
Universal algorithms for learning theory
Part II : piecewise polynomial functions

Peter Binev, Albert Cohen, Wolfgang Dahmen, and Ronald DeVore ∗

December 6, 2005

Abstract

This paper is concerned with estimating the regression function fρ in supervised
learning by utilizing piecewise polynomial approximations on adaptively generated
partitions. The main point of interest is algorithms that with high probability are
optimal in terms of the least square error achieved for a given number m of observed
data. In a previous paper [1], we have developed for each β > 0 an algorithm for
piecewise constant approximation which is proven to provide such optimal order
estimates with probability larger than 1 − m−β. In this paper, we consider the
case of higher degree polynomials. We show that for general probability measures ρ
empirical least squares minimization will not provide optimal error estimates with
high probability. We go further in identifying certain conditions on the probability
measure ρ which will allow optimal estimates with high probability.
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1 Introduction

This paper is concerned with providing estimates in probability for the approximation
of the regression function in supervised learning when using piecewise polynomials on
adaptively generated partitions. We shall work in the following setting. We suppose that
ρ is an unknown measure on a product space Z := X ×Y , where X is a bounded domain
of Rd and Y = R. Given m independent random observations zi = (xi, yi), i = 1, . . . ,m,
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identically distributed according to ρ, we are interested in estimating the regression
function fρ(x) defined as the conditional expectation of the random variable y at x:

fρ(x) :=

∫
Y

ydρ(y|x) (1.1)

with ρ(y|x) the conditional probability measure on Y with respect to x. We shall use
z = {z1, . . . , zm} ⊂ Zm to denote the set of observations.

One of the goals of learning is to provide estimates under minimal restrictions on the
measure ρ since this measure is unknown to us. In this paper, we shall always work under
the assumption that

|y| ≤M, (1.2)

almost surely. It follows in particular that |fρ| ≤ M . This property of ρ can often be
inferred in practical applications.

We denote by ρX the marginal probability measure on X defined by

ρX(S) := ρ(S × Y ). (1.3)

We shall assume that ρX is a Borel measure on X. We have

dρ(x, y) = dρ(y|x)dρX(x). (1.4)

It is easy to check that fρ is the minimizer of the risk functional

E(f) :=

∫
Z

(y − f(x))2dρ, (1.5)

over f ∈ L2(X, ρX) where this space consists of all functions from X to Y which are
square integrable with respect to ρX . In fact, one has

E(f) = E(fρ) + ‖f − fρ‖2, f ∈ L2(X, ρX), (1.6)

where
‖ · ‖ := ‖ · ‖L2(X,ρX). (1.7)

Our objective will be to find an estimator fz for fρ based on z such that the quantity
‖fz − fρ‖ is small with high probability. This type of regression problem is referred to as
distribution-free. A recent survey on distribution free regression theory is provided in the
book [8], which includes most existing approaches as well as the analysis of their rate of
convergence in the expectation sense.

A common approach to this problem is to choose an hypothesis (or model) class H
and then to define fz, in analogy to (1.5), as the minimizer of the empirical risk

fz := argminf∈HEz(f), with Ez(f) :=
1

m

m∑
j=1

(yj − f(xj))
2. (1.8)
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In other words, fz is the best approximation to (yj)
m
j=1 from H in the the empirical norm

‖g‖2
m :=

1

m

m∑
j=1

|g(xj)|2. (1.9)

Typically, H = Hm depends on a finite number n = n(m) of parameters. In some
algorithms, the number n is chosen using an a priori assumption on fρ. We want to avoid
such prior assumptions. In other procedures, the number n is adapted to the data and
thereby avoids any a priori assumptions. We shall be interested in estimators of this type.

The usual way of evaluating the performance of the estimator fz is by studying its
convergence either in probability or in expectation, i.e. the rate of decay of the quantities

P{‖fρ − fz‖ ≥ η}, η > 0 or E(‖fρ − fz‖2) (1.10)

as the sample size m increases. Here both the expectation and the probability are taken
with respect to the product measure ρm defined on Zm. Estimations in probability are to
be preferred since they give more information about the success of a particular algorithm
and they automatically yield an estimate in expectation by integrating with respect to
η. Much more is known about the performance of algorithms in expectation than in
probability as we shall explain below. The present paper will be mainly concerned about
estimates in probability and we shall show that this problem has some interesting twists.

