WELL-BALANCED FINITE VOLUME SCHEMES OF ARBITRARY
ORDER OF ACCURACY FOR SHALLOW WATER FLOWS
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ABSTRACT. Many geophysical flows are merely perturbations of some fundamental equilib-
rium state. If a numerical scheme shall capture such flows efficiently, it should be able to
preserve the unperturbed equilibrium state at the discrete level. Here we present a class of
schemes of any desired order of accuracy which preserve the lake at rest perfectly. These
schemes should have an impact for studying important classes of lake and ocean flows.
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1. INTRODUCTION

In this introduction, we present some of the key ideas and ingredients of the subsequent
sections. We begin with a brief review of the shallow water equations and their equilibrium
states, in particular the lake at rest. Then we show an example of a numerical storm produced
by a scheme which is not in discrete equilibrium. Next we review the key ingredient of several
of the recent well-balanced schemes, and give some related references. We close with a preview
of our new high order well-balanced schemes.

1.1. Shallow Water Equations. Many geophysical flows are modeled by variants of the
shallow water equations. In their simplest form these equations read

hi + (hu)y, = 0,

1
(1) (hu)y + (hu? + %gh?)m = —ghz,.

Here z(z) defines the bottom-topography, h(z,t) denotes the water height above the bottom,
and u(z,t) is the horizontal component of the water velocity at position x at time ¢. The
gravity constant is denoted by ¢g. In (1) we have neglected two-dimensional effects, bottom
friction, Coriolis forces arising in a rotational frame, wind forces, and, of course, vertical
variations of the velocity field. For an example of more complete shallow water equations
which are used in coastal engineering, we refer to Gjevik et al. [10].

1.2. Equilibrium States. In spite of all of these simplifications, the equations (1) still con-
tain the most fundamental balances of shallow water flows. The convective part on the
left-hand-side (LHS) is a hyperbolic system of conservation laws similar to that of compress-
ible fluid flows, and the source term on the right-hand-side (RHS) is due to gravitational
acceleration. Let us look at the equilibrium, or stationary, states. They are given by

1
hu = const and §u2 + gH = const,
where
H:=h+z
is the water level. In this paper we are particularly interested in the lake at rest, given by
=0 and H = const.

Such a situation is shown in Figure 1 for a cross-section of lake Rursee near Aachen. Let us
pause for a moment and look at this balance once more. From (1) and the assumptions of
stationary flow with vanishing velocity we have

h2

which is called hydrostatic balance. The first term is the hydrostatic pressure, which models
the tendency of a column of water to collapse vertically and at the same time expand laterally
under the influence of gravity. The second term is the gravitational acceleration down an
inclined bottom z. Now use the chain rule of differentiation and divide by A to obtain

0=g(h+2z2), =9gH,.

Thus we see that the effective acceleration can be interpreted as gravitational acceleration
down a non-flat water level H.
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FicUure 1. Cross section of lake Rursee: bottom topography and quiet water
level. 296 cells

1.3. Numerical Storms. If a numerical scheme does not preserve the fundamental balance
(2) at the discrete level, this may result in spurious oscillations, or numerical storms, as seen
in Figure 2. The figure shows a cross-section of lake Rursee near Aachen, and the water should
remain at rest as in Figure 1. Thus, all waves in Figure 2 are pure numerical artifacts. Some
of them are more than a meter high, especially near the edge of the lake. The computation
is run with a standard finite volume scheme, a naive treatment of the source term, and 296
spatial grid cells. Clearly, this scheme on the current grid would not be able to resolve waves
which are of the order of magnitude of the numerical perturbations. One would therefore
have to run such a scheme with a much finer grid, which would make the computation rather
costly.

1.4. Well-Balanced Schemes. The results in Figure 3, which reproduce the lake at rest
perfectly, are obtained with a so-called well-balanced scheme, using the same number of spa-
tial grid cells and timesteps. Let us briefly sketch the main ingredient of the discrete balance
which makes the scheme successful. The main difficulty for the schemes is to preserve the
balance of hydrostatic pressure and gravitational acceleration (hydrostatic balance). Given a
cell [zr,,zR|, let h;, = h(zr,),hr = h(zg). A conservative finite volume discretization of the
hydrostatic pressure would then be

9E ~ gL?'_hQL
2/, 2Ax

hy, +hg hr — hy,
2 Az

We will now show that this already implies a canonical well-balanced discretization of the
source term. Indeed, suppose that the source term is discretized as

ghzy =~ ghDz,
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FiGURE 2. Numerical storm over lake Rursee, produced by a naive finite
volume scheme: water level (top) and momentum (bottom) at time 7' = 0.2
(76 time steps)

where h ~ h and Dz ~ z,. Now we suppose that u = 0 and H = const, and we want to
enforce the discrete hydrostatic balance

h hrhr —h -
(3) 0=y Lt hehe L 4 ghD2.
2 Az
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Ficure 3. Well-balanced computation of quiet lake Rursee: water level
(top) and momentum (bottom) at time 7" = 0.2 (71 time steps). Note that
the scale of the momentum axis is 1079,

From (3) we obtain

- hr, + hr hg — hr
hDz = —— :
? 2 Az
_hi+hr(Hr —2zr) — (Hr, — 21)
2 Az
hi, + hgzr — 21,
4 = .
4) 2 Az
This discretization of the source term was first proposed by Bermudez and Vazquez [3], and
it is also the essential ingredient of the recent well-balanced schemes of Kurganov and Levy
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and Audusse et al. [20, 1]. Closely related schemes usually try to discretize the derivative
of the convective flux and the source term by one and the same finite difference or finite
volume operator, see [2, 4, 30]. Greenberg, LeRoux and coworkers developed schemes based
on the solution of the non-homogenous Riemann-problem, see [14, 12, 11]. We would also like
to mention the finite volume Roe schemes of Gallouét and coworkers [9] and the Norwegian
front tracking approach [15]. This list is by far not exhaustive, and we refer to the papers
mentioned above for further references.

