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2 NOELLE, PANKRATZ, PUPPO, AND NATVIG1. IntrodutionIn this introdution, we present some of the key ideas and ingredients of the subsequentsetions. We begin with a brief review of the shallow water equations and their equilibriumstates, in partiular the lake at rest. Then we show an example of a numerial storm produedby a sheme whih is not in disrete equilibrium. Next we review the key ingredient of severalof the reent well-balaned shemes, and give some related referenes. We lose with a previewof our new high order well-balaned shemes.1.1. Shallow Water Equations. Many geophysial ows are modeled by variants of theshallow water equations. In their simplest form these equations readht + (hu)x = 0;(hu)t + (hu2 + 12gh2)x = �ghzx:(1)Here z(x) de�nes the bottom-topography, h(x; t) denotes the water height above the bottom,and u(x; t) is the horizontal omponent of the water veloity at position x at time t. Thegravity onstant is denoted by g. In (1) we have negleted two-dimensional e�ets, bottomfrition, Coriolis fores arising in a rotational frame, wind fores, and, of ourse, vertialvariations of the veloity �eld. For an example of more omplete shallow water equationswhih are used in oastal engineering, we refer to Gjevik et al. [10℄.1.2. Equilibrium States. In spite of all of these simpli�ations, the equations (1) still on-tain the most fundamental balanes of shallow water ows. The onvetive part on theleft-hand-side (LHS) is a hyperboli system of onservation laws similar to that of ompress-ible uid ows, and the soure term on the right-hand-side (RHS) is due to gravitationalaeleration. Let us look at the equilibrium, or stationary, states. They are given byhu � onst and 12u2 + gH � onst;where H := h+ zis the water level. In this paper we are partiularly interested in the lake at rest, given byu � 0 and H � onst:Suh a situation is shown in Figure 1 for a ross-setion of lake Rursee near Aahen. Let uspause for a moment and look at this balane one more. From (1) and the assumptions ofstationary ow with vanishing veloity we have0 = �gh22 �x + ghzx;(2)whih is alled hydrostati balane. The �rst term is the hydrostati pressure, whih modelsthe tendeny of a olumn of water to ollapse vertially and at the same time expand laterallyunder the inuene of gravity. The seond term is the gravitational aeleration down aninlined bottom z. Now use the hain rule of di�erentiation and divide by h to obtain0 = g (h+ z)x = gHx:Thus we see that the e�etive aeleration an be interpreted as gravitational aelerationdown a non-at water level H.



HIGH ORDER WELL-BALANCED FINITE VOLUME SCHEMES Marh 18, 2005 3

50 m 100 m  150 m  200 m 250 m
220 m

230 m

240 m

250 m

 260 m

270 m

x

to
ta

l 
h

e
ig

h
t

bottom topography

total height

Figure 1. Cross setion of lake Rursee: bottom topography and quiet waterlevel. 296 ells1.3. Numerial Storms. If a numerial sheme does not preserve the fundamental balane(2) at the disrete level, this may result in spurious osillations, or numerial storms, as seenin Figure 2. The �gure shows a ross-setion of lake Rursee near Aahen, and the water shouldremain at rest as in Figure 1. Thus, all waves in Figure 2 are pure numerial artifats. Someof them are more than a meter high, espeially near the edge of the lake. The omputationis run with a standard �nite volume sheme, a naive treatment of the soure term, and 296spatial grid ells. Clearly, this sheme on the urrent grid would not be able to resolve waveswhih are of the order of magnitude of the numerial perturbations. One would thereforehave to run suh a sheme with a muh �ner grid, whih would make the omputation ratherostly.1.4. Well-Balaned Shemes. The results in Figure 3, whih reprodue the lake at restperfetly, are obtained with a so-alled well-balaned sheme, using the same number of spa-tial grid ells and timesteps. Let us briey sketh the main ingredient of the disrete balanewhih makes the sheme suessful. The main diÆulty for the shemes is to preserve thebalane of hydrostati pressure and gravitational aeleration (hydrostati balane). Given aell [xL; xR℄, let hL = h(xL); hR = h(xR). A onservative �nite volume disretization of thehydrostati pressure would then be�g h22 �x � g h2R � h2L2�x= g hL + hR2 hR � hL�x :We will now show that this already implies a anonial well-balaned disretization of thesoure term. Indeed, suppose that the soure term is disretized asghzx � g�hDz;
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Figure 2. Numerial storm over lake Rursee, produed by a naive �nitevolume sheme: water level (top) and momentum (bottom) at time T = 0:2(76 time steps)
where �h � h and Dz � zx. Now we suppose that u � 0 and H � onst, and we want toenfore the disrete hydrostati balane0 = ghL + hR2 hR � hL�x + g�hDz:(3)
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Figure 3. Well-balaned omputation of quiet lake Rursee: water level(top) and momentum (bottom) at time T = 0:2 (71 time steps). Note thatthe sale of the momentum axis is 10�9.From (3) we obtain �hDz = �hL + hR2 hR � hL�x= �hL + hR2 (HR � zR)� (HL � zL)�x= hL + hR2 zR � zL�x :(4)This disretization of the soure term was �rst proposed by Bermudez and Vazquez [3℄, andit is also the essential ingredient of the reent well-balaned shemes of Kurganov and Levy