Estimates for the decay of the quantities in (1.10) are usually obtained under certain
assumptions (called priors) on fρ. We emphasize that the algorithms should not depend
on prior assumptions on fρ. Only in the analysis of the algorithms do we impose such
prior assumptions in order to see how well the algorithm performs.

Priors on fρ are typically expressed by a condition of the type fρ ∈ Θ where Θ is a
class of functions that necessarily must be contained in L2(X, ρX). If we wish the error, as
measured in (1.10), to tend to zero as the number m of samples tends to infinity then we
necessarily need that Θ is a compact subset of L2(X, ρX). There are three common ways
to measure the compactness of a set Θ: (i) minimal coverings, (ii) smoothness conditions
on the elements of Θ, (iii) the rate of approximation of the elements of Θ by a specific
approximation process. We have discussed the advantages and limitations of each of these
approaches in [1] (see also [6]). In the present paper we shall take the view of (iii) and
seek estimators which are optimal for a certain collection of priors of this type. Describing
compactness in this way provides a bench mark for what could be achieved at best by a
concrete estimator.

Our previous work [1] has considered the special case of approximation using piecewise
constants on adaptively generated partitions. In that case, we have introduced algorithms
that we prove to be optimal in the sense that their rate of convergence is best possible,
for a large collection of prior classes, among all methods that utilize piecewise constant
approximation on adaptively generated partitions based on isotropic refinements. More-
over, the methods we proposed in [1] had certain aesthetic and numerical advantages.
For example, they are implemented by a simple thresholding procedure that can be done
on line. This means that in the case of streaming data only a small number of updates
are necessary as new data appear. Also, the analysis of our methods provided not only
estimates in expectation but also the estimates in probability which we seek.
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On the other hand, from an approximation theoretic point of view, using just piecewise
constants severely limits the range of error decay rates that can be obtained even for very
regular approximands. Much better rates can be expected when employing higher order
piecewise polynomials which would result in equally local and, due to higher accuracy,
overall more economical procedures.

However, in this previous work, we have purposefully not considered the general case
of piecewise polynomial approximation because we had already identified certain notable
- perhaps at first sight surprising - distinctions with the piecewise constant case. The
purpose of the present paper is to analyze the case of general piecewise polynomial ap-
proximation, and in particular, to draw out these distinctions. We mention a few of these
in this introduction.

In the piecewise constant case, we have shown that estimators built on empirical risk
minimization (1.8) are guaranteed with high probability to approximate the regression
function with optimal accuracy (in terms of rates of convergence). Here, by high proba-
bility we mean that the probability of not providing an optimal order of approximation
tends to zero faster than m−β for any prescribed β > 0. We shall show in §3 that in gen-
eral such probability estimates do not hold when using empirical risk minimization with
piecewise polynomial approximation. This means that if we seek estimators which per-
form well in probability then either we must assume something more about the underlying
probability measure ρ or we must find an alternative to empirical risk minimization.

In §4 we put some additional restrictions on the measure ρX and show that under
these restrictions, we can again design algorithms based on empirical risk minimization
which perform optimally with high probability. While, as we have already mentioned,
these assumption on ρX are undesirable, we believe that in view of the counter example
of §3 they represent roughly what can be done if one proceeds only with empirical risk
minimization.

2 Approximating the Regression Function:

General Strategies

In studying the estimation of the regression function, the question arises at the outset as to
what are the best approximation methods to use in deriving algorithms for approximating
fρ and therefore indirectly in defining prior classes? With no additional knowledge of ρ
(and thereby fρ) there is no general answer to this question. However, we can draw some
distinctions between certain strategies.

Suppose that we seek to approximate fρ by the elements from a hypothesis class
H = Σn. Here the parameter n measures the complexity associated to the process. In
the case of approximation by elements from linear spaces we will take the space Σn to be
of dimension n. For nonlinear methods, the space Σn is not linear and now n represents
the number of parameters used in the approximation. For example, if we choose to
approximate by piecewise polynomials on partitions with the degree r of the polynomials
fixed then n could be chosen as the number of cells in the partition. The potential
effectiveness of the approximation process for our regression problem would be measured
by the error of approximation in the L2(X, ρX) norm. We define this error for a function
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g ∈ L2(X, ρX) by