Our paper is based on the recent work of Audusse, Bristeau, Bouchut, Klein and Perthame
(2004) [1]. Their first and second order schemes preserve positivity of water height and the
lake at rest. The first order scheme also satisfies a discrete entropy inequality at discontinu-
ities.

In the present paper we are interested in very high order accurate well-balanced schemes.
These more sophisticated schemes are needed if, for instance, one wants to track small waves
over long periods of time. Well-balanced finite difference schemes of high order of accuracy
were developed by Vukovic and Sopta 2002 [29] and Xing and Shu 2004 [30]. Here we extend
the well-balanced finite volume schemes of Audusse et al. [1] to any desired order of accuracy.

We would like to stress that the approach to achieve high order is rather different in the case
of finite difference and finite volume schemes. In the former case, Xing and Shu rewrite the
balance law in such a way that the fluxes and source terms can be treated by one and the same
difference operator. In the present paper, we observe that the well-balanced quadrature (4)
maintains all its desirable properties under numerical extrapolation. Together with standard
high order reconstructions and the hydrostatic correction this leads immediately to the desired
very high order accurate well-balanced finite volume schemes. This technique can be applied
to many, if not all, of the second order well-balanced schemes based on (4). Numerical
experiments show the expected convergence rates for a fourth/fifth order version of our new
scheme, and excellent resolution of discontinuities and very small disturbances.

Acknowledgement: The authors would like to thank Francois Bouchut for lively and
stimulating discussions. Francois Bouchut gave us a version of his first and second order
well-balanced scheme. We would also like to thank the Institute of Hydraulic Engineering
and Water Resources Management of RWTH Aachen for providing the topographical data
of lake Rursee.

2. HiGH ORDER WELL-BALANCED SCHEMES

In this section, we first summarize the second order well-balanced scheme of Audusse et al.
[1]. Then, for any order of accuracy, we introduce our new treatment of the source term. We
close the section with a summary of the new algorithm. Details of the WENO reconstruction
are given in Appendix A.

2.1. Review of Second Order Well-Balancing via Hydrostatic Reconstruction. Let
U := (h,hu)T be the vector of conservative variables. First we formulate a semidiscrete finite
volume scheme for the cell averages,

1 Tipl
Ui(t) :== A / "2 Uz, t)dx,

with Axz; = Ti1
2
reconstruction, which will in general be discontinuous at the interfaces x

—x;_1. Based on these cell averages, one defines a piecewise polynomial
2

il Oscillations
will be suppressed with limiters. Audusse et al. use a linear reconstruction with minmod
limiter, which leads to a second order scheme. Within cell 7, the left and right values of each

component at position z; 1 + 0 respectively z, 1 — 0 are denoted by (.);; and (.);-
2 2
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Audusse et al. reconstruct h, H, and u. From this, the bottom topography is computed
as z = H — h. This leaves the lake at rest unperturbed, but it leads to a discontinuous
bottom. To get a stable and well-balanced scheme, the following hydrostatic reconstruction
is introduced:

(5) h;, = max(0, by, + zir — max(zi,, zig1,)),
(6) i1 = max(0, by + zip1) — max(2i,, Zig1,))-

These values are used to construct auxiliary values U}, and U}, , which will enter an ap-

*
U < his )
7,7 * .
’ hi,Tulzr

*
* : h‘i—|—1,l
N ] . .
i+1, h;+1,l“‘i+1:l

proximate Riemann solver:

Note that at the interface z

i+1, we have two different reconstructions, namely z; 1 on the
2 2
left and z;, 1, on the right side. The semidiscrete finite volume scheme then reads
2
d (4)
(7) Ami%Ui(t) — FUs, Uisr, zigy Zig1,0) + Fo(Ui1, Uiy zic1 0, 2i0) = S,
It remains to specify the numerical fluxes and the source term. The fluxes are given by
* * 0
(8) Fr(Uis Ui, zip, ziv1,) = F(U;,, Ul ) + ( Ip2  9(hr )2 )
2, 2 1,7
0
9) FiUi-1, Uiy zi 1y, 2zip) o= F(U ,, USY) + ( Ip2, — 9(hr))?2 )
2,1 RSN

Here F'is a conservative numerical flux consistent with the homogeneous shallow water equa-
tions. Because of their robustness, the local Lax-Friedrichs, Harten-Lax-vanLeer or kinetic
solvers are used in [1] and also in the present paper. The second term on the RHS of (8)
and (9) cancels the difference of the hydrostatic pressures based on the piecewise polynomial
reconstruction h;, and the hydrostatic reconstruction hj, at the interface z;

©))

(&)

+3°

The index 7 = 1,2 represents the order of the numerical source term S;’. It is given by

for j =1 and

0
(10) Sé?) = ( hi 14hi )
g’f(

2] — Zix)

for j = 2. Note that this corresponds to the source term discretisation (4), and below we
review the argument that shows how this leads to a well-balanced scheme for the lake at rest.
Together with a second order Runge-Kutta time discretization the fully discrete second
order well-balanced scheme of Audusse et al. is now complete. With constant reconstruc-
tion and without the Runge-Kutta procedure you get the associated first order scheme [1].
Audusse et al. could show for their scheme that it preserves the nonnegativity of the water-
height h;(t), it preserves the steady state of the lake at rest, is consistent with the shallow
water system and there first order scheme does also satisfies an in-cell entropy inequality.
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2.2. Second order Well-Balancing. To motivate the subsequent development of a well-
balanced scheme of very high accuracy, we need to review the well-balanced property of
Audusse et al.’s second order semidiscrete scheme (7).

