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2 NOELLE, PANKRATZ, PUPPO, AND NATVIG1. Introdu
tionIn this introdu
tion, we present some of the key ideas and ingredients of the subsequentse
tions. We begin with a brief review of the shallow water equations and their equilibriumstates, in parti
ular the lake at rest. Then we show an example of a numeri
al storm produ
edby a s
heme whi
h is not in dis
rete equilibrium. Next we review the key ingredient of severalof the re
ent well-balan
ed s
hemes, and give some related referen
es. We 
lose with a previewof our new high order well-balan
ed s
hemes.1.1. Shallow Water Equations. Many geophysi
al 
ows are modeled by variants of theshallow water equations. In their simplest form these equations readht + (hu)x = 0;(hu)t + (hu2 + 12gh2)x = �ghzx:(1)Here z(x) de�nes the bottom-topography, h(x; t) denotes the water height above the bottom,and u(x; t) is the horizontal 
omponent of the water velo
ity at position x at time t. Thegravity 
onstant is denoted by g. In (1) we have negle
ted two-dimensional e�e
ts, bottomfri
tion, Coriolis for
es arising in a rotational frame, wind for
es, and, of 
ourse, verti
alvariations of the velo
ity �eld. For an example of more 
omplete shallow water equationswhi
h are used in 
oastal engineering, we refer to Gjevik et al. [10℄.1.2. Equilibrium States. In spite of all of these simpli�
ations, the equations (1) still 
on-tain the most fundamental balan
es of shallow water 
ows. The 
onve
tive part on theleft-hand-side (LHS) is a hyperboli
 system of 
onservation laws similar to that of 
ompress-ible 
uid 
ows, and the sour
e term on the right-hand-side (RHS) is due to gravitationala

eleration. Let us look at the equilibrium, or stationary, states. They are given byhu � 
onst and 12u2 + gH � 
onst;where H := h+ zis the water level. In this paper we are parti
ularly interested in the lake at rest, given byu � 0 and H � 
onst:Su
h a situation is shown in Figure 1 for a 
ross-se
tion of lake Rursee near Aa
hen. Let uspause for a moment and look at this balan
e on
e more. From (1) and the assumptions ofstationary 
ow with vanishing velo
ity we have0 = �gh22 �x + ghzx;(2)whi
h is 
alled hydrostati
 balan
e. The �rst term is the hydrostati
 pressure, whi
h modelsthe tenden
y of a 
olumn of water to 
ollapse verti
ally and at the same time expand laterallyunder the in
uen
e of gravity. The se
ond term is the gravitational a

eleration down anin
lined bottom z. Now use the 
hain rule of di�erentiation and divide by h to obtain0 = g (h+ z)x = gHx:Thus we see that the e�e
tive a

eleration 
an be interpreted as gravitational a

elerationdown a non-
at water level H.
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Figure 1. Cross se
tion of lake Rursee: bottom topography and quiet waterlevel. 296 
ells1.3. Numeri
al Storms. If a numeri
al s
heme does not preserve the fundamental balan
e(2) at the dis
rete level, this may result in spurious os
illations, or numeri
al storms, as seenin Figure 2. The �gure shows a 
ross-se
tion of lake Rursee near Aa
hen, and the water shouldremain at rest as in Figure 1. Thus, all waves in Figure 2 are pure numeri
al artifa
ts. Someof them are more than a meter high, espe
ially near the edge of the lake. The 
omputationis run with a standard �nite volume s
heme, a naive treatment of the sour
e term, and 296spatial grid 
ells. Clearly, this s
heme on the 
urrent grid would not be able to resolve waveswhi
h are of the order of magnitude of the numeri
al perturbations. One would thereforehave to run su
h a s
heme with a mu
h �ner grid, whi
h would make the 
omputation rather
ostly.1.4. Well-Balan
ed S
hemes. The results in Figure 3, whi
h reprodu
e the lake at restperfe
tly, are obtained with a so-
alled well-balan
ed s
heme, using the same number of spa-tial grid 
ells and timesteps. Let us brie
y sket
h the main ingredient of the dis
rete balan
ewhi
h makes the s
heme su

essful. The main diÆ
ulty for the s
hemes is to preserve thebalan
e of hydrostati
 pressure and gravitational a

eleration (hydrostati
 balan
e). Given a
ell [xL; xR℄, let hL = h(xL); hR = h(xR). A 
onservative �nite volume dis
retization of thehydrostati
 pressure would then be�g h22 �x � g h2R � h2L2�x= g hL + hR2 hR � hL�x :We will now show that this already implies a 
anoni
al well-balan
ed dis
retization of thesour
e term. Indeed, suppose that the sour
e term is dis
retized asghzx � g�hDz;
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Figure 2. Numeri
al storm over lake Rursee, produ
ed by a naive �nitevolume s
heme: water level (top) and momentum (bottom) at time T = 0:2(76 time steps)
where �h � h and Dz � zx. Now we suppose that u � 0 and H � 
onst, and we want toenfor
e the dis
rete hydrostati
 balan
e0 = ghL + hR2 hR � hL�x + g�hDz:(3)
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Figure 3. Well-balan
ed 
omputation of quiet lake Rursee: water level(top) and momentum (bottom) at time T = 0:2 (71 time steps). Note thatthe s
ale of the momentum axis is 10�9.From (3) we obtain �hDz = �hL + hR2 hR � hL�x= �hL + hR2 (HR � zR)� (HL � zL)�x= hL + hR2 zR � zL�x :(4)This dis
retization of the sour
e term was �rst proposed by Bermudez and Vazquez [3℄, andit is also the essential ingredient of the re
ent well-balan
ed s
hemes of Kurganov and Levy



