coarse to fine whether
there exists a significant detail to a cell. If there is one, then we refine the respective cell.
Note that this procedure only works provided that the set Dr . corresponds to graded
tree. We finally obtain the locally refined grid with hanging nodes represented by the set
Gre C{(l,k); ke ;,;1=0,...,L}, ie., Q = U(l,k)egL,s Vi,k- This set is composed of the
leaves corresponding to the tree of significant details. Of course, the crux in this context is to
arrange this procedure in such a way that at no stage of the computation there is ever made
use of the fully refined uniform mesh. For this purpose, the multiresolution transformations
(11) and (12) are performed locally to provide the details on the old time step and the cell
averages on the new grid.

Since the flow field and, hence, the cell averages, evolves in time, grid adaptation is performed
after each evolution step to provide the adaptive grid on the new time level. Since the
corresponding averages, respectively details are not yet available, we have to predict all details
on the new time level n + 1 that may become significant due to the evolution by means of the
details on the old time level n. In order to guarantee the adaptive scheme to be reliable in the
sense that no significant future feature of the solution is missed, the prediction set 752?;1 has
to satisfy ~

D UD€ D}, (13)

where, of course D}ffgl is not known at the old time level. In [21] Harten suggests a heuristic
approach that could not be rigorously verified to satisfy (13). However, in [14] a slight
modification of Harten’s prediction strategy has been shown to lead to a reliable prediction
strategy in the sense of (13).

3.3. Efficient representation of a nested grid hierarchy

The multiscale setting outlined in Section 3.1 is based on a hierarchy of nested grids. In the
curvilinear case this sequence can be efficiently realized by a parametric mapping x : [0,1]> — Q
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Figure 4. Parametric Mappings

from a logical space to the physical domain Q. In this setting grid cells are the images of the
corresponding cells in logical space, cf. Figure 4. Then grid refinement can be interpreted simply
as function evaluation. Furthermore the grid generation process can completely be separated
from the discretization process because the grid generator needs only to provide a (possibly
sparse) representation of the grid function. For the representation of such a parameter mapping
we use tensor product B-splines. These functions seem to be a very appropriate tool for this
task, because they possess excellent approximation properties. Modeling is intuitive and the
evaluation is fast and numerically stable. For references on splines we refer to [17, 28]. In order
to enhance the flexibility we may embed several of such mappings into a multiblock concept
to handle complex geometries, cf. [11].

Fori=0,1,... N we denote with N; , v the i-th normalized B-spline of order p with respect
to the knot vector T. Here T = (t;) 767 is a non-decreasing and non-stationary sequence of
real numbers, i.e., t; < t;11 and ¢; < t;4p. The B-splines are piecewise polynomials of degree
p — 1 and can be defined by the recursion

1 ift; <t<tim
N; t) = b t) = - 14
z,l,T( ) X[t,,t1+1)( ) {0 otherwise (14)
t—1t; tigp — 1t
Nip,r(t) ————Nipa(t) + ———Nij1,p 1 (b). (15)
tizp—1 — t; titp — tit1
From this we build planar grids by tensor products of the form
N M
2(u,0) =Y > i j Nigp,v () Njp,,v (v). (16)

i=0 j=0

The p,; are called control points. Generally, they are not grid points but can be considered as
discrete approximation of the grid function, see Figure 5. For curved configurations we usually
choose p = 4, i.e., cubic splines [8, 9, 10]. However, for the applications in Section 4 we use
p =2, i.e., linear splines.



R —— =
ESSSSEs =
e . 7 A
ESSSSSsa e
SSSSSSINNNY e
S S SN NN, HH
eSS SNN N T
S SN NN NNy, HI
S S e AN N e
R T =
S e S A A AN NN T e—
N NN SN T e
NN o
SESSSSSSNNN e
S S SSSNNNNNEN b o=
NN g o=
SSSSSSSSNNN PPt e

SSSSSONONSS et e
SSSSSSSSNSNS 200 ===

SSSSAANES oo oo
SR gee 5
RIK 9 %%

e
S5

Figure 5. Control Points and Evaluation of Grid Function

3.4. Adaptive multiresolution finite volume schemes

Finally we have to provide the time evolution on the locally refined grid. Here the ultimate
goal is aiming at reducing the computational costs with regard to both computational time
and memory requirements but still maintaining the accuracy of the reference scheme. For this
purpose we apply the multiscale transformation to the reference scheme. For details we refer
the reader to [14, 25].