6 NOELLE, PANKRATZ, PUPPO, AND NATVIGand Audusse et al. [20, 1℄. Closely related shemes usually try to disretize the derivativeof the onvetive ux and the soure term by one and the same �nite di�erene or �nitevolume operator, see [2, 4, 30℄. Greenberg, LeRoux and oworkers developed shemes basedon the solution of the non-homogenous Riemann-problem, see [14, 12, 11℄. We would also liketo mention the �nite volume Roe shemes of Gallou�et and oworkers [9℄ and the Norwegianfront traking approah [15℄. This list is by far not exhaustive, and we refer to the papersmentioned above for further referenes.Our paper is based on the reent work of Audusse, Bristeau, Bouhut, Klein and Perthame(2004) [1℄. Their �rst and seond order shemes preserve positivity of water height and thelake at rest. The �rst order sheme also satis�es a disrete entropy inequality at disontinu-ities.In the present paper we are interested in very high order aurate well-balaned shemes.These more sophistiated shemes are needed if, for instane, one wants to trak small wavesover long periods of time. Well-balaned �nite di�erene shemes of high order of auraywere developed by Vukovi and Sopta 2002 [29℄ and Xing and Shu 2004 [30℄. Here we extendthe well-balaned �nite volume shemes of Audusse et al. [1℄ to any desired order of auray.We would like to stress that the approah to ahieve high order is rather di�erent in the aseof �nite di�erene and �nite volume shemes. In the former ase, Xing and Shu rewrite thebalane law in suh a way that the uxes and soure terms an be treated by one and the samedi�erene operator. In the present paper, we observe that the well-balaned quadrature (4)maintains all its desirable properties under numerial extrapolation. Together with standardhigh order reonstrutions and the hydrostati orretion this leads immediately to the desiredvery high order aurate well-balaned �nite volume shemes. This tehnique an be appliedto many, if not all, of the seond order well-balaned shemes based on (4). Numerialexperiments show the expeted onvergene rates for a fourth/�fth order version of our newsheme, and exellent resolution of disontinuities and very small disturbanes.Aknowledgement: The authors would like to thank Franois Bouhut for lively andstimulating disussions. Franois Bouhut gave us a version of his �rst and seond orderwell-balaned sheme. We would also like to thank the Institute of Hydrauli Engineeringand Water Resoures Management of RWTH Aahen for providing the topographial dataof lake Rursee. 2. High Order Well-Balaned ShemesIn this setion, we �rst summarize the seond order well-balaned sheme of Audusse et al.[1℄. Then, for any order of auray, we introdue our new treatment of the soure term. Welose the setion with a summary of the new algorithm. Details of the WENO reonstrutionare given in Appendix A.2.1. Review of Seond Order Well-Balaning via Hydrostati Reonstrution. LetU := (h; hu)T be the vetor of onservative variables. First we formulate a semidisrete �nitevolume sheme for the ell averages,Ui(t) := 1�xi Z xi+12xi� 12 U(x; t)dx;with �xi := xi+ 12 � xi� 12 . Based on these ell averages, one de�nes a pieewise polynomialreonstrution, whih will in general be disontinuous at the interfaes xi+ 12 . Osillationswill be suppressed with limiters. Audusse et al. use a linear reonstrution with minmodlimiter, whih leads to a seond order sheme. Within ell i, the left and right values of eahomponent at position xi� 12 + 0 respetively xi+ 12 � 0 are denoted by (:)i;l and (:)i;r.



HIGH ORDER WELL-BALANCED FINITE VOLUME SCHEMES Marh 18, 2005 7Audusse et al. reonstrut h, H, and u. From this, the bottom topography is omputedas z = H � h. This leaves the lake at rest unperturbed, but it leads to a disontinuousbottom. To get a stable and well-balaned sheme, the following hydrostati reonstrutionis introdued: h�i;r := max(0; hi;r + zi;r �max(zi;r; zi+1;l));(5) h�i+1;l := max(0; hi+1;l + zi+1;l �max(zi;r; zi+1;l)):(6)These values are used to onstrut auxiliary values U�i;r and U�i+1;l whih will enter an ap-proximate Riemann solver: U�i;r : � h�i;rh�i;rui;r �U�i+1;l : � h�i+1;lh�i+1;lui+1;l � :Note that at the interfae xi+ 12 , we have two di�erent reonstrutions, namely xi+ 12� on theleft and xi+ 12+ on the right side. The semidisrete �nite volume sheme then reads�xi ddtUi(t)�Fl(Ui; Ui+1; zi;r; zi+1;l) + Fr(Ui�1; Ui; zi�1;r; zi;l) = S(j)i :(7)It remains to speify the numerial uxes and the soure term. The uxes are given byFr(Ui; Ui+1; zi;r; zi+1;l) := F (U�i;r; U�i+1;l) +� 0g2h2i;r � g2 (h�i;r)2 �(8) Fl(Ui�1; Ui; zi�1;l; zi;r) := F (U�i�1;r; U�i;l) +� 0g2h2i;l � g2 (h�i;l)2 �(9)Here F is a onservative numerial ux onsistent with the homogeneous shallow water equa-tions. Beause of their robustness, the loal Lax-Friedrihs, Harten-Lax-vanLeer or kinetisolvers are used in [1℄ and also in the present paper. The seond term on the RHS of (8)and (9) anels the di�erene of the hydrostati pressures based on the pieewise polynomialreonstrution hi;r and the hydrostati reonstrution h�i;r at the interfae xi+ 12 .The index j = 1; 2 represents the order of the numerial soure term S(j)i . It is given byS(1)i := � 00 �for j = 1 and S(2)i := � 0g hi;l+hi;r2 (zi;l � zi;r) �(10)for j = 2. Note that this orresponds to the soure term disretisation (4), and below wereview the argument that shows how this leads to a well-balaned sheme for the lake at rest.Together with a seond order Runge-Kutta time disretization the fully disrete seondorder well-balaned sheme of Audusse et al. is now omplete. With onstant reonstru-tion and without the Runge-Kutta proedure you get the assoiated �rst order sheme [1℄.Audusse et al. ould show for their sheme that it preserves the nonnegativity of the water-height hi(t), it preserves the steady state of the lake at rest, is onsistent with the shallowwater system and there �rst order sheme does also satis�es an in-ell entropy inequality.



