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Abstract

We introduce a new fictitious domain method for the solution of sec-
ond order elliptic boundary value problems with Dirichlet or Neumann
boundary conditions on domains with C* boundary. The main advan-
tage of this method is that it extends the solutions smoothly, which leads
to better performance by achieving higher accuracy with less degrees of
freedom. The method is based on a least-squares interpretation of the
fundamental requirements that the solution produced by a fictitious do-
main method should satisfy. Careful choice of discretization techniques,
together with a special solution strategy lead then to smooth solutions
of the resulting underdetermined problem. Numerical experiments are
provided which illustrate the performance and flexibility of the approach.

Keywords: boundary value problems, fictitious domain methods, convergence
rates, wavelets.
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Introduction

Fictitious domain methods are a family of methods for the solution of boundary
value problems. Their main distinguishing feature is that they reformulate the
original problem by embedding the original domain into a simple, larger one
(the fictitious domain) to obtain a new problem, a step that typically requires
some extension of the data. The solution of this new problem then is an ex-
tension of the solution to the original problem. While this may sound wasteful,
this approach has the advantage of needing little or no mesh generation, and
of enabling the use of techniques which are usually reserved for very simple
domains. Many methods of this type exist; see for instance [1, 6, 8].
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contract HPRN-CT-2002-00286



This type of method is used often for the solution of boundary value prob-
lems with very complex geometries, or as a subroutine in problems where the
geometry changes often, as in shape optimization problems (see for instance
[10]). Outside of settings where such requirements allow them to shine, ficti-
tious domain methods have not enjoyed too much popularity.

The motivation for the construction of the fictitious domain method de-
scribed here was the realization that the extended solutions produced by exist-
ing fictitious domain methods are, under normal operation, fairly immune to
good approximation with standard higher order approximation tools. In [7], for
example, it is proved for the fictitious domain - Lagrange multiplier (FDLM) ap-
proach that, if the extension of the right-hand side is in Ls, but was not chosen
in exactly the right way (that is, in such a way that the resulting Lagrange mul-
tiplier is zero), then the extended solution will be in the Sobolev space H3/?~¢
only for € > 0, even when the solution of the original problem has higher regu-
larity. Thus we can say that the FDLM method is not smoothness preserving.
While from a theoretical point of view the choice of a better extension of the
right hand side is a trivial matter, there does not seem to exist a practical way
to do so, i.e. without computing the solution of the original problem first.

As a consequence one has that, usually, approximating the extended solution
obtained through the FDLM method by smooth higher order piecewise poly-
nomials on uniform meshes of mesh size h yields a limited convergence rate of
not quite O(h®/?). Further analysis, performed in [14], showed that approxima-
tions of the extended solution with standard adaptive schemes are also subject
to impoverished convergence rates in this situation. It is clear that this draw-
back alone puts the FDLM method, or any method with similar problems, at a
disadvantage whenever mesh generation is not a major problem.

We are going to introduce here a new method for solving elliptic boundary
value problems on bounded domains designed to preserve the smoothness (as
manifested in the convergence rates of approximation from uniform meshes) of
the solution on the original domain. A fictitious domain method with this prop-
erty has the potential to compete successfully with more traditional approaches.
It can obtain solutions of comparable quality but without the expensive process
of creating a mesh for the domain.

To achieve this, we had to leave the trodden paths more than once. At the
core, our fictitious domain formulation is based on a least-squares interpreta-
tion of the fundamental requirements that the extended solution should satisfy.
Since there are many possible extensions of the solution to the original prob-
lem, we are led to a formulation which, while otherwise well posed, does accept
many different solutions. Instead of adding constraints to the formulation in
order to enforce smoothness, we have assigned this responsibility to a carefully
engineered iterative solution process. To obtain good discrete models of our
infinite-dimensional, rank deficient least-squares problem, we used a Petrov-
Galerkin approach and standard B-spline wavelet bases. These discretization
techniques are, in essence, those described in [4], the main difference lying in
the singular nature of the operator.

While the resulting method has yet to be fully understood from a theoretical



point of view, and has its own set of limitations (in its present form it expects
that the solution of the original problem lives in H?2, and that the domain has
C? boundary), it already performs quite well in numerical experiments.

The structure of this paper is as follows. In section one, we will specify our
problem scope and central assumptions, and also derive the formulation which
lies at the core of the method. We will do this initially with a simple Dirichlet
problem as a model, and show then how to extend the approach to cover Neu-
mann boundary conditions. We devote section two to the construction of an
actual numerical method, by settling on a discretization scheme and introduc-
ing the solution process. This includes a brief introduction to B-spline wavelet
bases. In section three we present some numerical experiments to illustrate the
performance of the method, before finishing with some concluding remarks.

