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Abstract. The paper is concerned with regularization concepts for the inversion of diffusion
processes. The application of the involved evolution operators is based on Dunford integral repre-
sentations combined with the adaptive application of resolvents using recent wavelet methods. In
particular, this allows us to develop and realize numerically, to our knowledge for the first time in
this context, an SVD projection method which is compared to several versions of Tikhonov-type
schemes. The theoretical findings are complemented by numerical tests shedding some light on the
quantitative performance of the schemes.

AMS Subject Classification: 47A52, 65J20, 65J22

Key Words: Inverse problems, Dunford integrals, quadrature, Tikhonov method,
projection methods, truncated SVD expansion, adaptive wavelet methods

1. Introduction. The notion of “inverse problem” serves as an important con-
ceptual link between experimental and theoretical sciences. For example, unknown
system parameters appearing in a model suggested by theory need to be retrieved
from typically indirect measurements. “Given an answer one has to look for the ques-
tion” which perhaps best reflects the typical ill-posedness of inverse problems. An
important class of such even “severely” ill-posed inverse problems arises in connection
with evolution equations of the form

4+ Au=0, u(0)=uo, (1.1)

where u is a function in time taking values in some Hilbert space X and A is a
positive definite operator on D(A4;X) C X. When A = —A, the negative Laplacian,
X = Ly(Q), where Q C R? is an open domain, this is the classical heat equation
describing heat diffusion. The “solution” operator S that assigns to any initial data wug
the solution u(#) at later time ¢ > 0 is given by the operator exponential S = e~*4 and
is known to define an analytic semigroup. When A : D(A4; X) — X has an unbounded
spectrum S will be compact. A classical inverse problem consists in finding the initial
data ug from the solution S(ug)(t) = e t4uo at some fixed time ¢ > 0. Thus one has
to “undo diffusion” which is expected to be a delicate task.
A similar situation arises with the inhomogeneous problem

w4+ Au=f, u(0)=0,

where the solution operator is given by

T
(Sf)(t) = / e~ T=DA L (1) dr. (1.2)

t

These are special instances of the following general situation. Let S : X — Y
be a linear and compact operator between two Hilbert spaces X and Y. We aim at
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solving
Sz =y (1.3)

for some given y € Y. This equation has no solution unless y € Range(S). Even if
y € Range(S), the solution is in general neither unique nor continuously depending
on y. A way to restore uniqueness is to impose some additional selection criterion. A
theoretical tool to solve (1.3) in this sense is the Moore-Penrose generalized inverse
St:D(ST) cY — X, D(ST) = Range(S) ® Range(S)*, defined by

ISI®
zh =8ty = / — dE, S*y,
0 A

where {E)} >0 denotes the spectral family of the self-adjoint, compact operator S*S.
The integral converges if and only if y belongs to D(St;Y). Thus when Range(S) is
not closed y € Y may fail to belong to D(S*;Y). Equivalently, z' can be defined as
the least-squares solution of (1.3) with minimal norm, i.e.

T _ — inf _
152" = ylly = inf ISz —ylly

and z! has minimal norm among all z € X for which the infimum is attained.

Still the unboundedness of the (generalized) inverse prevents a continuous de-
pendence of the solution on the data so that regularization is necessary. Of course,
this subject has been treated in numerous studies documented in the literature. The
two most common regularization strategies are Tikhonov type schemes and projection
methods. The numerical implementation of Tikhonov schemes requires the repeated
approximate application of the solution operator and its dual which is typically done
with the aid of time stepping schemes like the method of lines for the solution of
the forward problem. This is computationally rather demanding while the so called
“qualification” (limiting the attainable order of accuracy in terms of a decreasing noise
level, see [9]) is only puo = 1. Among the class of projection methods a prominent
role is played by truncated singular value expansions (SVD-expansions) which yield
in some sense “optimal” projection methods, see e.g. [9]. Unfortunately the required
system of singular basis functions is usually not numerically accessible at affordable
cost.

The objective of this paper is to develop and analyze certain new variants of both
strategies, Tikhonov and projection methods, for the inversion of diffusion processes.
Since the essential algorithmic ingredients for the treatment of operators of the form
S = e 4 can be carried over to those given by (1.2) (see [15]) we shall exemplify
matters for S = e *4. In Tikhonov schemes the explicit regularization parameter
affects the whole spectrum of the operator. Therefore one might expect improvements
from penalizing only the small part of the spectrum which will lead to one of the
variants. This will be facilitated through certain projections based on representations
as contour integrals in the complex plane similar to analogous representations of the
solution operator itself. A central issue in this paper is therefore the development
and analysis of error controlled numerical schemes for the evaluation of such integral
representations which will allow us to completely avoid costly time stepping schemes
in either regularization method. Perhaps more importantly, this will allow us to
realize, to our knowledge for the first time, an efficient SVD-projection method for
the inversion of diffusion processes without ever having to determine the singular basis
functions.



Our schemes are based on a suitable quadrature rule for the contour integrals com-
bined with an error controlled application of the involved resolvents at the quadrature
points. A computationally attractive feature is that the different resolvent calculations
are completely independent which leads to a trivial but highly efficient parallelization
of the schemes. In principle, the resolvent equations (which are well-posed) can be
solved by any discretization that guarantees a given accuracy tolerance. Here we shall
employ recent adaptive wavelet schemes for the following reasons: Due to the induced
norm equivalences, the wavelet setting allows us to realize conveniently the relevant
topologies arising in this context and to control errors in the right norms. For in-
stance, involved applications of resolvents can be performed with optimal complexity
in the sense of [2] within desired error tolerances. Consequently, the application of
the true operator exponential (not of e~*4* for some given discretization A of A
and its inherited inaccuracy) can be given with rigorous accuracy bounds. In this
sense the approach allows us to disentangle regularization and discretization of A in
favor of transparent and accurate error bounds. Finally, the complexity results for
the adaptive schemes from [2] will be seen to offer a first rough assessment of the
computational complexity of the SVD-projection regularization. In this context one
encounters a number of interesting questions that remain open but indicate in our
opinion a promising potential of this approach.

It should be mentioned that a direct approximate application of the operator ex-
ponential can be also based on the hierarchical matriz concept, see e.g. [11]. However,
this is an entirely discrete approach approximating e~ ¢4 for a given matrix approx-
imation A of A. Some comments on the resulting conceptual distinctions can be
found at the end of Section 2.

The layout of the paper is as follows. In Section 2 we collect some basics from
regularization theory and formulate the principal strategies. Section 3 is devoted to
the concept of separating the spectrum of closed linear operators which our projec-
tion method will be based upon. We identify a contour integral representation of
the boundedly invertible projection of S onto the eigenspace of A corresponding to a
bounded part of its spectrum. This will serve later as the regularized approximation
to S. In Section 4 we develop the main algorithmic ingredients based on suitable
wavelet representations of the involved operators and corresponding adaptive eval-
uation scheme for their application within any desired accuracy tolerance. This is
based on a suitable quadrature rule for the contour integrals as well as on an adaptive
solution scheme developed in [2] for operators with sparse wavelet representations.
These tools will be used to formulate and analyze in Section 5 several regularization
schemes including modified Tikhonov schemes as well as the above mentioned new
projection method. The latter one will be seen to offer much better efficiency than the
Tikhonov-type schemes. Finally, in Section 6 the theoretical findings are quantified
and illustrated by numerical experiments.

2. Regularization. We begin with briefly recalling some facts from regulariza-
tion theory that will guide the subsequent developments, see [9] for details and proofs
of the quoted results.

One way to approximate ST by a bounded function is to replace 1/ by a family of
functions g (A), @ > 0, which are bounded and tend to 1/X pointwise if & approaches
zero. Abbreviating ||S|| := ||S]|z(x,v), the regularized solution is then defined as

IIS|1?
Ta = ga(5*S)S*y = / ga(N) dE S*y, 2.1)
0
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where the integral converges for every y € Y as g,()) is bounded on [0,[|S]|?]. In
particular, the operator g,(5*S)S* : Y — X is continuous with

192(5*8)S*|| < sup{V'X |ga(N)| : A € [0, [|S]’]}.
The residual can be explicitly calculated as
ot —zy =2t — 94 (5*5)S*y = (I — go(S*S)S*S) !

lIs|I?
/ ro(A) dEy z!

with
Ta(A) = 1= Aga(A). (2:2)

The approximation properties of this method are stated in the following theorem.

THEOREM 2.1. (|9], Theorem 4.1) Let go()) : [0,]|S]|?] = R fulfill the following
assumptions for all a > 0: g, is piecewise continuous, there exists a constant Cy > 0
independent of a such that

Ma(NI <Gy and lim ga(h) = 1 ¥ A€ O.[1SI 23)
Then
lim ga(5"9)S"y = Sy, ify e D(SY), (2:4)
and
T lga(S8)S"llx = o, ify £ D(S). (2:5)

Concrete rates of convergence in (2.4) can only be expected when z! belongs to
some compact subset of X usually described in terms of ‘“regularity” properties. A
typical assumption leading to convergence rates is that z! belongs to the range of
some power of S*S. Knowing such a convergence rate would be important for dealing
with noisy data y° which are usually encountered in realistic applications. In fact,
suppose that the noise level is § > 0, i.e.

ly —°lly <6
Accordingly, one obtains perturbed results
2% = g (S*S)S*y°.
If a rate for ||zt — 2% || x was known, in view of
llot = 23llx < llz" = zallx + llza — 22 1x,

it would be sufficient to bound the ‘propagated error’ ||z, — 2% || x in order to balance
both terms and thereby obtain the right regularization.