8 NOELLE, PANKRATZ, PUPPO, AND NATVIG2.2. Seond order Well-Balaning. To motivate the subsequent development of a well-balaned sheme of very high auray, we need to review the well-balaned property ofAudusse et al.'s seond order semidisrete sheme (7).Suppose that H = h+ z is onstant at time t, and u � 0. Sine Hi;r = Hi+1;l,h�i;r = max(0;Hi;r �max(zi;r; zi+1;l))= max(0;Hi+1;l �max(zi;r; zi+1;l))= h�i+1;land sine ui;r = ui+1;l = 0, we also haveU�i;r = U�i+1;l:Beause now the values U�i;r and U�i+1;l are equal, we denote them simply by Ui+ 12 , hi+ 12 ,mi+ 12 := (hu)i+ 12 . Beause ui+ 12 = 0 8i and by onsisteny of the numerial uxes,Fr(Ui+ 12 ; Ui+ 12 ) =  0g2h2i+ 12 ! and Fl(Ui� 12 ; Ui� 12 ) =  0g2h2i� 12 ! :This, together with the de�nitions (7){(10) of the semidisrete sheme impliesddthi(t) = 0and ddtmi= � 1�x �g2h2i+ 12 + �g2h2i;r � g2h2i+ 12�� g2h2i� 12 � �g2h2i;l � g2h2i� 12�� ghi;l + hi;r2 (zi;l � zi;r)�= � 1�x "gh2i;r � h2i;l2 � ghi;l + hi;r2 ((Hi;l � hi;l)� (Hi;r � hi;r))#= � 1�x ��g (hi;l + hi;r)2 (Hi;l �Hi;r)�Beause of Hi;l = Hi;r = H, ddtmi(t) = 0so ddtUi(t) = 0:Therefore, the seond order semidisrete sheme preserves the stationary state of the lake atrest.2.3. Higher Order Well-Balaning. The projet of the present paper is to show how toextend the �rst and seond order aurate well-balaned shemes to any desired order ofauray. Most ingredients whih we use are well-established in the literature: high orderWENO spatial reonstrutions, high order Runge-Kutta time disretizations, and appropriatequadrature rules for the initial data. But there is one essential diÆulty to be solved: weneed to �nd a quadrature rule for the soure term whih is both aurate and well-balaned.The remainder of this setion is devoted to the solution of this question.



HIGH ORDER WELL-BALANCED FINITE VOLUME SCHEMES Marh 18, 2005 9As before, let Ui;r, Ui+1;l be the left and right values of a pieewise polynomial reonstru-tion at interfae xi+ 12 . Of ourse, this time we work with polynomials of any desired order ofauray. De�ne the hydrostati reonstrution hi+ 12� by (5) and (6) as before, and setU�i;r := � h�i;rmi;r � ; U�i+1;l := � h�i+1;lmi+1;l � :(11)Note that to ahieve orders higher than two, it is onvenient to reonstrut in the onservativevariable m (whih is omputed with full auray by the �nite volume sheme) instead of theprimitive variable u, whih is only derived from the onservative ones. We de�ne the left andright numerial uxes Fl and Fr by (8) and (9) as before. It remains to de�ne a high order,well-balaned numerial quadrature of the soure termS := �Z xi+12xi� 12 ghzxdx:The main observation of this paper is that this an be done by numerial extrapolation. Todo so, we subdivide eah ell into N subells and apply the quadrature (4) to all subells.This gives the quadrature SN ,SN : g NXj=1 hj�1 + hj2 (zj�1 � zj) � S;where zj = z(xi� 12 + j�x=N) et. are loal values of the reonstrution at the interfaes ofthe subells. In the situation of the lake at rest, wherezj�1 � zj = hj � hj�1the soure term redues to SN = �g2 NXj=1 hj�1 + hj2 (hj � hj�1)= �g2(h2N � h20)= �g2(h2i;r � h2i;l):By the same arguments as for the seond order ase this is well-balaned, but it is still onlyseond order aurate (see Table 2).To get higher orders of auray we use numerial extrapolation (see e.g. the textbook ofDeuhard and Bornemann [8℄). Note that the quadrature (4) is symmetri and seond orderaurate. Therefore, from Theorem 4.39 of [8℄, there exists an asymptoti expansion of theform SN = S + 1��xN �2 + 2��xN �4 + : : : :(12)The SN an be ombined for di�erent values of N to ompute S with any order of auray.For example, to get a soure term of order four, simply use4S2 � S13 = S + ~2(�x)4 + : : :