Suppose that H = h + z is constant at time ¢, and u = 0. Since H;, = H; 1,

hir = max (0, H; , — max (2, 2it1,))
= max (0, H;y1; — max(2i,, zi+1,))

*

i1,

and since u;, = u;41; = 0, we also have

® T
Uir = Uiy
Because now the values U, and Ui*—|—1,l are equal, we denote them simply by Ui+%= hi+%’

1 = 0 Vi and by consistency of the numerical fluxes,

My 1= (hu)H%. Because Uig

7

Nl

0 0

This, together with the definitions (7) (10) of the semidiscrete scheme implies

d
and
d
ar'
1 [g,, 9,2 9,2 9.2 9,2 9,2 hig + hir
= ap e (50 Bg) - (Bl §Ey) et
U [ bl = kY bty
= “ag Y 7’r2 e 5 ““((Hig = hig) = (Hiy = hiy))
1 i hi; + h;
= T Az —Q%J(Hi,l—Hi,r)]

Because of H;; = H; , = H,

(1) =
Zmi(t) =0
SO
d
—Ui(t) = 0.
TR

Therefore, the second order semidiscrete scheme preserves the stationary state of the lake at
rest.

2.3. Higher Order Well-Balancing. The project of the present paper is to show how to
extend the first and second order accurate well-balanced schemes to any desired order of
accuracy. Most ingredients which we use are well-established in the literature: high order
WENO spatial reconstructions, high order Runge-Kutta time discretizations, and appropriate
quadrature rules for the initial data. But there is one essential difficulty to be solved: we
need to find a quadrature rule for the source term which is both accurate and well-balanced.
The remainder of this section is devoted to the solution of this question.
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As before, let U; ., Uj;1, be the left and right values of a piecewise polynomial reconstruc-
tion at interface z,, 1. Of course, this time we work with polynomials of any desired order of

+2
accuracy. Define the hydrostatic reconstruction h by (5) and (6) as before, and set

it+4+

h* * 11
[Qly— 1,7 * — 41,0

(11) Ui,r T m. ) i+1,0 Mgty .
bi,r i+1,]

Note that to achieve orders higher than two, it is convenient to reconstruct in the conservative
variable m (which is computed with full accuracy by the finite volume scheme) instead of the
primitive variable u, which is only derived from the conservative ones. We define the left and
right numerical fluxes F; and F, by (8) and (9) as before. It remains to define a high order,
well-balanced numerical quadrature of the source term

T, 1
S = - / o ghzgdzx.
J T

1
i—3

The main observation of this paper is that this can be done by numerical extrapolation. To
do so, we subdivide each cell into N subcells and apply the quadrature (4) to all subcells.
This gives the quadrature Sy,

N
hj—1+h;
Sn : gz %(ijl —zj) = S,
J=1
where z; = z(x, 1 + jAxz/N) etc. are local values of the reconstruction at the interfaces of
) 2
the subcells. In the situation of the lake at rest, where

zj1—zj=hj —hj

the source term reduces to
N
g~ hji-1thy
Sn = —5 Zl #(hj —hj1)
-

g
g

By the same arguments as for the second order case this is well-balanced, but it is still only
second order accurate (see Table 2).

To get higher orders of accuracy we use numerical extrapolation (see e.g. the textbook of
Deuflhard and Bornemann [8]). Note that the quadrature (4) is symmetric and second order
accurate. Therefore, from Theorem 4.39 of [8], there exists an asymptotic expansion of the
form

Az\? Az\*
(12) SN:S-FCl(Wx) +CQ<W$> +....

The Sy can be combined for different values of N to compute S with any order of accuracy.
For example, to get a source term of order four, simply use

45y — 51
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Therefore we define S(gf) by
(13)
4 (S (hyi + hei)(z1i — 2e5) + $hei 4 o) (Zei — 20)) — ($(hui + o) (215 — 20))
= 3 )
Thus for the lake at rest:

g@ .

g
s =T, n)

which leads to a well balanced scheme.

Remark 1. Note that compared with Sy, the computation of So uses only one additional
reconstruction point per cell, namely the cell center. Thus we can compute S to fourth order
accuracy using three points per cell, which is analogous to Simpsons rule (which may be
obtained by extrapolating the trapezoidal rule). Note that we could not use Simpsons rule
directly, because this would not give a well-balanced scheme.

Remark 2. Note that any scheme that is well balanced with the source term (4) will also be
well balanced with the fourth order source term (13).

We summarize our high order well-balanced finite volume schemes in the following theorem:

Theorem 3. Consider the fully discrete finite volume scheme given by a j*" order Runge-

Kutta time discretization of the semidiscrete scheme (7) — (9), with k™ order spatial recon-

. . . o
struction, hydrostatic reconstruction (5), (6), and (11), and source term Séi) given by an I

order extrapolation of (12). Then
(i) the scheme preserves the stationary state of the lake at rest

(ii) the scheme is consistent of order p := min{j, k,l} with the shallow water equations (1).