4



THEOREM 2.2. ([9], Theorem 4.2) Let the assumptions of Theorem 2.1 be fulfilled
and set for a >0

Gao =sup {lga(N)]: A €0, [|S]1*]} .
Then the estimates
|Szo — Szo|ly < Cyb, and ||z —2||x < 1/CyGad, (2.6)

hold true with Cy from (2.3).

Thus, the propagated error stays proportional to the noise level § and a bound
for ||zt — 22 ||x would tell us how to choose a.

In practice, the necessary information is typically not available and a reasonable
parameter value a = a(d,%°) > 0 has to be chosen for given data y° in a different way.
A widely used method is the discrepancy principle which defines

a=a(8,y’) =sup{ > 0: ||Szj —y°| = 76} (2.7)
with some fixed parameter
7> sup {|ra(N)| > 0,X € [0,]|S]°]} -
Under fairly general conditions on g, () convergence
x‘;(é,ys) -zt if§ -0,

of optimal order can be shown ([9], Theorem 4.17).
The strict condition (2.7) can be relaxed to finding the largest « such that

1Sz5 = 4°llv < 76 < [1S23, —4°llv

holds which eases the use of the discrepancy principle.
Clearly, x% is generally again the solution of an operator equation. Thus, in
practice, neither 2% nor the residual ||Sz® — y°||y can be calculated exactly. Aiming
at a rigorous error control we have to analyze the behavior of the discrepancy principle
when both quantities are replaced by approximations ﬁg and Res,.
LEMMA 2.3. Let 2% be a numerical approzimation to the regularized solution

satisfying

1
a

25, — 2% llx <7 llS|I~*e. (2.8)

Moreover, suppose that the approzimation to the true residual Sz%, — y° has norm
Res,, satisfying

|Resa — 1828, — y5||y| < 124, (2.9)
where the positive constants 7,7 are chosen such that
T—1—T2 >y :=sup{|ra(N)|:a>0,X€ [0S} . (2.10)
Now let o = a(6,1°) be chosen such that

Resy < 70 < Resaq. (2.11)
5



Then the numerical approzimations 75, to the reqularized solutions x3 corresponding

to the method (go(S*S)S*,a) converges in X to x! for § — 0 for all y € Range(S).
In fact, it has optimal order 54T when zt € Range (S*S)* for p € (0, uo — 1/2],
where po is the “qualification” of the regularization method, see [9, Chapter 4.1].
Proof. We refer to the proof of Theorem 4.17 in [9] were the analogous statement
is shown for the discrepancy principle with exact values of zJ, and ||Sz’ — y°||y. A
careful inspection reveals that the claim is reduced to verifying the two estimates

|Szo —ylly <18 and  [|Sz2a — ylly > c2d (2.12)

for some constants c¢1,cy > 0.
We infer the first part of (2.12) from the assumption Res, < 7§ as follows. One
has

1820 — ully < 1555 3 ly +6 < 158 - 4?llv + 8111 — &5 1x +70
<Resq + 120 + 116 + 70 < (T + 71 + 72 + )4,

where the first inequality results from the properties of r,(\) and the definition of .
To see the second estimate of (2.12) we observe that

18230 = 4°lly 2 15730 = 4°lly = IS[ll|234 — F3allx < Resea — (11 + 1)

> (T — 11— 72)0.

This implies ||Sz2q — yl|ly > (7 — 71 — 72 — ¥)d, where 7 — 71 — 75 — 7y is positive due
to the choice of 7, 7, and 7. 0

Loosely speaking, it is sufficient to keep the discretization errors proportional to
the noise level. Tt should be noticed that this result is purely asymptotic for § — 07. In
particular, the constants 7, 71, and 75 which heavily influence the outcome of numerical
experiments can be chosen freely as long as (2.10) is satisfied.

It remains to specify the regularization method g,. Setting go(\) = (o + A)~!
yields the well-known Tikhonov regularization which reads

(oI 4+ 8*8)zl = S*y°. (2.13)

1

o, can equivalently be defined as solution of the minimization problem

X

—_— 6 1
allzllx + ISz - ylly — min,

which can be interpreted as compromise between the size of ||z||x and the residual
error ||Sz — y°||y. It si well-known that in this case the qualification is po = 1.

The penalization imposed by the Tikhonov scheme affects the whole spectrum of
S*S. This raises the question whether the resulting bias could perhaps be diminished
by making the penalization dependent on the spectrum. In fact, it should be active
only on the small eigenvalues of S*S. Thus, a first alternative is

9a(N) = (exjo,a) (V) + X7 (2.14)

This gives rise to what may be called “modified” Tikhonov regularization.
The second alternative deviates in a more essential way from the Tikhonov concept
by taking

ga(N) = { xoAZ & (2.15)



simply clipping the small eigenvalues of S*S. This corresponds to setting the small
singular values of S to zero and thus to a truncated singular value expansion which is
known to be in some sense an “optimal” regularization method by projection. More-
over, in this case one has puy = oo, see e.g. [9, Example 4.8]. We refer to this
regularization scheme as SVD-projection. But of course, in practice the issue is to
realize this projection method at affordable cost.

Both strategies (2.14), (2.15) hinge on the ability to realize projections Qq : X —
X taking X into an eigenspace corresponding to o(S*S) N [0,a). Then (2.14) gives
rise to solving

(aQq + S*S)x® = S*y°, (2.16)
while (2.15) leads to
R:S*SR,x’ = R:S*y°, Ry :=1I-Q,. (2.17)

We shall show below that for S = e~*4, A as in Section 1, such projections can
be efficiently realized numerically which to our knowledge is new. Before addressing
this in a systematic fashion, a few comments are in order. Of course, discretizations
of A lead to approximations Ay of A defined on a finite dimensional subspace of X
being now bounded with a norm depending on the discretization parameter h. Hence
the spectrum of S, = e *4» is bounded away from zero so that solving

Sy Spxl = Sryl (2.18)

has a similar effect as (2.17) where e.g. the mesh size h of the underlying discretization
acts as a regularization parameter. Solving (2.18) (which becomes increasingly ill-
conditioned for h — 0) iteratively, the termination of the iteration adds another bias.
Each application of S, or S; (either by approximately solving evolution equations
or by employing H-matrix techniques, [11]) is inaccurate. For H-matrix concepts
the problem is posed now in Euclidean metric which hampers somewhat taking the
topological requirements of the original problem into proper account. So several
sources of inaccuracies are mixed. We shall therefore pursue here a different line
separating regularization and discretization. In particular, this will allow us to apply
(R S*SRy) ! for the “true” S within any desired tolerance. This will be based on two
conceptual pillars: (a) the actual numerical realization of projections of the form @,
as well as of e~t4 within any desired target accuracy; (b) the involved application of
resolvents (yI — A)~! appearing in the Dunford integral is based on adaptive wavelet
schemes again realizing proper target accuracies without ever fixing any discretization
of A beforehand.

We shall now fix our assumptions on the operator A which, of course, relates to
the topologies of X and the image space Y under S. A will always be assumed to
be sectorial and normal with spectrum in the right complex half plane. In particular,
this covers selfadjoint positive definite operators. Moreover, it will be important to
specify the mapping properties of A. To this end, we shall always assume to be given
a Gelfand triple of Hilbert spaces H,V, H' satisfying

H<— V< H, (2.19)

where H' is the dual of H represented through the inner product (-,-) := {-,-)vxv
of the pivot space V. In these terms we require that there exist bounded positive
constants c4,C4 such that
callvlle < ||Avllar < Callvlla, v e H. (2.20)
7



i.e. A: H— H'is anorm-isomorphism from H onto H'. A typical case is V = Ly(Q)
and H = H}(Q),H' = H-'(Q) which fits to the heat equation with 4 = —A, say.
This will serve as a guiding example in the selfadjoint positive definite case.

In most part of the subsequent developments we shall have

V=X=Y, (2.21)

which accounts for the fact that noise should not be measured in too strong a norm.
Nevertheless, an alternative would be X = H', so that D(A; X) = H =Y, and later
in Section 5.3 we shall encounter intermediate cases.

REMARK 1. An analogous mapping property to (2.20) does not hold for S = e t4,
i.e. we cannot find a pair of spaces for which an analogous estimate like (4.5) holds.
Therefore, the concepts used e.g. in [3] do not apply in the present situation.

3. Separation of Spectrum. We return to problems of the form (1.1). When X
is a Hilbert space and A is self adjoint and positive definite there exists an orthonormal
basis of eigenvectors {zy}ren of A with associated eigenvalues A; > 0, sorted by
decreasing size. Then, the operator exponential can be written as

oo
e tyy = Ze*t’\’“ (uo, Tk) x x X Tk, t>0.
k=1

From this representation, it is immediately clear that
lle™*uol|x < e”||uol|x and o(et4)\ {0} = e~ ¢ > 0.

Moreover, the eigenvector of e t4 to the eigenvalue e *** coincides with the eigenvec-
tor of A to the eigenvalue Ar. This close relationship can be carried over to a more
general situation as stated in the following theorem. To make that more precise, let
us recall the following facts relating the spectrum of A to that of e *4 even for the
wider class of sectorial operators.

THEOREM 3.1. (Spectral mapping theorem, [10, 14]) Let A be a sectorial operator
on a Banach space X. For everyt > 0

U(e—tA) \ {0} — e—tU(A) = {e_w‘ TN E U(A)}a

and

Up(e_tA) — e—tap(A)’
where o, denotes the point spectrum, i.e. the set of eigenvalues. Moreover, the
eigenspaces of A and e ** are related by

NPT — e=t4) = Tinjes /\/((A n ZWTM)I _ A)

for each t >0 and )\ € C.

