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1 Introduction

We are interested in iterative methods for solving the largesparse nonlinear systems
of equations that result from the discretization of stationary compressible Euler equa-
tions. Related to the discretization it is important to distinguish two approaches. Firstly,
a direct spatial discretization (using finite differences or finite volume techniques) ap-
plied to the stationary problem results in a corresponding nonlinear discrete problem.
In the second approach the stationary solution is characterized as the asymptotic (i.e.,
time tending to infinity) solution of an evolution problem. In such a setting one ap-
plies a time integration method to the instationary Euler equations. In cases where
one has very small spatial grid sizes, for example if one usesgrids with strong local
refinements, an implicit time integration method should be used. This then yields a
nonlinear system of equations in each timestep. Note that for a given spatial grid in the
first approach we haveone discrete nonlinear problem whereas in the second approach
we obtain asequence of discrete nonlinear problems.
For solving such nonlinear systems of equations there are many different approaches.
Here we mention two popular techniques, namely nonlinear multigrid solvers and
Newton-Krylov methods. Well-known nonlinear multigrid techniques are the FAS
method by Brandt [8], the nonlinear multigrid method by Hackbusch [12] and the al-
gorithm introduced by Jameson [15]. It has been shown that a nonlinear multigrid
approach can result in very efficient solvers, which can evenhave optimal complexity
([16, 20, 21, 23]). For these methods, however, a coarse-to-fine grid hierarchy must
be available. The Newton-Krylov algorithms do not require this. In these methods
one applies a linearization technique combined with a preconditioned Krylov subspace
algorithm for solving the resulting linear problems. One then only needs the system
matrix and hence these methods are in general much easier to implement than multigrid
solvers. Moreover, one can use efficient implementations oftemplates that are avail-
able in sparse matrix libraries. Due to these attractive properties the Newton-Krylov
technique is also often used in practice (cf., for example, [22, 24, 25, 26, 27, 35]).
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In this paper we consider the Newton-Krylov approach. A method of this class has
been implemented in the QUADFLOW package, which is an adaptive multiscale finite
volume solver for stationary and instationary compressible flow computations. A de-
scription of this solver is given in [2, 5, 6, 7, 30]. For the linearization we use a standard
(approximate) Newton method. The resulting linear systemsare solved by a precondi-
tioned BiCGSTAB method. The main topic of this paper is a systematic comparative
study of different basic preconditioning techniques. The preconditioners that we con-
sider are based on the so-called point-block approach in which all physical unknowns
corresponding to a grid point or a cell are treated as a block unknown. As precon-
ditioners we use the point-block-Gauss-Seidel (PBGS), point-block-ILU (PBILU(0))
and point-block sparse approximate inverse (PBSPAI(0)) methods. The main moti-
vation for considering the PBSPAI(0) preconditioner is that opposite to the other two
preconditioners this method allows a trivial parallelization. We do not know of any lit-
erature in which for compressible flows the SPAI technique iscompared with the more
classical ILU and Gauss-Seidel preconditioners. In our comparative study we consider
three test problems. The first one is a stationary Euler problem on the unit square
with boundary conditions such that the problem has a trivialconstant solution. For the
second test problem we change the boundary conditions such that the problem has a
solution consisting of three different states separated byshocks, that reflect at the up-
per boundary. In these first two test problems we use the Van Leer flux vector-splitting
scheme [19] for discretization. We do not use an (artificial)time integration method.
The third test problem is the stationary Euler flow around an NACA0012 airfoil. This
standard case is also used for testing the QUADFLOW solver in[7]. Discretization is
based on the flux-vector splitting method of Hänel and Schwane [13] combined with
a linear reconstruction technique. For determining the stationary solution a variant of
the backward Euler scheme (the b2-scheme by Batten et. al. [4]) is used. For these
three test problems we perform numerical experiments for different flow conditions
and varying mesh sizes. The main conclusions concerning theperformance of the pre-
conditioners are summarized at the end of section 4.

2 Discrete Euler equations

In this section we introduce three test problems that are used for a comparative study of
different preconditioners. In the first two of these test problems we consider a relatively
simple model situation with a standard first order flux vector-splitting scheme on a
uniform grid in 2D. In the third test problem we consider moreadvanced finite volume
techniques on locally refined grids as implemented in the QUADFLOW package.