6 NOELLE, PANKRATZ, PUPPO, AND NATVIGand Audusse et al. [20, 1℄. Closely related s
hemes usually try to dis
retize the derivativeof the 
onve
tive 
ux and the sour
e term by one and the same �nite di�eren
e or �nitevolume operator, see [2, 4, 30℄. Greenberg, LeRoux and 
oworkers developed s
hemes basedon the solution of the non-homogenous Riemann-problem, see [14, 12, 11℄. We would also liketo mention the �nite volume Roe s
hemes of Gallou�et and 
oworkers [9℄ and the Norwegianfront tra
king approa
h [15℄. This list is by far not exhaustive, and we refer to the papersmentioned above for further referen
es.Our paper is based on the re
ent work of Audusse, Bristeau, Bou
hut, Klein and Perthame(2004) [1℄. Their �rst and se
ond order s
hemes preserve positivity of water height and thelake at rest. The �rst order s
heme also satis�es a dis
rete entropy inequality at dis
ontinu-ities.In the present paper we are interested in very high order a

urate well-balan
ed s
hemes.These more sophisti
ated s
hemes are needed if, for instan
e, one wants to tra
k small wavesover long periods of time. Well-balan
ed �nite di�eren
e s
hemes of high order of a

ura
ywere developed by Vukovi
 and Sopta 2002 [29℄ and Xing and Shu 2004 [30℄. Here we extendthe well-balan
ed �nite volume s
hemes of Audusse et al. [1℄ to any desired order of a

ura
y.We would like to stress that the approa
h to a
hieve high order is rather di�erent in the 
aseof �nite di�eren
e and �nite volume s
hemes. In the former 
ase, Xing and Shu rewrite thebalan
e law in su
h a way that the 
uxes and sour
e terms 
an be treated by one and the samedi�eren
e operator. In the present paper, we observe that the well-balan
ed quadrature (4)maintains all its desirable properties under numeri
al extrapolation. Together with standardhigh order re
onstru
tions and the hydrostati
 
orre
tion this leads immediately to the desiredvery high order a

urate well-balan
ed �nite volume s
hemes. This te
hnique 
an be appliedto many, if not all, of the se
ond order well-balan
ed s
hemes based on (4). Numeri
alexperiments show the expe
ted 
onvergen
e rates for a fourth/�fth order version of our news
heme, and ex
ellent resolution of dis
ontinuities and very small disturban
es.A
knowledgement: The authors would like to thank Fran
ois Bou
hut for lively andstimulating dis
ussions. Fran
ois Bou
hut gave us a version of his �rst and se
ond orderwell-balan
ed s
heme. We would also like to thank the Institute of Hydrauli
 Engineeringand Water Resour
es Management of RWTH Aa
hen for providing the topographi
al dataof lake Rursee. 2. High Order Well-Balan
ed S
hemesIn this se
tion, we �rst summarize the se
ond order well-balan
ed s
heme of Audusse et al.[1℄. Then, for any order of a

ura
y, we introdu
e our new treatment of the sour
e term. We
lose the se
tion with a summary of the new algorithm. Details of the WENO re
onstru
tionare given in Appendix A.2.1. Review of Se
ond Order Well-Balan
ing via Hydrostati
 Re
onstru
tion. LetU := (h; hu)T be the ve
tor of 
onservative variables. First we formulate a semidis
rete �nitevolume s
heme for the 
ell averages,Ui(t) := 1�xi Z xi+12xi� 12 U(x; t)dx;with �xi := xi+ 12 � xi� 12 . Based on these 
ell averages, one de�nes a pie
ewise polynomialre
onstru
tion, whi
h will in general be dis
ontinuous at the interfa
es xi+ 12 . Os
illationswill be suppressed with limiters. Audusse et al. use a linear re
onstru
tion with minmodlimiter, whi
h leads to a se
ond order s
heme. Within 
ell i, the left and right values of ea
h
omponent at position xi� 12 + 0 respe
tively xi+ 12 � 0 are denoted by (:)i;l and (:)i;r.



HIGH ORDER WELL-BALANCED FINITE VOLUME SCHEMES Mar
h 18, 2005 7Audusse et al. re
onstru
t h, H, and u. From this, the bottom topography is 
omputedas z = H � h. This leaves the lake at rest unperturbed, but it leads to a dis
ontinuousbottom. To get a stable and well-balan
ed s
heme, the following hydrostati
 re
onstru
tionis introdu
ed: h�i;r := max(0; hi;r + zi;r �max(zi;r; zi+1;l));(5) h�i+1;l := max(0; hi+1;l + zi+1;l �max(zi;r; zi+1;l)):(6)These values are used to 
onstru
t auxiliary values U�i;r and U�i+1;l whi
h will enter an ap-proximate Riemann solver: U�i;r : � h�i;rh�i;rui;r �U�i+1;l : � h�i+1;lh�i+1;lui+1;l � :Note that at the interfa
e xi+ 12 , we have two di�erent re
onstru
tions, namely xi+ 12� on theleft and xi+ 12+ on the right side. The semidis
rete �nite volume s
heme then reads�xi ddtUi(t)�Fl(Ui; Ui+1; zi;r; zi+1;l) + Fr(Ui�1; Ui; zi�1;r; zi;l) = S(j)
i :(7)It remains to spe
ify the numeri
al 
uxes and the sour
e term. The 
uxes are given byFr(Ui; Ui+1; zi;r; zi+1;l) := F (U�i;r; U�i+1;l) +� 0g2h2i;r � g2 (h�i;r)2 �(8) Fl(Ui�1; Ui; zi�1;l; zi;r) := F (U�i�1;r; U�i;l) +� 0g2h2i;l � g2 (h�i;l)2 �(9)Here F is a 
onservative numeri
al 
ux 
onsistent with the homogeneous shallow water equa-tions. Be
ause of their robustness, the lo
al Lax-Friedri
hs, Harten-Lax-vanLeer or kineti
solvers are used in [1℄ and also in the present paper. The se
ond term on the RHS of (8)and (9) 
an
els the di�eren
e of the hydrostati
 pressures based on the pie
ewise polynomialre
onstru
tion hi;r and the hydrostati
 re
onstru
tion h�i;r at the interfa
e xi+ 12 .The index j = 1; 2 represents the order of the numeri
al sour
e term S(j)
i . It is given byS(1)
i := � 00 �for j = 1 and S(2)
i := � 0g hi;l+hi;r2 (zi;l � zi;r) �(10)for j = 2. Note that this 
orresponds to the sour
e term dis
retisation (4), and below wereview the argument that shows how this leads to a well-balan
ed s
heme for the lake at rest.Together with a se
ond order Runge-Kutta time dis
retization the fully dis
rete se
ondorder well-balan
ed s
heme of Audusse et al. is now 
omplete. With 
onstant re
onstru
-tion and without the Runge-Kutta pro
edure you get the asso
iated �rst order s
heme [1℄.Audusse et al. 
ould show for their s
heme that it preserves the nonnegativity of the water-height hi(t), it preserves the steady state of the lake at rest, is 
onsistent with the shallowwater system and there �rst order s
heme does also satis�es an in-
ell entropy inequality.