1 The basic formulation

1.1 Problem scope and assumptions
We will concentrate on problems of the form

(=A+ocDu=f on €,
Trru=g,

(1)

where Q C R? is a bounded domain with C? boundary, ¢ > 0, and Trr u denotes
the trace on I' := 9Q of u. We will also assume that f € H°(Q) = Ly(Q) and
g € H3?(T). Under these conditions, it is known (see [9], chapter two) that
there exists a unique solution v € H?(Q2) of problem (1).

We will also assume that Q C (0 + ¢,1 — €)? for some € > 0.

For notational convenience, we will write Aqg : H?(Q) — H°(Q) for A =
—A + oI, where differentiation is always meant in the sense of distributions,
and let B : H*(Q) — H*/?(T') be given by Bu = Trr u. Recall that these are
bounded operators with closed range, and that Py : H?(2) — HO(Q) x H3/%(T),

given by
Po = ( B )

is an isomorphism. With this operator, we can write problem (1) more succinctly
as follows. Find u € H%(Q) such that

(2) PQU = bQ)

with bg = (f,9)7 € HE, := H°(Q) x H3/?(T) (to obtain Hilbert spaces, we will
always endow tensor product spaces with the corresponding euclidean tensor
product norm).

1.2 A simple fictitious domain method

Let us construct the fictitious domain method that lies at the core of the de-
velopments that follow. To this end, we begin by embedding Q into T? =



(R/Z)?. We define A : H?(T?) - H°(T?) by A = —A + oI, and write again
B : H?(T?) — H3/?(T) for the trace operator.

A fictitious domain method that aspires to be useful for solving (1) should
produce solutions u™ € H2(T?) that satisfy, at the very least, that

(3) (4ut)o (= Aa(ul)) = f,
and that
(4) Bu* (=B(uf)) =g

Since in practice it is often much more convenient to begin with some initial
extension ft € HO(T?2) of f, we will now reformulate these equations into an
appropriate least-squares formulation that accommodates for such an extension.

Consider the operator Cq : H°(T?) — H°(T?) which restricts each function
in H°(T?) to 2, and subsequently extends it by zero. It is easy to see that this
operator is an orthogonal projector. Now, consider the least squares functional
® : H?(T?) — R*, given by

(5) (v) = [|Cadv — [+ |ogrs) + 1BV = gll2a/2(0)-

Theorem 1.1. There ezists a minimizer ut € H*(T?) of ® such that

1

lut | m2erzy < C (1 Progesy + 9l2arery )~ -
(T)

Furthermore, any minimizer of ® satisfies (3) and (4).

As a preparation to the proof of theorem 1.1, we define the operator M :
H?(T?) — H" := HO(T?) x H3/*(T") by

(6) M= (%A) ,

and prove the following lemma.

Lemma 1.2. The operator M is bounded and has closed range; thus, it also
has a bounded Moore-Penrose pseudoinverse M.

Proof. The operator M is clearly bounded; let us prove that it has closed range
too. To see this, use the existence of a bounded extension operator from H?(f2)
to H?(T?) to observe that the range of M is R(M) = {(¢,7)! € H" : ¢jq- = 0}
By the continuity of the restriction operator we have that this set is closed.
An operator between two Hilbert spaces which is bounded and has closed
range has a bounded Moore-Penrose pseudoinverse (see e.g. [5]). Thus the
pseudoinverse M1 of M exists and is bounded. O



Proof of theorem 1.1. Let v € H?(T?). Then, since Cgq is an orthogonal projec-
tor, we have that ®(v) > ||Caf*— %0 (r2)- On the other hand, let @ € H?(T?)
be any extension of the solution u of problem (1). Then CqAu = Cq f*, while
(a}}so Bu = g, so that ®(a) = ||Caf*t — f*||}o(rz). Cleartly, U is a minimizer of

Let now u* be any minimizer of . We conclude from the above that ®(u*) =
ICaf* — f*[I%0(r2), from where it follows then that CoAu* = Cq f*, and that
Bu* =g.

Observe now that we can write ®(v) = ||Mv—b||%,., with b = (f+,9)T € H".
Thus the minimizer u® of ® with minimal norm is given by u™ = M1b, and so

[N

et llm sy = I8 < UM (1L o ray + g gs/ors )
O

Remark 1.3. Observe that theorem 1.1 would remain valid if we changed the
norms on H? and H3/? to other, equivalent ones. A change of norm in H?(T?)
yields o different minimizer with minimal norm that would still satisfy (3) and
(4), while an equivalent norm on H3/? would change exactly nothing.

In contrast, observe that a change of norm on H°(T?) is a more delicate
matter. The proof of theorem 1.1 depends critically on the fact that the operator
Cq is an orthogonal projector.