2.1 Test problem 1: Stationary 2D Euler with constant solution

In this section we consider a very simple problem which, however, is still of interest
for the investigation of properties of iterative solvers. We takeΩ = [0, 1]2 and consider
thestationary Euler equations in differential form:

∂f(u)

∂x
+

∂g(u)

∂y
= 0 , f(u) :=









ρv1

ρv2
1 + p
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Here u = (ρ, ρv, ρetot)
T ∈ ℜ4 is the vector of unknown conserved quantities:ρ

denotes the density,p the pressure,v = (v1, v2)
T the velocity vector,etot the total

energy andhtot the total enthalpy. The system is closed by the equation of state for a
perfect gasp = ρ(γ − 1)(etot − 1/2|v|2), whereγ is the ratio of specific heats, which
for air has the valueγ = 1.4. The boundary conditons (for the primitive variables)
are taken such that these Euler equations have a constant solution. For the velocity we
takev = (vin

1 , vin
2 ) with given constantsvin

i > 0, i = 1, 2, on the inflow boundary
Γin = { (x, y) ∈ ∂Ω | x = 0 or y = 0 }. For the density we take a constant value
ρ = ρin > 0 on Γin. For the pressure we also take a constant valuep = p̄ > 0 which
is prescribed either at the inflow boundary (supersonic case) or at outflow boundary
∂Ω \ Γin (subsonic case). The Euler equations 1 then have a solution that is constant
in the whole domain:v = (vin

1 , vin
2 ), ρ = ρin, p = p̄.

For the discretization of this problem we use a uniform meshΩh = { (ih, jh) | 0 ≤
i, j ≤ n }, with nh = 1, and apply a basic upwinding method, namely the Van Leer flux
vector-splitting scheme [19]. The discretization of (physical and numerical) boundary
conditions is based on compatibility relations (section 19.1.2 in [14]). In each grid point
we then have four discrete unknowns, corresponding to the four conserved quantities.
We use a lexicographic ordering of the grid points with numbering1, 2, . . . , (n+1)2 =:
N . The four unknowns at grid pointi are denoted byUi = (ui,1, ui,2, ui,3, ui,4)

T and
all unknowns are collected in the vectorU = (Ui)1≤i≤N . The discretization yields a
nonlinear system of equations

F : ℜ4N → ℜ4N , F (U) = 0 . (2)

The continuous constant solution (restricted to the grid) solves the discrete problem
and thus the solution of the nonlinear discrete problem in 2 is known a-priori. This
solution is denoted byU∗. For the JacobianDF (U) of F (U) explicit formulas can be
derived. In section 4 we investigate the behaviour of different preconditioners when
applied to a linear system of the form

DF (U∗)x = b . (3)

Note that the matrixDF (U∗) has a regular block structureDF (U∗) = blockmatrix(Ai,j)0≤i,j≤N

with Ai,j ∈ ℜ4×4 for all i, j. We call this apoint-block structure. Furthermore,
Ai,j 6= 0 can occur only ifi = j or i andj correspond to neighbouring grid points.

2.2 Test problem 2: Stationary 2D Euler with shock reflection

We consider a two-dimensional stationary Euler problem presented in example 5.3.3
in [18]. The domain isΩ = [0, 4] × [0, 1] and for the boundary conditions we take
ρ = 1.4, v1 = 2.9, v2 = 0, p = 1.0 at the left boundary (x = 0), outflow boundary
conditions at the right boundary (x = 4), ρ = 2.47, v1 = 2.59, v2 = 0.54, p = 2.27 at
the lower boundary (y = 0) and reflecting boundary conditions at the upper boundary
(y = 1).

With these boundary conditions the problem has a stationarysolution consisting of
three different states seperated by shocks, that reflect at the upper boundary, cf. figure
1. For the discretization of this problem we apply the same method as in test problem
1. This results in a nonlinear system of equations as in 2, butnow the discrete solution,
denoted byU∗, is not known a-priori. In a Newton type of method applied to this non-
linear problem one has to solve linear systems with matrixDF (Ũ), Ũ ≈ U∗. Therefore
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Figure 1: Three different states separated by shocks

we investigate iterative solvers applied toDF (U∗)x = b. The discrete solutionU∗ is
computed up to machine accuracy using some time integrationmethod. Note that the
Jacobian matrixDF (U∗) has a similar point-block structure as the Jacobian matrix in
test problem 1.