8 NOELLE, PANKRATZ, PUPPO, AND NATVIG2.2. Se
ond order Well-Balan
ing. To motivate the subsequent development of a well-balan
ed s
heme of very high a

ura
y, we need to review the well-balan
ed property ofAudusse et al.'s se
ond order semidis
rete s
heme (7).Suppose that H = h+ z is 
onstant at time t, and u � 0. Sin
e Hi;r = Hi+1;l,h�i;r = max(0;Hi;r �max(zi;r; zi+1;l))= max(0;Hi+1;l �max(zi;r; zi+1;l))= h�i+1;land sin
e ui;r = ui+1;l = 0, we also haveU�i;r = U�i+1;l:Be
ause now the values U�i;r and U�i+1;l are equal, we denote them simply by Ui+ 12 , hi+ 12 ,mi+ 12 := (hu)i+ 12 . Be
ause ui+ 12 = 0 8i and by 
onsisten
y of the numeri
al 
uxes,Fr(Ui+ 12 ; Ui+ 12 ) =  0g2h2i+ 12 ! and Fl(Ui� 12 ; Ui� 12 ) =  0g2h2i� 12 ! :This, together with the de�nitions (7){(10) of the semidis
rete s
heme impliesddthi(t) = 0and ddtmi= � 1�x �g2h2i+ 12 + �g2h2i;r � g2h2i+ 12�� g2h2i� 12 � �g2h2i;l � g2h2i� 12�� ghi;l + hi;r2 (zi;l � zi;r)�= � 1�x "gh2i;r � h2i;l2 � ghi;l + hi;r2 ((Hi;l � hi;l)� (Hi;r � hi;r))#= � 1�x ��g (hi;l + hi;r)2 (Hi;l �Hi;r)�Be
ause of Hi;l = Hi;r = H, ddtmi(t) = 0so ddtUi(t) = 0:Therefore, the se
ond order semidis
rete s
heme preserves the stationary state of the lake atrest.2.3. Higher Order Well-Balan
ing. The proje
t of the present paper is to show how toextend the �rst and se
ond order a

urate well-balan
ed s
hemes to any desired order ofa

ura
y. Most ingredients whi
h we use are well-established in the literature: high orderWENO spatial re
onstru
tions, high order Runge-Kutta time dis
retizations, and appropriatequadrature rules for the initial data. But there is one essential diÆ
ulty to be solved: weneed to �nd a quadrature rule for the sour
e term whi
h is both a

urate and well-balan
ed.The remainder of this se
tion is devoted to the solution of this question.



HIGH ORDER WELL-BALANCED FINITE VOLUME SCHEMES Mar
h 18, 2005 9As before, let Ui;r, Ui+1;l be the left and right values of a pie
ewise polynomial re
onstru
-tion at interfa
e xi+ 12 . Of 
ourse, this time we work with polynomials of any desired order ofa

ura
y. De�ne the hydrostati
 re
onstru
tion hi+ 12� by (5) and (6) as before, and setU�i;r := � h�i;rmi;r � ; U�i+1;l := � h�i+1;lmi+1;l � :(11)Note that to a
hieve orders higher than two, it is 
onvenient to re
onstru
t in the 
onservativevariable m (whi
h is 
omputed with full a

ura
y by the �nite volume s
heme) instead of theprimitive variable u, whi
h is only derived from the 
onservative ones. We de�ne the left andright numeri
al 
uxes Fl and Fr by (8) and (9) as before. It remains to de�ne a high order,well-balan
ed numeri
al quadrature of the sour
e termS := �Z xi+12xi� 12 ghzxdx:The main observation of this paper is that this 
an be done by numeri
al extrapolation. Todo so, we subdivide ea
h 
ell into N sub
ells and apply the quadrature (4) to all sub
ells.This gives the quadrature SN ,SN : g NXj=1 hj�1 + hj2 (zj�1 � zj) � S;where zj = z(xi� 12 + j�x=N) et
. are lo
al values of the re
onstru
tion at the interfa
es ofthe sub
ells. In the situation of the lake at rest, wherezj�1 � zj = hj � hj�1the sour
e term redu
es to SN = �g2 NXj=1 hj�1 + hj2 (hj � hj�1)= �g2(h2N � h20)= �g2(h2i;r � h2i;l):By the same arguments as for the se
ond order 
ase this is well-balan
ed, but it is still onlyse
ond order a

urate (see Table 2).To get higher orders of a

ura
y we use numeri
al extrapolation (see e.g. the textbook ofDeu
hard and Bornemann [8℄). Note that the quadrature (4) is symmetri
 and se
ond ordera

urate. Therefore, from Theorem 4.39 of [8℄, there exists an asymptoti
 expansion of theform SN = S + 
1��xN �2 + 
2��xN �4 + : : : :(12)The SN 
an be 
ombined for di�erent values of N to 
ompute S with any order of a

ura
y.For example, to get a sour
e term of order four, simply use4S2 � S13 = S + ~
2(�x)4 + : : :