Since the reference scheme (6) is assumed to use an explicit time discretization, the time
step size is bounded due to the CFL condition by the smallest cell in the grid. Hence 7 is
determined by the highest refinement level L, i.e., 7 = 71,. However, for cells on the coarser
scales I = 0,...,L — 1 we may use 7, = 2! 1y to satisfy locally the CFL condition. In
[26] a local time stepping strategy has been incorporated recently to the standard adaptive
multiresolution finite volume scheme as proposed in [25]. The basic idea is to evolve each cell
on level I with the level-dependent time discretization 7, = 2X~! 7, 1 = 0,..., L. Obviously,
all cell averages correspond to the same integration time after having performed 2! time steps
with 77, i.e., the cells are synchronized. This is schematically sketched in Figure 6. Therefore

th+4n =ty + 211 =ty + T2

tn + 37

th+2n =t +71_1

th+7

tn

Figure 6. Synchronization on multilevel grid

one macro time step with 79 = 2% 7, consists of 2% intermediate time steps corresponding to
the time level ¢, ;9-2, i = 0,...,2L — 1, with step size 7. Obviously, at time ¢, ;o-z the
smallest synchronization level is determined by

l; :=min{l; 0 <1< L, i mod 2'~! = 0}.

The intermediate time steps i = 0,...,2" — 1, then take the form

n+(i+1)27% _  pyio-L L n+i2~F n+i2~F
Vik =Vik T Vil Bk + 7L Sk (17)
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for any cell (I,k) € G- of the current locally adapted grid. Similar to (7) of the reference
scheme the numerical flux balance is determined by
+i27" _ pnti2™" +i27 nti2"F nti2~ L
Bl TFlrie, ~Fik +Glkie, —Gik

with the numerical fluxes

( nti2~ " nti2~ " ) . .
F(vl’k_qel Yo ’vl,k—i-qel—l) , l; <1< L and no hanging node at interface
oL nti2= L nti2~ L ) : .
F?Zzz = Bl TF . ke , l; <1< L and hanging node at interface
. —L
FZ"Z(’_I) 2 , elsewhere
\ b
and
( n+i2~F n+i2”F ) . .
G(vhkﬂﬂ32 ) .,vl’k+qe271) , l; <1< L and no hanging node at interface
io-L n+i2~ " n+i2” " ) i i
GZZZ = Gl+1,2k + Gl+1,2k:+el , li <1< L and hanging node at interface
;i —L
Gl";g(’ D2 , elsewhere
\ b

Here we distinguish between the numerical fluxes F and G in the first and second parameter
direction of the underlying parametric grid mapping, cf. Section 3.3. For lower scales we use the
flux of the previous intermediate time step. In the other case we distinguish whether there is a
hanging node at the corresponding cell edge. If there is no hanging node we have to compute
the quasi one-dimensional numerical fluxes F(w1,...,Wa,) and G(w1, ..., Wa,), respectively,
of the reference scheme due to Section 2. The stencil of numerical fluxes is characterized by
the parameter g. For our second order scheme it is ¢ = 2. Note that locally non-accessible
data in the adaptive grid have to be computed by performing a local refining or coarsening
step applying the two-scale transformation according to (11) and (12). In the other case the
numerical flux is determined by the fluxes of the higher scale to maintain conservation of the
scheme. Here we employ the fact that the refinement level of two adjacent cells differs by
at most one, i.e., there is at most one hanging node at one edge. This can be ensured by a
grading process of the adaptive grid, cf. Section 3.2. To ensure that the fluxes at an interface
with hanging nodes have already been computed when determining the corresponding flux on
the coarser level, we perform for each intermediate time level the time evolution first for the
cells on the highest level and then successively for the coarser levels. This procedure is similar
to the predictor-corrector method in [27].
The sources are determined by

< o—L
g sie,vig'? ), L<I<L
Sn 3 — ) L
Lk +(i-1) 2
S ,0<i<l

Note that for the lower levels 0, ..., l; — 1 we do not compute new fluxes or sources. This makes
the local time stepping version of the adaptive multiresolution concept more efficient then the
standard approach using a global time step size.