2.3 Test problem 3: Stationary flow around NACA0012 airfoil

The third problem is a standard test case for inviscid compressible flow solvers. We
consider the inviscid, transonic stationary flow around theNACA0012 airfoil (cf. [17]).
The discretization is based on the conservative formulation of the Euler equations. For
an arbitrary control volumeV ⊂ Ω ⊂ ℜ2 one has equations of the form

∫

V

∂u
∂t

dV +

∮

∂V

Fc(u)n dS = 0 . (4)

Heren is the outward unit normal on∂V , u the vector of unknown conserved quantities
and the convective flux is given by

Fc(u) =





ρv
ρv ◦ v + pI

ρhtotv



 . (5)

The symbol◦ denotes the dyadic product. As above the system is closed by the equa-
tion of state for a perfect gas. The discretization of these equations is based on cell cen-
tered finite volume schemes on an unstructured mesh as implemented in QUADFLOW
and explained in [7]. For the present test problem the flux-vector splitting due to Hänel
and Schwane [13] is applied. Note that this is a variant of theVan Leer flux-vector
splitting method that is used in the previous two test problems. In our experiments the
Van Leer method and the Hänel-Schwane method give similar results both with respect
to discretization quality and with respect to the performance of iterative solvers. A lin-
ear reconstruction technique is used to obtain second orderaccuracy in regions where
the solution is smooth. This is combined with the Venkatakrishnan limiter [34]. Al-
though we are interested in thestationary solution of this problem the time derivative
is not skipped. This time derivative is discretized by a timeintegration method which
then results in a numerical method for approximating the stationary solution. To allow
a fast convergence towards the stationary solution one wants to use large timesteps and
thus an implicit time discretization method is preferred. This approach then results in a
nonlinear system of equations in each timestep. Here we use the b2-scheme by Batten
et. al. [4] for time integration. Per timestep one inexact Newton iteration is applied. In
this inexact Newton method anapproximate Jacobian is used, in which the linear re-
construction technique is neglected and the Jacobian of thefirst order Hänel-Schwane
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discretization is approximated by one-sided difference operators (as in [33]). These
Jacobian matrices have the structure

DF (U) = diag
( |Vi|

∆t

)

+
∂RHS(U)

∂U
, (6)

where|Vi| is the volume of a control volumeVi, ∆t the (local) timestep andRHS(U)
the residual vector corresponding to the Hänel-Schwane fluxes. Details are given in
[7]. Note that in general a smaller timestep will improve theconditioning of the ap-
proximate Jacobian in (6).

We start with an initial coarse grid and an initial CFL numberCMIN , which deter-
mines the size of the timestep. After each timestep in the time integration the CFL
number (and thus the timestep) is increased by a constant factor until an a-priori fixed
upper boundCMAX is reached. Time integration is continued until a tolerancecrite-
rion for the residual is satisfied. Then a (local) grid refinement is performed and the
procedure starts again with an initial CFL number equal toCMIN . The indicator for
the local grid refinement is based on a multiscale analysis using wavelets [7]. In every
timestep one approximate Newton iteration is performed. The resulting linear equation
is solved with a user defined accuracy for the relative residual. If the cells are num-
beredi = 1, . . . , N , then as in the first two test problems the approximate Jacobian has
a point-block structure:DF (U) = blockmatrix(Ai,j)0≤i,j≤N with Ai,j ∈ ℜ4×4 for
all i, j andAi,j 6= 0 only if i = j or i andj correspond to neighbouring cells.

3 Point-block-preconditioners

In the three test problems described above we have to solve a large sparse linear system.
The matrices in these systems are sparse and have a point-block structure in which the
blocks correspond to the 4 unknowns in each of theN grid points (finite differences)
or N cells (finite volume). Thus we have linear systems of the form

Ax = b , A = blockmatrix(Ai,j)1≤i,j≤N , Ai,j ∈ ℜ4×4 . (7)

For the type of applications that we consider these problemsare often solved by us-
ing a preconditioned Krylov-subspace method. In our numerical experiments we use
the BiCGSTAB method. In the following subsections we describe basic point-block
iterative methods that are used as preconditioners in the iterative solver. For the right
handside we use a block representationb = (b1, . . . , bN )T , bi ∈ ℜ4, that corresponds
to the block structure ofA. The same is done for the iterandsx

k that approximate the
solution of the linear system in 7.