10 NOELLE, PANKRATZ, PUPPO, AND NATVIGTherefore we de�ne S(4)
i byS(4)
i := 4 � g2 (hl;i + h
;i)(zl;i � z
;i) + g2 (h
;i + hr;i)(z
;i � zr;i)�� �g2 (hl;i + hr;i)(zl;i � zr;i)�3 :(13)Thus for the lake at rest: S(4)
i = �g2 �h2i;r � h2i;l�whi
h leads to a well balan
ed s
heme.Remark 1. Note that 
ompared with S1, the 
omputation of S2 uses only one additionalre
onstru
tion point per 
ell, namely the 
ell 
enter. Thus we 
an 
ompute S to fourth ordera

ura
y using three points per 
ell, whi
h is analogous to Simpsons rule (whi
h may beobtained by extrapolating the trapezoidal rule). Note that we 
ould not use Simpsons ruledire
tly, be
ause this would not give a well-balan
ed s
heme.Remark 2. Note that any s
heme that is well balan
ed with the sour
e term (4) will also bewell balan
ed with the fourth order sour
e term (13).We summarize our high order well-balan
ed �nite volume s
hemes in the following theorem:Theorem 3. Consider the fully dis
rete �nite volume s
heme given by a jth order Runge-Kutta time dis
retization of the semidis
rete s
heme (7) { (9), with kth order spatial re
on-stru
tion, hydrostati
 re
onstru
tion (5), (6), and (11), and sour
e term S(l)
i given by an lthorder extrapolation of (12). Then(i) the s
heme preserves the stationary state of the lake at rest(ii) the s
heme is 
onsistent of order p := minfj; k; lg with the shallow water equations (1).Proof. We have already proved the well-balan
ed property. The proof of 
onsisten
y follows
losely that of Theorem 3.1 of [1℄, q.e.d.In the numeri
al experiments in Se
tion 3, we use the 
lassi
al 4th order Runge-Kuttas
heme, a 5th order WENO re
onstru
tion in spa
e (see Appendix A) and the 4th orderextrapolation (13) of the sour
e term. A

ording to Theorem 3, this s
heme is formally 4thorder a

urate. Surprisingly, in experiments with smooth solutions, it 
learly gives 5th order
onvergen
e, see Table 1 below. Note that we 
ould also have used Shu's TVD Runge-Kuttatime dis
retizations [24℄ or the re
ent SSPRK s
hemes [13, 27℄.3. Numeri
al Experiments3.1. Order of A

ura
y. To verify the order of a

ura
y we follow Xing and Shu [30℄ and
hoose z(x) := sin2(�x)h(x; 0) := 5 + e
os(2�x)hu(x; 0) := sin(
os(2�x))for bottom topography, initial water height and momentum. Here x 2 [0; 1℄, the boundary
onditions are periodi
, and the gravitational 
onstant g is set to 9:812. We 
ompute upto time t = 0:1 with CFL number 0:4. Sin
e the exa
t solution for this experiment isnot known expli
itly, we use the same well-balan
ed WENO s
heme of order (4; 5; 4) withN = 25 600 
ells to 
ompute a referen
e solution. We use a �fth order WENO re
onstru
tionwith " = 10�6 and optimal weights from (31), together with the weight splitting method[23℄ to 
ompute the 
entral point values needed in the quadrature (13). Table 1 
ontains
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h 18, 2005 11the L1 errors and numeri
al order of a

ura
y for both 
omponents. We a
hieve full �fthorder 
onvergen
e in both 
omponents. Note that we have used the �fth order WENOre
onstru
tion in spa
e, but only a fourth order a

urate extrapolation of the sour
e termand the 
lassi
al fourth order Runge-Kutta time dis
retization. Thus not all elements ofthe algorithm 
ontribute equally to the overal error. However, a standard se
ond orderdis
retization of the sour
e term does redu
e the order of a

ura
y to two, see Table 2. Thisshows the relevan
e of the key new ingredient of our algorithm.In the following, we will denote our well balan
ed WENO s
hemes with the triplet (j; k; l),where j; k and l denote respe
tively the a

ura
y in time of the Runge-Kutta integrator, thea

ura
y in spa
e of the WENO re
onstru
tion and the a

ura
y of the quadrature rule (13).
onvergen
e table with fourth order sour
e termnumber h huof 
ells L1 error order L1 error order25 1.13e-02 8.22e-0250 1.84e-03 2.61 1.71e-02 2.27100 2.83e-04 2.70 2.48e-03 2.78200 2.07e-05 3.77 1.77e-04 3.81400 8.18e-07 4.66 7.02e-06 4.66800 2.67e-08 4.94 2.29e-07 4.941600 8.40e-10 4.99 7.21e-09 4.99Table 1. L1 errors and numeri
al orders of a

ura
y for Example 3.1 for thenew well-balan
ed �nite volume s
heme of order (4; 5; 4).
onvergen
e table with se
ond order sour
e termnumber h huof 
ells L1 error order L1 error order25 1.12e-02 8.29e-0250 1.87e-03 2.58 1.73e-02 2.27100 2.86e-04 2.71 2.50e-03 2.78200 2.18e-05 3.70 1.82e-04 3.77400 1.37e-06 3.99 9.99e-06 4.19800 2.18e-07 2.65 1.46e-06 2.771600 5.05e-08 2.11 3.31e-07 2.14Table 2. Same as Table 1, but se
ond order dis
retization of the sour
eterm S
i (order (4; 5; 2)).3.2. Perturbation of a lake at rest. The following problem was studied by LeVeque [21℄.It shows the behavior of a small perturbation of a lake at rest with variable bottom topographyz(x) = � 0:25(1 + 
os(10�(x� 0:5))); if 1:2 � x � 1:40; elsewhere x 2 [0; 2℄. The total initial height is given byH(x; 0) = � 1 +�H; if 1:1 � x � 1:21; else



