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1 Introduction

We are interested in iterative methods for solving the lag@rse nonlinear systems
of equations that result from the discretization of staiyncompressible Euler equa-
tions. Related to the discretization it is important toidigtiish two approaches. Firstly,
a direct spatial discretization (using finite differencesinite volume techniques) ap-
plied to the stationary problem results in a correspondimginear discrete problem.
In the second approach the stationary solution is chaiaeteas the asymptotic (i.e.,
time tending to infinity) solution of an evolution problerm $uch a setting one ap-
plies a time integration method to the instationary Eulanagipns. In cases where
one has very small spatial grid sizes, for example if one gsiels with strong local
refinements, an implicit time integration method should bedu This then yields a
nonlinear system of equations in each timestep. Note that §oven spatial grid in the
first approach we havene discrete nonlinear problem whereas in the second approach
we obtain asequence of discrete nonlinear problems.

For solving such nonlinear systems of equations there arg wifferent approaches.
Here we mention two popular techniques, namely nonlinealtigng solvers and
Newton-Krylov methods. Well-known nonlinear multigridcteniques are the FAS
method by Brandt [8], the nonlinear multigrid method by Hawagch [12] and the al-
gorithm introduced by Jameson [15]. It has been shown thairdimear multigrid
approach can result in very efficient solvers, which can éae optimal complexity
([16, 20, 21, 23]). For these methods, however, a coardiogrid hierarchy must
be available. The Newton-Krylov algorithms do not requinest In these methods
one applies a linearization technique combined with a prditmned Krylov subspace
algorithm for solving the resulting linear problems. Onenlonly needs the system
matrix and hence these methods are in general much easigplennent than multigrid
solvers. Moreover, one can use efficient implementatiorteroplates that are avail-
able in sparse matrix libraries. Due to these attractivp@riies the Newton-Krylov
technique is also often used in practice (cf., for examp@, 4, 25, 26, 27, 35]).
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In this paper we consider the Newton-Krylov approach. A radtbf this class has
been implemented in the QUADFLOW package, which is an adaptultiscale finite
volume solver for stationary and instationary compressilow computations. A de-
scription of this solver is givenin [2, 5, 6, 7, 30]. For thedarization we use a standard
(approximate) Newton method. The resulting linear systerassolved by a precondi-
tioned BICGSTAB method. The main topic of this paper is aeysttic comparative
study of different basic preconditioning techniques. Thecpnditioners that we con-
sider are based on the so-called point-block approach intwddl physical unknowns
corresponding to a grid point or a cell are treated as a blodown. As precon-
ditioners we use the point-block-Gauss-Seidel (PBGShtgabck-ILU (PBILU(0))
and point-block sparse approximate inverse (PBSPAI(OYhous. The main moti-
vation for considering the PBSPAI(0) preconditioner istthpposite to the other two
preconditioners this method allows a trivial paralleliaat We do not know of any lit-
erature in which for compressible flows the SPAI techniqumispared with the more
classical ILU and Gauss-Seidel preconditioners. In ourgamative study we consider
three test problems. The first one is a stationary Euler prldn the unit square
with boundary conditions such that the problem has a traéalstant solution. For the
second test problem we change the boundary conditions katlhe problem has a
solution consisting of three different states separateshiogks, that reflect at the up-
per boundary. In these first two test problems we use the Vanfliex vector-splitting
scheme [19] for discretization. We do not use an (artifidiate integration method.
The third test problem is the stationary Euler flow around &CN0012 airfoil. This
standard case is also used for testing the QUADFLOW solvEf]irDiscretization is
based on the flux-vector splitting method of Hanel and Sctena3] combined with
a linear reconstruction technique. For determining theostary solution a variant of
the backward Euler scheme (the b2-scheme by Batten et. Jdlis[dsed. For these
three test problems we perform numerical experiments fiberént flow conditions
and varying mesh sizes. The main conclusions concerninggtfermance of the pre-
conditioners are summarized at the end of section 4.

2 Discrete Euler equations

In this section we introduce three test problems that aré ftsea comparative study of
different preconditioners. In the first two of these testjpeons we consider a relatively
simple model situation with a standard first order flux vedylitting scheme on a
uniform grid in 2D. In the third test problem we consider madvanced finite volume
techniques on locally refined grids as implemented in the QBIBOW package.