10 NOELLE, PANKRATZ, PUPPO, AND NATVIGTherefore we de�ne S(4)i byS(4)i := 4 � g2 (hl;i + h;i)(zl;i � z;i) + g2 (h;i + hr;i)(z;i � zr;i)�� �g2 (hl;i + hr;i)(zl;i � zr;i)�3 :(13)Thus for the lake at rest: S(4)i = �g2 �h2i;r � h2i;l�whih leads to a well balaned sheme.Remark 1. Note that ompared with S1, the omputation of S2 uses only one additionalreonstrution point per ell, namely the ell enter. Thus we an ompute S to fourth orderauray using three points per ell, whih is analogous to Simpsons rule (whih may beobtained by extrapolating the trapezoidal rule). Note that we ould not use Simpsons rulediretly, beause this would not give a well-balaned sheme.Remark 2. Note that any sheme that is well balaned with the soure term (4) will also bewell balaned with the fourth order soure term (13).We summarize our high order well-balaned �nite volume shemes in the following theorem:Theorem 3. Consider the fully disrete �nite volume sheme given by a jth order Runge-Kutta time disretization of the semidisrete sheme (7) { (9), with kth order spatial reon-strution, hydrostati reonstrution (5), (6), and (11), and soure term S(l)i given by an lthorder extrapolation of (12). Then(i) the sheme preserves the stationary state of the lake at rest(ii) the sheme is onsistent of order p := minfj; k; lg with the shallow water equations (1).Proof. We have already proved the well-balaned property. The proof of onsisteny followslosely that of Theorem 3.1 of [1℄, q.e.d.In the numerial experiments in Setion 3, we use the lassial 4th order Runge-Kuttasheme, a 5th order WENO reonstrution in spae (see Appendix A) and the 4th orderextrapolation (13) of the soure term. Aording to Theorem 3, this sheme is formally 4thorder aurate. Surprisingly, in experiments with smooth solutions, it learly gives 5th orderonvergene, see Table 1 below. Note that we ould also have used Shu's TVD Runge-Kuttatime disretizations [24℄ or the reent SSPRK shemes [13, 27℄.3. Numerial Experiments3.1. Order of Auray. To verify the order of auray we follow Xing and Shu [30℄ andhoose z(x) := sin2(�x)h(x; 0) := 5 + eos(2�x)hu(x; 0) := sin(os(2�x))for bottom topography, initial water height and momentum. Here x 2 [0; 1℄, the boundaryonditions are periodi, and the gravitational onstant g is set to 9:812. We ompute upto time t = 0:1 with CFL number 0:4. Sine the exat solution for this experiment isnot known expliitly, we use the same well-balaned WENO sheme of order (4; 5; 4) withN = 25 600 ells to ompute a referene solution. We use a �fth order WENO reonstrutionwith " = 10�6 and optimal weights from (31), together with the weight splitting method[23℄ to ompute the entral point values needed in the quadrature (13). Table 1 ontains



HIGH ORDER WELL-BALANCED FINITE VOLUME SCHEMES Marh 18, 2005 11the L1 errors and numerial order of auray for both omponents. We ahieve full �fthorder onvergene in both omponents. Note that we have used the �fth order WENOreonstrution in spae, but only a fourth order aurate extrapolation of the soure termand the lassial fourth order Runge-Kutta time disretization. Thus not all elements ofthe algorithm ontribute equally to the overal error. However, a standard seond orderdisretization of the soure term does redue the order of auray to two, see Table 2. Thisshows the relevane of the key new ingredient of our algorithm.In the following, we will denote our well balaned WENO shemes with the triplet (j; k; l),where j; k and l denote respetively the auray in time of the Runge-Kutta integrator, theauray in spae of the WENO reonstrution and the auray of the quadrature rule (13).onvergene table with fourth order soure termnumber h huof ells L1 error order L1 error order25 1.13e-02 8.22e-0250 1.84e-03 2.61 1.71e-02 2.27100 2.83e-04 2.70 2.48e-03 2.78200 2.07e-05 3.77 1.77e-04 3.81400 8.18e-07 4.66 7.02e-06 4.66800 2.67e-08 4.94 2.29e-07 4.941600 8.40e-10 4.99 7.21e-09 4.99Table 1. L1 errors and numerial orders of auray for Example 3.1 for thenew well-balaned �nite volume sheme of order (4; 5; 4).onvergene table with seond order soure termnumber h huof ells L1 error order L1 error order25 1.12e-02 8.29e-0250 1.87e-03 2.58 1.73e-02 2.27100 2.86e-04 2.71 2.50e-03 2.78200 2.18e-05 3.70 1.82e-04 3.77400 1.37e-06 3.99 9.99e-06 4.19800 2.18e-07 2.65 1.46e-06 2.771600 5.05e-08 2.11 3.31e-07 2.14Table 2. Same as Table 1, but seond order disretization of the soureterm Si (order (4; 5; 2)).3.2. Perturbation of a lake at rest. The following problem was studied by LeVeque [21℄.It shows the behavior of a small perturbation of a lake at rest with variable bottom topographyz(x) = � 0:25(1 + os(10�(x� 0:5))); if 1:2 � x � 1:40; elsewhere x 2 [0; 2℄. The total initial height is given byH(x; 0) = � 1 +�H; if 1:1 � x � 1:21; else