En(g) := E(g,Σn) := inf
S∈Σn

‖g − S‖, n = 1, 2, . . . . (2.1)

If we have two approximation methods corresponding to sequences of approximation
spaces (Σn) and (Σ′

n), then the second process would be superior to the first in terms of
rates of approximation if E ′

n(g) ≤ CEn(g) for all g and an absolute constant C > 0. For
example, approximation using piecewise linear functions would in this sense be superior
to using approximation by piecewise constants. In our learning context however, there
are other considerations since: (i) the rate of approximation need not translate directly
into results about estimating fρ because of the uncertainty in our observations, (ii) it may
be that the superior approximation method is in fact much more difficult (or impossible)
to implement in practice. For example, a typical nonlinear method may consist of finding
an approximation to g from a family of linear spaces each of dimension N . The larger the
family the more powerful the approximation method. However, too large of a family will
generally make the numerical implementation of this method of approximation impossible.

Suppose that we have chosen the space Σn to be used as our hypothesis class H in the
approximation of fρ from our given data z. How should we define our approximation?
As we have noted in the introduction, the most common approach is empirical risk min-
imization which gives the function f̂z := f̂z,Σn defined by (1.8). However, since we know

|fρ| ≤M , the approximation will be improved if we post-truncate f̂z by M . For this, we
define the truncation operator

TM(x) := min(|x|,M) sign(x) (2.2)

for any real number x and define

fz := fz,H := TM(f̂z,H). (2.3)

There are general results that provide estimates for how well fz approximates fρ. One
such estimate given in [8] (see Theorem 11.3) applies whenH is a linear space of dimension
n and gives 1

E(‖fρ − fZ‖2) <∼
n log(m)

m
+ inf

g∈H
‖fρ − g‖2. (2.4)

The second term is the bias and equals our approximation error En(fρ) for approximation
using the elements of H. The first term is the variance which bounds the error due to
uncertainty. One can derive rates of convergence in expectation by balancing both terms
(see [8] and [6]) for specific applications.

The deficiency of this approach is that one needs to know the behavior of En(fρ) in
order to choose the best value of n and this requires a priori knowledge of fρ. There is
a general procedure known as model selection which circumvents this difficulty and tries
to automatically choose a good value of n (depending on fρ) by introducing a penalty
term. Suppose that (Σn)m

n=1 is a family of linear spaces each of dimension n. For each

1Here and later in this paper we use the notation A <∼ B to mean A ≤ CB for some absolute constant
C
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n = 1, 2, . . . ,m, we have the corresponding estimator fz,Σn defined by (2.3) and the
empirical error

En,z :=
1

m

m∑
j=1

(yj − fz,Σn(xj))
2. (2.5)

Notice that En,z is a computable quantity which we can view as an estimate for En(fρ).
In complexity regularization, one chooses a value of n by

n∗ := n∗(z) := argmin

{
En,z +

n logm

m

}
. (2.6)

We now define
fz := fz,Σn∗ (2.7)

as our estimator to fρ. One can then prove (see Chapter 12 of [8]) that whenever fρ can
be approximated to accuracy En(fρ) ≤Mn−s for some s > 0, then2

E(‖fρ − fz‖2 ≤ C
[ logm

m

] 2s
2s+1

(2.8)

which save for the logarithm is an optimal rate estimation in expectation.
For a certain range of s, one can also prove similar estimates in probability (see [6]).

Notice that the estimator did not need to have knowledge of s and nevertheless obtains
the optimal performance.

Model selection can also be applied in the setting of nonlinear approximation, i.e.
when the spaces Σn are nonlinear but in this case, one needs to invoke conditions on
the compatibility of the penalty with the complexity of the approximation process as
measured by an entropy restriction. We refer the reader to Chapter 12 of [8] for a more
detailed discussion of this topic and will briefly take up this point again in §2.3.

Let us also note that the penalty approach is not always compatible with the practical
requirement of on-line computations. By on-line computation, we mean that the estimator
for the sample sizem can be derived by a simple update of the estimator for the sample size
m−1. In penalty methods, the optimization problem needs to be globally re-solved when
adding a new sample. However, when there is additional structure in the approximation
process such as the adaptive partitioning that we discuss in the next section, then there
are algorithms that circumvent this difficulty (see the discussion of CART algorithms
given in the following section).