Finally, we have to comment on the grid adaptation step. The ultimate goal is to provide
after one macro time step with 79 = 2%7; as good an approximation as having performed
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2L time steps with the reference scheme on the reference mesh using the time step size 7.
Therefore we have to make sure that the solution is adequately resolved at each intermediate
time step. For this purpose we perform a grid adaptation step according to Section 3.2 before
each even intermediate time step, ie., i = 0,2,...,2Y — 2. However, we do not apply the
adaptation process for the whole computational domain, but only for the cells on the levels
l =1,...,L, ie., level [; is considered to be the coarsest scale in the multiscale analysis.
Note, that only for this range of scales new fluxes and sources have to be recomputed.
This process provides us with the sets Q}f’t('“) 27" for which we perform the evolution step
(17). For the odd intermediate time steps we use the same grid as in the previous step, i.e.,
g’gjg“‘L = 922(171)2 L, i=1,3,...,2% — 1. Hence, it is possible to track, for instance, the
shock position on the intermediate time levels instead of a-priori refining the whole range of
influence.

4. NUMERICAL EXPERIMENTS

In this section, various numerical experiments are considered to show the benefit of the fully
adaptive multiscale concept for various steady and unsteady flow problems. We compare the
results for some numerical tests with analytical and numerical results reported in the literature.

We take g = 9.8 m/s? in our computations. The time discretization is determined by the
CFL number. Here we choose CFLy = 0.8 = 2 CF Ly, on the coarser level for the adaptive
locally varying time stepping method. This implies that for the explicit adaptive finite volume
scheme we have to perform 2% time step with 7 = 71,. For comparison, we perform computations
with the standard scheme using a global time size corresponding to CF Ly, = 0.8 for all levels.
For the grid adaptation we choose wavelets with three vanishing moments. The threshold
value for the multiscale analysis is e = 10~3. We display only numerical results obtained by
the adaptive locally varying time stepping strategy. Note that all computations have been
performed on a PC with an Intel Pentium IV processor and 2.8 GHz.

4.1. Supercritical channel flows

The first series of test problems concerns supercritical (Froude number F,. = u / /g h > 1)
flows through channels with sudden change in cross section. We use three different channel
configurations utilized by several authors to test and validate their numerical methods, see for
instance [24, 13]. We apply slip boundary conditions at the solid wall, i.e., the normal velocity
is set to zero (u,v) - n = 0. These problems lead to the formation of steady state flows with
hydraulic jumps (shock waves) and negative jumps (rarefaction waves).

4.1.1. Obligue hydraulic jump. In the first test, we consider supercritical flow in a channel
constricted from one side wall. The geometry of the problem is shown in Figure 7. It can be
represented by a bilinear spline with knot vectors U = (0, 0, 0.25, 1, 1), V = (0, 0, 1, 1) and

control points
_( (0,0) (10,0) (40,30 sin®)
(pi;) = ( (0,30) (10, 30) (40,??0) ) (18)

where the angle of constriction is § = 8.95°. The initial conditions are the height h = 1 m,
velocity u = 8.57 m s~! and v = 0. We use inflow conditions at 2 = 0, slip boundary conditions
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along y—direction, and outflow conditions at = 40. The problem leads to the formation of a
stationary hydraulic jump at a particular angle a.

Computations were initialized with a structured grid with a resolution of 15 x 10 cells and
were run to steady state. Figure 7 shows the contours of the steady state water depth using
L = 6 refinement levels. The shock is sharply captured without oscillations. The approximate
shock angle a &~ 29.753 agrees very well with exact analytical solution a = 30°. Numerical
values of the height h = 1.499 and the velocity |u| = 7.951 behind the shock are also in very
good agreement with the analytical solution h = 1.5, |u| = 7.955.