12 NOELLE, PANKRATZ, PUPPO, AND NATVIGLeVeque, who worked with a se
ond order s
heme, used �H = 0:1. Xing and Shu [30℄,Vukovi
 and Sopta [29℄ and we use higher order s
hemes, and here we test �H = 0:001. Theinitial velo
ity is set to v(x; 0) = 0and the gravitational 
onstant g = 9:81. We use a �fth order WENO re
onstru
tion withoptimal weights from (31) and " = 10�12 in order to satisfy (33). Indeed, " = 10�6 resultsin os
illations at the sho
ks. Periodi
 boundary 
onditions are used. The CFL number is 0:4and the �nal time is T = 0:2.Figures 5 and 6 show total height and momentum 
omputed with 200 
ells and 157timesteps, and a 
omparison between �rst, se
ond and (4; 5; 4)th order solutions are shown inFigure 7. At this time, the wave travelling to the right has just passed the hump, and partof it has been re
e
ted. All the s
hemes are able to produ
e the physi
ally 
orre
t re
e
tedwaves (see the interval [1; 1:5℄ around the hump). The new s
heme shows remarkably highresolution. S
hemes whi
h do not preserve the dis
rete hydrostati
 balan
e may introdu
eunphysi
al waves and high frequen
y os
illations (see [29, Figure 8 & 9℄).
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Figure 4. Example 3.2, bottom topography and initial water level.3.3. Dambreak over a re
tangular wall. This test 
ase simulates a dambreak over are
tangular wall. It produ
es a rapidly varying 
ow over a dis
ontinuous bottom topography.This example was used in [29℄,[30℄. The bottom topography is given byz(x) = � 8; if jx� 1500=2j � 1500=80; otherwise;with x 2 [0; 1500℄. The total initial height isH(x; 0) = � 20; if 0 � x � 75015; otherwise:The initial velo
ity is set to zero v(x; 0) = 0 and the gravitation 
onstant is g = 9:81. Atthe left boundary we use re
e
tive boundary 
onditions and on the right side open boundary
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Figure 5. Example 3.2, total height at T = 0:2 
omputed with 200 
ells.
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Figure 6. Example 3.2, momentum at T = 0:2 
omputed with 200 
ells.
onditions. In Figure 8 we show level lines of the water level, or total height, of the solutionup to time T = 60. In the beginning, one observes the standard rarefa
tion and sho
k waveswhi
h form the solution of the Riemann problem of the homogeneous shallow water equations.Figures 9 and 10 show the water level and velo
ity at T = 15. At time T � 17 the waves 
rossthe two edges of the wall. A part is transmitted, another part re
e
ted, and a remaining partbe
omes a standing wave. Su
h standing waves have re
ently been studied analyti
ally byKlausen and Risebro [18℄, Towers [28℄, Klingenberg and Risebro [19℄, and Seguin and Vovelle[22℄ who 
onsider the inhomogeneous one dimensional shallow water equations as a systemof three 
onservation laws for (h; hu; z) with �tz = 0. This system has the three wave speeds



14 NOELLE, PANKRATZ, PUPPO, AND NATVIG

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.9999

1

1.0001

1.0002

1.0003

1.0004

1.0005

1.0006

x

to
ta

l h
ei

gh
t

first, second, fifth order solution at T=0.2 (157 time steps) , with 200 cells 

first order scheme

second order scheme

fourth order schemes

exact solution

Figure 7. Example 3.2, total height at T = 0:2 
omputed with �rst, se
ond,and (4; 5; 4)th order s
hemes and 200 
ells.
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Figure 8. Example 3.3, 
ontourplot of water level in the x� t plane.u � pgh and 0. For later times, the wave system keeps intera
ting. At time T = 60, wehave six waves in the solution. The main sho
k and rarefa
tion waves just hit the boundaryof the 
omputational domain. Between them we have, from left to right, a standing wave, aweak rarefa
tion travelling leftwards, a se
ond standing wave, and a weak 
ompressive wavetravelling rightwards. Figures 11 and 12 show 
ross se
tions of total height and velo
ity. Notethat the standing waves are not easy to 
apture, even by a high resolution method as the oneproposed in [29℄. Here we have almost perfe
t resolution of all features of this 
hallengingsolution.
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Figure 9. Example 3.3, water level at T = 15, 600 
ells.
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Figure 11. Example 3.3, water level at T = 60, 600 
ells.
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HIGH ORDER WELL-BALANCED FINITE VOLUME SCHEMES Mar
h 18, 2005 174. Two dimensional extensionThe shallow water equations in 2D are given byht + (hu)x + (hv)y = 0(hu)t + �hu2 + 12gh2�x + (huv)y = �ghzx(hv)t + (huv)x + �hv2 + 12gh2�y = �ghzy ;(14)where h is the water height, z is the bottom topography, u is the velo
ity in x-dire
tion, vis the velo
ity in y-dire
tion and g is the gravitational 
onstant. We will now dis
uss how toextend our s
heme to two dimensions.4.1. Overview of the s
heme. Rewrite the system (14) in the standard form:Ut + Fx(U) +Gy(U) = S(U);(15)where 
learly U = (h; hu; hv)T , F = (hu; hu2 + 12gh2; huv)T , G = (hv; huv; hv2 + 12gh2)Tand S = (0;�ghzx;�ghzy)T . We de�ne the 
ell averages over grid 
ells Iij = (xi� 12 ; xi+ 12 )�(yj� 12 ; yj+ 12 ) by(16) Uij = 1�x�y ZIij U(x; y)dxdy;where �x = xi+ 12 �xi� 12 , �y = yj+ 12 �yj� 12 . Suppose for simpli
ity that the 
ells are square:let Æ = �x = �y. Integrating ea
h term in (14) over the 
ell Iij and invoking the divergen
etheorem, we get the following semidis
rete s
heme for the evolution of the 
ell averages Uij:Æ2 ddtUij(t) + Z�Iij (F;G) � nds = ZIij Sdxdy;Rewrite the system as:ddtUij(t) + �Fi+ 12 ;j � �Fi� 12 ;jÆ + �Gi;j+ 12 � �Gi;j� 12Æ = Sij(17)where �Fi� 12 ;j = 1Æ Z yj+ 12 Æyj� 12 Æ F (U(xi� 12 ; y)) dy(18) �Gi;j� 12 = 1Æ Z xi+ 12 Æxi� 12 Æ G(U(x; yj� 12 )) dx(19) Sij = 1Æ2 ZIij S(x; y) dx dy;(20)In analogy with the 1D 
ase, we re
onstru
t the variables h, hu, hv, and H, while the bottomtopography is given by z = H�h. In general, this yields a dis
ontinuous approximation of z.Let Uij(x; y) denote the re
onstru
tion 
omputed in the 
ell Iij with U denoting any of there
onstru
ted variables. Again, to preserve the equilibrium states, a hydrostati
 re
onstru
-tion is needed on the quadrature points on the boundary of the 
ell, whi
h will be denoted