12 NOELLE, PANKRATZ, PUPPO, AND NATVIGLeVeque, who worked with a seond order sheme, used �H = 0:1. Xing and Shu [30℄,Vukovi and Sopta [29℄ and we use higher order shemes, and here we test �H = 0:001. Theinitial veloity is set to v(x; 0) = 0and the gravitational onstant g = 9:81. We use a �fth order WENO reonstrution withoptimal weights from (31) and " = 10�12 in order to satisfy (33). Indeed, " = 10�6 resultsin osillations at the shoks. Periodi boundary onditions are used. The CFL number is 0:4and the �nal time is T = 0:2.Figures 5 and 6 show total height and momentum omputed with 200 ells and 157timesteps, and a omparison between �rst, seond and (4; 5; 4)th order solutions are shown inFigure 7. At this time, the wave travelling to the right has just passed the hump, and partof it has been reeted. All the shemes are able to produe the physially orret reetedwaves (see the interval [1; 1:5℄ around the hump). The new sheme shows remarkably highresolution. Shemes whih do not preserve the disrete hydrostati balane may introdueunphysial waves and high frequeny osillations (see [29, Figure 8 & 9℄).
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Figure 4. Example 3.2, bottom topography and initial water level.3.3. Dambreak over a retangular wall. This test ase simulates a dambreak over aretangular wall. It produes a rapidly varying ow over a disontinuous bottom topography.This example was used in [29℄,[30℄. The bottom topography is given byz(x) = � 8; if jx� 1500=2j � 1500=80; otherwise;with x 2 [0; 1500℄. The total initial height isH(x; 0) = � 20; if 0 � x � 75015; otherwise:The initial veloity is set to zero v(x; 0) = 0 and the gravitation onstant is g = 9:81. Atthe left boundary we use reetive boundary onditions and on the right side open boundary
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Figure 5. Example 3.2, total height at T = 0:2 omputed with 200 ells.
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Figure 6. Example 3.2, momentum at T = 0:2 omputed with 200 ells.onditions. In Figure 8 we show level lines of the water level, or total height, of the solutionup to time T = 60. In the beginning, one observes the standard rarefation and shok waveswhih form the solution of the Riemann problem of the homogeneous shallow water equations.Figures 9 and 10 show the water level and veloity at T = 15. At time T � 17 the waves rossthe two edges of the wall. A part is transmitted, another part reeted, and a remaining partbeomes a standing wave. Suh standing waves have reently been studied analytially byKlausen and Risebro [18℄, Towers [28℄, Klingenberg and Risebro [19℄, and Seguin and Vovelle[22℄ who onsider the inhomogeneous one dimensional shallow water equations as a systemof three onservation laws for (h; hu; z) with �tz = 0. This system has the three wave speeds
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Figure 7. Example 3.2, total height at T = 0:2 omputed with �rst, seond,and (4; 5; 4)th order shemes and 200 ells.
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Figure 8. Example 3.3, ontourplot of water level in the x� t plane.u � pgh and 0. For later times, the wave system keeps interating. At time T = 60, wehave six waves in the solution. The main shok and rarefation waves just hit the boundaryof the omputational domain. Between them we have, from left to right, a standing wave, aweak rarefation travelling leftwards, a seond standing wave, and a weak ompressive wavetravelling rightwards. Figures 11 and 12 show ross setions of total height and veloity. Notethat the standing waves are not easy to apture, even by a high resolution method as the oneproposed in [29℄. Here we have almost perfet resolution of all features of this hallengingsolution.
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Figure 9. Example 3.3, water level at T = 15, 600 ells.
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Figure 10. Example 3.3, veloity at T = 15, 600 ells.
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Figure 11. Example 3.3, water level at T = 60, 600 ells.

0 500 1000 1500
0

0.5

1

1.5

2

2.5

3

3.5

4

x

ve
lo

ci
ty

velocity T=60 (time step 872)

Figure 12. Example 3.3, veloity at T = 60, 600 ells.