Thus, our simple fictitious domain method is as follows. To solve problem
(1), find an initial extension f* of f and take u™ = MT(f*, g)T. We will devote
section 2 to the question of how to do this in practice with a reasonable amount
of effort.

1.3 Adapting the method to more general problems

We can treat the Neumann problem in a completely analogous fashion within
the above framework. The operator BV : H?(T?) — H'/2(T") given by

ov
BNy » —
Y on

is bounded and surjective. The problem

(A +oDu=f on ,
(7) N, _
BYu =y,

is well posed if o > 0. It is straightforward to verify that theorem 1.1 does not
depend on the type of boundary conditions. Instead of looking for the minimizer
of @ as defined in 5, we would be minimizing the functional

& (0) = [0 Av = F* ogrsy + 1B = gllarary.

In a similar fashion it is possible to modify the above method to deal with
boundary conditions of other types. Similarly, we are not limited to the differ-
ential operator chosen for our model problem (1).



2 Construction of the numerical method

This section consists of two major parts. In the first one, we try to find suitable
discrete problems to approximate the minimizer of ® with smallest norm. Then,
in subsection 2.4, we tackle the problem of finding smooth minimizers. For
simplicity, we will continue to limit ourselves to the Dirichlet problem.

We will start by choosing finite dimensional subspaces VjD C H?(T?), er C
H?32(T), and V) C H°(T?), j € Ny (the parameter j refers to a chosen level
of resolution; more to that in a moment). Then we construct operators M; :
VjD — Vj0 X er that model M in an appropriate way. Of course, this requires
particular care, since the operator M is singular.

We then project b onto V;7 x V' to obtain b; = (f;", 9;)", and then find the
minimizer of

(8) 3;(v;) = [|Mjv; = byl

where the tilde on H" signalizes that we plan to modify the norms, by evaluating
u;-'“ =M ; b; with the aid of a specialized Krylov subspace method.

To find smooth minimizers of ®, and thus smooth extensions of the solution
u of problem (1), we will build upon the above framework. We will use the
fact that the minimizers uj are smooth themselves, and try to rescue that

smoothness to the infinite dimensional problem via a lifting process.

2.1 B-splines and B-spline wavelet bases

A reasonably complete introduction of B-spline wavelet bases would take too
many pages. Instead, we provide here a mostly anecdotal account of the theory
in order to provide a basic insight into the concepts, and to introduce the nec-
essary notation. We will also comment briefly on the role each tool will play in
the realization of the plan outlined above. Roughly speaking, we obtain with
B-spline wavelets a powerful and convenient approximation tool, together with
a simple way of identifying Sobolev spaces with copies of £5. These abilities of
wavelets let us obtain good discrete models of M.

For a complete introduction to B-spline wavelet bases we refer the interested
reader to [4].

Given m > 2 (this restriction can be weakened, but in its current form serves
to give a streamlined account), let

9™ (@) = [Fixon] @+ | 5],

where * denotes the convolution operator, and |z| denotes the largest integer
which is smaller or equal to z. The function ¢2, for example, is just the standard
hat function,
z+1 ifze[-1,0),
P*(z) = 1—z ifze[0,1),
0 otherwise.



In general, ¢™ is a member of C™ 2, is compactly supported, and is a poly-
nomial of degree m — 1 when restricted to an interval of the form [k, k + 1],
keZ.

For j > 0, write Z; = Z /27,

9) k(@) := 2y (2 (z - 2) — k),

2EZ

and set B; = {¢;r : k € Z;}. Then B; is a basis for the space V; = span B; of
all periodic B-splines of order m and mesh size h = 277. We will call this basis
the scaling function basis of V;. The factor 2//2 ensures that ||¢;x|| ~ 1.

This type of space is convenient for a variety of reasons. It has good ap-
proximation properties; Given a function h € H*(T), one has that if m > s,
then

(10) viél‘f,l l1h — vl oty S 2_js||h||H=*(1r)-

(Here, a < b means a < Cb for some generic constant C' independent of any
parameters on which a and b may depend. The notation a 2 b has an analogous
meaning, and a ~ b means that both a < b and a 2 b hold.)

Furthermore, increasing the order m of these B-spline spaces does not create
any complications, just as it is straightforward to extend this construction to
higher dimensions by taking tensor products.

The next step in the construction of B-spline wavelet bases is the choice
of appropriate dual spaces f/j, spanned by the a dual scaling function basis
l§j = {&,k : k € Z;}, with the (gjk defined from a single 6, also compactly
supported, through an expresion analogous to (9). The bases B;, B;, must be
biorthogonal, that is, their elements must satisfy

(11) (Diks Dit) = Ot

where we have denoted dual pairing! by (-,-). Here we choose the dual spaces
constructed in [3], which are parametrized not only by m, but also by another
integer m > m, with m + /M € 2N, which gives the order of local polynomial
approximation power of the spaces VJ There are some additional restrictions
on 7 that ensure that ¢ € Ly(R); see again [3]. The choices we will make in
this article satisfy these constraints.