18 NOELLE, PANKRATZ, PUPPO, AND NATVIGby h�: h�i+1;j(x+i+ 12 ; �) = max�0;Hi+1;j(xi+ 12 ; �)�max�zij(xi+ 12 ; �); zi+1;j(xi+ 12 ; �)�� ;h�ij(x�i+ 12 ; �) = max�0;Hij(xi+ 12 ; �)�max�zij(xi+ 12 ; �); zi+1;j(xi+ 12 ; �)�� ;h�i;j+1(�; y+j+ 12 ) = max�0;Hi;j+1(�; yj+ 12 )�max�zij(�; yj+ 12 ); zi;j+1(�; xj+ 12 )�� ;h�ij(�; y�j+ 12 ) = max�0;Hij(�; yj+ 12 )�max�zij(�; yj+ 12 ); zi;j+1(�; yj+ 12 )�� :To approximate the quantities �Fi� 12 ;j and �Gi;j� 12 in (18) and (19), we use a quadrature�Fi� 12 ;j 'Xk !kF (U(xi� 12 ; yj + �kÆ));where !k and �k are the weights and nodes of the quadrature formula. For a fourth orders
heme we use the 
lassi
al two-point Gaussian formula�Fi� 12 ;j ' 12 �F (U(xi� 12 ; yj � �Æ)) + F (U(xi� 12 ; yj + �Æ))� ;(21)where � = 1=(2p3). A similar formula holds for �Gi;j� 12 .We still need to 
onstru
t a well balan
ed approximation to ea
h of the 
ux evaluationsrequired in (21). As in 1D, the numeri
al 
ux is 
omposed of two 
ontributions. The �rst
ontribution (F h for F and Gh for G) is 
onsistent with the 
ux of the homogeneous shallowwater equations, the se
ond 
ontribution 
ompensates the perturbation introdu
ed by thehydrostati
 
orre
tion.The modi�ed state variables that will be applied in the 
ux 
omputations areU�ij = 0� h�ij(hu)ij(hv)ij 1A :Along the edge (xi� 12 ; y) for instan
e the numeri
al 
uxes areF l(U�; z)i� 12 ;j�� := F h(U�i�1;j(xi� 12 ; yj � �Æ); U�ij(xi� 12 ; yj � �Æ))(22) + g2 0� 0h2ij(xi� 12 ; yj � �Æ) � (h�)2ij(xi� 12 ; yj � �Æ)0 1Aand Fr(U�; z)i+ 12 ;j�� := F h(U�i;j(xi+ 12 ; yj � �Æ); U�i+1;j(xi+ 12 ; yj � �Æ))(23) + g2 0� 0h2ij(xi+ 12 ; yj � �Æ) � (h�)2ij(xi+ 12 ; yj � �Æ)0 1A ;with similar formulas for Gl and Gr.Thus the semidis
rete s
heme 
an be written as,ddtUij(t) = � 12Æ �Fri+ 12 ;j+� + Fri+ 12 ;j�� �F li� 12 ;j+� �F li� 12 ;j��(24) Gri+�;j+ 12 + Gri��;j+ 12 � Gli+�;j� 12 � Gli��;j� 12�+ Sij :
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h 18, 2005 19The 
onstru
tion of the sour
e term Sij is 
arried out as follows. First we write the sour
eterm 
omponentwise: Sij = (0; Sxij ; Syij)T . Note that the 
omponent of the sour
e term inthe x-momentum equation 
ontains only the derivative of z along the x dire
tion. Thus,we employ the well-balan
ed quadrature (13) of the previous se
tion to integrate in the x-dire
tion and apply the Gaussian rule in the y-dire
tion. For the fourth order 
ase,Sxij = Æ2 (sxi (yj + �Æ) + sxi (yj � �Æ)) ;(25)where, sxi (y) = 4g6 ((hij(xi� 12 ; y) + hij(xi; y))(zij(xi� 12 ; y)� zij(xi; y))+ (hij(xi; y) + hij(xi+ 12 ; y))(zij(xi; y)� zij(xi+ 12 ; y)))� g6(hij(xi� 12 ; y) + hij(xi+ 12 ; y))(zij(xi� 12 ; y)� zij(xi+ 12 ; y)):In the same fashion, we 
ompute the sour
e Syij using (13) in the y-dire
tion and the Gaussianrule in the x-dire
tion. Again, in the fourth order 
ase:Syij = Æ2 �syj (xi + �Æ) + syj (xi � �Æ)� ;(26)where now, syj (x) = 4g6 ((hij(x; yj� 12 ) + hij(x; yj))(zij(x; yj� 12 )� zij(x; yj))+ (hij(x; yj) + hij(x; yj+ 12 ))(zij(x; yj)� zij(x; yj+ 12 )))� g6(hij(x; yj� 12 ) + hij(x; yj+ 12 ))(zij(x; yj� 12 )� zij(x; yj+ 12 )):Using the same arguments as in the proof of Theorem 3 one 
an show:Corollary 4. The 2D s
heme is fourth order a

urate and preserves the stationary state ofthe lake at rest.4.2. 2D re
onstru
tion. In order to evaluate the numeri
al 
ux fun
tions F and G andthe sour
e term S, we need to re
onstru
t pointvalues of H, h, hu and hv at 12 integrationpoints, 8 on the boundary (xi� 12 ; yj��), (xi��; yj� 12 ) and 4 in the interior (xi; yj��) and(xi��; yj) as shown on the right of Figure 13. Note that the interior points are required onlyto 
ompute the sour
e term, whi
h is fourth order a