HIGH ORDER WELL-BALANCED FINITE VOLUME SCHEMES Marh 18, 2005 174. Two dimensional extensionThe shallow water equations in 2D are given byht + (hu)x + (hv)y = 0(hu)t + �hu2 + 12gh2�x + (huv)y = �ghzx(hv)t + (huv)x + �hv2 + 12gh2�y = �ghzy ;(14)where h is the water height, z is the bottom topography, u is the veloity in x-diretion, vis the veloity in y-diretion and g is the gravitational onstant. We will now disuss how toextend our sheme to two dimensions.4.1. Overview of the sheme. Rewrite the system (14) in the standard form:Ut + Fx(U) +Gy(U) = S(U);(15)where learly U = (h; hu; hv)T , F = (hu; hu2 + 12gh2; huv)T , G = (hv; huv; hv2 + 12gh2)Tand S = (0;�ghzx;�ghzy)T . We de�ne the ell averages over grid ells Iij = (xi� 12 ; xi+ 12 )�(yj� 12 ; yj+ 12 ) by(16) Uij = 1�x�y ZIij U(x; y)dxdy;where �x = xi+ 12 �xi� 12 , �y = yj+ 12 �yj� 12 . Suppose for simpliity that the ells are square:let Æ = �x = �y. Integrating eah term in (14) over the ell Iij and invoking the divergenetheorem, we get the following semidisrete sheme for the evolution of the ell averages Uij:Æ2 ddtUij(t) + Z�Iij (F;G) � nds = ZIij Sdxdy;Rewrite the system as:ddtUij(t) + �Fi+ 12 ;j � �Fi� 12 ;jÆ + �Gi;j+ 12 � �Gi;j� 12Æ = Sij(17)where �Fi� 12 ;j = 1Æ Z yj+ 12 Æyj� 12 Æ F (U(xi� 12 ; y)) dy(18) �Gi;j� 12 = 1Æ Z xi+ 12 Æxi� 12 Æ G(U(x; yj� 12 )) dx(19) Sij = 1Æ2 ZIij S(x; y) dx dy;(20)In analogy with the 1D ase, we reonstrut the variables h, hu, hv, and H, while the bottomtopography is given by z = H�h. In general, this yields a disontinuous approximation of z.Let Uij(x; y) denote the reonstrution omputed in the ell Iij with U denoting any of thereonstruted variables. Again, to preserve the equilibrium states, a hydrostati reonstru-tion is needed on the quadrature points on the boundary of the ell, whih will be denoted



18 NOELLE, PANKRATZ, PUPPO, AND NATVIGby h�: h�i+1;j(x+i+ 12 ; �) = max�0;Hi+1;j(xi+ 12 ; �)�max�zij(xi+ 12 ; �); zi+1;j(xi+ 12 ; �)�� ;h�ij(x�i+ 12 ; �) = max�0;Hij(xi+ 12 ; �)�max�zij(xi+ 12 ; �); zi+1;j(xi+ 12 ; �)�� ;h�i;j+1(�; y+j+ 12 ) = max�0;Hi;j+1(�; yj+ 12 )�max�zij(�; yj+ 12 ); zi;j+1(�; xj+ 12 )�� ;h�ij(�; y�j+ 12 ) = max�0;Hij(�; yj+ 12 )�max�zij(�; yj+ 12 ); zi;j+1(�; yj+ 12 )�� :To approximate the quantities �Fi� 12 ;j and �Gi;j� 12 in (18) and (19), we use a quadrature�Fi� 12 ;j 'Xk !kF (U(xi� 12 ; yj + �kÆ));where !k and �k are the weights and nodes of the quadrature formula. For a fourth ordersheme we use the lassial two-point Gaussian formula�Fi� 12 ;j ' 12 �F (U(xi� 12 ; yj � �Æ)) + F (U(xi� 12 ; yj + �Æ))� ;(21)where � = 1=(2p3). A similar formula holds for �Gi;j� 12 .We still need to onstrut a well balaned approximation to eah of the ux evaluationsrequired in (21). As in 1D, the numerial ux is omposed of two ontributions. The �rstontribution (F h for F and Gh for G) is onsistent with the ux of the homogeneous shallowwater equations, the seond ontribution ompensates the perturbation introdued by thehydrostati orretion.The modi�ed state variables that will be applied in the ux omputations areU�ij = 0� h�ij(hu)ij(hv)ij 1A :Along the edge (xi� 12 ; y) for instane the numerial uxes areF l(U�; z)i� 12 ;j�� := F h(U�i�1;j(xi� 12 ; yj � �Æ); U�ij(xi� 12 ; yj � �Æ))(22) + g2 0� 0h2ij(xi� 12 ; yj � �Æ) � (h�)2ij(xi� 12 ; yj � �Æ)0 1Aand Fr(U�; z)i+ 12 ;j�� := F h(U�i;j(xi+ 12 ; yj � �Æ); U�i+1;j(xi+ 12 ; yj � �Æ))(23) + g2 0� 0h2ij(xi+ 12 ; yj � �Æ) � (h�)2ij(xi+ 12 ; yj � �Æ)0 1A ;with similar formulas for Gl and Gr.Thus the semidisrete sheme an be written as,ddtUij(t) = � 12Æ �Fri+ 12 ;j+� + Fri+ 12 ;j�� �F li� 12 ;j+� �F li� 12 ;j��(24) Gri+�;j+ 12 + Gri��;j+ 12 � Gli+�;j� 12 � Gli��;j� 12�+ Sij :