A representation of projections needed in (2.16), (2.17) can be based on the
following principle, known as separation of the spectrum, that projects A as well as
et onto the eigenvector spaces of A associated with a bounded subset of o(A).

To this end, assume that o(A) is split into two disjoint, nonempty sets o1 and o9
such that o, lies in the interior of some Jordan curve I'; and o3 in the exterior part.
Then,

1
P:=Pr, = Pr,(A) = omi (vI — A~ dy (3.1)

8



defines a bounded linear operator. Its basic properties can be summarized as follows.
THEOREM 3.2. (Theorem IIL.6.17 of [12]; Section 2.3 of [14])

The operator P is a projection with Range(P) C D(A*; X) for every k € N. Moreover,

setting

Y1 =P(X), Y»=( - P)(X),
A YT =Yz Az for oll x € Y7,

As :D(A2) =D(A;X)NYe = Y iz — Az for all x € D(A,),
the operator Ay : Y1 — Y1 is linear and bounded, and
o(A1) =01, o(A2) =09,
(VI =A) =(0I=-A)7 wm, v€p(4),
(V= A2)7 = (1T = 4) va, v € p(A).

If, in addition, X is o Hilbert space and A is normal, then P is the orthogonal
projection onto Y.

Thus, A is split into a bounded part A; and an unbounded one A,. As the
projection P is defined by a curve integral similar to the definition of the operator
exponential e~*4, both are compatible in the following sense.

PROPOSITION 3.3. ([14], Prop. 2.3.3) The projection P commutes with e~*4,
which implies e (Y1) C Yy and e *4(Ys) C Ya, i.e. Y1 and Yz are invariant sub-
spaces of X with respect to the semigroup. A1 and As generate semigroups in Y, and
Ys, respectively, with

e—tA1 — e—tA|Y1 — e_tAP|Y17

e_tAZ = e_tA|Y2 = e_tA(I - P)|Y2'
As Ay is bounded, {e t41},>¢ extends to a group {e 41 },er. In particular, e=t41,
t > 0, is boundedly invertible with inverse

(e7tA) 71 = gt = 1 e (yI — A) " dy.

21 Ty
Moreover, for every o > sup{R(Y) : v € 01} there exists a constant M, > 1 such that

||etA1||X < Myet, t>0.

To see how this relates to an SVD-projection for S = e t4, suppose that the
Jordan curve T'; encloses all (positive) eigenvalues of the operator B = A* + A that
are smaller than |+log 1 |. Recall that when A is normal the product $*S takes the
form

e e M=t B=A+ A" (3.2)

a single exponential. Since by Theorem 3.1, any £ € ¢(S*S) has the form & = et A
an eigenvalue of B, we infer from Proposition 3.3 and (2.17) that with the projection
R, = Pr, = Pr,(B) with respect to B that
2l = (Pr,S*SPr, )t S*y® = etBret47y9, (3.3)
9



Hence the SVD-projection reduces here to the application of an exponential and a
projected exponential.

Things simplify when A is selfadjoint and positive definite, so that singular values
and eigenvalues coincide. Now one needs a curve enclosing all eigenvalues of A up to
the size | L log 2| and aprojection Pr,(A) to obtain from (3.3), again in view of the
properties stated in Proposition 3.3,

2% = etyd, (3.4)

Thus regularization along this line amounts to just applying the inverse of a projected
semigroup (and in the general case of an exponential) as opposed to solving operator
equations of the type (2.13) or (2.16).

Of course, (3.4) can always be used in this form as long as the separation of
spectrum is feasible, even when A is not selfadjoint. The regularization scheme (3.4)
does then, however, not necessarily agree with an SVD-projection. For simplicity, we
shall concentrate in what follows on (3.4), remarking that with the tools developed
below, we could realize (3.3) as well.

We close this section with the following observation.

REMARK 2. The projected semigroup provides also an efficient way for long time
integration, i.e. to apply e~ for t > 0. Due to Proposition 3.3, one has

lle™ ug — e™™ Pug||x = [[(I = P)e™ugl|x < e ™ H2)jug]|x.
Thus, for inf R(o2) > 0 and t — oo, the semigroup e t4 is closely approzimated by
the projected semigroup and it is sufficient to apply e AP instead of e~ 4.

4. Algorithmic Concepts. For S = e~ the Tikhonov-type regularization
strategies (2.13) and (2.16) require solving systems involving the products e~ 4 e~t4.
Having iterative techniques in mind, this amounts to applying exponentials e *4" and
e t4. Moreover (2.16) and (3.4) involve applying projections of the above type Pr,, [—
Pr,. The application of e *4 has been thoroughly investigated e.g. in [11, 15, 16]
taking again advantage of its representation of a Dunford integral now on a curve
separating the whole spectrum of A from the rest of the complex plane. However,
on account of Remark 2, e~4 can be applied up to any desired accuracy also with
the aid of a projected semigroup, so that we can confine the discussion here to the
application of operators of the form

1
“th = — [ ety - 4)! 41
=g [ etar-a 7, (a.1)

noting that the projection Pr, is covered as a special case for ¢ = 0. Hence, the
common task is the application of the resolvents (y,I — A)"'ug = v,, and thus the
solution of

(I — Ay, = ug, k=-N,-N+1,...,N, (4.2)

where v, = y(kh) for k= —N,—N +1,..., N, and fixed h > 0 are quadrature nodes
for a suitable parameterization of I';.

In principle, every numerical scheme like FD, FEM or H-matrix techniques would
be suitable, as long as assessable error bounds are available. Here our starting point
is the following weak formulation of the resolvent equation (yid — A)v = f where
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will always be assumed to belong to the resolvent set of A: for any given f € H', find
uw € H such that

(A(y)u,v) = (y"'f,v) forallve H, (4.3)
where
A(y) :==id —y A (4.4)
From (2.20) one can deduce that also
capllvlle < |AMollar < Caepllolla,  we H. (4.5)

holds for some constants ca(,), Ca(y) > 0 that may depend on 7. Thus, for each
(4.3) has a unique solution which depends continuously on the data f. However, we
expect the ratios C4(,)/ca(y) to become large when 7 gets close to the spectrum.
Moreover, when |y| grows A(7y) acts more and more like the identity on lower scales
so that the mapping properties of A(vy) agree less and less with the topology of H.
This latter problem can be ameliorated by introducing appropriate y-dependent
norms on H. Such norms are conveniently realized by wavelet concepts. For the
convenience of the reader, some basic ideas of wavelets for PDE’s will be briefly
sketched first. For an in depth discussion we refer to [2] and the references therein.

4.1. Wavelets for Operator Equations. We shall not give any details on
specific realizations of wavelet bases but collect only their relevant properties. How
to realize them has been discussed in the literature and we refer to references given
e.g. in [7, 4]. As for some notational conventions, a wavelet basis will be denoted
by ¥ = {¢» : A € J} where J is a countable index set whose elements typically
encode the scale, the spatial location and the type of the wavelets ¥5. The wavelets
will always be assumed to be local, i.e. diam (supp ) ~ 2~1*, where |A] denotes the
scale, i.e. the dyadic refinement level on which the wavelet lives. Our first requirement
is that W be a Riesz basis for V. This means that every v € V has a unique expansion
v =) secr{v,¥x) ¥ which is stable in the following sense. Denoting by v = (vA)xes
the array of wavelet coefficients of v, there exists bounded constants cg, Cr > 0 such
that

crllVllesr) < lvllv £ CrIIVIes ), veV. (4.6)

It is well known that this implies the existence of a dual Riesz basis ¥ = {JJ)\ :
A€ J} CViorV,ie (¢r,¥n) = dxx, so that vy = (v,4,), and one has the
alternate expansion = )y . 7(¥x,v) ¥, see e.g. [5]. Viewing ¥, ¥ as column vectors

with respect to some fixed ordering of the indices, (v, ¥), (¥, v) are the arrays of
wavelet coefficients in the first representation of v viewed as row and column vectors,
respectively. The above expansions can then conveniently rewritten as

v = (v, B)¥ = (v, ¥)P,

where we formally view the expansions as “inner products” of the coefficient arrays
with the bases. As a default we shall view sequences as column vectors.
Moreover, a duality argument shows that in these terms

1
(T, 0)lea) < ollv < (¥ V)lea(), v €V
11
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For V = Ly(Q) and a wide range of domains one can construct ¥ and ¥ simul-
taneously in a way that the primal as well as dual wavelets are compactly supported.
Moreover, these constructions actually offer more, namely that properly scaled ver-
sions of ¥ and ¥ form Riesz bases for certain smoothness spaces H, H', respectively,
appearing in (2.19). More precisely, for H from (2.19), we shall assume (in agreement
with all known constructions) from now on that for the positive diagonal matrix

D =diag{dy: A€ J}, dx:=max{L,||[Yslla}, (4.7)
one has
v€E H < Dv e ly(J), where v= (\fl,v), ie. v=vl¥,
and that the norm equivalence
crlDVlle ) < Wllr < CalDvlleg), v=v"¥e€H, (4.8)

holds with constants ¢y, Cg > 0. Again it follows from biorthogonality and duality
that

Ci'ID Vo) < loller < ' ID Vlleig), v=vV'¥eH.  (49)

In these terms the rescaled bases D~1W¥ and DW¥ are Riesz bases of H and H' ,
respectively.