urate. As in the 1D 
ase we apply aWENO pro
edure to �nd these data.In 2D this re
onstru
tion is somewhat more involved. Our approa
h is to re
onstru
t ea
hvariable dimension by dimension. For ea
h 
ell, the one dimensional WENO pro
edure hasto be applied six times to produ
e pointvalues in all quadrature points.To �x ideas, we illustrate the algorithm for the re
onstru
tion of the variable h. In thisse
tion only, we denote the 
ell averages as ��hij , to distinguish the averages 
omputed on a 
ell(a double integral) from the averages 
omputed along only one segment (a single integral).We start applying the WENO re
onstru
tion pro
edure in the y dire
tion, starting fromthe 
ell averages ��hij . We apply the re
onstru
tion de�ned by the 
onstants in Appendix A(32) and we �nd approximations in the points (xi; yj+�) and (xi; yj��) to the fun
tion:�hij(xi; yj��) = 1Æ Z xi+ Æ2xi� Æ2 h(x; yj��) dx:
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e these data are available for all i, we apply again the WENO re
onstru
tion along thex axis to get the required pointvalues, i.e. hij(xi� 12 ; yj+�), hij(xi; yj+�) and hij(xi+ 12 ; yj+�),starting from �hij(xi; yj+�). With another re
onstru
tion, we �nd hij(xi� 12 ; yj��), hij(xi; yj��)and hij(xi+ 12 ; yj��), starting from �hij(xi; yj��). This set of operations will be 
alled yx sweep,see Figure 14.To get the quadrature points along the dashed lines on the right in Figure 13, we performthe same operations in the reversed order. This will be 
alled x-y sweep, see Figure 15.
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Figure 13. (Left) The positions of the re
onstru
ted 
rossse
tion aver-ages (xi��; �) (dashed lines), (�; yj��) (bla
k lines) for the �rst re
onstru
tionstep. (Right) The Gaussian integration points for the edges (xi� 12 ; yj��),(xi��; yj� 12 ) and for the interior, (xi; yj��) and (xi��; yj). The point valuesin these lo
ations are 
omputed in the se
ond step of the re
onstru
tion.Now, all the quantities appearing in the semidis
rete s
heme (17) have been de�ned. Fi-nally, to get a fully dis
rete s
heme, we need to spe
ify a method to mar
h forward in time.As in the 1D s
heme, we apply the 
lassi
 fourth order Runge-Kutta method. For other 
ases,it might be advantageous to use the re
ent TVD or SSP Runge-Kutta s
hemes [24, 13, 27℄.4.3. Well-balan
ed test in two dimensions. The two dimensional experiments we presenthere follow 
losely the work of Xing and Shu [30℄. We 
he
k the behavior of the two dimen-sional s
heme in a lake at rest situation on a re
tangular domain [0; 1℄� [0; 1℄, with a non-
atbottom topography z(x; y) = 0:8e�50((x�0:5)2+(y�0:5)2):(27)The initial water height is h(x; y) = 1� z(x; y);(28)so that the water surfa
e level H is 
onstant 1:0. The momentum in x and y dire
tion is setto zero: hu(x; y; t = 0) = 0 and hv(x; y; t = 0) = 0:(29)The lake is at rest initially, and should remain at rest inde�nitely. In this situation, a s
hemewithout well-balan
ing would produ
e unphysi
al waves. For this test we use a uniform
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ompute averages over
rosse
tions (�; yj��) marked with bla
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ond step of the y-x-sweep we use the 
rosse
tion averages to 
omputepoint values at quadrature points (xi� 12 ; yj��), (xi; yj��) (right �gure).PSfrag repla
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rosse
tion averages to 
omputepoint values at quadrature points (xi��; yj� 12 ) (xi��; yj) (right �gure).100 � 100 grid and 
ompute the solution at time t = 0:1. We get following L1-errors for the
onservative 
omponents: jjhjj1 = 1:23e�16, jjhujj1 = 2:20e�16 and jjhvjj1 = 2:22e�16. Theerrors are all of the magnitude of the rounding error e�16 thus the s
heme is indeed perfe
tlywell-balan
ed.



22 NOELLE, PANKRATZ, PUPPO, AND NATVIGnumber h hu hvof points CFL L1 error order L1 error order L1 error order25 0.5 8.77-03 3.42e-02 6.71e-0250 0.5 1.10e-03 3.00 2.73e-03 3.65 9.40e-03 2.84100 0.5 9.84e-05 3.48 1.56e-04 4.13 7.85e-04 3.58200 0.5 4.91e-06 4.32 6.58e-06 4.57 3.93e-05 4.32400 0.5 1.82e-07 4.76 2.41e-07 4.77 1.46e-06 4.75800 0.5 6.06e-09 4.91 7.94e-09 4.92 4.90e-08 4.90Table 3. L1-errors and numeri
al order of a

ura
y for the 
onvergen
e test 4.44.4. Testing the order of a

ura
y. To 
he
k the numeri
al order of a

ura
y we use thesame experiment as Xing and Shu [30℄. On the unit square [0; 1℄� [0; 1℄ we 
hoose the bottomtopography: z(x; y) = sin(2�x) + 
os(2�y)the initial water surfa
e level:h(x; y; t = 0) = 10 + esin(2�x)
os(2�y)and the initial momentum in the x and y dire
tions respe
tively:hu(x; y; t = 0) = sin(
os(2�x)) sin(2�y)hv(x; y; t = 0) = 
os(2�x) 
os(sin(2�y)):We 
ompute up to time T = 0:05 with CFL-number 0.8. For the WENO re
onstru
tion weuse the optimal weights of (31),(32) and set " = 10�6. The referen
e solution is 
omputedwith the same s
heme and 1600 � 1600 
ells, sin
e the exa
t solution is unknown.For this experiment we expe
t fourth order of a

ura
y in all 
onservative 
omponents. Theapplied standard Runge-Kutta time integration, the integration of the numeri
al 
uxes withGaussian rule and the 
ell 
entered sour
e term are all formally fourth order a