Another requirement is that the (oblique) projectors @; : H(T) — Vj,
Q; : H°(T) — Vj, given by

(12) Qif = D ik, [din,
kEZj4

(13) Qif = Y (bik ik,
kEZ1

! Perhaps artificially in this case, as HO(T) = [H%(T)]". This definition of biorthogonality
is intended to be more general



are uniformly bounded. ~

With these elements, one can construct compactly supported functions ¥, v :
R — R from which we obtain the wavelet bases. The functions 11, ¥k, de-
fined from 1,4 as in (9), together with the scaling functions for j = 0 form
biorthogonal sets

(14) T = {¢oo} U{¢jr : k € Zj}, U = {¢oo} U {thji : k € Z;},

called biorthogonal B-spline wavelet bases.

The fact that there is one function in each of these sets that is not like any of
the others causes some unfortunate notational tension which we must address
before going on. We define an index A\ = (j,k,e), with j > 0, k € Z;, and
e € {0,1}, and will write

_ )Y ife=1,
¢>\ N ¢(],k,e) N {¢kl ife= 0.

For convenience, we write j(A), k()), e(A) for each of the fields in the indices.
Of course, if e(A\) = 0, and ¥, € P, then it must hold that j(A) = k(\) = 0.
We will collect all these valid indices A in the set V. Furthermore, we define for
later use V; :={A € V: j(A) < j}.

The sets ¥, ¥ are both Riesz bases for HO(T). We have for each f € H(T)
that

(15) F=Y (Fda00 =Y (W, i,

AEV AEV

and also that

(16) I Fllzory ~ I{CF Da) Prewlles ~ I{{¥x, £)Irev -

For j > 1, the sets ¥; = {1y : A € V,}, ¥; = {thy : A € V;} are bases of the
spaces Vj, Vj, respectively.

If v; € Vj, we have two possible representations for it. Oneisv; = EAer dxx,
called the wavelet representation and the other is v; = >\ 7. ¢jk @k, called the
scaling function representation. The map T : £>(V) — £2(Z;) that gives us
¢; = Tjd is linear and uniformly bounded. We will write 7} for the analogous
map on the dual side, and point out the remarkable fact that Tj_1 = TJT and
7' =T1]. ]

The maps ijl, T]fl are called fast wavelet transforms. The adjective “fast”
comes from the fact that evaluating the transformations from scaling function
representation to wavelet representation can be done at a cost of O(N) oper-
ations, where N is the dimension of V; (in the one-dimensional case we have
been considering for sketching the construction, N = 27).

If one has the scaling function representation of v; and wants to compute its
wavelet representation, how does one proceed? It is simple. One has Tj_1 = T].T

51 _ T
and Tj _Tj .



We obtain, for a certain range of s depending on m and m (see [4]), Riesz
bases for the spaces H*(T), H~%(T) simply by rescaling the bases ¥, ¥. This
is accomplished by multiplying each 1y, and each 9y, by 279(Vs and 2i(V)s
respectively. In an abuse of notation we will also write ¥, ¥ for these rescaled
bases. To avoid confusion we always will say of which space they are a basis.
We will also assume that the wavelet transforms are written with respect to
these scaled bases.

It is important to note that the projectors @; and Qj are not affected by
the rescaling. What is more, they stay uniformly bounded with respect to the
norms of H*(T) and H~*(T), respectively.

If ¥, ¥ are biorthogonal wavelet bases for H*(T), H—*(T), we have that

(17) (@b/\;l;p) ~ 6)\/,”
and that for f € H*(T), h € H*(T),
F=Y _(F 000, h="> (x ),
A€V AEV
while also
111z ~ I{(f, P2 brevlles All== ~ [{{¥x, M }revlle-

In other words, the bases ¥ and ¥ induce isomorphisms between £, and H*(T),
and between £y and H~*(T), respectively.

This construction can be repeated on T2 simply by carefully taking tensor
products. We will omit the details here and refer again to the literature, e.g.

[4].

2.2 The discrete operators

Before we begin to discretize the operator M, we will simplify that task a bit
by changing the norms on the spaces H?(T?) and H3/?(T") for equivalent norms
given by wavelet bases. The justification for this was given in remark 1.3. For
the space H?(T?) we will choose for instance m = 3 and 7@ = 5, and let ¥, ¥
be the corresponding B-spline wavelet bases of H2(T%), H~2(T4), respectively.
We will not need the space H~2(T?). We will refer to the norm induced by ¥
through the notation || - || g2 v, and write V]-D = span ¥ ;.