This has been realized for Sobolev spaces H = H*(Q) or H{(?), t < 3/2. In
particular, for H = H} () the scaling weights are of the order dy = 2/*|. This suggests
working with the rescaled bases exclusively, if one is only interested in the spaces H
and H'. However, we are going to employ wavelet representations of operators from
H onto H' (and even from H(y) — H(y)' for certain V C H(y) C H) as well as of
endomorphisms of V. Recording the dependence on D (and further scalings) explicitly
will enable us to adapt to the relevant topologies. Therefore, expansion coeflicients
will always relate to the V-normalized bases.

With these preparations we can transform now any variational problem of the
form: Find u € B such that for f € H'

(v,Bu) = (v, f), wv€H, (4.10)

into an equivalent one in the wavelet coordinate domain. To this end, it will be
convenient to define for any two countable collections ©, = of functions, ordered in an
unspecified but fixed way, the corresponding generalized Gramian by

(65 E’) = ((05 §>)GE@,§EE’

i.e. the first entry is formally viewed as a column vector while the second one acts as
a row vector which explains the subsequent formal manipulations. Using the scaled
basis functions as test functions in (4.3), shows that the original variational problem
(4.3) is equivalent to the infinite-dimensional system

(D-'¥, Bu) = (D', f), (411)

as D™ is complete in H. Inserting the representation u = u” ¥ into the previous
equation, yields

D (¥ B¥)D }(Du) =D ' (¥, f). (4.12)
=B _f
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B = (¥, BU) is called the (standard) wavelet representation of B with respect to ¥. It
is well known that, when B satisfies a relation like (2.20) and the basis satisfies (4.8),
this latter problem is now well-posed in £3(7), see e.g. [2]. The relevant properties
may be summarized as follows.

REMARK 3. For every bounded linear operator B : H — H' we have

ID™'BD | z(ea(),e2)) < CrllBll o,y (4.13)
If (2.20) holds for B with constants cg,Cg, i.e. B~ € L (H', H) exists, we have
B IVlleas) < IDTBD™ v]lgy gy < CaCHIIVIe(): veh(T) (414)

i.e. the representation of B with respect to the scale basis D' for H. Likewise, for
every continuous endomorphism B : V. — V the estimates

(%, BE)|| £ (02(7),02(7)) < CrIIBllev,v) (4.15)

and

102, B®) | 2(e3(), 0007 < R IBllevivy (4.16)

are valid.

The property (4.14) provides one of the main foundations of the recent adaptive
paradigm developed in [2]. In fact, it suggests that one can find simple preconditioners
C,, such that the idealized iteration

Du**' =Du* + C, D '(f—Bu*), k=0,1,..., (4.17)

converges to the solution u = u?W¥ of (4.12) for any initial guess u’ with some
fixed error reduction rate p < 1 per step. In fact, for symmetric positive definite B
(implying that also B is symmetric positive definite) the choice C,, = al would work
for a suitable damping parameter depending on the constants in (4.14). In general,
C, = a(D™'BD™H7T would in principle do the job although the corresponding
squaring of condition numbers might degrade the quantitative performance.

For a numerical realization of (4.17), one has to approximate for any finitely
supported input vector v the infinite-dimensional vector D™'Bv by some finitely
supported w that approximates the exact sequence D™ 'Bv in /»(7) within suitable
dynamically updated tolerances. In fact, one actually applies compressed versions of
D !BD ! to scaled vectors Dv. These perturbations of the ideal iteration (4.17) can
be shown to provide an adaptive solution scheme

Solve(D, B, n,f) - u,

that outputs for any target accuracy 7 > 0 an approximate solution u, of Bu = f
such that

D (u = wy)llex () <75 (4.18)

which, in view of (4.8), means that ||u — uy||laz < Can.

Moreover, for operators B considered here one can contrive efficient schemes for
the approximate application of D"'BD~! so that the algorithm Solve can be shown
to exhibit an overall asymptotically optimal work/accuracy balance in the following
sense. To this end, let us denote for s > 0 by A* = A®(H) the class of those
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functions v € H such that the error ox(v) of best N-term approximation of v in
H, i.e., the accuracy obtainable by a linear combination of at most N wavelets,
decays like N=°. It is not hard to see that |v|4s := supyeny N°0on(v) defines a quasi-
norm for A*. Moreover, when H = H!(Q2) for some ¢ > 0, the space A® is almost
characterized by the Besov space BLt*¢(L (1)), where 1/7 = s + 1/2, see [2] for
more details. Thus, an element v € A° can be recovered within accuracy 7 using

only the order of n~1/ S|v|i4/f terms. It is important to note that, on account of (4.6),
an element v = v/ ¥ € H belongs to A° if and only if its scaled wavelet coefficient
array Dv can also be approximated in £»(J) within accuracy N % by the order of N
terms. Equivalently, approximating v in £»(7) within a tolerance n > 0, takes the
order of =1/ S|v|%f terms. Thus, in brief, (near-)best N-term approximation in H is
directly linked to (near-)best N-term approximation in £5(). Clearly, best N-term
approximation in #5(J) is conceptually very simple since it boils down to retaining
the N largest terms in absolute value.

Now the main complexity estimate from [2] states that whenever the solution
u of (4.10) belongs to A® for some s < s*, then the computational work required
by Solve (D, B,,f) to output an n-accurate approximation w, of u and hence, in
particular, the number of nonzero terms in w,,, is bounded uniformly by 5~/ 5|v|i4/f.
Moreover, when using spline wavelets of exactness order m € N it has been shown in
[17] that the optimality range covers the highest possible order, i.e. s* > m —t/d.
For this optimal complexity estimate it is crucial to have a relation like (4.14) which
requires controling the constants in (4.8) and those in a mapping property like (2.20).

Now, in view of (4.2) or (4.3), we wish to apply Solve to the operators B =
A(y) =id — vy A and denote the corresponding wavelet representations by A(y) =
(¥, A(y)®). In principle, the above comments imply that, because of (4.5), the
scheme Solve with the scaling D would indeed work for each fixed «y in the resolvent
set with optimal complexity. However, the number of iterations needed for a fixed error
reduction depends on the ratio C4(,)/ca(y) so that the complexity bounds deteriorate
with increasing C'a(y)/ca(y)-

Of course, the lower constant will always depend on the distance of v from the
spectrum. To control this will be a matter of the choice of the curve I';. So all one
can hope for in addition is to reduce (or even avoid) the dependence of such stability
constants on the size |y|. To this end, we introduce next different norms on H and
set

Dy =diag (dx(7)res, da :=max{1,|y|7"/?d»}, (4.19)
(with dy from (4.7)) and endow H with the norm
ol = DyVlleagy,  v=v"E. (4.20)
Clearly, by duality
lwllzy = IDF(E, w)llea()- (4.21)

The analog to (4.8) holds for H () trivially with constants cg(,) = Cr(y) = 1. If we
had in addition a mapping property

ellvllae) < IAMllaEy < Cllvllae, v e Hy), (4.22)
with constants independent of |y|, we could conclude according to Remark 3 that

kondg(D,;lA(q/)D,;l) ~1, (4.23)
14



which is needed for Solve to perform with asymptotically optimal complexity. To
this end, it is easy to see that for v = v7 ¥

IAMllir(ry = IDFHE, AN lew) < ClDVllen(ry = Clivllays (4.24)

where the constant C' depends only on the constants in (4.6) and (4.8) and is thus
independent of . Hence A(%) is uniformly bounded in H(~) for 7 in the resolvent set.
This means that the upper estimate in (4.14) holds for D5 1A(’)/)D§ ! with a constant
independent of . The validity of a lower bound independent of |y| seems less clear.
However, computational evidence shows clearly that scaling by D+ is by far superior
to scaling by D.

Thus we shall employ Solve with respect to the scaling D~ which will allow us to
compute the integrand in (4.1) at certain nodes ~y;, within suitable accuracy tolerances.
This will be seen to constitute a main ingredient for the numerical application of the
operators in (4.1). We shall make frequent use of the following simple facts.

REMARK 4. Note that for all the above scalings one has Dy x > 1, (Dy)ax > 1,
for all X € J. This implies that for w = w’ ¥

ID Wty < IWlley(ry, W € E2(T), (4.25)
which are the discrete analogues of the embedding inequalities

lwlly <llwlle,  [lwllv < llwllae), weH. (4.26)

4.2. Applying Projections. We are now prepared to formulate algorithms for
computing the application of the projected semigroup

1
eHPrv=— [ e (yI-A)"tvdy, teR,
27 I

or as the special case t = 0, of the projection

1
Priv=o— | (7] - Ao dy,

Y%} I,

to some fixed v € X. We emphasize that in connection with projected semigroups ¢
may attain negative values as well. We assume that for the Jordan curve I'; enclosing
some bounded subset of o(A), as described in Section 3, an analytic and 27-periodic
parameterization

s = (s), s € [0,2m),
is given. Then, the integrand
F(s) = =iy (8)e "D (y(s) = A)~"w, s € [0,2m),

is also 27-periodic and analytic in the topology of X so that the following theorem
applies.

THEOREM 4.1. ([13], Theorem 12.6) Let F': R — X be analytic and 2m-periodic.
Then, there exists ¢ > 0 such that F' extends to an analytic, bounded, and 27-periodic
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function on the strip D, = {z +1iy: z € R, |y| < q}. Moreover, the quadrature error
of the trapezoidal Tule

v == S F(M), Nenw

is bounded by

2

1 1
||% o F(s)ds — Qn(F)|lx < ||F||Lw(’Dq,X)e2qN7_-

- (4.27)

Since we are lacking any estimate for ¢ and [|F||z_ (p,,x) it seems reasonable to use

1QN(F) = Qan(F)llx = |Qn(F) — e Pr,vlx

as error estimator. This is certainly true when (4.27) holds with < replaced by ~. To
ensure convergence of the upcoming algorithm we therefore make the following
ASSUMPTION 1. There exist constants cg,Cg > 0 and No > 1 such that

collQN(F) — Qan(F)llx < |Qn(F) — e “ Pr,vl|x

and

1QN(F) — e Pryvllx < CollQn(F) = Q2n (F)llx

for all N > Ny.