Proof. We have already proved the well-balanced property. The proof of consistency follows
closely that of Theorem 3.1 of [1], g.e.d.

In the numerical experiments in Section 3, we use the classical 4* order Runge-Kutta
scheme, a 5" order WENO reconstruction in space (see Appendix A) and the 4" order
extrapolation (13) of the source term. According to Theorem 3, this scheme is formally 4"
order accurate. Surprisingly, in experiments with smooth solutions, it clearly gives 5 order
convergence, see Table 1 below. Note that we could also have used Shu’s TVD Runge-Kutta
time discretizations [24] or the recent SSPRK schemes [13, 27].

3. NUMERICAL EXPERIMENTS

3.1. Order of Accuracy. To verify the order of accuracy we follow Xing and Shu [30] and
choose

z(z) = sin®(mx)
h(z,0) := 5 4 08(27)
h?l/(m, 0) = SiH(COS(QW{[;))

for bottom topography, initial water height and momentum. Here z € [0, 1], the boundary
conditions are periodic, and the gravitational constant ¢ is set to 9.812. We compute up
to time ¢ = 0.1 with CFL number 0.4. Since the exact solution for this experiment is
not known explicitly, we use the same well-balanced WENO scheme of order (4,5,4) with
N = 25600 cells to compute a reference solution. We use a fifth order WENO reconstruction
with e = 1075 and optimal weights from (31), together with the weight splitting method
[23] to compute the central point values needed in the quadrature (13). Table 1 contains
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the L' errors and numerical order of accuracy for both components. We achieve full fifth
order convergence in both components. Note that we have used the fifth order WENO
reconstruction in space, but only a fourth order accurate extrapolation of the source term
and the classical fourth order Runge-Kutta time discretization. Thus not all elements of
the algorithm contribute equally to the overal error. However, a standard second order
discretization of the source term does reduce the order of accuracy to two, see Table 2. This
shows the relevance of the key new ingredient of our algorithm.

In the following, we will denote our well balanced WENO schemes with the triplet (4, k,1),
where j, k and | denote respectively the accuracy in time of the Runge-Kutta integrator, the
accuracy in space of the WENO reconstruction and the accuracy of the quadrature rule (13).

convergence table with fourth order source term

TABLE 1. L' errors and numerical orders of accuracy for Example 3.1 for the

number h hu

of cells | LT error order | LT error order
25 1.13e-02 8.22e-02
50 1.84e-03 2.61 | 1.71e-02 2.27
100 2.83e-04 2.70 | 2.48e-03 2.78
200 2.07e-05 3.77 | 1.77e-04 3.81
400 8.18e-07 4.66 | 7.02¢-06 4.66
800 2.67e-08 4.94 | 2.29e-07 4.94
1600 8.40e-10 4.99 | 7.21e-09 4.99

new well-balanced finite volume scheme of order (4,5,4).

convergence table with second order source term

number h hu

of cells | L' error order | L' error order
25 1.12e-02 8.29e-02
50 1.87¢-03 2.58 | 1.73e-02 2.27
100 2.86e-04 2.71 | 2.50e-03 2.78
200 2.18e-05 3.70 | 1.82e-04 3.77
400 1.37¢-06  3.99 | 9.99¢-06 4.19
800 2.18e-07 2.65 | 1.46e-06 2.77
1600 5.05e-08 2.11 | 3.31e-07 2.14

TABLE 2. Same as Table 1, but second order discretization of the source
term S,; (order (4,5,2)).

3.2. Perturbation of a lake at rest. The following problem was studied by LeVeque [21].
It shows the behavior of a small perturbation of a lake at rest with variable bottom topography

() = 0.25(1 + cos(10m(z — 0.5))), ifl12<z<1.4
)= 0, else

where x € [0,2]. The total initial height is given by

1+AH, ifl1<z<1.2
H(z,0) = { 1 else
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LeVeque, who worked with a second order scheme, used AH = 0.1. Xing and Shu [30],
Vukovic and Sopta [29] and we use higher order schemes, and here we test AH = 0.001. The
initial velocity is set to

v(x,0) =0

and the gravitational constant ¢ = 9.81. We use a fifth order WENO reconstruction with
optimal weights from (31) and ¢ = 1072 in order to satisfy (33). Indeed, ¢ = 105 results
in oscillations at the shocks. Periodic boundary conditions are used. The CFL number is 0.4
and the final time is 7" = 0.2.

Figures 5 and 6 show total height and momentum computed with 200 cells and 157
timesteps, and a comparison between first, second and (4, 5,4)" order solutions are shown in
Figure 7. At this time, the wave travelling to the right has just passed the hump, and part
of it has been reflected. All the schemes are able to produce the physically correct reflected
waves (see the interval [1,1.5] around the hump). The new scheme shows remarkably high
resolution. Schemes which do not preserve the discrete hydrostatic balance may introduce
unphysical waves and high frequency oscillations (see [29, Figure 8 & 9]).

= total initial height
o zoom of total initial height
x bottom topography
N
1
0.8
4
ey
2
(]
£ 06
<
4+
o i
R x x
HHDOIRINND,
0.4 ( aonemmo DN
0.2
O .
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
X

FI1GURE 4. Example 3.2, bottom topography and initial water level.