2.1 Test problem 1: Stationary 2D Euler with constant soluton

In this section we consider a very simple problem which, haxeis still of interest
for the investigation of properties of iterative solverse Wke2 = [0, 1]? and consider
thestationary Euler equations in differential form:
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Hereu = (p,pVv, peior)T € R is the vector of unknown conserved quantitigs:
denotes the density, the pressurey = (vi,v2)7 the velocity vectorg,,; the total
energy andy,; the total enthalpy. The system is closed by the equatioraté $or a
perfect gap = p(v — 1)(eswr — 1/2|V|?), wherey is the ratio of specific heats, which
for air has the valuer = 1.4. The boundary conditons (for the primitive variables)
are taken such that these Euler equations have a constatibsoFor the velocity we
takev = (vi", vi") with given constants!” > 0, i = 1,2, on the inflow boundary
Tin = {(z,y) € 0Q |z =0 or y = 0}. For the density we take a constant value
p = p'™ > 0onT,. For the pressure we also take a constant valeep > 0 which
is prescribed either at the inflow boundary (supersonic)caisat outflow boundary
002\ T';,, (subsonic case). The Euler equations 1 then have a solti@istconstant
in the whole domainv = (vi", vi"), p = p'™, p = p.

For the discretization of this problem we use a uniform m@gh= { (ih, jh) |0 <
i,7 < n}, withnh = 1, and apply a basic upwinding method, namely the Van Leer flux
vector-splitting scheme [19]. The discretization of (plegsand numerical) boundary
conditions is based on compatibility relations (sectiorL1®in [14]). In each grid point
we then have four discrete unknowns, corresponding to thedonserved quantities.
We use a lexicographic ordering of the grid points with nurimizgl, 2, . . ., (n+1)? =:
N. The four unknowns at grid poiritare denoted b¥/; = (u; 1, u; 2, u; 3, u;4)" and
all unknowns are collected in the vecldr= (U;)1<;,<n. The discretization yields a
nonlinear system of equations

F:RYW RN FU)=0 . )

The continuous constant solution (restricted to the gridyes the discrete problem
and thus the solution of the nonlinear discrete problem ia Rniown a-priori. This

solution is denoted by*. For the Jacobia® F'(U) of F(U) explicit formulas can be
derived. In section 4 we investigate the behaviour of diff¢érpreconditioners when
applied to a linear system of the form

DF(U)x=b . 3

Note that the matrix0 F(U*) has a regular block structufeF'(U*) = blockmatrix(A4; ;)o<i, j<n
with 4; ; € R*4 for all i,j. We call this apoint-block structure. Furthermore,
A; j # 0 can occur only it = j or< and;j correspond to neighbouring grid points.

2.2 Test problem 2: Stationary 2D Euler with shock reflection

We consider a two-dimensional stationary Euler problensgméed in example 5.3.3

in [18]. The domain i€} = [0,4] x [0, 1] and for the boundary conditions we take
p =140, =29 vs =0, p= 1.0 at the left boundarya = 0), outflow boundary
conditions at the right boundary & 4), p = 2.47, v1 = 2.59, v, = 0.54, p = 2.27 at

the lower boundaryy( = 0) and reflecting boundary conditions at the upper boundary

(y=1).

With these boundary conditions the problem has a statiogalytion consisting of
three different states seperated by shocks, that reflelce atgper boundary, cf. figure
1. For the discretization of this problem we apply the samthotkas in test problem
1. This results in a nonlinear system of equations as in 2ydwtthe discrete solution,
denoted byJ*, is not known a-priori. In a Newton type of method appliedHis ihon-
linear problem one has to solve linear systems with mawixU), U ~ U*. Therefore
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Figure 1: Three different states separated by shocks

we investigate iterative solvers appliedd"(U*)x = b. The discrete solutiob™ is
computed up to machine accuracy using some time integrat&thod. Note that the
Jacobian matrixXD F'(U*) has a similar point-block structure as the Jacobian matrix i
test problem 1.