Since, as indicated above, the resolvents in (4.1) will be applied in the wavelet
coordinate domain, we shall derive next the wavelet representation of the projected
semigroup. We shall assume in what follows X = V =Y, see (2.21). Since the
resolvents apply to elements in H' which are naturally expanded in terms of the dual
basis ¥ we choose to represent e 4 Pp, with respect to ¥, i.e. we set

PE(t) = (¥,e AP, ), ie e “Prv=(PE{t)v) ¥. (4.28)

To formulate the following algorithm, we define N; = 2! Ny, I € N. The quadrature
points associated with IV; are s; 1, = kﬁ’:, k=0,1,...,2N;—1. Obviously, the sequences
of quadrature points are nested, i.e. s;41,25 = Si,k- Therefore, Qn, (F) can be improved
to Qan, (F) by evaluating the integrand F' at the nodes s;41,2k+1, K =0,1,...,N; — 1.

ALGORITHM 1. w « Apply(PE(t),n,V)

Fiz some 0 < o < 3C’QCR
Fork=0,1,...,2Ny -1
min{l,
Wo,k < Solve(DV(so,k),A('y(so k), 3y (SOWk)ex;[,( 2;;}(30 ™) ,Y(s0,1)7V)
Wo 53 Simg 7 (s0.4)e 11O wo
e forl=1,2,...
—fork=1,3,...,2N; -1

min{l,3
Wi Solve(Dq,(sl 0> A(v(s1k)), 3y (s,nk)exi( tL')y}(Sz MK Y(50,6) 7' V)

¢
- 2N, Zk ol (st2n41)e T2k Wy 5y
—d ¢+ iwil—y
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— W < %(W[,l + lll)
— If [|[dille, () < on then return w = wy_;.

REMARK 5. To remain consistent with the theory the algorithm returns w;_y. In
practice, w; should be returned as it is the more accurate approximation. Note that
the output is given as the array of wavelet coefficients with respect to the basis ¥ of
V.

LEMMA 4.2. If assumption 1 holds the algorithm Apply(PE(t),n,v) terminates
after a finite number of steps for every n > 0 and its output w satisfies

[w = PE®)vl|e, o) < -

Proof. Let Wy, denote the exact solution of
A(Y(s1,6)) Wik = Y(s1,6) 7V,

and define 1y, d; and W, as the corresponding quantities from the algorithm. Accord-
ing to the error bounds guaranteed by Solve we have

Wit = Wi_1]le.( )

2N;_1—1
1 (s -~
Somg 2 Mlemwe T v - S
2N;_1—1
1 i 3 1 3
< —min{l, ~p} < -nmin{l, -
<IN ; g min{l, 5o} < gnmin{l, So},

where we have used (4.18) and (4.25).
Similarly one obtains

~ 1 . 3 -~ 1 . 3
[l — tlgy ) < gﬂmm{l, 59}7 Idi — dilleyry < gnmln{la 50}-

First, the termination criterion is shown to be met for sufficiently large [ € N.
From Theorem 4.1 and Assumption 1 the estimate

1dillescry < lldillea(ry + lldi = dilles( )

< (cre@) "1l La(vytt) am,—7 + 50

follows. Since the first summand tends to zero for | — oo there exist Iy € N such that
the termination criterion ||d;,|| < o7 is indeed met.
In a second step, the error bound is shown to hold for w = w;,_;. Obviously,

one has

Wiy—1 = (¥, A Pro)| ()

< Wip—1 = R 1llea(r) + W11 — (¥, e 4P|y

1 R e
S3nt [Wio—1 — (¥, e Po®)v||gy ).
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The second summand is bounded with the aid of the norm equivalences (4.8) and
Assumption 1,

W11 — (&, e A Prv) |y < g 1Qn; . (F) — e " Pro|a
< g CollQny_, (F) = @nyy (F)llm
< g CrCQ(IWio—1 — Wigley()
< ' CrCo (Il llexi) + iy = digllesa ) - (4:29)

Since the termination criterion is met the first summand in the brackets is bounded
by

2
d < pn< =
” lO”Zz(J) — pn — CQCR 3

The second one can be estimated by

3 1 CR
Idig—1 — dig—1]ley(7) < 291 < F o

n
QCR 4

Inserting both estimates in (4.29) yields

. ~ 2
Wio—1 — (¥, e A Pro)|ley () < 37

Thus, the overall error of the output w is bounded by 7. O

It should be noted that the explicit knowledge of the constant cq is not needed in
the algorithm. Its existence is merely needed to show that the algorithm terminates
(i.e. it is actually an algorithm).

Since the constants in the quadrature rule are not numerically accessible, one
might think of extrapolation techniques to overcome this handicap. But extrapolation
is useless for analytic periodic functions since all constants in the asymptotic error
expansion of the trapezoidal rule vanish.

REMARK 6. One could also view e *APr, as a mapping from H' to H (corre-
sponding to the choice X = H')Y = H) which would require controlling the error
in H. This can be facilitated by applying Solve not with the v-adapted scaling D~
but just with the H-scaling D and replacing the constants cg,Cr by cm,CH, respec-
tively. According to (4.18), the results of solve satisfy the required bounds now in H.
However, the computational work would increase due to smaller error reduction per
iteration step caused by the possibly very large ratios Ca()/ca(y) in (4.5).

5. Approximate Regularized Inversion of e 4. We shall show next how to
use the tools developed in the preceding section in order to regularize the inversion of
the operator S = e~t4 for some fixed time ¢ > 0. Since S is one-to-one and compact
the operator fulfills the assumptions made in Section 2. We shall work in the setting
(2.21).

We shall develop three different approaches for regularization according to the
strategies (2.13), (2.16) and (3.4). The first approach uses regularization in function
spaces, based on the Tikhonov or modified Tikhonov principle (2.13), (2.16), while
the resulting operator equations are solved in the wavelet coordinate domain. The
second strategy, which is briefly sketched only for the plain Tikhonov scheme, places
also the regularization in the wavelet coordinate domain. The third strategy based on
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(3.4) is quite different and relies on the inversion of projected semigroups according
to Proposition 3.3 and is directly based on the evaluation scheme shown above.
In analogy to (4.28), the corresponding representations of S = e~t4 is given by

E(t) := (¥, e 40). (5.1)
We note that approximate evaluation schemes

Apply (E(t),v,n), (5.2)

has a completely analogous structure using trapezoidal quadrature for the Dunford
integral

—tA, _ i —ty _ -1
e v = o 1“e (I —A)"dy, t>0,

defined for sectorial operators. Here the open curve I is to enclose the whole spectrum
of A in a proper way. For a detailed discussion and analysis of such evaluation schemes
we refer to [15, 16, 11]. Alternatively, in view of Remark 2, we could realize the scheme
Apply (E(t),v,n) with the aid of Algorithm 1 combined with a proper choice of the
curve I';. Therefore, we shall assume that the scheme in (5.2) is given, while its
specific realization will not matter.

As for a a proper scaling, note that in the context of Tikhonov type regularization
(2.13) the operator al + S*S is a norm isomorphism of V (although its condition
number behaves like a~! when a gets small). Furthermore, note that either version
outputs coefficient arrays with respect to the dual basis ¥. While this is justified by
the nature of S it has some practical drawbacks. In fact, in practical constructions
the primal basis ¥ is typically piecewise polynomial and comfortable routines are
available for further manipulating or processing the approxmate solutions. The dual
basis ¥ is typically less regular and less convenient to handle. Therefore, we indicate
next briefly how to switch representations with the aid of numerically executable Riesz
maps. Clearly, expanding the ) in terms of the 1, yields

U= (0, 0)¥ ie I= (¥ ¥) T ¥) (5.3)
Thus, defining the Gramian G = (¥, ¥), we have
vI¥ = (Gv)T'¥, (5.4)

i.e. application of the Gramian to primal coordinates yields the dual coordinates.
Likewise, since I = (¥, ¥), we obtain for any endomorphism B of V

(¥, B®) = (¥, ¥)(¥, B¥) (¥, ¥) = G(¥, B¥)G. (5.5)

5.1. Tikhonov-Type Schemes. According to (2.13) and (2.16), and recalling
that A is assumed to be normal, the (modified) Tikhonov regularization requires, in
view of (3.2), solving the operator equation

(aQo +e Bz =4y, B:=A*+ A, (5.6)

Concerning an equivalent formulation in wavelet coordinates, recall that the resolvent
application suggested to represent the evolution operators in the dual basis ¥, i.e.

Qo = (T,Q.%), EB(t)= (T, BT), (5.7)
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where (), either denotes the identity or a projection, depending on the size of a.
Here we use the superscript B to distinguish EB(¢) from the representation E(t) of
the original semigroup e:tA. If we were content with representing the solution z in
dual coordinates x = 7 W, (5.6) is equivalent to

(aQq + EB (1)) X = (T, e7'y) = E(t)*(T,y). (5.8)

If, as argued above, we wish to represent = x” ¥ € V in primal coordinates we
obtain, on account of (5.5), the alternate equivalent formulation

G (aQ, + Ef(t)) Gx = GE*(t)(¥, y). (5.9)

(5.8) would save two applications of G per iteration step in comparison with (5.9).
Of course, one could transform at the end X into primal coordinates by applying the
inverse G™! = (¥, ¥). But the latter one is usually less compressible rendering its
application less efficient. Therefore we concentrate in what follows on (5.9).