3.3. Dambreak over a rectangular wall. This test case simulates a dambreak over a
rectangular wall. It produces a rapidly varying flow over a discontinuous bottom topography.
This example was used in [29],[30]. The bottom topography is given by
if |z — <
o(z) = { 8, if |z — 1500/2| < 1500/8

0, otherwise,
with z € [0,1500]. The total initial height is

20, if0 <z <750
H{(z,0) = { 15, otherwise.

The initial velocity is set to zero v(z,0) = 0 and the gravitation constant is g = 9.81. At
the left boundary we use reflective boundary conditions and on the right side open boundary
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FiGure 5. Example 3.2, total height at T' = 0.2 computed with 200 cells.
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FiGure 6. Example 3.2, momentum at 1" = 0.2 computed with 200 cells.

conditions. In Figure 8 we show level lines of the water level, or total height, of the solution
up to time 7" = 60. In the beginning, one observes the standard rarefaction and shock waves
which form the solution of the Riemann problem of the homogeneous shallow water equations.
Figures 9 and 10 show the water level and velocity at 7' = 15. At time T = 17 the waves cross
the two edges of the wall. A part is transmitted, another part reflected, and a remaining part
becomes a standing wave. Such standing waves have recently been studied analytically by
Klausen and Risebro [18], Towers [28], Klingenberg and Risebro [19], and Seguin and Vovelle
[22] who consider the inhomogeneous one dimensional shallow water equations as a system
of three conservation laws for (h, hu, z) with 9,z = 0. This system has the three wave speeds
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first, second, fifth order solution at T=0.2 (157 time steps) , with 200 cells
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FicUrE 7. Example 3.2, total height at 7" = 0.2 computed with first, second,
and (4,5,4)" order schemes and 200 cells.
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Ficure 8. Example 3.3, contourplot of water level in the z — ¢ plane.

u £ /gh and 0. For later times, the wave system keeps interacting. At time T' = 60, we
have six waves in the solution. The main shock and rarefaction waves just hit the boundary
of the computational domain. Between them we have, from left to right, a standing wave, a
weak rarefaction travelling leftwards, a second standing wave, and a weak compressive wave
travelling rightwards. Figures 11 and 12 show cross sections of total height and velocity. Note
that the standing waves are not easy to capture, even by a high resolution method as the one
proposed in [29]. Here we have almost perfect resolution of all features of this challenging
solution.
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Ficure 10. Example 3.3, velocity at 1" = 15, 600 cells.
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IGURE 11. Example 3.3, water level at T = 60, 600 cells.
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Ficure 12. Example 3.3, velocity at 7' = 60, 600 cells.
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4. TWO DIMENSIONAL EXTENSION

The shallow water equations in 2D are given by

hi + (hu)y, + (hv)y, = 0
(14) (hu); + (hu? + %ghQ)QE + (huv)y, = —ghz,
(hv) + (huv)y + (hv2 + %ghQ)y = —ghzy,

where h is the water height, z is the bottom topography, u is the velocity in z-direction, v
is the velocity in y-direction and ¢ is the gravitational constant. We will now discuss how to
extend our scheme to two dimensions.

4.1. Overview of the scheme. Rewrite the system (14) in the standard form:
(15) Up + F(U) + Gy (U) = S(U),

where clearly U = (h, hu, hv)", F = (hu, hu? + %ghQ,huv)T, G = (hv, huv, hv* + %ghQ)T
and S = (0, —ghzy, —ghz,)". We define the cell averages over grid cells Ijj = (z;,_1,2;,1) X
- - 2 2

(y; 1,9;,1) by

1
Uij = AzAy

(16) / Ul(x,y)dzdy,
where Acx =z, 1 —z, 1, Ay =1y. 1 —y. 1. Suppose for simplicity that the cells are square:
7,+2 15 ]+2 J—3

let 0 = Az = Ay. Integrating each term in (14) over the cell /;; and invoking the divergence
theorem, we get the following semidiscrete scheme for the evolution of the cell averages U;;:

d
52—Uij(t) + /

(F,G) -nds = / Sdzdy,
dt Jor,, Jr;

Rewrite the system as:

4 i+.l,] i ij—

(17) anj(t) +— 5 5 Sij
where

_ 1 yj+%5
(18) Fifé,j -5 . F(U(mi—%?y)) dy

Jyj—50

B 1 :L‘r}»%(s

(19) Gij1= S,/w.l,s G(U(z,y;_1)) dz
i
1
(20) Sij = 5 /I S(z,y) dx dy;
J;

In analogy with the 1D case, we reconstruct the variables h, hu, hv, and H, while the bottom
topography is given by z = H — h. In general, this yields a discontinuous approximation of z.
Let Ujj(x,y) denote the reconstruction computed in the cell I;; with U denoting any of the
reconstructed variables. Again, to preserve the equilibrium states, a hydrostatic reconstruc-
tion is needed on the quadrature points on the boundary of the cell, which will be denoted
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‘i+1,j(m;—+la = max (0 H7+1] it a') — max (ZU( 7_|_ a') Z7+1,]( il a))) )
h;‘j(xl;l, = max (0 Hij(x i+ -) — max (Zij(ﬂUH%, ), Zz'+1,j(-73i+%, ))) 7

L (ya) = 0, Hijy1 (91 1) — max (Zi_j(-,y_j+%)a2i,.j+1('=$j+;))) :

hij (-, yj; ) = max (0= Hij(,y;,1) — max (Zz'j('ayng), Zij41 (-,y_H%))) :

N =

To approximate the quantities F‘Flj and Gijfl in (18) and (19), we use a quadrature
20 7 2
Fi_s -"“Zka i 1,9; + &k9));

where wy and & are the weights and nodes of the quadrature formula. For a fourth order
scheme we use the classical two-point Gaussian formula

(21) vy (PO, 1, ad) + F(U(5,_ 1.y +a0)))

where a = 1/(2v/3). A similar formula holds for G, i1
ij—

We still need to construct a well balanced approximation to each of the flux evaluations
required in (21). As in 1D, the numerical flux is composed of two contributions. The first
contribution (F" for F and G" for G) is consistent with the flux of the homogeneous shallow
water equations, the second contribution compensates the perturbation introduced by the
hydrostatic correction.