HIGH ORDER WELL-BALANCED FINITE VOLUME SCHEMES Marh 18, 2005 19The onstrution of the soure term Sij is arried out as follows. First we write the soureterm omponentwise: Sij = (0; Sxij ; Syij)T . Note that the omponent of the soure term inthe x-momentum equation ontains only the derivative of z along the x diretion. Thus,we employ the well-balaned quadrature (13) of the previous setion to integrate in the x-diretion and apply the Gaussian rule in the y-diretion. For the fourth order ase,Sxij = Æ2 (sxi (yj + �Æ) + sxi (yj � �Æ)) ;(25)where, sxi (y) = 4g6 ((hij(xi� 12 ; y) + hij(xi; y))(zij(xi� 12 ; y)� zij(xi; y))+ (hij(xi; y) + hij(xi+ 12 ; y))(zij(xi; y)� zij(xi+ 12 ; y)))� g6(hij(xi� 12 ; y) + hij(xi+ 12 ; y))(zij(xi� 12 ; y)� zij(xi+ 12 ; y)):In the same fashion, we ompute the soure Syij using (13) in the y-diretion and the Gaussianrule in the x-diretion. Again, in the fourth order ase:Syij = Æ2 �syj (xi + �Æ) + syj (xi � �Æ)� ;(26)where now, syj (x) = 4g6 ((hij(x; yj� 12 ) + hij(x; yj))(zij(x; yj� 12 )� zij(x; yj))+ (hij(x; yj) + hij(x; yj+ 12 ))(zij(x; yj)� zij(x; yj+ 12 )))� g6(hij(x; yj� 12 ) + hij(x; yj+ 12 ))(zij(x; yj� 12 )� zij(x; yj+ 12 )):Using the same arguments as in the proof of Theorem 3 one an show:Corollary 4. The 2D sheme is fourth order aurate and preserves the stationary state ofthe lake at rest.4.2. 2D reonstrution. In order to evaluate the numerial ux funtions F and G andthe soure term S, we need to reonstrut pointvalues of H, h, hu and hv at 12 integrationpoints, 8 on the boundary (xi� 12 ; yj��), (xi��; yj� 12 ) and 4 in the interior (xi; yj��) and(xi��; yj) as shown on the right of Figure 13. Note that the interior points are required onlyto ompute the soure term, whih is fourth order aurate. As in the 1D ase we apply aWENO proedure to �nd these data.In 2D this reonstrution is somewhat more involved. Our approah is to reonstrut eahvariable dimension by dimension. For eah ell, the one dimensional WENO proedure hasto be applied six times to produe pointvalues in all quadrature points.To �x ideas, we illustrate the algorithm for the reonstrution of the variable h. In thissetion only, we denote the ell averages as ��hij , to distinguish the averages omputed on a ell(a double integral) from the averages omputed along only one segment (a single integral).We start applying the WENO reonstrution proedure in the y diretion, starting fromthe ell averages ��hij . We apply the reonstrution de�ned by the onstants in Appendix A(32) and we �nd approximations in the points (xi; yj+�) and (xi; yj��) to the funtion:�hij(xi; yj��) = 1Æ Z xi+ Æ2xi� Æ2 h(x; yj��) dx:



20 NOELLE, PANKRATZ, PUPPO, AND NATVIGOne these data are available for all i, we apply again the WENO reonstrution along thex axis to get the required pointvalues, i.e. hij(xi� 12 ; yj+�), hij(xi; yj+�) and hij(xi+ 12 ; yj+�),starting from �hij(xi; yj+�). With another reonstrution, we �nd hij(xi� 12 ; yj��), hij(xi; yj��)and hij(xi+ 12 ; yj��), starting from �hij(xi; yj��). This set of operations will be alled yx sweep,see Figure 14.To get the quadrature points along the dashed lines on the right in Figure 13, we performthe same operations in the reversed order. This will be alled x-y sweep, see Figure 15.
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Figure 13. (Left) The positions of the reonstruted rosssetion aver-ages (xi��; �) (dashed lines), (�; yj��) (blak lines) for the �rst reonstrutionstep. (Right) The Gaussian integration points for the edges (xi� 12 ; yj��),(xi��; yj� 12 ) and for the interior, (xi; yj��) and (xi��; yj). The point valuesin these loations are omputed in the seond step of the reonstrution.Now, all the quantities appearing in the semidisrete sheme (17) have been de�ned. Fi-nally, to get a fully disrete sheme, we need to speify a method to marh forward in time.As in the 1D sheme, we apply the lassi fourth order Runge-Kutta method. For other ases,it might be advantageous to use the reent TVD or SSP Runge-Kutta shemes [24, 13, 27℄.4.3. Well-balaned test in two dimensions. The two dimensional experiments we presenthere follow losely the work of Xing and Shu [30℄. We hek the behavior of the two dimen-sional sheme in a lake at rest situation on a retangular domain [0; 1℄� [0; 1℄, with a non-atbottom topography z(x; y) = 0:8e�50((x�0:5)2+(y�0:5)2):(27)The initial water height is h(x; y) = 1� z(x; y);(28)so that the water surfae level H is onstant 1:0. The momentum in x and y diretion is setto zero: hu(x; y; t = 0) = 0 and hv(x; y; t = 0) = 0:(29)The lake is at rest initially, and should remain at rest inde�nitely. In this situation, a shemewithout well-balaning would produe unphysial waves. For this test we use a uniform
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22 NOELLE, PANKRATZ, PUPPO, AND NATVIGnumber h hu hvof points CFL L1 error order L1 error order L1 error order25 0.5 8.77-03 3.42e-02 6.71e-0250 0.5 1.10e-03 3.00 2.73e-03 3.65 9.40e-03 2.84100 0.5 9.84e-05 3.48 1.56e-04 4.13 7.85e-04 3.58200 0.5 4.91e-06 4.32 6.58e-06 4.57 3.93e-05 4.32400 0.5 1.82e-07 4.76 2.41e-07 4.77 1.46e-06 4.75800 0.5 6.06e-09 4.91 7.94e-09 4.92 4.90e-08 4.90Table 3. L1-errors and numerial order of auray for the onvergene test 4.44.4. Testing the order of auray. To hek the numerial order of auray we use thesame experiment as Xing and Shu [30℄. On the unit square [0; 1℄� [0; 1℄ we hoose the bottomtopography: z(x; y) = sin(2�x) + os(2�y)the initial water surfae level:h(x; y; t = 0) = 10 + esin(2�x)os(2�y)and the initial momentum in the x and y diretions respetively:hu(x; y; t = 0) = sin(os(2�x)) sin(2�y)hv(x; y; t = 0) = os(2�x) os(sin(2�y)):We ompute up to time T = 0:05 with CFL-number 0.8. For the WENO reonstrution weuse the optimal weights of (31),(32) and set " = 10�6. The referene solution is omputedwith the same sheme and 1600 � 1600 ells, sine the exat solution is unknown.For this experiment we expet fourth order of auray in all onservative omponents. Theapplied standard Runge-Kutta time integration, the integration of the numerial uxes withGaussian rule and the ell entered soure term are all formally fourth order aurate, whilethe applied WENO reonstrution is �fth order aurate. Table 3 ontains the L1-errors andorders of auray. We an learly see that for this two dimensional test ase, fourth orderauray (in fat almost �fth order) is indeed ahieved in all omponents.4.5. A small Pertubation of a Two Dimensional Steady-State Water. This lassialproblem is given by LeVeque [21℄ and is also omputed in [30℄. For this problem we onsiderthe retangular domain [0; 2℄ � [0; 1℄. The bottom topography is displayed in Figure 16 andit is given by: z(x; y) = 0:8e(�5(x�0:9)2�50(y�0:5)2):The initial water surfae level is given by:h(x; y; t = 0) = � 1:01� z(x; y) if 0:05 � x � 0:151� z(x; y) otherwise ;so the initial surfae level is almost at, only in the region 0:05 < x < 0:15 it is perturbedupward by the displaement 0.01. The initial momentum in the x and y diretions is:hu(x; y; t = 0) = 0hv(x; y; t = 0) = 0:We ompute using two di�erent uniform meshes with 200� 100 ells and 600 � 300 ells.Figure 17 shows 30 uniformly spaed ontour lines of the surfae level H at times t =0:12; 0:24; 0:36; 0:48 and �nal time T = 0:6. The results obtained with the ourse grid