2.1 Adaptive Partitioning

In this paper, we shall be interested in approximation by piecewise polynomials on par-
titions generated by adaptive partitioning. We shall restrict our discussion to the case
X = [0, 1]d and the case of dyadic partitions. However, all results would follow in the
more general setting described in [1].

2We use the following conventions concerning constants throughout this paper. Constants like C, c, c̃
depend on the specified parameters but they may vary at each occurrence, even in the same line. We
shall indicate the dependence of the constant on other parameters whenever this is important.
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Let Dj = Dj(X) be the collection of dyadic subcubes of X of sidelength 2−j and
D := ∪∞j=0Dj. These cubes are naturally aligned on a tree T = T (D). Each node of the
tree T corresponds to a cube I ∈ D. If I ∈ Dj, then its children are the 2d dyadic cubes
J ⊂ Dj+1 with J ⊂ I. We denote the set of children of I by C(I). We call I the parent of
each such child J and write I = P (J). A proper subtree T0 of T is a collection of nodes
of T with the properties: (i) the root node I = X is in T0, (ii) if I 6= X is in T0 then
its parent is also in T0. We obtain (dyadic) partitions Λ of X from finite proper subtrees
T0 of T . Given any such T0 the outer leaves of T0 consist of all J ∈ T such that J /∈ T0

but P (J) is in T0. The collection Λ = Λ(T0) of outer leaves of T0 is a partition of X into
dyadic cubes. It is easily checked that

#(T0) ≤ #(Λ) ≤ 2d#(T0). (2.9)

A uniform partition of X into dyadic cubes consists of all dyadic cubes in Dj(X) for
some j ≥ 0. Thus, each cube in a uniform partition has the same measure 2−jd. Another
way of generating partitions is through some refinement strategy. One begins at the root
X and decides whether to refine X (i.e. subdivide X) based on some refinement criteria.
If X is subdivided then one examines each child and decides whether or not to refine such
a child based on the refinement strategy. Partitions obtained this way are called adaptive.

We let ΠK denote the space of multivariate polynomials of total degree K with K ≥ 0
a fixed integer. In the analysis we present, the space ΠK could be replaced by any space of
functions of fixed finite dimension without affecting our general discussion. Given a dyadic
cube I ∈ D, and a function f ∈ L2(X, ρX), we denote by pI(f) the best approximation
to f on I:

pI(f) := argminp∈ΠK
‖f − p‖L2(I,ρX). (2.10)

Given K > 0 and a partition Λ, let us denote by SK
Λ the space of piecewise polynomial

functions of degree K subordinate to Λ. Each S ∈ SK
Λ can be written

S =
∑
I∈Λ

pIχI , pI ∈ ΠK , (2.11)

where for G ⊂ X we denote by χG the indicator function, i.e. χG(x) = 1 for x ∈ G and
χG(x) = 0 for x 6∈ G.

We shall consider the approximation of a given function f ∈ L2(X, ρX) by the elements
of SK

Λ . The best approximation to f in this space is given by

PΛf :=
∑
I∈Λ

pI(f)χI . (2.12)

We shall be interested in two types of approximation corresponding to uniform refine-
ment and adaptive refinement. We first discuss uniform refinement. Let

En(f) := ‖f − PΛnf‖, n = 0, 1, . . . (2.13)

which is the error for uniform refinement. We shall denote by As the approximation class
consisting of all functions f ∈ L2(X, ρX) such that

En(f) ≤M02
−nds, n = 0, 1, . . . . (2.14)
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Notice that #(Λn) = 2nd so that the decay in (2.14) is like N−s with N the number of
elements in the partition. The smallest M0 for which (2.14) holds serves to define the
semi-norm |f |As on As.

The space As can be viewed as a smoothness space of order ds > 0 with smoothness
measured with respect to ρX . For example, if ρX is the Lebesgue measure then As/d =
Bs
∞(L2), 0 < s ≤ 1, with equivalent norms. Here Bs

∞(L2) is a Besov space. For s < K
one can take supt t

−sωK(f, t)L2 as a norm for this space, where ωK(f, t)L2 is the Kth order
modulus of smoothness in L2 (see [2] for the definition and properties of Besov spaces).