The modified state variables that will be applied in the flux computations are

h;
Uij = | (hu)i
(hv)ij

Along the edge (z; 1,y) for instance the numerical fluxes are
2

(22) ]—"l(U*,z)ii%,jia = FMU; (g 1,y £ ad), Uj(z;_1,y; £ ad))
0
+ % h127 (miféayj + ad) - (h*)ZQ] (miféayj + ad)
0
and
(23) fT(U*ﬂ Z)z'+%,jia = Fh(U7T](7"Z+%a U] + 045), U7—|—1 ]( 1+ aU] 05))
0
+ % hij(@is 1y £ 0d) — (h*)5 (w15 £ 0d) |,
0
with similar formulas for G! and G".
Thus the semidiscrete scheme can be written as,
(24) gy = (7w F, o~ F,
dt VT s Titsgta T Vit ggoa Ticggta Tiegj-a
! !
g:—l—a,]—kl + g: a ]-I—— gH—oz ]7— gv o,]— ) + SZY
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The construction of the source term S;; is carried out as follows. First we write the source
term componentwise: S;; = (0, Siis S%)T. Note that the component of the source term in
the z-momentum equation contains only the derivative of z along the z direction. Thus,
we employ the well-balanced quadrature (13) of the previous section to integrate in the x-

direction and apply the Gaussian rule in the y-direction. For the fourth order case,

0
(25) Sy = ) (57 (yj + ad) + 57 (y; — ad)),
where,
« 4g
si (y) = = ((hij(z; 1, 9) + haj(2i9)) (21 (210 y) = 2i5(wi, y)

6
o (hig(irw) + iy 1, 9)) (23 (o) = 25,1, 9)))

g
= g i (i 1oy) + hij (e 1.9)) (g (2,1 y) = 2i(,.1.9))-

In the same fashion, we compute the source Sf/j using (13) in the y-direction and the Gaussian
rule in the z-direction. Again, in the fourth order case:

o
(26) S = 3 (9?]/(7"7 + ad) + 55 (i — (J/(S)) ,

where now,

S

) + hij (2, y)) (zij (z,y; 1) = 2ij(2,y5))
i@ y5) + hij @,y 0)) (2 (2, y5) = 2i5(2,y,,1)))

1 1
2 2

g
sf(z) = < ((hij(z.y;
+ (h;.

g

Using the same arguments as in the proof of Theorem 3 one can show:

Corollary 4. The 2D scheme is fourth order accurate and preserves the stationary state of
the lake at rest.

4.2. 2D reconstruction. In order to evaluate the numerical flux functions F and G and
the source term S, we need to reconstruct pointvalues of H, h, hu and hv at 12 integration
points, 8 on the boundary (gcii%,yjia), (xiia,yji%) and 4 in the interior (z;,yj+o) and
(%ita,y;) as shown on the right of Figure 13. Note that the interior points are required only
to compute the source term, which is fourth order accurate. As in the 1D case we apply a
WENO procedure to find these data.

In 2D this reconstruction is somewhat more involved. Our approach is to reconstruct each
variable dimension by dimension. For each cell, the one dimensional WENOQO procedure has
to be applied six times to produce pointvalues in all quadrature points.

To fix ideas, we illustrate the algorithm for the reconstruction of the variable h. In this
section only, we denote the cell averages as ﬁi'j, to distinguish the averages computed on a cell
(a double integral) from the averages computed along only one segment (a single integral).

We start applying the WENO reconstruction procedure in the y direction, starting from
the cell averages ﬁij. We apply the reconstruction defined by the constants in Appendix A
(32) and we find approximations in the points (z;,y;+q) and (z;,y;_4) to the function:

_ 1 n+§
hij(Zis Yjta) = g/ . h(z,yja) dr.
Jri—5
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Once these data are available for all 7, we apply again the WENO reconstruction along the
r axis to get the required pointvalues, i.e. hi;j(7;_1,9yj1a), hij(Ti,yj1a) and hij (2, 1, Yj1a),
A 3 v 2

starting from 77,,;]- (%i,Yj4+a). With another reconstruction, we find hi;(z; 1,yj—a), hij(%i, yj—a)
_ 'y
and hj(7;, 1,y a), starting from h;;(z;, y; o). This set of operations will be called yz sweep,
2
see Figure 14.

To get the quadrature points along the dashed lines on the right in Figure 13, we perform
the same operations in the reversed order. This will be called z-y sweep, see Figure 15.

(xifa': yj+%) ($i+a‘:yj+%)
E E (7'77%71/]4-0/) (mi+%’yj+(l)
—:—» y]'+a «:— 3 L
! ! 3 (Zis Yjta)
v (zi,95) v | Ti,Y; ;
YjiT Li—a * Lita YjT " oo s) x
A (Ti—hrYj) (TithYj)
g Yjo —~—— s s
‘ ! ' (ajz‘f%ayjfa)} (xiayjfa) | (:L‘jJr%ayjfa)
T T; (371‘7047 yj_%) L ($i+a: yjfé)

FiGure 13. (Left) The positions of the reconstructed crosssection aver-

ages (Zi+a,-) (dashed lines), (-, yj+q) (black lines) for the first reconstruction

step. (Right) The Gaussian integration points for the edges (z,,1,yj+a),
T2

(r[;,;ia,yji%) and for the interior, (%;,yj+a) and (%i+a,y;). The point values
in these locations are computed in the second step of the reconstruction.