We wish to solve the system (5.9) within any desired target accuracy with the aid
of the scheme Solve following the lines of [2]. The main building blocks are algorithms
to apply the involved operators up to any prescribed accuracy. We provide these ingre-
dients in the following subsections. The above representations involve, in particular,
the (infinite) matrix G. The vanishing moment property of wavelets allows one to
apply G to any finitely supported vector within any prescribed accuracy tolerance by
the schemes developed in [2, 1]. Moreover, within a certain basis dependent range
such an application has asymptotically optimal complexity in the sense described ear-
lier. Such a multiplication scheme is also a central building block in the scheme Solve
and will be denoted by Mult (G, n,v) — w;, providing an approximation w;, to Gv
such that |GV — wylle7) <0

5.1.1. The Right Hand Side z. Let y = (¥,y) € £5(J) be given. Then the
right hand side of (5.9) has the representation

z= (¥ ey = (T, 0) (¥, e """ )y = GE*(t)y.

As y has possibly infinitely many non-vanishing entries the following scheme starts
formally with a coarsening step to approximate y by a finite dimensional vector, see
[2] for details concerning the routine Coarse (1, v) — v, such that ||v —vy||¢,7) <7
and v;, has (near) minimal support. In practice, an approximation of y with accuracy
11 should be calculated in the first step.

ALGORITHM 2. w < EvalRhs(n, y)

2
°R

e w; « Coarse(n1,y), M = sz i L0,
o wy < Apply(E* (), 72, w1), 2 = 3¢
e w «— Mult(G,n3,wa), n =3

LEMMA 5.1. The output w of EvalRhs(n,y) satisfies
”(‘Ilae_tA*‘I’)y - W||l2(J) <n.

Proof. Repeated application of the triangle inequality yields

(@, e y) = Wlley(a)

<NGlleeatay) (E*@lziea(ay) - m + 12) + s
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As, by remark 3, [|G||z(ey(7)) < CF and [|E*(8)||2(ea(0)) < cg°lle™ [l £(v), the choice
of 11, n2, and 73 ensures that the error is bound by 7. O

5.1.2. The Projection. Given a regularization parameter a > 0 the orthogonal
projection Q,, onto the eigenspace associated with the eigenvalues of e #4" e t4 = ¢tB
in [0, a] is to be evaluated. Denote by {A;}r>1 the eigenvalues of B = A + A* sorted
by increasing size, Ay < Ag4+1. Due to the spectral mapping theorem 3.1 we have

o(eB)n[0,0] = ({0} u{e ™ : k> 1}) N[0,

— {0} U {e™™ 1 A > ~log(S)).
t o
By the results of Section 3 we are capable to evaluate projections onto the eigenspaces
associated to any bounded subset of o(B). Thus, the representation @, = I — P,
is used where P, = Pr,(B) and the Jordan curve I'y encloses {Ag : Ay < §log(1)}
(cf. Section 3). The representation of ), with respect to ¥ becomes

(F,0.,P) =G —P,)G,

where P, = PE(0) is the projection in wavelet coordinates.

5.1.3. The Operator e 4 e 4 = ¢ *B, The observations in Section 5.1, sug-
gest the following algorithm to evaluate (¥, (al + e tB)¥)v = G(al + EB(t))Gv,
where v are here the expansion coefficients with respect to the basis ¥ of V.

ALGORITHM 3. w <+ Apply((¥, (al + e tB)T) 5, v)

2

e w1 « Mult(G,m,v), m = W”ef{mn;
o w3 « Apply(EP(t),m2,w1), = g5zl
e w — Mult(G,n3, av + wy), N3 = %77-

Clearly, in the third step we invoke Algorithm 1. An analogous reasoning as in
the proof of Lemma 5.1 yields the following estimate.
LEMMA 5.2. The output w of Apply((¥, (ol + e tB)®) n,v) satisfies

(®, (oI +e™*F)T) - w(lpy(7) <.

If the identity is replaced by a projection @ = I — P, a similar algorithm is used
where in addition Algorithm 1 is called.
ALGORITHM 4. w <+ Apply((¥, (aQ, + e~ B)¥),n,v)

2

e wi « Mult(G,n,v), m = 4C§(a+”?iw”£(v))n;
o wy  Apply(EB(t), 75, w1), N = 6z

o w3 « Apply((¥, P, ¥),n3, w1), s = gaez

o w + Mult(G,n, a(v — ws3) +ws), na = in.

A similar proof as in Lemma 5.1 yields the following estimate.
LEMMA 5.3. The output w of Apply({¥, (aQ, + e tB)¥) n,v) satisfies

¥, (@Qa +e™F)T) — Wlle(7) <.
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We have prepared now all the algorithmic ingredients needed to apply the scheme
Solve from [2] to the operator equation (5.6) which will return an approximate solu-
tion z, that approximates x with accuracy 7.

5.2. The Discrepancy Principle. With the wavelet representations of the op-
erators at hand, we can formulate a version of the discrepancy principle for the above
Tikhonov-type schemes. The following algorithm is based on Lemma 2.3. We assume
that the three parameters 7,741,772 > 0 are given such that 7 — 4 — 5 > 1 holds
(cf. (2.10)). Moreover, we fix ¢ € [1/2,1) and test the stopping criterion

||Sxak+1 - y6”V S 76 S ||S.’Eik - y6”V

for o, = c*ap. Recall that we have here V = X =Y. The choice of ¢ permits a certain
tuning of the algorithm, as the search for the optimal o becomes more thorough and
more expensive for ¢ closer to one. By the previous remarks, the scaling in Solve is
just the identity.
ALGORITHM 5. X + DiscrepancyPrinciple(y?,§, ag)

Fork =0, 1, ...

e o :=crfay
Xp SOlve(Ia <‘I’7 (akQak + S*S)‘I’>a 7—1”‘9”716; yé)
wy  Apply((¥,SP), xy, %7'25)
I — Wi — EV&IRhS(%TQé, y?)
If |Irklles(gy) < TO then return x < x.

THEOREM 5.4. The algorithm DiscrepancyPrinciple defines a regularization
scheme of optimal order for 0 < pu < 1/2. More precisely, the output x = xT ¥ of
DiscrepancyPrinciple(y?,§, ag) satisfies

o — at||v < Comit paasr (5.10)

for ally? € Y with ||y’ —y||lv < § and all zt = (S*S) w with ||w|ly < p, 0 < p < 1/2.
Proof. According to the norm equivalence (4.6) we have

Iz = 2" llx ~ Ix = (2", B)lles()-

Thus it is sufficient to establish (5.10) for z — z! in wavelet coordinates. To do so, we
rely on Lemma 2.3. From the target accuracy in Solve, Apply, and EvalRhs it is
immediate that the conditions (2.8) and (2.9) are satisfied for the wavelet coefficient
arrays x; and Res, = [|r¢[[¢,(7)- The algorithm terminates if and only if (2.11) is
satisfied. Therefore we infer from Lemma 2.3 the validitity of (5.10), recalling that
po = 1 for the Tikhonov scheme. O

Recall that usually one approximate application of the Tikhonov operator on the
left hand side of (5.6) requires solving a forward and backward evolution equation
(aside from the projection @),). Here such an application is essentially reduced to
schemes of the form (5.2) which in turn are based on the parallel solution of resolvent
systems. Of course, when a decreases Solve will require an increasing effort for the
same target accuracy due to the deteriorating condition of the problem.
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5.3. Regularization of the Transformed Problem. So far we have first reg-
ularized the continuous problem and then transformed it into a well-posed problem
in £2(J) (whose condition, of course, depends on the regularization parameter). In
this subsection, we will exchange the order of regularization and transformation. We
shall exemplify this briefly only for the Tikhonov method, the modified version being
similar. This gives rise to a scheme where norms are easily changed by scaling offering
an additional way of influencing the regularization compromise. Accordingly X and
Y are now different smoothness spaces and no longer coincide with V.

We consider the problem

E,(t)x =y, (5.11)
posed in £2(7) with the evolution operator given in wavelet coordinates as
E,(t) = D*(¥,e "4 ¥)D?, s € [-1,1],

where now z = x’D~°W¥. The power s of the diagonal elements of D steers the
involved norms. For instance, when A is a second order elliptic operator, Eq(t) = E(t)
is a representation of the operator e *4 regarded as a mapping X =V = L,(Q) —
L2(Q) = Y. In general, for H = H{(Q), it is well-known that the scaling by D*
induces equivalent norms on the interpolation spaces between H~*(Q2) and HE(12), see
e.g. [5]. Let us assume here the standard case ¢t = 1.

As et is compact the transformed operator has the same property as endomor-
phism of £5(7) and the resulting sequence equation is ill-posed, as well. Applying
Tikhonov-regularization in ¢5(J) yields the equation

(ol +E;(OE;(t))x;, = E;(1)y°,

where I denotes again the identity in £2(7) and not the Gramian matrix. y° and x?,
are given by

y’ = D*(¥,y°), xg = DN(¥,20).
The regularized equation is equivalent to the solution of the minimization problem

Ts(e:y?) = allxGll ) + Bs(t)xe = ¥°ll7a)
al|D*(,28) [, 5 + ID* (¥, e a5, — ), 5,

[¢]

— min .
x3,€2(T)

By the norm equivalences of the wavelet basis one sees that

18 |len () ~ 128 NEr-2cy and Iy llescry ~ NV° llar= ()

i.e. we take here X = H*(Q), Y = H*(Q). Thus, the smaller s is the stronger the
norm in which smoothness of ?, is measured becomes. In turn, the norm in which the
residual is measured becomes weaker for smaller s. In practice, the range s € [—1,0]
is of interest as the solution z° should be smooth.