For the description of the preconditioners the nonzero patternP (A) corresponding
to the point-blocks in the matrixA is important:

P (A) = { (i, j) | Ai,j 6= 0 } . (8)

3.1 Point-block-Gauss-Seidel method

The point-block-Gauss-Seidelmethod (PBGS) is the standard block Gauss-Seidel method
applied to 7. Letx0 be a given starting vector. Fork ≥ 0 the iterandxk+1 =
(xk+1

1 , . . . , xk+1

N )T should satisfy

Ai,ix
k+1

i = bi −

i−1
∑

j=1

Ai,jx
k+1

j −

N
∑

j=i+1

Ai,jx
k
j , i = 1, . . . , N . (9)
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This method is well-defined if the4×4 linear systems in 9 are uniquely solvable, i.e., if
the diagonal blocksAi,i are nonsingular. In our applications this was always satisfied.
This elementary method is very easy to implement and needs noadditional storage.
The algorithm is available in the PETSc library [1]. A Convergence analysis of this
method for the 1D stationary Euler problem is presented in [28].

3.2 Point-block-ILU(0) method

We consider the following point-block version of the standard point ILU(0) algorithm
(cf. [10, 29]):

for k = 1, 2, . . . , N − 1

D := A−1

k,k ;

for i = k + 1, k + 2, . . . , N

if (i, k) ∈ P (A)

E := Ai,kD ; Ai,k := E ;

for j = k + 1, k + 2, . . . , N

if (i, j) ∈ P (A) and(k, j) ∈ P (A)

Ai,j := Ai,j − EAk,j ;

end if

endj

end if

endi

endk

Figure 2: Point-block-ILU(0) algorithm

This algorithm is denoted by PBILU(0). Note that as for the PBGS method the
diagonal blocksAk,k are assumed to be nonsingular. For this preconditioner a prepro-
cessing phase is needed in which the incomplete factorization is computed. Further-
more additional storage similar to the storage requirements for the matrixA is needed.
As for point ILU methods one can consider variants of this algorithm in which a larger
pattern asP (A) is used and thus more fill-in is allowed (cf. for example, ILU(p), [29]).
Both the PBILU(0) algorithm and such variants are availablein the PETSc library.

3.3 Block sparse approximate inverse

In the SPAI method [11, 31] an approximate inverseM of the matrixA is constructed
by minimizing the Frobenius norm‖AM−I‖F with a prescribed sparsity pattern of the
matrixM. In the point-block version of this approach (cf. [3]), denoted by PBSPAI(0),
we take a block representationM = blockmatrix(Mi,j)1≤i,j≤N , Mi,j ∈ ℜ4×4, and
the set of admissible approximate inverses is given by

M := {M ∈ ℜ4N×4N | P (M) ⊆ P (A) } . (10)
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A sparse approximate inverseM is determined by minimization over this admissible
set

‖AM− I‖F = min
M̃∈M

‖AM̃ − I‖F .

The choice for the Frobenius norm allows a splitting of this minimization problem. Let
M̃j = blockmatrix(M̃i,j)1≤i≤N ∈ ℜ4N×4 be thej-th block column of the matrix̃M
andIj the corresponding block column ofI. Let m̃j,k andej,k, k = 1, . . . , 4, be the
k-th columns of the matrix̃Mj andIj , respectively. Due to

‖AM̃− I‖2
F =

N
∑

j=1

‖AM̃j − Ij‖
2
F =

N
∑

j=1

4
∑

k=1

‖Am̃j,k − ej,k‖
2
2 (11)

the minimization problem can be split into4N decoupled least squares problems:

min
m̃j,k

‖Am̃j,k − ej,k‖2 , j = 1, . . . , N, k = 1, . . . , 4. (12)

The vectorm̃j,k has the block representatioñmj,k = (m1, . . . , mN )T with mℓ ∈ ℜ4

andmℓ = 0 if (ℓ, j) /∈ P (A). Hence for fixed(j, k) and withej,k =: (e1, . . . , eN )T , eℓ ∈
ℜ4, we have

‖Am̃j,k − ej,k‖
2
2 =

N
∑∗

i,ℓ=1

‖Ai,ℓmℓ − eℓ‖
2
2

where in the double sum
∑∗

only pairs(i, ℓ) occur with(i, ℓ) ∈ P (A) and(ℓ, j) ∈

P (A). Thus the minimization problem for the columñmj,k in (12) is alow dimen-
sional least squares problem that can be solved by standard methods. Due to (11) these
least squares problems for the different columns of the matrix M can be solved in
parallel. Moreover the application of the PBSPAI(0) preconditionerrequires a sparse
matrix-vector product computation which is also has a high parallelization potential.
As for the PBILU(0) preconditioner a preprocessing phase isneeded in which the PB-
SPAI(0) preconditionerM is computed. Additional storage similar to the storage re-
quirements for the matrixA is needed.