For H3/2(T), we begin by identifying T’ with T through a suitable parametriza-
tion 7y : T — T, and choose for instance m' = 2, m" = 6. We then rescale the
corresponding bases in such a way that ¥ (originally the primal basis) be-
comes a basis of H=3/2(T"), and ' (originally the dual basis) becomes a basis
for the space H3/%(T). This means that the boundary values g will have to be
approximated from the dual spaces V] The reason for this choice is that given a
trace h € H3/?(T") of a B—spline on T, computing the projection QJFh does not
involve scalar products with the functions quk, which cannot easily be evaluated
at arbitrary non-dyadic points.



Again basing ourselves on remark 1.3, we will also multiply the norm on
H?/?(T) by a constant weight wp. This has as a consequence that the boundary
conditions are enforced better at a lower level (in practice, a value of wg = 70
seemed to work well). We will refer to the norm of the space H3/?(T) induced
by ¥! through the notation || - || ma/2 gr, and write V' = span b

Since by remark 1.3 we are not allowed to touch the norm on H°(T), we
have no alternative but to choose a space for which it is easy to construct an
orthonormal basis.

Given k = (kl, kz) € Z]2 = (Z/ZjZ)2, write Djk = Z—j[kl, ki1 + 1) X [kz, ko +
1), and let

VP ={f € Ly(T%: fio;, € U1, k € Z}}

define the spaces of discontinuous piecewise polynomials of degree m — 1 on a
dyadic grid with mesh size h = 277. To construct an orthonormal basis for
Vjo, we proceed as follows. We apply first Gram-Schmidt orthonormalization
in Ly([0,1]?) to the monomials z'y’ with i +j < m — 1, i,5 > 0. We write
{¢%, ¢, ...,¢"} for the functions we thus obtain (here, n = (m + 1)m/2), and
note that it also is a basis for V). We write ¢%, (z) = 27¢*(2/z — k), and observe
that the set B} := {¢%, :i=1,...,n, k € Z7} is an orthonormal basis for V.
We use the canonical norm on Ly(T¢) and no additional notation for it.

We will model the operator M defined in (6) by discrete operators of the
form

(18) M; = (ngﬂ') .

The operators A; and B; will be obtained simply by projections (correspond-
ing to a Galerkin-like discretization), while the operator C; will be a modified
restriction operator engineered to keep in bounds the effects of the large kernel
introduced by Cg.

Given v; € V]-D,
projection onto V. The operator B; is given by Bjv; = Q;ij.

we define Ajv; := PyoAv;, where Pyo is the orthogonal

If we write T} for the inverse wavelet transform for VjD, we observe that we
can factorize the matrix A; of A; with respect to the bases ¥; and BY as

_ A0
(19) A, = AT},

where A? is the matrix of A; with respect to the bases B} and the scaling
function basis BJ-D of VJ-D. This factorization has the advantage that a matrix-
vector multiplication with any of A‘; and Tj can be evaluated at a cost of O(N),
with N = dim V}D, and thus we can evaluate the product with 4; in O(N)
operations using this factorization. The direct multiplication with A; would
take O(N log N) operations (see [4] for further discussion).

The entries in the matrix A? can be computed exactly using straightforward
quadrature techniques.

10



We factorize the matrix EJ- of B; with respect to the bases ¥; and liljr in a
similar way, and for similar reasons. We obtain
(20) EJ = (Tgr)ilﬁ_?TJ = (T]F)TEJTJ
The entries in the matrix Q? can again be approximated to high accuracy using

standard quadrature techniques. .
Given f; € V), we could of course define C f; := PVjO Cq fj. The drawback

of this approach is that the matrix of 5j with respect to the basis B;-’ can contain
arbitrarily small entries. Numerical errors that occur during the computation
of these entries have the potential of changing the rank of Mj, a situation which
could lead to unpredictable changes in the solution (see [15], pages 335-338, for
a thorough discussion). As if that were not enough, we also have that the entries
in this matrix are expensive to compute.

To eliminate both problems, we define the discrete operator C; as follows.
Write fj = 37, , ¢i®%),, and then let

Cifj = Z(QJC)M/@,

ik
with
21) (Cjo = { Gk Houwp P NAFD
0 otherwise.

The entries in the matrix C'; are either one or zero. They are easy to compute,
and they are far more robust against numerical error (they are not completely
immune, as one still has to find out whether supp ¢;- L NQ#D).