Now, all the quantities appearing in the semidiscrete scheme (17) have been defined. Fi-
nally, to get a fully discrete scheme, we need to specify a method to march forward in time.
As in the 1D scheme, we apply the classic fourth order Runge-Kutta method. For other cases,
it might be advantageous to use the recent TVD or SSP Runge-Kutta schemes [24, 13, 27].

4.3. Well-balanced test in two dimensions. The two dimensional experiments we present
here follow closely the work of Xing and Shu [30]. We check the behavior of the two dimen-
sional scheme in a lake at rest situation on a rectangular domain [0, 1] x [0, 1], with a non-flat
bottom topography

(27) 2(z,y) = 0.8¢—50((2—0.5)%+(y-05)?)
The initial water height is
(28) h(z,y) =1 — z(z,y),

so that the water surface level H is constant 1.0. The momentum in z and y direction is set
to zero:

(29) hu(z,y,t =0) =0 and hv(z,y,t = 0) = 0.

The lake is at rest initially, and should remain at rest indefinitely. In this situation, a scheme
without well-balancing would produce unphysical waves. For this test we use a uniform
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(‘TH»% ) yj+a)

FiGURE 14. In the first step of the y-z-sweep we compute averages over
crossections (-,y;+q) marked with black lines in the figure on the left side. In
the second step of the y-z-sweep we use the crossection averages to compute
point values at quadrature points (fl?,;i%,yjia), (%i,Yj+a) (right figure).

(mi+aa yj+%)

('T'H-ou y])

F1GURE 15. In the first step of the z-y-sweep we compute averages over
crossections (-, Z;+o) marked with dotted lines in the figure on the left side.
In the second step of the z-y-sweep we use the crossection averages to compute
point values at quadrature points (xiia,yji%) (Zita,y;) (right figure).

100 x 100 grid and compute the solution at time ¢ = 0.1. We get following L'-errors for the
conservative components: ||h|[; = 1.23e 16, ||hul|; = 2.20e !¢ and ||hv||; = 2.22¢16. The
errors are all of the magnitude of the rounding error ¢! thus the scheme is indeed perfectly

well-balanced.
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number CFL h hu hv

of points LT error order | LT error order | LT error order
25 0.5 | 8.77-03 3.42e-02 6.71e-02
50 0.5 | 1.10e-03 3.00 | 2.73e-03 3.65 | 9.40e-03 2.84

100 0.5 |9.84e-05 3.48 | 1.56e-04 4.13 | 7.85e-04 3.58
200 0.5 | 4.91e-06 4.32 | 6.58e-06 4.57 | 3.93e-05 4.32
400 0.5 | 1.82e-07 4.76 | 2.41e-07 4.77 | 1.46e-06 4.75
800 0.5 |6.06e-09 4.91 | 7.94e-09 4.92 | 4.90e-08 4.90

TABLE 3. L'-errors and numerical order of accuracy for the convergence test 4.4

4.4. Testing the order of accuracy. To check the numerical order of accuracy we use the
same experiment as Xing and Shu [30]. On the unit square [0, 1] x [0, 1] we choose the bottom
topography:
z(xz,y) = sin(27x) + cos(27y)
the initial water surface level:
h(z,y,t = 0) = 10 + M) cos(2my)

and the initial momentum in the x and y directions respectively:

hu(z,y,t = 0) = sin(cos(27x)) sin(27y)

hv(z,y,t = 0) = cos(2mx) cos(sin(27y)).
We compute up to time 7' = 0.05 with CFL-number 0.8. For the WENO reconstruction we
use the optimal weights of (31),(32) and set ¢ = 10~%. The reference solution is computed
with the same scheme and 1600 x 1600 cells, since the exact solution is unknown.
For this experiment we expect fourth order of accuracy in all conservative components. The
applied standard Runge-Kutta time integration, the integration of the numerical fluxes with
Gaussian rule and the cell centered source term are all formally fourth order accurate, while
the applied WENO reconstruction is fifth order accurate. Table 3 contains the L'-errors and

orders of accuracy. We can clearly see that for this two dimensional test case, fourth order
accuracy (in fact almost fifth order) is indeed achieved in all components.

4.5. A small Pertubation of a Two Dimensional Steady-State Water. This classical
problem is given by LeVeque [21] and is also computed in [30]. For this problem we consider
the rectangular domain [0, 2] x [0,1]. The bottom topography is displayed in Figure 16 and
it is given by:

2z,y) = 0.86(75(,1“,70.9)2750(y70.5)2).

The initial water surface level is given by:
UL = if 0.05 <z < 0.
h(m,y,tzo):{ 101 = 2(z.y) if 0.05 <z <0.15

1 —2z2(z,y) otherwise
so the initial surface level is almost flat, only in the region 0.05 < z < 0.15 it is perturbed
upward by the displacement 0.01. The initial momentum in the z and y directions is:

h?l/(.’l,',y,t = 0) = 0
ho(z,y,t =0) = 0.