In Table I we compare the CPU times for the fully adaptive finite volume scheme using global
Cars and local time stepping Crrg, respectively, where we vary the number of refinement
levels L and fix the coarse grid discretization. The speed up is improved with increasing L.
For the highest number of refinement levels the speed-up factor is approximately 2. By the
spatial adaptation the data are significantly reduced. For instance, the uniform discretization
with L = 6 refinement levels consists of 614400 cells, whereas the final adaptive mesh consists
of 23283 cells only.

Cars | Crrs
1976 1229
8423 5217

32765 | 20218
145821 | 84683

|| U x|

Table I. CPU time (sec) vs. number of refinement levels.

In the second test, the angle of restriction is set to § = 15°. The initial conditions are the
height h = 1m and the Froude number Fr = 3. We use the same boundary conditions as
in the previous example. Figure 7 displays the water depth together with the adaptive grid.
Again the shock angle o & 34.1° agrees well with the analytical solution a = 34.36°.

4.1.2. Channel constricted on both sides. In this test case the channel is symmetrically
constricted on both sides with angle § = 5°. The geometry of the channel is depicted in
Figure 8 where we impose supercritical inflow conditions at z = 0 with height h = 1 m and
Froude number Fr = 2.5. We use an initial grid with a resolution of 45 x 20 and a maximum
refinement level of L., = 5.

Figure 8 shows the steady state water depth and the corresponding adaptive grid,
respectively. The cross-wave pattern due to constriction is well resolved. Again we can compare
numerical values of the height with the analytical solution. The numerical water depths of the
first and second plateau are h = 1.249 m and h = 1.525 m, respectively. Those results compare
very well with the analytical ones h = 1.254 m and h = 1.55 m. The CPU times in second were
107448 s and 64237 s for the adaptive scheme using global and local time step, respectively.
The final adaptive grid consists of 93084 cells in comparison to 921600 of the uniform finest
discretization.

4.1.8. Channel with variable width. In the last example, we consider a more complicated
symmetric channel constricted on both sides from z = 10 to 2 = 30. The constriction angle is
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0 = 15°. Figure 9 displays the geometry and the initial grid, whose parameter representation
is given by the bilinear spline with knot vectors U = (0, 0, 1/9, 1/3, 1, 1), V=(0, 0, 1, 1) and
control points

_( (0,0) (10,0) (30,0) (90, 6)
(pij) = ( (0,40) (10,40) (30,40 — &) (90,40 — J) )

where § = 20sinf. We apply the same boundary conditions as before. The inflow conditions
at x = 0 are the height h = 1 m and the Froude number Fr = 2.5. We again use an initial
grid with a resolution of 45 x 20, a maximum refinement level of L,,,, = 5, and run the model
to steady state.

Figure 9 shows the steady state water depth and the corresponding adaptive grid,
respectively. The cross-wave pattern now includes both hydraulic jumps and rarefaction waves
due to the presence of concave corners as observed in [24, 13]. One can see that the fully
adaptive scheme resolves well hydraulic jumps, negative waves and their interactions. The
CPU times are 163489 s and 95406 s for the adaptive scheme using global and local time
stepping, respectively. The final adaptive grid consists of 133605 cells in comparison to 921600
of the uniform finest discretization.

(19)

4.2. Circular dam break

In this example we consider the circular dam break problem. A variety of numerical results
by different schemes are available in [24, 2] and references therein. The initial conditions are
two states of water separated by a cylinder of radius » = 11 m. The depth of the water inside
the dam is 10 m and outside the dam is 1m. Here we are interested in the instance when the
cylindrical wall is removed and the subsequent time evolution of the flow.