2.3 The discrete least-squares problems

What remains now is to formulate our discrete least-squares problems, and

decide how to solve them. Given an element v; € VjD, we will write v; for its

wavelet representation, and v; for its scaling function representation. We will
also write

@2 = (%)= apr) (3) @

What we have achieved with this setup is that
(23) ®;(v;) = [|M;v; — bjl|3 = [ M;v; — bjll3,

where H" = H?(T?) x H*/*(T") but with the norms induced by the wavelet
bases, and b; = (PVjo f*,Qgg). That is, we have converted the problem on

the (finite-dimensional) space Vj‘:| into a fully equivalent problem on RY with
N =dimV? = 2%,

11



To actually find the minimizer of
(24) IM;v; — b;l13

we will use an iterative Krylov subspace solver specialized for solving least-
squares problems to evaluate (approximatively) the pseudoinverse of M ; on the
right-hand side b;. While not the best in terms of performance, we choose
CGLS [11]. Mathematically, CGLS is equivalent to CG applied to the normal
equations, but has better numerical properties. We have made this choice for
reasons that will become apparent at the end of the next subsection.

2.4 Recovering smoothness

The idea behind our strategy to recover smoothness is as follows. The minimizer
uj =M JT b; of ®; will have the same smoothness as any other element in VjD,
and, under the right circumstances, we will have that u; is a good approximation
of some smooth minimizer of ®.

While we may expect u]+ to converge to a minimizer of ® in (5), we cannot
expect this limit to be smooth. Looking at the kernel of M, we see that it
consists of functions k € H?(T¢) which are zero on 2, and which satisfy Bx = 0.
We cannot expect extensions of u to T¢ with higher Sobolev smoothness than
that found in H? to be orthogonal to this kernel.

So to obtain such a smooth extension of u using the solutions uj’ of the
discrete problems we may have to endow it with some component in this kernel.
Our plan is to “lift” the smoothness of the finite dimensional spaces {VjD} by
collecting the components of the solutions uj in the kernels of the operators
Mjiq. Thus, the definition of our solution operator starts with a standard
solution for some initial j (for simplicity we take j = 0),

(25) Sob := My,
and then define
(26) Sjy1b:= PN(Mj+1)Sjb+M}+1bj+1.
To realize this iteration, we will need a way to evaluate the projections onto

the kernels of the operators M;. We will engage this task in a moment. (For
further discussion and analysis of the sequence defined by (25) and (26), see

[14])

2.4.1 Realizing the projections onto the kernel

The obtain the minimizer u; of

®;(v;) = || M;v; - b3

12



we can use, for example, the conjugate gradients (CG) algorithm[12] to solve
the normal equations,

T _ T
(27) M M;u; = M;b;.

While this has well known disadvantages, it also has an important advantage,
which is that it can give us the projection of v;_; onto NV (M) essentially for
free.

The key to that insight is obtained by taking a look at what the CG algorithm
does. To find an approximate solution of the linear equation Az = d, the CG
method produces iterates z?, each of which is the minimizer in W; = 2(® +
span{r?, (1) ... (=11 of the functional v;(y) = (y—z*)T A(y—=2*), where 2* is
the exact solution of Az = d, () is some initial guess, and r*) = A*(d— Az(©).
The minimizer of 7; in W; exists, and is unique, only if A is symmetric positive
definite on W;. One has that z(¥ = z* when W; = Wit (if the algorithm is
performed with exact arithmetic), but if the condition number of A is reasonable,
then the z(9 will be a good approximation of z* far earlier.

Suppose now that A is symmetric and positive semidefinite. If d 1 N (A4),
then r* 1 N'(A) for all k, and thus A is symmetric positive definite on

Wi = 2@ +span{r®,r@® ... D}
= Py a)z® + Pya)22® + span{r®,r) . r(=1}

for all i [11]. Given an initial guess z(°), we will obtain at the i-th step an
approximation of z* which satisfies Py (4)z() = Py4z(®. Since M ;‘-FI_)J- 1
N(MfMj), and since N(MfMJ) = N(M;), we can compute expressions of
the form
+
PN(M]‘+1)EJ' + Mj+1bj+1’

as needed in (26), by solving (27) with the conjugate gradient method using u;
as an initial guess.

2.5 Realization

Now write

CG(A7 d: Zo, 6)

for the approximate solution of Az = d, with z(®) as an initial guess, obtained
by iterating until the norm of the residual is smaller than e. Then the numerical
realization of (25), (26), which we will call the SPFD (“Smoothness Preserving
Fictitious Domain”) method, is given by

SPFD(]O;J) {bk}a {ek}) =
(28) 0 if j < jo
CG(MIM;, Mb;, SPFD(jo,j — 1,{b},{ex},), €;) otherwise.

=3 =7
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Computing an approximation to S;b amounts to evaluate SPFD(jo, J, {b;}, {ex}).
The sequence {e;} gives us additional flexibility by allowing us to use a smaller
€ on a lower level (where iterations are cheap), than on a higher level.