In the literature a row-variant of SPAI is also used. This method is based on the
minimization problem

‖MA− I‖F = min
M̃∈M

‖M̃A − I‖F

A row-wise decoupling leads to a very similar method as the one described above. Here
we denote this algorithm by PBSPAIrow(0).
As for the ILU preconditioner these SPAI preconditioners have variants in which addi-
tional fill-in is allowed, cf. [3, 11]. Besides as a preconditioner the SPAI method can
also be used as a smoother in multigrid solvers (cf. [9, 32]).

4 Numerical experiments

In this section we present results of numerical experiments. Our goal is to illustrate and
to compare the behaviour of the different preconditioners presented above for a few test
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problems. The first two test problems (described in section 2.1 and 2.2) are Jacobian
systems that result from the Van Leer flux vector-splitting discretization on a uniform
mesh with mesh sizeh, cf. (3). These Jacobians are evaluated at the discrete solution
U

∗. In the first test problem this solution is a trivial one (namely, constant), whereas
in the second test problem we have a reflecting shock. In the third test case we have
linear systems with matrices as in (6) that arise in the solver used in the QUADFLOW
package.

In all experiments below we use a left preconditioned BiCGSTAB method. For
the first two test problems, the discretization routines, methods for the construction
of the Jacobian matrices and the preconditioners (PBGS, PBILU(0) and PBSPAI(0))
are implemented in MATLAB. We use the BiCGSTAB method available in MATLAB.
For the third test problem the approximate Jacobian matrices as in (6) are computed in
QUADFLOW. For the preconditioned BiCGSTAB method and the PBGS, PBILU(p),
p = 0, 1, 2, preconditioners we use routines from the PETSc library [1].

To measure the quality of the preconditioners we present thenumber of iterations
that is needed to satisfy a certain tolerance criterion. To allow a fair comparison of
the different preconditioners we briefly comment on the arithmetic work needed for
the construction of the preconditioner and the arithmetic costs of one application of
the preconditioner. As unit of arithmetic work we take the costs of one matrix-vector
multiplication with the matrixA (=: 1 matvec). For the PBGS method we have no
construction costs. The arithmetic work per application ofPBGS is about 0.7 matvec.
Note that both in PBILU(0) and PBSPAI(0) the nonzeroblock-pattern is not larger
that of the matrixA (e.g., for PBSPAI(0),P (M) ⊆ P (A) in (10)). However, in a
nonzero block of the matrixA certain entries can be zero, whereas in the precondi-
tioner the corresponding entries may be nonzero. For example, in the shock reflection
test problem, about one fourth of the entries in the nonzero blocks are zero, whereas
in the PBILU(0) and PBSPAI(0) preconditioners for this problem almost all entries
in the nonzero blocks are nonzero. In our experiments the costs for constructing the
PBILU(0) preconditioner are between 2 and 4 matvecs. We typically need 1.2-1.6
matvecs per application of PBILU(0). The costs for constructing the PBSPAI(0) pre-
conditioner are much higher (note, however, the high parallalization potential). Typical
values (depending onP (A)) in our experiments are 20-50 matvecs. In the application
of this preconditioner no4 × 4 subproblems have to be solved and due to this the
arithmetic work is somewhat less as for the PBILU(0) preconditioner. We typically
need 1.2-1.5 matvecs per application of the PBSPAI(0) preconditioner. Summarizing,
if we only consider the costs per application of the preconditioners than the PBILU(0)
method is about twice as expensive as the PBGS method and the PBSPAI(0) precondi-
tioner is slightly less expensive than the PBILU(0) method.