urate, whilethe applied WENO re
onstru
tion is �fth order a

urate. Table 3 
ontains the L1-errors andorders of a

ura
y. We 
an 
learly see that for this two dimensional test 
ase, fourth ordera

ura
y (in fa
t almost �fth order) is indeed a
hieved in all 
omponents.4.5. A small Pertubation of a Two Dimensional Steady-State Water. This 
lassi
alproblem is given by LeVeque [21℄ and is also 
omputed in [30℄. For this problem we 
onsiderthe re
tangular domain [0; 2℄ � [0; 1℄. The bottom topography is displayed in Figure 16 andit is given by: z(x; y) = 0:8e(�5(x�0:9)2�50(y�0:5)2):The initial water surfa
e level is given by:h(x; y; t = 0) = � 1:01� z(x; y) if 0:05 � x � 0:151� z(x; y) otherwise ;so the initial surfa
e level is almost 
at, only in the region 0:05 < x < 0:15 it is perturbedupward by the displa
ement 0.01. The initial momentum in the x and y dire
tions is:hu(x; y; t = 0) = 0hv(x; y; t = 0) = 0:We 
ompute using two di�erent uniform meshes with 200� 100 
ells and 600 � 300 
ells.Figure 17 shows 30 uniformly spa
ed 
ontour lines of the surfa
e level H at times t =0:12; 0:24; 0:36; 0:48 and �nal time T = 0:6. The results obtained with the 
ourse grid
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h 18, 2005 23appear on the left side, while on the right we �nd the numeri
al solution obtained with the�ne grid.In the simulation with the 
oarse grid we use " = 10�6 and for the �ne grid " = 10�9. Inboth experiments we 
hoose the CFL-number equal to 0:5. As we 
an see, we get results
omparable to the �nite di�eren
e approa
h in [30℄.
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Figure 16. Bottom topography of experiment 4.5 z(x; y) = 0:8e(�5(x�0:9)2�50(y�0:5)2).
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Figure 17. Contour lines of the surfa
e level h + z for the experiment ofSubse
tion 4.5 at times t = 0:12; 0:24; 0:36; 0:48; 0:6. Left: 200 � 100 grid,right: 600 � 300 grid. There are 30 uniformly spa
ed 
ontour lines in ea
hplot. At time t = 0:12 the 
ontour lines go from 0:999837 to 1:005974; attime t = 0:24 from 0:996091 to 1:014523; at time t = 0:36 from 0:988829 to1:011245; at time t = 0:48 from 0:990559 to 1:004614; at time t = 0:6 from0:995244 to 1:005207.
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lusionIn this paper, we have 
onstru
ted well-balan
ed �nite volume s
hemes for the shallowwater equations, whi
h are of any desired order of a

ura
y. The new s
hemes generalize a
lass of se
ond order s
hemes proposed by Audusse et al. [1℄. A (4; 5; 4)th order version ofthe new s
heme gives the expe
ted high resolution both for smooth and non-smooth 
ows,and perfe
t balan
e for the lake at rest in one and two spatial dire
tions. The key te
hnique,a new quadrature formula for the sour
e term, 
an be applied to a wide variety of �rst andse
ond order well balan
ed s
hemes, to raise their order of a

ura
y. Work on stable s
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onstru
tionFor 
ompleteness, we review the WENO re
onstru
tion [16℄,[25℄ for uniform grids in 1D.Moreover, we wish to report the a

ura
y 
onstants for the points in the Gaussian quadraturethat we were not able to �nd elsewhere in the literature.Given 
ell averages ui := 1jCij ZCi u(x)dxon 
ell Ci and a �xed point x� 2 Cj, the WENO pro
edure provides a highly a

uratepie
ewise polynomial approximation R(x�) of u(x�).R(x�) = u(x�) +O(�x2r�1)(30)1. De�ne r small sten
ils, 
omposed of r 
ells, around the 
ell 
ontaining xjSk := (xj+k�r+1; xj+k�r+2; :::; xj+k), k = 0; :::; r � 1and one large sten
il T := r�1[k=0Skwhi
h 
ontains all the 
ells from the r smaller sten
ils.2. Given 
ell averages uj 
ompute the interpolation polynomials pk(x) of degree (r� 1) asso-
iated with the sten
ils Sk for k = 0; ::; r� 1 and the higher order re
onstru
tion polynomialQ(x), of degree (2r�1) asso
iated with the large sten
il T . Here, interpolation is understoodin the sense of 
ell averages.3. Find the linear weights Cr0 ; :::; Crr�1 su
h that:Q(x�) = r�1Xk=0Crkpk(x�):
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h 18, 2005 27For the �fth order WENO re
onstru
tion used in this paper we get the following weights:x� C30 C31 C32xj� 12+ 0:3 0:6 0:1xj �0:1125 1:225 �0:1125xj+ 12� 0:1 0:6 0:3 :(31)For the 2D extension we need also weights for Gaussian points:x� C30 C31 C32xj � �x2p3 70p3+1360p3 11=18 70p3+1360p3xj + �x2p3 70p3+1360p3 11=18 70p3+1360p3 :(32)4. Compute the smoothness indi
atorsISk = r�1Xl=1 Z xj+ 12xj� 12 �x2l�1(p(l)k )2dx;where l denotes the l-th order derivative of pk.5. Compute the nonlinear weights based on the smoothness indi
ators!k := �k�0 + � � � + �r�1where �k := Crk("+ ISk)2 ; k = 0; 1; :::; r � 1:Here " is a real number whi
h is introdu
ed to prevent the denominator from be
oming zero.To preserve a

ura
y, " should satisfy the 
onstraints0 < " everywhere"� ISk in regions where the solution is smooth.(33)In the numeri
al experiments we use " = 10�6, ex
ept for the experiment in Se
tion 3.2,where the ISk are extremely small and we need to use " = 10�12.6. The �nal WENO re
onstru
tion is given by:R(x�) = r�1Xk=0!kpk(x�):It is well known that the negative weights appearing in (31) may lead to os
illations at dis
on-tinuities [23℄. Note however that this problem o

urs only in the re
onstru
tion of the pointvalues at the lo
ations (xi; yj��) and (xi��; yj) whi
h are needed only in the 
omputation ofsxi (y) and syj (x), see (25) and (26). We have tested the following two approa
hes: �rst, wesimply repla
ed the weights by the fourth order a

urate 
hoi
e of C30 := 0:25, C31 := 0:5 andC32 := 0:25. Sin
e these data midpoint appear only in the quadrature S(4)
i for the sour
e term,whi
h is only fourth order a

urate anyway, this does not de
rease the overall order (4; 5; 4)of the algorithm. The se
ond 
ure is the splitting te
hnique of Shi, Hu and Shu [23℄. For
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