2.3 Test problem 3: Stationary flow around NACA0012 airfoll

The third problem is a standard test case for inviscid cosgioée flow solvers. We
consider the inviscid, transonic stationary flow aroundNAEA0012 airfoil (cf. [17]).
The discretization is based on the conservative formuiaifdhe Euler equations. For
an arbitrary control volum& c Q c R? one has equations of the form

/@dv+7§ Fe(undS =0 . )
v ot av

Heren is the outward unit normal ofAV/, u the vector of unknown conserved quantities
and the convective flux is given by

PV
Fé(u)y= | pvov+pl . (5)
phiotV

The symbob denotes the dyadic product. As above the system is closdukbsrua-
tion of state for a perfect gas. The discretization of thegm#ons is based on cell cen-
tered finite volume schemes on an unstructured mesh as iraptethin QUADFLOW
and explained in [7]. For the present test problem the fluwtewesplitting due to Hanel
and Schwane [13] is applied. Note that this is a variant of\ie Leer flux-vector
splitting method that is used in the previous two test pnaisleln our experiments the
Van Leer method and the Hanel-Schwane method give singtarts both with respect
to discretization quality and with respect to the perforoeof iterative solvers. A lin-
ear reconstruction technique is used to obtain second amdeiracy in regions where
the solution is smooth. This is combined with the Venkatdkman limiter [34]. Al-
though we are interested in tetionary solution of this problem the time derivative
is not skipped. This time derivative is discretized by a timtegration method which
then results in a numerical method for approximating théastary solution. To allow
a fast convergence towards the stationary solution onestanise large timesteps and
thus an implicit time discretization method is preferretlislapproach then results in a
nonlinear system of equations in each timestep. Here wehede2-scheme by Batten
et. al. [4] for time integration. Per timestep one inexachidm iteration is applied. In
this inexact Newton method approximate Jacobian is used, in which the linear re-
construction technique is neglected and the Jacobian dirgt@rder Hanel-Schwane



discretization is approximated by one-sided differencerafors (as in [33]). These
Jacobian matrices have the structure

. Vi ORHS(U
DF(U) = dlag(%) + % ;

x (6)
where|V;| is the volume of a control volumi;, At the (local) timestep an&° (U)
the residual vector corresponding to the Hanel-Schwarnxedlu Details are given in
[7]. Note that in general a smaller timestep will improve tenditioning of the ap-
proximate Jacobian in (6).

We start with an initial coarse grid and an initial CFL numB&y, which deter-
mines the size of the timestep. After each timestep in the fimegration the CFL
number (and thus the timestep) is increased by a constdot faatil an a-priori fixed
upper boundCyax is reached. Time integration is continued until a toleracriie-
rion for the residual is satisfied. Then a (local) grid refiesmis performed and the
procedure starts again with an initial CFL number equal{gy. The indicator for
the local grid refinement is based on a multiscale analysigywgavelets [7]. In every
timestep one approximate Newton iteration is performed rEisulting linear equation
is solved with a user defined accuracy for the relative regidli the cells are num-
beredi = 1,..., N, then as in the first two test problems the approximate Jaodias
a point-block structureDF(U) = blockmatrix(4; ;)o<i j<n With A; ; € R**4 for
all 4, j andA; ; # 0 only if ¢ = j or{ andyj correspond to neighbouring cells.

3 Point-block-preconditioners

In the three test problems described above we have to scdwgadparse linear system.
The matrices in these systems are sparse and have a paiktsiiocture in which the
blocks correspond to the 4 unknowns in each of shgrid points (finite differences)
or N cells (finite volume). Thus we have linear systems of the form

Ax=b, A= blockmatrix(Am)lgi,jSN s A@j S 3?4><4 . (7)

For the type of applications that we consider these probmften solved by us-
ing a preconditioned Krylov-subspace method. In our nucaéBxperiments we use
the BIiCGSTAB method. In the following subsections we désetiasic point-block
iterative methods that are used as preconditioners in ¢hnative solver. For the right
handside we use a block representatios (b1,...,bx)7, b; € R4, that corresponds
to the block structure oA. The same is done for the iterangfs that approximate the
solution of the linear system in 7.
For the description of the preconditioners the nonzer@paft(A) corresponding

to the point-blocks in the matriA is important:

P(A) ={(i,5) [ Ai; #0} . (8)