4.1 Test problem 1: Stationary 2D Euler with constant solution

We consider the discretized stationary Euler equations described in test problem 1 with
mesh sizeh = 0.02. We vary the Mach number inx-direction, which is denoted by
Mx: 0.05 ≤ Mx ≤ 1.25. For the Mach number iny-direction, denoted byMy,
we takeMy = 3

2
Mx. The linear system in (3) is solved with the preconditioned

BiCGSTAB method, with starting vector zero. The iteration is stopped if the relative
residual (2-norm) is below1E-6. Results are presented in Figure 3. In the supersonic
case (Mx > 1), due to the downwind numbering, the upper block-diagonal part of
the Jacobian is zero and thus both the PBILU(0) method and PBGS are exact solvers.
The PBSPAI(0) preconditioner does not have this property, due to the fact thatM is
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a sparse approximation ofA−1, which is adense block lower triangular matrix. For
Mx < 1 with PBGS preconditioning we need about 1 to 4 times as much iterations as
with PBILU(0) preconditioning. Both preconditioners showa clear tendency, namely
that the convergence becomes faster ifMx is increased. ForMx < 1 the PBSPAI(0)
preconditioners shows an undesirable very irregular behaviour. There are peaks in the
iteration counts close toMx = 2

3
(hence,My = 1) andMx = 1. Applying BiCGSTAB

without preconditioning we observe divergence for mostMx values and if the method
converges then its rate of convergence is extremely low.
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Figure 3: Test problem 1, iteration count

4.2 Test problem 2: Stationary 2D Euler with shock reflection

We consider the discretized stationary Euler equations with a shock reflection as de-
scribed in section 2.2 on grids with different mesh sizeshx = hy = 2−k, k = 3, . . . , 7.
The discrete solutionU∗ is determined with high accuracy using a damped Newton
method. As in section 4.1 we use the preconditioned BiCGSTABmethod to solve a lin-
ear system with matrixDF (U∗) until the relative residual is below1E-6. The number
of iterations that is needed is shown in table 1. The symbol† denotes that the method
did not converge within 2000 iterations. Both for the PBGS and the PBILU(0) pre-
conditioner we observe the expectedh−1

y behavior in the iteration counts. With PBGS
preconditioning one needs about 1.5 to 2 times as much iterations as with PBILU(0)
preconditioning. Again the performance of the PBSPAI(0) preconditioner is very poor.

4.3 Test Problem 3: Stationary flow around NACA0012 airfoil

We consider two standard NACA0012 airfoil test cases ([17] testcases 3 and 1; the
other three reference test cases for this airfoil yield similar results) as described in test
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mesh sizehy
1

8

1

16

1

32

1

64

1

128

PBGS 15 26 51 108 232
PBILU(0) 10 17 30 59 109
PBSPAI(0) 183 † † † †

PBSPAIrow(0) 193 † † † †

Table 1: Test problem 2, iteration count

problem 3. Test case A corresponds to the flow parametersM∞ = 0.95, α = 0◦ (also
used in [7]) and test case B corresponds to the parametersM∞ = 0.8, α = 1.25◦.
Related to the discretization we recall some facts from [7].The far-field boundary
is located about 20 chord lenghts from the airfoil. Standardcharacteristic boundary
conditions are applied at the far-field. Computations are initialized on a structured grid
consisting of 4 blocks with10 × 10 cells each. Adaptation of the grid was performed
each time the density residual has decreased two orders of magnitude. On the finest
level the iteration is stopped when the density residual is reduced by a factor of104.
The grid refinement and coarsening is controlled by a multiscale wavelet technique. For
test case A this results in a sequence of 14 (locally refined) grids. In table 2 we show
the number of cells in each of these grids. We note that on the finer grids a change

Grid 1 2 3 4 5 6 7
# cells 400 1,600 4,264 7,006 11,827 15,634 21,841

Grid 8 9 10 11 12 13 14
# cells 25,870 28,627 30,547 31,828 33,067 33,955 34,552

Table 2: Test case A, sequence of grids

(refinement/coarsening) to the next grid does not necessarily imply a smaller finest
mesh size. It may happen that only certain coarse cells are refined to obtain a better
shock resolution. For a discussion of this adaptivity issuewe refer to [7]. In figure 4
the final grid (34,552 cells) and the corresponding Mach number distribution is shown.
The flow pattern downstream of the trailing edge has a complexshock configuration.
Two oblique shocks are formed at the trailing edge. The supersonic region behind these
oblique shocks is closed by a further normal shock.