The computational domain is a square [0, 50 m] x [0,50m]. The coarsest grid is discretized
by 15 x 15 cells. The model was run up to time T = 0.7 s. Figure 10 shows the water depth
contours and the corresponding adaptive grid with L = 7 refinement levels. We display also
the water surface elevation in three dimensions in Figure 11. One can observe that the circular
symmetry of the front is well preserved without irregular depressing waves. The results of
contours of water surface elevations are in close agreement with those published in [24, 2], but
the present computations require less computer time. The CPU time for the adaptive scheme
using global and local time stepping are 22737 s and 12461 s, respectively. The final adaptive
grid consists of 79788 cells in comparison to 921600 of the uniform finest discretization.

4.8. Bore wave past a hump

This test gives unsteady results of a right-going bore wave past a downward hump. The physical
domain is shown in Figure 12. The Froude number is F'r = 2, and the initial conditions to the
left and the right of the bore are similar to those in [34]

hr=1m, ur=vgr=0m.s" (20)

h h
hr = 7}2 (\/1 + 8Fr2 — 1) m, up=Fr (1 - h—R> Vg hg m.s™', v =0m.st. (21)
L
The initial discontinuity is located at = —5.5. The bottom function b(z,y) is defined by
b(z,y) = —0.4 e0-2(12:5-2—y%) (22)
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We use inflow boundary conditions at the left boundary and outflow boundary conditions for
the other boundaries.

The computation uses 7 levels of refinement and the coarse initial grid corresponds to 15 x 15
cells. Figure 12 shows the adaptive grid and the numerical approximation of the water depth
with 30 equally spaced contours at time 7" = 2. A 3D plot of the results is depicted in Figure
13. The required CPU time for the adaptive scheme using global and local time stepping are
19375 s and 9888 s, respectively. The final adaptive grid consists of 261720 cells in comparison
to 3686400 of the uniform finest discretization.

4.4. Single Mach reflection at a slopping wall

The final test concerns the bore reflection at a sea wall [36, 34]. The geometry of the problem
is shown in Figure 14 where a right traveling bore wave along the basin interacts with a wall
deflected by an angle 25°. The initial Froude number and the left and right states to the bore
are the same as in the previous example. The initial shock is located at the point = —10. For
the lower boundary we use reflecting conditions and outflow conditions for the upper boundary.
On the left boundary we impose inflow conditions and outflow conditions on the right.

The computation is initialized by a structured grid with a resolution of 30 x 10 cells and
we run to time 7' = 8. We use L = 6 levels of refinement and a threshold value ¢ = 1072.
Figures 15 and 16 show the adaptive grid, the water depth and the z-velocity component with
35 equally spaced contours, respectively. The reflective pattern is well resolved in comparison
with results presented in [36, 34]. The bore wave has been captured sharply. The computations
require 4542 s for the adaptive scheme using local time stepping and 8615 s for the same scheme
using global time stepping. The speed-up factor is approximately 2. The uniform mesh contains
1843200 cells. Due to adaptation the final adaptive grid consists of 47430 cells only resulting
in a significant reduction of the computational costs.

5. CONCLUSIONS

In this paper, we have extended and tested the concept of the fully adaptive multiscale
finite volume schemes to two-dimensional shallow water equations with general geometry.
The concept combines a quadtree grid generation strategy using a B-spline method and fully
adaptive multiresolution methods. The essential feature of the presented scheme is the use
of a local time stepping strategy at different resolution levels of the grid hierarchy. By this
strategy we, in particular, save an additional factor of about 2. Several test problems have
been presented to show the high efficiency and the high accuracy of the presented method.
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Figure 7. The oblique hydraulic jump problems. Left: § = 8.95°. Right: § = 15°. Top: initial grid,
middle: final grid using 6 refinement levels, bottom: water depth.
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Figure 8. Computational grids for the channel constricted on both sides problem. Top: initial grid,
middle: final grid using 5 refinement levels, bottom: contours of the water depth.
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Figure 9. Contours of the water depth for the symmetry channel with variable width problem. Top:
initial grid, middle: final grid using 5 refinement levels, bottom: contours of the water depth.
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Figure 17. The water surface profile for the bore reflection problem.
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