3.1 Point-block-Gauss-Seidel method

The point-block-Gauss-Seidel method (PBGS) is the staulack Gauss-Seidel method
applied to 7. Letx® be a given starting vector. Fdr > 0 the iterandx**! =
(a4, ... 25 )T should satisfy
1—1 N
Aigf ™ = = Attt = 3" Ak =1, N 9)
j=1 j=i+1
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This method is well-defined if théx 4 linear systems in 9 are uniquely solvable, i.e., if
the diagonal blocksl; ; are nonsingular. In our applications this was always satisfi
This elementary method is very easy to implement and needsidibional storage.
The algorithm is available in the PETSc library [1]. A Conyence analysis of this
method for the 1D stationary Euler problem is presented&h.[2

3.2 Point-block-1LU(0) method

We consider the following point-block version of the startipoint ILU(O) algorithm
(cf. [10, 29]):

fork=1,2,..., N -1
D = A,:}¢ ;
fori=k+1,k+2,...,N
if (i,k) € P(A)
E:=A4,;D; Aj,:=F;
forj=k+1,k+2,...,N
if (i,7) € P(A)and(k,j) € P(A)
A=A — EAgj;
end if
end;
end if
ends
endk

Figure 2: Point-block-ILU(0) algorithm

This algorithm is denoted by PBILU(0). Note that as for theG¥Bmethod the
diagonal blocks4, ,, are assumed to be nonsingular. For this preconditioner@re
cessing phase is needed in which the incomplete factasizédicomputed. Further-
more additional storage similar to the storage requiregtenthe matrixA is needed.
As for point ILU methods one can consider variants of thigetgm in which a larger
pattern as’(A) is used and thus more fill-in is allowed (cf. for example, Ilk)J(29]).
Both the PBILU(0) algorithm and such variants are availatline PETSc library.

3.3 Block sparse approximate inverse

In the SPAI method [11, 31] an approximate inveMeof the matrixA is constructed
by minimizing the Frobenius noriffAM —I|| » with a prescribed sparsity pattern of the
matrix M. In the point-block version of this approach (cf. [3]), dé&zdby PBSPAI(0),
we take a block representativvi = blockmatrix(M; ;)1<i j<n, M;; € ®¥**, and
the set of admissible approximate inverses is given by

M:={MecR"NN | pM)C P(A)} . (10)



A sparse approximate inverdd is determined by minimization over this admissible
set

|AM —I|p = min [AM —I|r
MeMm

The choice for the Frobenius norm allows a splitting of thieimization problem. Let
M, = blockmatrix(M; ;)1<i<n € R*V** be thej-th block column of the matriVi
ande the corresponding block column ®f Letm; . ande;,, kK = 1,...,4, be the
k-th columns of the matri®I; andI;, respectively. Due to

N N 4
IAM —T|[% = > |AM; ~ L% ZZ 1A = ejll3 (11)

j=1 j=1k=1
the minimization problem can be split irddvV decoupled least squares problems:

min|‘Aﬂlj7k—€j7k|‘2, j=1,...,N, k:1,...,4. (12)
mj.k

The vectonn; , has the block representation; , = (my,...,my)? with m, € R*
andm, = 0if (¢,7) ¢ P(A). Hence for fixedj, k) and withe; , =: (e1,...,en)T, es €
R4, we have

N *
[Arm ke —ejklls = Y | Aieme — ed3
i =1

where in the double suniz* only pairs(i, ¢) occur with(i,£) € P(A) and(¢,j) €
P(A). Thus the minimization problem for the columim; ; in (12) is alow dimen-
sional least squares problem that can be solved by standard metbodgo (11) these
least squares problems for the different columns of the i@ can be solved in
parallel. Moreover the application of the PBSPAI(0) preconditioreguires a sparse
matrix-vector product computation which is also has a higtaflelization potential.
As for the PBILU(O) preconditioner a preprocessing phaseeded in which the PB-
SPAI(0) preconditioneM is computed. Additional storage similar to the storage re-
guirements for the matriA is needed.

In the literature a row-variant of SPAI is also used. Thismetis based on the
minimization problem

IMA —1||p = min [MA —1|p
MeM

A row-wise decoupling leads to a very similar method as theedescribed above. Here
we denote this algorithm by PBSBA), (0).

As for the ILU preconditioner these SPAI preconditionergeheariants in which addi-
tional fill-in is allowed, cf. [3, 11]. Besides as a precoiuhier the SPAI method can
also be used as a smoother in multigrid solvers (cf. [9, 32]).