HIGH ORDER WELL-BALANCED FINITE VOLUME SCHEMES Marh 18, 2005 23appear on the left side, while on the right we �nd the numerial solution obtained with the�ne grid.In the simulation with the oarse grid we use " = 10�6 and for the �ne grid " = 10�9. Inboth experiments we hoose the CFL-number equal to 0:5. As we an see, we get resultsomparable to the �nite di�erene approah in [30℄.
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Figure 16. Bottom topography of experiment 4.5 z(x; y) = 0:8e(�5(x�0:9)2�50(y�0:5)2).
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HIGH ORDER WELL-BALANCED FINITE VOLUME SCHEMES Marh 18, 2005 27For the �fth order WENO reonstrution used in this paper we get the following weights:x� C30 C31 C32xj� 12+ 0:3 0:6 0:1xj �0:1125 1:225 �0:1125xj+ 12� 0:1 0:6 0:3 :(31)For the 2D extension we need also weights for Gaussian points:x� C30 C31 C32xj � �x2p3 70p3+1360p3 11=18 70p3+1360p3xj + �x2p3 70p3+1360p3 11=18 70p3+1360p3 :(32)4. Compute the smoothness indiatorsISk = r�1Xl=1 Z xj+ 12xj� 12 �x2l�1(p(l)k )2dx;where l denotes the l-th order derivative of pk.5. Compute the nonlinear weights based on the smoothness indiators!k := �k�0 + � � � + �r�1where �k := Crk("+ ISk)2 ; k = 0; 1; :::; r � 1:Here " is a real number whih is introdued to prevent the denominator from beoming zero.To preserve auray, " should satisfy the onstraints0 < " everywhere"� ISk in regions where the solution is smooth.(33)In the numerial experiments we use " = 10�6, exept for the experiment in Setion 3.2,where the ISk are extremely small and we need to use " = 10�12.6. The �nal WENO reonstrution is given by:R(x�) = r�1Xk=0!kpk(x�):It is well known that the negative weights appearing in (31) may lead to osillations at dison-tinuities [23℄. Note however that this problem ours only in the reonstrution of the pointvalues at the loations (xi; yj��) and (xi��; yj) whih are needed only in the omputation ofsxi (y) and syj (x), see (25) and (26). We have tested the following two approahes: �rst, wesimply replaed the weights by the fourth order aurate hoie of C30 := 0:25, C31 := 0:5 andC32 := 0:25. Sine these data midpoint appear only in the quadrature S(4)i for the soure term,whih is only fourth order aurate anyway, this does not derease the overall order (4; 5; 4)of the algorithm. The seond ure is the splitting tehnique of Shi, Hu and Shu [23℄. For
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