On each grid an implicit time integration is applied (cf. section 2.3). Currently
the choice of the timestep is based on an ad hoc strategy. Starting with a CFL num-
ber equal to 1 the timestep is increased based on the ruleCFLnew = 1.1 CFLold. A
maximum valueCFL = 1000 is allowed. Per timestep one inexact Newton iteration is
applied. The linear systems with the approximate Jacobians(cf. section 2.3) are solved
by a preconditioned BiCGSTAB method until the relative residual is smaller than1E-2.
Because the PBSPAI(0) preconditioners have shown a very poor behaviour already for
the relatively simple problems in section 4.1 and section 4.2 we decided not to use the
PBSPAI(0) preconditioner in this test problem. An interface between QUADFLOW
and the PETSc library [1] has been implemented. This makes the BiCGSTAB method
and PBILU(0) preconditioner available. Recently also a PBGS routine has become
available. The PETSc library offers many other iterative solvers and preconditioners.
Here, besides the PBGS and PBILU(0) preconditioners we alsoconsider block variants
of ILU that allow more fill-in, namely the PBILU(1) and PBILU(2) methods.
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Figure 4: Test case A. Left figure: computational grid. Rightfigure: Mach distribution,
Mmin = 0.0, Mmax = 1.45, ∆M = 0.05

The arithmetic work in the QUADFLOW solver is dominated by the linear solves on
the finest grids. We present results only for the two finest grids. In figure 5, for each
timestep on these two grids the corresponding number of preconditioned BiCGSTAB
iterations is given. Note that different preconditioners may leed to (slightly) different
numbers of timesteps. On grid 13 we have about 110 timesteps and then a change to
grid 14 takes place. In these 110 timesteps on grid 13 the iteration count shows a clear
increasing trend. This is due to the increase of the CFL number. After the change to
grid 14 one starts withCFL = 1 and a similar behaviour occurs again.

In test case B the adaptivity strategy results in 11 grids. Intable 3 for both test
cases we show theaveraged number of preconditioned BiCGSTAB iterations for the
two finest grids, where the average is taken over the time steps per grid.

Note that with PBGS we need 2-2.5 times more iterations as with PBILU(0) and
with PBILU(2) we need about 2 times less iterations as with PBILU(0). Taking the
arithmetic work per iteration into account we conclude thatPBGS and PBILU(0) have
comparable efficiency, whereas the PBILU(p), p = 1, 2, preconditioners are (much)
less efficient.
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Figure 5: Test case A, iteration count

test case A B
Grid 13 14 10 11

PBGS 14.9 18.6 2.89 27.0
PBILU(0) 6.17 8.37 1.33 9.83
PBILU(1) 4.24 4.65 1.04 6.07
PBILU(2) 3.52 3.83 1.00 5.09

Table 3: Test cases A and B, avarage iteration count

To illustrate the dependence of the rate of convergence on the mesh size we con-
sider, for test case A, a sequence of uniformly refined grids,cf. table 4. On every grid

Grid 1 2 3 4 5
# cells 400 1,600 6,400 25,600 102,400

Table 4: sequence of uniformely refined grids

we continue the time integration until the density residualhas decreased two orders of
magnitude. Iteration counts are shown in table 5.

From these results we see that due to the mass matrix coming from the (artificial)
time integration the average iteration count increases much slower ash−1. The total
number of iterations, however, shows a clearh−1 behaviour as in the model problem in
section 4.2. The large total number of iterations needed on fine grids (table 5, right) is
caused by the many timesteps that are needed. A significant improvement of efficiency
may come from a better strategy for the timestep control.
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Grid 1 2 3 4 5

PBGS 5.8 9.2 13.3 18.2 21.7
PBILU(0) 1.9 2.4 2.9 4.3 4.5
PBILU(1) 1.6 1.7 1.9 2.7 2.9
PBILU(2) 1.0 1.4 1.8 1.9 2.0

Grid 1 2 3 4 5

PBGS 947 1806 3739 9030 19212
PBILU(0) 301 462 806 2121 4025
PBILU(1) 250 335 547 1324 2562
PBILU(2) 161 274 510 940 1783

Table 5: Test case A. Average iteration count (above) and sumover all time steps per
grid (below).

Summary

We summarize the main conclusions. Already for our relatively simple model problems
the PBSPAI(0) method turns out to be a poor preconditioner. This method should not
be used in a Newton-Krylov method for solving compressible Euler equations. Both
for model problems and a realistic application (QUADFLOW solver for NACA0012
airfoil) the efficiency of the PBGS preconditioner and the PBILU(0) method are com-
parable. For our applications the PBILU(1) and PBILU(2) preconditioners are less
efficient than the PBILU(0) preconditioner. If one applies an artificial time integration
method for solving a stationary compressible flow problem then the timestep control
strategy strongly influences the overall efficiency of the solver.
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