The question arises as to what effect the inexact evaluation of M ; b; has on
the sequence {S;b}. In practice, it does not seem to play an important role;
further research is needed to throw light on this issue.

Instead of using standard CG with the normal equations, one should use the
mathematically equivalent but numerically somewhat superior CGLS, developed
in [11]. The direct application of other Krylov subspace least-squares solvers
is a delicate matter. In the case of LSQR[16], a very robust least squares
solver, the problem is to implement the projections onto the kernel. Still other
methods, like RRGMRES [2], assume that the system is given through a square
matrix. Again, we see in further research an opportunity for improvements in
performance of the method described in this chapter.

3 Numerical experiments

To test our method, we formulated a few different boundary value problems on
the domain
O ={(z,y) : I(z,y) — (1/2,1/2)|]> < 0.3},

a disc of radius r = 0.3 and center (1/2,1/2). For the experiments, we chose
the orders mentioned in 2.2, namely, m = 3, m = 5 and m' =2, mI = 6.

Ezample E1: We formulated problem (1) with homogeneous Dirichlet bound-
ary conditions, ¢ = 0 and f = 1. We chose the obvious extension of the right-
hand side to T2, f* = 1, and evaluated (28) for J = 8, jo = 3. The iteration
history is summarized in Table 1, where we list the tolerance parameter passed
to the CGLS solver, together with the number of iterations needed at each level,
and the norm of the residual before the first iteration. A plot of the solution,
along with the boundary values can be found in figures 1(a) and 1(b).

| j | Tolerance [ Iterations | Initial residual ]
3 | 1.0000e-05 11 | 7.0711e-01
4 | 2.5119e-05 0 | 6.7104e-11
5 | 6.3096e-05 0 | 6.6714e-11
6 | 1.5849e-04 0 | 6.4922e-11
7 | 3.9811e-04 0 | 6.4058e-11
8 | 1.0000e-03 0 | 6.3563e-11

Table 1: Iteration history (example E1)

We believe that this experiment is quite remarkable. It shows that the
SPFED can indeed find very smooth solutions if that is possible. In this case, the
solution on the domain is polynomial; one easily checks that the solution of the
original problem is

u =025 (r2 —(2—05)° — (y - 0.5)2) .

14



The SPFD method is able to exploit this and finds in V3 an extension of u to
T2!

02 04 06 08 1

(a) Extended solution (b) Boundary values (note the or-

der of magnitude on the y-axis)

Figure 1: Solution and boundary values of the solution at OQ (example E1).

Ezample E2: We formulated again problem (1), with ¢ = 0 and Q as above,
but this time with less trivial data. We took f = f‘J{Z, with

(29) fH(z,y) = 1+ 0.5(cos(4mz) + sin(27y))
and
(30) g(s) = 0.1cos(27s).
| j | Tolerance [ Tterations | Initial residual ]

3 | 1.0000e-05 109 | 7.3961e-01

4 | 2.5119e-05 152 4.8627e-02

5 | 6.3096e-05 144 | 2.1562e-02

6 | 1.5849e-04 194 | 1.0467e-02

7 | 3.9811e-04 187 | 5.1617e-03

8 | 1.0000e-03 8 | 2.6071e-03

Table 2: Iteration history (example E2)

We evaluated (28) for J = 8, jo = 3. We show the iteration history in Table
2, and a picture of the solution, along a plot of the boundary values, in figures
2(a) and 2(b).

In figure 3, we plotted the decay of the approximation error for the approx-
imate solution ug to example E2

E? (uf) = [|Qjug — ug || ro(r2),

which is uniformly equivalent to the real approximation error

Es(ud) = inf [lo = u oz,
2
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but easier to obtain through the use of the wavelet representation of ug .

To measure the actual order of the method in this case, we did a linear fit
to the errors (in logarithmic coordinates) of the function x(j) = 27C (plotted
along the errors in figure 3). This gave us an observed convergence order of
s = —3.427, which amounts to a convergence rate of O(h3*%7). This is higher
than the expected order, which is O(h?).

BIRREI22

0015
o

02 04 06 08 1

(a) Extended solution (b) Boundary values

Figure 2: Solution and boundary values of the solution at OQ (example E2).

Error
0.1 p- Fit (s=-3.42677)

T Fit data
0.01
0.001
0.0001
1e-05
1e-06
1e-07
1e-08
1e-09

0 1 2 3 4 5 6 7

. . . . . . +
Figure 3: Approzimation errors and fitted idealized convergence rate for uj

(example 2).