Concerning the convergence of the regularization scheme for § — 0% the properties
of Tikhonov regularization read as follows. Suppose that

y=e et with 2t e H3(Q)
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and
ly — 4°|lms o) < 6.
Then,
|28, — @'l g-s(a) = 0 for & — 07,

if o = a(d,9°) is chosen properly, e.g. according to the discrepancy principle.

5.4. Projection Methods. The third method is quite different and uses the fact
that, by Proposition 3.3, the projection of S = e~%4 onto the eigenspaces associated
with a bounded subset of o(A) becomes boundedly invertible.

To fix ideas we assume that o(A) = {A; : £ € N} with ®(Ax) < R(Ag41) and
R(A\r) = oo for k — oco. Then, by the spectral mapping theorem, e~*4 has the
eigenvalues e "*** which tend to zero if k£ — co. Thus, we discard the eigenvalues for
large k by projection. Fix a kg € N and set 01 = {Ar : 1 < k < ko}. According to
the notation of Section 3, the projection onto the eigenspaces associated with oy is
denoted by Pr,. The projected semigroup Pr,e~t4 = e~t41 : V — V is boundedly
invertible with inverse

1
tAy _ = ty I_A—ld
=g [eor- 2t

and
e[| cx) < CetPPwo),

for some constant C' = C(ko) > 1. Here we take again V = X =Y. Thus, the
regularized solution defined as

g etA1

d
mko - ’

Y
depends continuously on y°, and 1/kq plays the role of the regularization parameter,
see (3.4). Clearly, if kg — oo and y is given exactly the regularized solution zy, will
tend to z' if A has a complete system of eigenvectors.

When dealing with noisy data, . ko has to be chosen properly. This can be done
again with the aid of the discrepancy principle, i.e. we pick

ko = inf{k € N : |le"*a$ — 4°||v < 70}

for some fixed parameter 7 > 1. Alternatively, the discrepancy principle can be used
in the wavelet coordinate domain.

As pointed out at the end of Section 3 the scheme becomes an SVD-projection
when A is selfadjoint and psositive definite. We have all the tools at hand to formulate
the analogue of Algorithm 5 for the SVD-projection method and also for Theorem 5.4
where, due to gy = 00, the range of the smoothness index p is now unbounded.

Of course, in principle, the projection method is a familiar concept in regulariza-
tion theory. But, to our knowledge, it has not been implemented yet in the present
context with a rigorous error control since the eigenvalues and eigenspaces are in gen-
eral not numerically accessible. By the techniques developed in [15] and Section 4.2
the scheme becomes for the first time realizable in a fairly general setting.
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A rough comparison already indicates that, aside from the fact that higher order
regularity can be exploited better, the projection method is computationally more
efficient than the Tikhonov scheme. In our setting, for some fixed positive t > 0 the
algorithm Apply(PE(—t),y°,n) will be called for some 7 < § until the discrepancy
principle is met. Each call will need N elliptic subproblems to be solved within a
prescribed tolerance where we observed N to be well below 80 in our experiments.
In contrast, the Tikhonov method requires the solution of the linear system (5.6)
for several & > 0. Any linear solver applied to this problem will perform an ap-
plication of Apply(EZ(t),w,n) once per step and will need several steps to solve
the linear problem. In fact, it will need more and more steps as a decreases. As
Apply(PE(—t),y°,n) and Apply(E2(t),w,n) need at least for small ¢ roughly the
same amount of work the projection method is significantly faster than the Tikhonov
scheme.

Of course, it is crucial to come up with suitable curves I'y separating the spectrum
according to the needs of the discrepancy principle. Moreover, Assumption 1 needs
to be validated. These issues will be addressed in Section 6 for a simple test case.

5.5. Some Comments on Computational Complexity. Not much seems to
be known about the actual computational cost of determining the numerical approx-
imation z° for the regularized solution z’, depending on the given noise level J as
é tends to zero. We address this question now in a somewhat sketchy and partly
heuristic way for the simplest scenario that A is symmetric self adjoint second order
elliptic operator so that H = H (), H' = H~(Q). Hence the singular values o) of
S = e~t4 are for fixed ¢ > 0 given by o = e **, where \; are the eigenvalues of A.
A detailded rigorous study would be beyond the scope of the present paper and will
be given elsewhere. Here we merely wish to bring out what the approach might offer
at best and to identify some of the questions along that way.

Let 'K denote a suitable Jordan curve whose interior contains the first K eigen-
values Ag,k =1,..., K. and let P := Ppx be again the projector defined in (3.1).

As pointed out before, x5, := e!41y% with e *41 = Pge 4 = e ' Pg, corresponds
to a truncated SVD expansion. Since by assumption ||Px(y — y°)|lv < C§ we can

invoke [9, Theorem 3.26] to conclude that
0
2" — 2% lv < C' (aK+1 + —) (5.12)
OK

for some constant C' independent of 4, K. Having some estimates for the A\, and
hence for the o, a reasonable parameter choice is to balance both terms on the right
hand side of (5.12). This suggests choosing

K = K(§) = max{k : o101 < 0}.
In order to retain the accuracy offered by this projection method we compute
% =xT®, x= Apply (PE(—t),y’,n), with 7:=d/0k. (5.13)

Recall that the latter routine is given in Algorithm 1. As before, we do not specify in
which form the noisy data y° € V are actually given but assume for simplicity that
we can observe its wavelet coefficients y° for the expansion y° = (y°)T¥. Note that
by (4.6), we have then

ly =¥ lleacary < g6 (5.14)
25



In this scheme the computational cost is then dominated by the approximate
applications of resolvents at quadrature points y(s; %), k =0,..., N, — 1, N; := 2! N,
on the curve T'X. By a geometric series argument the overall work is dominated
by the quadrature at the terminating level L of quadrature resolution. For that L
the scheme Solve is called Nj, = 21Ny times with target accuracies ~ 75/|e??(5z.#)|,
k =0,...,Nr — 1. Thus, the most stringent accuracy constraint is encountered
when the real part of y(sz ;) is of the order of Ax. Hence, a rough bound for the
computational cost Cx of Apply (PE(—t),y’,n) with 5 := §/ok is given by

Cx S, 2LJVOC (SOlve (D'V(SL,NL_1)7 A(’Y(SL,NL—l)), 0(57 7(3L,NL—1)_1y6))7 (515)
where we have used that ox = e7**% (recall the scaling D given by (4.19)). Here,
C(Solve) denotes the computational cost of the routine Solve and a < b means that
a can be bounded by a fixed multiple of b which is independent of the parameters on
which a and b may depend.

It remains now to estimate L and C(Solve) for a target accuracy of the order
0. We shall address this latter issue first. Recall that, according to (4.17), Solve
endowed with the scaling D~ operates on right hand side data of the form 7*1D§ lyo

which are the expansion coefficients with respect to the H(7y)'-scaled basis DW.
Thus, the noisy input data y? are damped in two ways, first by y~! when |7| is large,
and second, the entries g} for [A| > 1 1og, || are attenuated by the weigts (Dy)y},
see (4.19). By (5.14) and (4.25) we also know that

' DY = ¥)lea(s) < R'0 (5.16)

uniformly in |y| > 1.
To obtain an impression of C(Solve) in this context, suppose now that the exact
wavelet coefficient array y of u(t) = y = y” ¥ is sparse in the sense that

ye A" (V) (5.17)

for some r > 0, i.e. the error of best N-term approximation in £2(7) decays like
N7"|y|ar(v)- By (4.25), we also have then that

7:=(D;Ly) ¥ € A"(H(y)) (5.18)

for that 7 > 0 and any point y(s) on T which will actually hold uniformly in s and K.
We shall explain later what this means in terms of the regularity of y. Now suppose
further that the operator A and its shifted versions A(y(s)) permit the following
“regularity” result:

ASSUMPTION 2. Given a right hand side such that its coefficient array with
reprect to D, ¥ belongs to A™ then the solution v € H(y(s)) has a coefficient array
with respect to Dj(i)\I' which also belongs to A" for some r < r* with rx the fixed
compressibility limit depending on the wavelet bases (see [2, 17]).

Then, if (4.23) was true, the results in [2] would assert that

C(Solve (B(y(sz,np—1)),¢6, 7)) < 8/ [o] . (5.19)

However, Solve “sees” only the perturbed data §° := D_ ! y®. We despense here intro-
ducing a statistical model and try to construct an estimator reflecting the sparseness

of the exact data with high probability or in expectation. Instead we resort to a more
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heuristic reason why under the above assumptions one may still obtain a work count
like (5.19). This requires a somewhat closer look at the way Solve works, see [2].
First of all the data §¥° can be considered as a finite array, since every coefficient Sfﬁ\
with (D, ,))a,x < 0 can be discarded which, in view of (5.14), introduces only an error
of the order at most § in ¢2(J) for the scaled right hand side (which is what matters
for Solve). Let us call this finite array again y°. Thus, by (5.16), we still have that
I¥ — ¥°lles() < €9 for some finite constant C. Now, given some target accuracy &
for Solve, the right hand side data are approximated first by a possibly small array
within a tolerance ae where a is typically smaller than one. This approximation is
done by a routine Coarse described e.g. in [2], see also Section 5.1.1. If we relax our
target accuracy ¢d in Solve by some constant factor larger than one, the coarsening
of the right hand side data y° would have to be done with a target accuracy bCd
where b is now any fixed number larger than one. But then the Coarsening Lemma
from [2] states that the resulting approximation y* to ¥° now satisfies

1y —5"llesry < (140)CO, #suppy™ < 5_1/T|ﬂ|i4/sT(H(7))a 19| a2 (7)) S 19l arE(7))-

(5.20)
Thus, using a fixed but sufficiently large multiple of § as target accuracy in Solve
the corresponding coarsening of the data that “peels” off at this level of accuracy the
sparsity of the exact array y in the neighborhood. In that sense the routine Solve
still “sees” § and exploits its compressibility giving the work count (5.19).