4 Numerical experiments

In this section we present results of numerical experimédis goal is to illustrate and
to compare the behaviour of the different preconditionezsgnted above for a few test



problems. The first two test problems (described in secti@rafd 2.2) are Jacobian
systems that result from the Van Leer flux vector-splittifgrtetization on a uniform
mesh with mesh sizk, cf. (3). These Jacobians are evaluated at the discretgosolu
U*. In the first test problem this solution is a trivial one (ndyneonstant), whereas
in the second test problem we have a reflecting shock. In ihe tist case we have
linear systems with matrices as in (6) that arise in the salged in the QUADFLOW
package.

In all experiments below we use a left preconditioned BiC&BTnethod. For
the first two test problems, the discretization routinesthoés for the construction
of the Jacobian matrices and the preconditioners (PBGS,WAB) and PBSPAI(0))
are implemented in MATLAB. We use the BICGSTAB method aJaian MATLAB.

For the third test problem the approximate Jacobian matdsén (6) are computed in
QUADFLOW. For the preconditioned BiICGSTAB method and theZB PBILU{),
p = 0,1,2, preconditioners we use routines from the PETSc library [1]

To measure the quality of the preconditioners we presemtingoer of iterations
that is needed to satisfy a certain tolerance criterion. ITvaa fair comparison of
the different preconditioners we briefly comment on thehanigtic work needed for
the construction of the preconditioner and the arithmetist€ of one application of
the preconditioner. As unit of arithmetic work we take thatscof one matrix-vector
multiplication with the matrixA (=: 1 matvec). For the PBGS method we have no
construction costs. The arithmetic work per applicatio®BfGS is about 0.7 matvec.
Note that both in PBILU(O) and PBSPAI(0) the nonzdtock-pattern is not larger
that of the matrixA (e.g., for PBSPAI(0),P(M) C P(A) in (10)). However, in a
nonzero block of the matriXA certain entries can be zero, whereas in the precondi-
tioner the corresponding entries may be nonzero. For ex@nmthe shock reflection
test problem, about one fourth of the entries in the nonz&rokis are zero, whereas
in the PBILU(0) and PBSPAI(0) preconditioners for this pieobh almost all entries
in the nonzero blocks are nonzero. In our experiments ths ¢os constructing the
PBILU(O) preconditioner are between 2 and 4 matvecs. Wec#lyi need 1.2-1.6
matvecs per application of PBILU(0). The costs for congtngcthe PBSPAI(0) pre-
conditioner are much higher (note, however, the high palizdition potential). Typical
values (depending oR(A)) in our experiments are 20-50 matvecs. In the application
of this preconditioner nd x 4 subproblems have to be solved and due to this the
arithmetic work is somewhat less as for the PBILU(0) predtiorer. We typically
need 1.2-1.5 matvecs per application of the PBSPAI(0) praitioner. Summarizing,
if we only consider the costs per application of the prectiodéers than the PBILU(0)
method is about twice as expensive as the PBGS method an88AR0) precondi-
tioner is slightly less expensive than the PBILU(0) method.

4.1 Test problem 1: Stationary 2D Euler with constant soluton

We consider the discretized stationary Euler equationsriies] in test problem 1 with
mesh sizeh = 0.02. We vary the Mach number in-direction, which is denoted by
M,: 0.05 < M, < 1.25. For the Mach number ig-direction, denoted by/,,

we take M, = %MI. The linear system in (3) is solved with the preconditioned
BiCGSTAB method, with starting vector zero. The iteratierstopped if the relative
residual (2-norm) is belowE-6. Results are presented in Figure 3. In the supersonic
case {{, > 1), due to the downwind numbering, the upper block-diagowat pf

the Jacobian is zero and thus both the PBILU(0) method andSP&€ exact solvers.
The PBSPAI(0) preconditioner does not have this propertg, o the fact thaM is



a sparse approximation !, which is adense block lower triangular matrix. For
M, < 1 with PBGS preconditioning we need about 1 to 4 times as mechtions as
with PBILU(O) preconditioning. Both preconditioners shavelear tendency, hamely
that the convergence becomes fastev/if is increased. FoM, < 1 the PBSPAI(0)
preconditioners shows an undesirable very irregular bebavThere are peaks in the
iteration counts close td/, = % (hence M, = 1) andM, = 1. Applying BICGSTAB
without preconditioning we observe divergence for mist values and if the method
converges then its rate of convergence is extremely low.
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Figure 3: Test problem 1, iteration count

4.2 Test problem 2: Stationary 2D Euler with shock reflection

We consider the discretized stationary Euler equationis aishock reflection as de-
scribed in section 2.2 on grids with different mesh sizgs= h, = 27k k=3,...,T.