Ezample E3: We repeat example E2, but this time without the nested iter-
ation scheme, letting CGLS iterate for j = 8 until the residual was smaller than
€ = 1073, which took 646 iterations. In figures 4(a) and 4(b) it is possible to
observe the solution and the boundary values. In figure 5 we see the approxima-
tion error, which shows a much slower error decay than when using the nested
iteration scheme. We conclude that the nested iteration is essential to recover
additional smoothness.

Ezxample E4: Finally, we tried our method with a Neumann problem. We
used for this the same data as in example E2. Find an iteration history in Table
3, plots of the solution and the values of the normal derivative at the boundary

16



0,015
o

02 04 06 08

(a) Extended solution (b) Boundary values

Figure 4: Solution and boundary values of the solution at 00 (example 3).

01

Error
Fit (5=-2.41409) -
Fit data

0.01

0.001

0.0001

1e-05

1e-06

1le-07
0 1 2 3 4 5 6 7

Figure 5: Approzimation errors and fitted idealized convergence rate for u'}
(example 3).

in figure 6(a) and 6(b), and a plot of the decay of the error (together with a
fitted, idealized convergence history) in figure 7.

3.1 Comparision with the FDLM method

The fictitious domain - Lagrange multiplier method (we will be very brief here;
see for instance [8] for a more detailed account) is derived by appending the
boundary conditions to the energy functional on the fictitious domain using a La-
grange multiplier. From the optimality conditions for the resulting saddle-point
problem, and with Q C T2 and (1) as above, one obtains the following problem.
Given (ft,g9) € H-'(T?) x H'/2(89), find (a*,p) € H'(T?) x H~/?(89) such
that

A B\ (at\ _ [ft
@) (2 5)G)-05)
In our case, the operator A : H(T?) — H !(T?) is, as above, given by A =

—A+ol. The operator B : H'(T?) — H/?(99) is the trace operator, and the

17



| j | Tolerance Tterations | Initial residual |

3 | 1.0000e-05 157 | 8.3501e-01
4 | 2.5119e-05 162 | 7.0388e-02
5 | 6.3096e-05 236 | 2.6126e-02
6 | 1.5849e-04 182 | 1.1880e-02
7 | 3.9811e-04 146 | 5.7156e-03
8 | 1.0000e-03 38 | 2.8311e-03

Table 3: Iteration history (example E4)

0,015
o

02 04 06 08 1

(a) Extended solution (b) Boundary values

Figure 6: Solution and boundary values of the solution at 02, example E4

01

Error
Fit (5=-3.27796) -~
Fit data

0.01

0.001

0.0001

1le-05

1e-06

1e-07

1le-08

1e-09
0 1 2 3 4 5 6 7

Figure 7: Approrimation errors and fitted idealized convergence rate for u}r
(example 4).
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additional variabe p is the Lagrange multiplier. The operator

(32) (g Eé) L HY(T?) x H-2(99) —» H-(T2) x H'/*(59)

is an isomorphism, and thus problem (31) always has a unique solution. The &+
thus obtained yields a solution to our original boundary value problem when
restricted to 2, while the Lagrange multiplier p is the jump in the normal
derivatives of 4+ at the boundary of 2 whenever f+ € H(T?).

Using the same data (and the same domain) as in example E2 above, we
constructed, using the techniques in [13], a good approximation iy € Vi, ps €
V2 of the corresponding solution of problem (31). We have plotted it, together
with the values at the boundary, in figure 8. In figure 9 we show the decay of the
approximation errors together with the fitted idealized convergence rate. The
observed rate of O(h!4°7) corresponds to that predicted by the theory. Finally,
we plot in figure 10 side by side the approximation errors for the solutions
obtained for this data with the SPFD and the FDLM methods. Clearly, the
SPFD method can achieve significantly higher levels of accuracy with fewer
degrees of freedom.

Concluding remarks

We have presented a fictitious domain method which is able to produce an
extension of the solution of (1) with seemingly the same smoothness properties
as those of the original solution. This enables it to achieve better accuracy
with fewer degrees of freedom. While this is encouraging, we should rate the
present method as experimental. A lot can and should be improved, both in
the theoretical understanding of the method and in the actual implementation.

Improvements can be expected, for instance, from a better choice of itera-
tive solver. It would be necessary to find an alternative way of realizing the
projections onto the kernels in (26).

Other important directions of research include the construction of an adap-
tive version of this method, and a modified formulation that allows bound-
aries with less regularity. Breakthroughs in those directions have the potential
of making the method a practical universal solver for elliptic boundary value
problems.
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0.015

0.005

-0005

(a) Extended solution (b) Boundary values

Figure 8: Solution obtained using the FDLM method, and its boundary values
of the solution at 0.

0.1 "
Solution
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Figure 9: Approzimation errors and fitted idealized convergence rate for Gg
(FDLM method).
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Figure 10: Comparision of linear approximation errors.
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