)

We compute using two different uniform meshes with 200 x 100 cells and 600 x 300 cells.
Figure 17 shows 30 uniformly spaced contour lines of the surface level H at times ¢ =
0.12. 0.24, 0.36, 0.48 and final time T' = 0.6. The results obtained with the course grid
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appear on the left side, while on the right we find the numerical solution obtained with the
fine grid.

In the simulation with the coarse grid we use ¢ = 1079 and for the fine grid e = 107%. In
both experiments we choose the CFL-number equal to 0.5. As we can see, we get results
comparable to the finite difference approach in [30].

0.8
0.6
0.4

0.2

s:&#-’-l.';@

S ORI

xR

TRaeeee—s
s RS

FIGURE 16. Bottom topography of experiment 4.5 z(z,y) = 0.8¢(—5(@=0:9)?=50(y—0.5))
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surface level at time t=0.12 surface level at time t=0.12

surface level at time t=0.24

\

surface level at time t=0.36

a

Figurge 17. Contour lines of the surface level h + 2z for the experiment of
Subsection 4.5 at times ¢ = 0.12,0.24,0.36,0.48,0.6. Left: 200 x 100 grid,
right: 600 x 300 grid. There are 30 uniformly spaced contour lines in each
plot. At time ¢ = 0.12 the contour lines go from 0.999837 to 1.005974; at
time £ = 0.24 from 0.996091 to 1.014523; at time ¢ = 0.36 from 0.988829 to
1.011245; at time ¢ = 0.48 from 0.990559 to 1.004614; at time ¢ = 0.6 from
0.995244 to 1.005207.
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5. CONCLUSION

In this paper, we have constructed well-balanced finite volume schemes for the shallow
water equations, which are of any desired order of accuracy. The new schemes generalize a
class of second order schemes proposed by Audusse et al. [1]. A (4,5,4)"" order version of
the new scheme gives the expected high resolution both for smooth and non-smooth flows,
and perfect balance for the lake at rest in one and two spatial directions. The key technique,
a new quadrature formula for the source term, can be applied to a wide variety of first and
second order well balanced schemes, to raise their order of accuracy. Work on stable schemes
for flows with dry areas is in progress.
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APPENDIX A. WENO RECONSTRUCTION

For completeness, we review the WENO reconstruction [16],[25] for uniform grids in 1D.
Moreover, we wish to report the accuracy constants for the points in the Gaussian quadrature
that we were not able to find elsewhere in the literature.

Given cell averages

)
Uj = —— u(z)dx
Y16 Je, )

on cell C; and a fixed point z* € Cj, the WENO procedure provides a highly accurate
piecewise polynomial approximation R(z*) of u(z*).

(30) R(z*) = u(z*) + O(Az* 1)
1. Define r small stencils, composed of 7 cells, around the cell containing z;
Sk 1= (Tjrk—rt1s Tjak 142,y s Titk)y bk =0,m — 1

and one large stencil
r—1
T .= U Sk
k=0

which contains all the cells from the r smaller stencils.

2. Given cell averages u; compute the interpolation polynomials py(z) of degree (r — 1) asso-
ciated with the stencils Sy for £ = 0,..,7 — 1 and the higher order reconstruction polynomial
Q(x), of degree (2r — 1) associated with the large stencil 7. Here, interpolation is understood
in the sense of cell averages.

3. Find the linear weights Cy, ..., C;_; such that:

r—1
Q(z*) = Cipk(a).
k=0
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For the fifth order WENO reconstruction used in this paper we get the following weights:

= | G [ 6] & |
a1 x| 03 [06 ] 01

z; | 0.1125 | 1.225 | 0.1125

z,_| 01 [ 06 | 03

For the 2D extension we need also weights for Gaussian points:

L« | G [ ¢ | 67 ]

. Az | 70V/3+1 70v/3+1

(32) T — o 10/ 11/18 s
. Az | 70v3+1 70v/3+1

Tj+ 23 | 360V3 11/18 3603

4. Compute the smoothness indicators

r—1 Lp. 41
IS, — J+2A 2-1¢, ()24
k Z . x (pk ) Zz,
1=1Y%i—3

where [ denotes the [-th order derivative of py.
5. Compute the nonlinear weights based on the smoothness indicators

af
g+ -+ arg

W =

where
T
C

M= ISR

k=0,1,...,7m — 1.
Here ¢ is a real number which is introduced to prevent the denominator from becoming zero.

To preserve accuracy, ¢ should satisfy the constraints

0<e
e K ISy

(33) everywhere
in regions where the solution is smooth.

In the numerical experiments we use ¢ = 1075, except for the experiment in Section 3.2,

where the IS} are extremely small and we need to use ¢ = 10~ '2.

6. The final WENO reconstruction is given by:
r—1

R(a*) = 3 wipu(s®).
k=0

It is well known that the negative weights appearing in (31) may lead to oscillations at discon-
tinuities [23]. Note however that this problem occurs only in the reconstruction of the point
values at the locations (z;,yj+q) and (Zj+q,y;) which are needed only in the computation of

T

s7(y) and sg(x), see (25) and (26). We have tested the following two approaches: first, we
simply replaced the weights by the fourth order accurate choice of Cj := 0.25, C} := 0.5 and

C3 := 0.25. Since these data midpoint appear only in the quadrature SS) for the source term,
which is only fourth order accurate anyway, this does not decrease the overall order (4,5,4)

of the algorithm. The second cure is the splitting technique of Shi, Hu and Shu [23]. For
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the problems presented in this paper, this more expensive approach did not lead to superior
results.
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