The discrete solutio®J* is determined with high accuracy using a damped Newton
method. As in section 4.1 we use the preconditioned BiCGSit#ehod to solve a lin-
ear system with matri¥D F'(U*) until the relative residual is belohE-6. The number

of iterations that is needed is shown in table 1. The symlutdnotes that the method
did not converge within 2000 iterations. Both for the PBGS #&me PBILU(O) pre-
conditioner we observe the expecthe;;j1 behavior in the iteration counts. With PBGS
preconditioning one needs about 1.5 to 2 times as muchigasaas with PBILU(O)
preconditioning. Again the performance of the PBSPAI(@ganditioner is very poor.

4.3 Test Problem 3: Stationary flow around NACA0012 airfoll

We consider two standard NACAQ0012 airfoil test cases ([£8ldases 3 and 1; the
other three reference test cases for this airfoil yield Isimiesults) as described in test



| meshsizeh, | & |3 |x | a1 | o5
PBGS 15 | 26| 51| 108 232
PBILU(0) 10 | 17 | 30| 59 | 109
PBSPAI(O) | 183] t | T | T | T

PBSPAl,,(©0) | 193] T | T | T | T

Table 1: Test problem 2, iteration count

problem 3. Test case A corresponds to the flow paramétgss= 0.95, o = 0° (also
used in [7]) and test case B corresponds to the param&fgys= 0.8, a = 1.25°.
Related to the discretization we recall some facts from [Vhe far-field boundary
is located about 20 chord lenghts from the airfoil. Standdrdracteristic boundary
conditions are applied at the far-field. Computations ait&lized on a structured grid
consisting of 4 blocks with0 x 10 cells each. Adaptation of the grid was performed
each time the density residual has decreased two ordersgiitude. On the finest
level the iteration is stopped when the density residuatdkiced by a factor af0*.
The grid refinement and coarsening is controlled by a malkseavelet technique. For
test case A this results in a sequence of 14 (locally refingdygin table 2 we show
the number of cells in each of these grids. We note that on tiee §jrids a change

Grid 1 2 3 4 5 6 7
#cells| 400 1,600 | 4,264 | 7,006 | 11,827| 15,634 | 21,841

Grid 8 9 10 11 12 13 14
#cells || 25,870| 28,627| 30,547| 31,828| 33,067 | 33,955| 34,552

Table 2: Test case A, sequence of grids

(refinement/coarsening) to the next grid does not necégsamply a smaller finest
mesh size. It may happen that only certain coarse cells iredeto obtain a better
shock resolution. For a discussion of this adaptivity isseerefer to [7]. In figure 4
the final grid (34,552 cells) and the corresponding Mach remdistribution is shown.
The flow pattern downstream of the trailing edge has a conmgilexk configuration.
Two oblique shocks are formed at the trailing edge. The sguee region behind these
oblique shocks is closed by a further normal shock.

On each grid an implicit time integration is applied (cf. tec 2.3). Currently
the choice of the timestep is based on an ad hoc strategyingtaiith a CFL num-
ber equal to 1 the timestep is increased based on theCitlg,.,, = 1.1 CFLgq. A
maximum valueCFL = 1000 is allowed. Per timestep one inexact Newton iteration is
applied. The linear systems with the approximate Jacol§c@nsection 2.3) are solved
by a preconditioned BICGSTAB method until the relative desil is smaller thahE-2.
Because the PBSPAI(0) preconditioners have shown a vemtysdaviour already for
the relatively simple problems in section 4.1 and secti@wk decided not to use the
PBSPAI(0) preconditioner in this test problem. An inteddmetween QUADFLOW
and the PETSc library [1] has been implemented. This malkeBiBGSTAB method
and PBILU(0) preconditioner available. Recently also a BBGutine has become
available. The PETSc library offers many other iterativlevexs and preconditioners.
Here, besides the PBGS and PBILU(0) preconditioners wecalgsider block variants
of ILU that allow more fill-in, namely the PBILU(1) and PBIL@) methods.
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Figure 4: Test case A. Left figure: computational grid. Rifignire: Mach distribution,
Min = 0.0, My0r = 1.45, AM = 0.05