Let us briefly comment now on the above assumptions around (5.18). We wish
to recover the initial data =zt = uw(0) = (x!)7¥ from the data y°. Suppose that
u(0) € Bp(Ly(R)) where & = £+ 3. The space By, (Ly(()) is just embedded in L(1)
and signifies in some sense the largest space of smoothness r contained in Ly(€2).
Note that the larger r the smaller p and the weaker the measure for smoothness. It
is well known that ztinB%(L,(Q)) implies x! € A", se e.g. [8]. Moreover, it is known
that then y = u(t) = e~*4u(0) belongs also to BR(L,(1)), see [16]. Assumption 2
then says that the assumed gain in regularity through the application of A(y(s))™!
suffices to ensure that the solution array with respect to D;(i)\Il is still in A". For
moderate |y(s)| ~ 1 this is simply a regularity theorem for A itself. For A as above
we would have v = A(v(s)) 'y € Byt?(L,(Q)). Note that already v € By+!(Ly(Q))
would suffice to ensure that for v = vI'¥ the array D, ., v belongs to A". On the
other hand, for large |y(s)| the operator A((s)) gets closer to the identity (at least
on low scales) and the norm becomes closer to the Ls(€2)-norm so that Assumption 2
becomes less demanding. Nevertheless, the validity of (4.23) as well as of Assumption
2 is crucial for the above reasoning.

Finally, let us quickly address the estimation of N;. A qualitative estimate on
the Lo-norm of the integrand F is at best of the order e!*x. Since the required
quadrature accuracy in Apply is of the order n = §/ox we have to ensure, in view of
(4.27), that 6 /okx ~ 1/(oxe??N). Although we do not know g we see that N ~ |logd|.
Thus, by (5.15), the overall work count can at best be expected to be of the order
|log 8|6 1/# which would almost correspond to the sparseness of zf = u(0).

6. Numerical Experiments. For the numerical experiments, we choose the op-
erator A = —A with homogeneous boundary conditions on the unit interval 2 = (0, 1).
The eigenvalues and corresponding eigenvectors of this operator are given by

Me = 12k2, v = V2sin(krz), k=1,2,...
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We will exploit this orthonormal basis of Ls(2) to obtain a reference solution in
the following experiment. Furthermore, we use the wavelet basis constructed in [6] of
order 3 on the primal and dual side for the spatial discretization.. In all computations,
a highest level of J = 15 is fixed.

0 0‘2 0‘4 0‘6 O‘.B 1
FiGgure 6.1. Initial value

6.1. Application of Projections. First, the projection of a vector ug € Lo(2)
into the joint eigenspaces of A and e *4 is tested. The main concern is to justify
Assumption 1 which the adaptive projection algorithm is based upon.

For the value ug we choose the characteristic function of [1/3,2/3], see figure 6.1.
Its expansion into the eigenvector basis of A can easily be calculated and the Fourier
coefficients with respect to this basis decay sufficiently slowly to pose a meaningful
test.

To apply the projection PE(0) and the projected semigroup PE(t) we choose the
path of integration as an ellipse

v(s) = ¢ + acos(s) + ibsin(s), s € [0,2m),

enclosing the eigenvalues A1, Mg, ..., Ax for some fixed K > 0. The most satisfactory
results are obtained by the choice

c=(M+Ak)/2, a=(Ak —\1)/2+8K, b=a/K.
To justify Assumption 1 we compare the true error
err(N) = [(®, Qn(F) — e “ Pruo)lle, () ~ 1QN(F)uo — e ™ Prug|| ()

with the error estimator

[err(N)] = (%, QN (F) = Qan (F))lez(5) ~ 1QN(F)uo — Qan (F)uoll (o)

for the three time steps t = —0.01,0, and 0.01 and K = 2,4,6,8. The arising elliptic
equations are solved up to machine accuracy. This latter accuracy is chosen only
in order to validate Assumption 1 and should not be confused with the adapted
tolerances in Solve as part of the numerical solution process.

In Figures 6.2, 6.3, and 6.4 we have plotted the true error and the error estimator
as functions of V. Since the true error and the error estimator are too close in the
graphical displays the ratio between true error and error estimator is additionally
depicted as dotted line.
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Ficure 6.2. True error compared to error estimator for projection Pk uo

We observe an exponential convergence with respect to N as predicted by The-
orem 4.1. The oscillating behavior of the error seems to be caused by the symmetry
of the integrand with respect to the real axis which was not taken into account by
the analysis. It should be noted that the error estimator shows the same oscillatory
behavior.

The speed of convergence becomes slower for increasing values of K. This indi-
cates that ¢ > 0, the width of the strip D, to which v extends analytically, decreases
for increasing K. As for large K, the parameterization vy introduces a strong distor-
tion of the complex plane, this effect is not surprising. It could be avoided by splitting
T into several curves each enclosing one or a few neighboring eigenvalues.

When solving the backward problem, i.e. ¢ = —0.01, for K = 8 the absolute
error is substantially larger than for the other test cases. This effect is caused by
the ill-posedness of the backward problem. For ¢ = —0.01 the projected semigroup
e ' Pr has the highest eigenvalue e **s = 553.6. ... Thus, some of the Fourier modes
of ug are amplified substantially which results in a large norm of e~*4Pruy and an
increased absolute error.

Concerning the quality of the error estimator we obtain a ratio of almost one
between the true error and the estimated one. This close relation only breaks down
for large N when the quadrature error drops below 10~8 which corresponds to the
discretization error in H} () when the wavelet basis is truncated at J = 15. Thus,
the breakdown of the error estimator for large values of N seems to be caused by
discretization errors. Thus, Assumption 1 is justified in our test case.
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FiGuRe 6.3. True error compared to error estimator for projected semigroup e~ %-014 Prayg

As the error estimator is almost equal to the true error already for small N, we
choose the constants from the adaptive algorithm to be Ny = 5 and g = % and test its
reliability. In this experiment we observe that the actual error stays well below the
target accuracy n > 0. Moreover, the actual error is roughly proportional to n which
indicates that the analysis of Lemma 4.2 is not too pessimistic. We do not provide a
graphical display of this results because there is no further insight to be gained from

the plot.

6.2. Comparison of the four schemes. We strive to recover zf = g from
approximations y° to y = u(t) = e *4ug, t = 0.01, where the initial value is given by
up(x) = exp(sin(27z)) — 1, € (0,1). The perturbation y° — y is created by adding
white noise to the wavelet coefficients (normalized in Ly(0,1)) such that error in the
discrete L2(0, 1) norm becomes exactly 4.

The four algorithms from Section 5 will be compared by measuring the dif-
ference of the regularized solution and the true one in the discrete Lo(f2)-norm,
i.e. ||zd — z||1, () when the perturbation § > 0 tends to zero. The regularization
parameter a will be chosen according to the discrepancy principle.

The results are reported in Figure 6.5. First, we observe that the conventional
Tikhonov scheme and the modified one yield the same errors. This is somewhat
disappointing as the modified Tikhonov scheme seems to be superior to the usual one
by its construction. Nevertheless, the experiments indicate that the additional effort
for applying the projection does not pay off.
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FIGuRE 6.4. True error compared to error estimator for projected semigroup e%-914 Prrug

Second, the regularization in the discrete setting with s = 0 produce an error
close to the error of the Tikhonov regularization, but the methods with s = —1/2 and
s = —1 yield more accurate approximations to z! for large data errors §. This effect
was by no means clear in advance, as these methods regularize in norms different from
Il - [ £2(0,1), in which the error was measured.

Third, we notice that the projection method yields errors ||z, — z||1,(,1) Which
are much smaller than those of the other three methods. Since this method requires
also less computational effort than the other methods as discussed in Section 5.4 it
seems to be preferable over the other three methods.

As far as can be judged from figure 6.5 none of the four methods converges with
a substantially higher rate than the other ones. As the inversion of the operator
exponential is a severely ill-posed problem (see [9] for a definition) there is perhaps
no chance to improve on the quality of the standard methods but merely on their
efficiency.

7. Conclusions. We have developed and implemented regularization schemes
for the severly ill-posed inversion of diffusion processes. These schemes, including
Tikhonov-type as well as projection methods, avoid any time stepping PDE solvers
for the forward problems but rely on the error controlled approximate evaluation of
certain Dunford integrals which are based on appropriate quadrature techniques and
the error controled solution of resovent systems for well-posed operators. This latter
task is trivially parallelized. In particular, this allows us to realize, to our knowledge
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for the first time in this context, SVD-projections without actually having to compute

or mani

pulate corresponding singular basis functions. Moreover, the regularization is

separated from the discretization of the diffusion operator yielding error bounds for
the true infinite dimensional problem. Moreover, we present a first discussion of the
complexity of the projection scheme. This together with the numerical experiments

support

its superiority over the Tikhonov-type schemes.
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