The arithmetic work in the QUADFLOW solver is dominated b finear solves on
the finest grids. We present results only for the two finestgyrin figure 5, for each
timestep on these two grids the corresponding number obpritioned BICGSTAB
iterations is given. Note that different preconditionemynteed to (slightly) different
numbers of timesteps. On grid 13 we have about 110 timestepthan a change to
grid 14 takes place. In these 110 timesteps on grid 13 thetider count shows a clear
increasing trend. This is due to the increase of the CFL nunmfsiger the change to
grid 14 one starts witllFL. = 1 and a similar behaviour occurs again.

In test case B the adaptivity strategy results in 11 gridstabie 3 for both test
cases we show thaveraged number of preconditioned BiCGSTAB iterations for the
two finest grids, where the average is taken over the times gtepgrid.

Note that with PBGS we need 2-2.5 times more iterations als RBILU(0) and
with PBILU(2) we need about 2 times less iterations as withLREB0). Taking the
arithmetic work per iteration into account we conclude fPBGS and PBILU(O) have
comparable efficiency, whereas the PBIb)(p = 1,2, preconditioners are (much)
less efficient.
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NACAQ012 airfoil, Test case A, grids 13 and 14
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Figure 5: Test case A, iteration count

test case A B
Grid 3] 14 10] 11
PBGS || 14.9] 186 2.89] 27.0
PBILU(O) || 6.17 | 8.37 || 1.33| 9.83
PBILU(L) || 4.24 | 4.65 || 1.04 | 6.07
PBILU(2) || 3.52 | 3.83 || 1.00 ]| 5.09

Table 3: Test cases A and B, avarage iteration count

To illustrate the dependence of the rate of convergence®mitsh size we con-
sider, for test case A, a sequence of uniformly refined gafigable 4. On every grid

Grid 1 2 3 4 5
#cells | 400 | 1,600| 6,400| 25,600 102,400

Table 4: sequence of uniformely refined grids

we continue the time integration until the density resichad decreased two orders of
magnitude. Iteration counts are shown in table 5.

From these results we see that due to the mass matrix conaingtfre (artificial)
time integration the average iteration count increaseshnsimver ash~!. The total
number of iterations, however, shows a cleat behaviour as in the model problem in
section 4.2. The large total number of iterations needednendiids (table 5, right) is
caused by the many timesteps that are needed. A significanbi@ment of efficiency
may come from a better strategy for the timestep control.
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| Grid JJ1] 2] 3] 4] 5]
PBGS || 58] 9.2] 13.3] 18.2] 21.7
PBILUO) || 19| 24| 29 | 43 | 45
PBILUQ) |[ 16| 1.7| 1.9 | 27 | 2.9
PBILU®) |[ 10| 14| 1.8 | 1.9 | 2.0

| Gid [ 1] 2 ] 3] 4] 5 |

PBGS 947 | 1806 | 3739 | 9030 | 19212
PBILU(O) || 301 | 462 | 806 | 2121 | 4025
PBILU(1) | 250 | 335 | 547 | 1324 | 2562
PBILU(2) || 161 | 274 | 510 | 940 | 1783

Table 5: Test case A. Average iteration count (above) and®tenall time steps per
grid (below).

Summary

We summarize the main conclusions. Already for our relatisenple model problems
the PBSPAI(0) method turns out to be a poor preconditionkis ethod should not
be used in a Newton-Krylov method for solving compressihiéeEequations. Both
for model problems and a realistic application (QUADFLOWVvso for NACA0012
airfoil) the efficiency of the PBGS preconditioner and thd[RB0) method are com-
parable. For our applications the PBILU(1) and PBILU(2)qaneditioners are less
efficient than the PBILU(O) preconditioner. If one appliesaatificial time integration
method for solving a stationary compressible flow probleentthe timestep control
strategy strongly influences the overall efficiency of thieeso
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