Instead of working with a priori fixed partitions there is a second kind of approximation
where the partition is generated adaptively and will vary with f . Adaptive partitions are
typically generated by using some refinement criterion that determines whether or not to
subdivide a given cell. We shall use a refinement criterion that is motivated by adaptive
wavelet constructions such as those given in [4] for image compression. Given a function
f ∈ L2(X, ρX), we define the local atoms

ψI(f) :=
∑

J∈C(I)

pJ(f)χJ − pI(f)χI , I 6= X, ψX(f) := pX(f), (2.15)

and
εI(f) := ‖ψI(f)‖. (2.16)

Clearly, we have

f =
∑
I∈D

ψI(f), (2.17)

and since the ψI are mutually orthogonal, we also have

‖f‖2
L2(X,ρX) =

∑
I∈D

εI(f)2. (2.18)

The number εI(f) gives the improvement in the L2(X, ρX) error squared when the cell I
is refined.

We let T (f, η) be the smallest proper tree that contains all I ∈ D such that εI(f) > η.
Corresponding to this tree we have the partition Λ(f, η) consisting of the outer leaves of
T (f, η). We shall define some new smoothness spaces Bs which measure the regularity of
a given function f by the size of the tree T (f, η). Given s > 0, we let Bs be the collection
of all f ∈ L2(X, ρX) such that for p = (s+ 1/2)−1/2, the following is finite

|f |pBs := sup
η>0

ηp#(T (f, η)). (2.19)

We obtain the norm for Bs by adding ‖f‖ to |f |Bs . One can show that

‖f − PΛ(f,η)f‖ ≤ Cs|f |
1

2s+1

Bs η
2s

2s+1 ≤ Cs|f |BsN−s, N := #(T (f, η)), (2.20)

where the constant Cs depends only on s. The proof of this estimate can be based on the
same strategy as used in [4] where a similar result is proven in the case of the Lebesgue
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measure: one introduces the trees Tj := T (f, 2−jη) which have the property Tj ⊂ Tj+1,
and then writes

‖f − PΛ(f,η)f‖2 =
∑

I /∈T (f,η) ‖ψI‖2

=
∑

j≥0

∑
I∈Tj+1\Tj

‖ψI‖2

≤
∑

j≥0 #(Tj+1)(2
−jη)2

≤ |f |pBs

∑
j≥0(2

−jη)2−p,

which gives (2.20) with Cs :=
∑

j≥0 2(p−2)j.
Invoking (2.9), it follows that every function f ∈ Bs can be approximated to order

O(N−s) by PΛf for some partition Λ with #(Λ) = N . This should be contrasted with As

which has the same approximation order for the uniform partition. It is easy to see that
Bs is larger than As. In classical settings, the class Bs is well understood. For example,
in the case of Lebesgue measure and dyadic partitions we know that each Besov space
Bs

q(Lτ ) with τ > (s/d+1/2)−1 and 0 < q ≤ ∞, is contained in Bs/d (see [4]). This should

be compared with the As where we know that As/d = Bs
∞(L2) as we have noted earlier.

2.2 An adaptive algorithm for learning

In the learning context, we cannot use the algorithm described in the previous section
since the regression function fρ and the measure ρ are not known to us. Instead we shall
use an empirical version of this adaptive procedure.

Given the data z and any Borel set I ⊂ X, we define

pI,z := argminp∈ΠK

1

m

m∑
i=1

(p(xi)− yi)
2χI(xi). (2.21)

When there are no xi in I, we set pI,z = 0.
Given a partition Λ of X we define the estimator fz as

fz = fz,Λ :=
∑
I∈Λ

TM(pI,z)χI (2.22)

with TM the truncation operator defined earlier. Note that the empirical minimization
(2.21) is not done over the truncated polynomials, since this is not numerically feasible.
Instead, truncation is only used as a post processing.

As in the previous section, we have two ways to generate partitions Λ. The first is to
use the uniform partition Λn consisting of all dyadic cells in Dn. The second is to define
an empirical analogue of the εI . For each cell I in the master tree T , we define

εI(z) := ‖TM(
∑

J∈C(I)

pJ,zχJ − pI,zχI)‖m, (2.23)

where ‖ · ‖m is the empirical norm defined in (1.9).
A data based adaptive partitioning requires limiting the depth of corresponding trees.

To this end, let γ > 0 be an arbitrary but fixed constant. We define j0 = j0(m, γ) as
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the smallest integer j such that 2jd ≥ τ
−1/γ
m . We then consider the smallest tree T (τm, z)

which contains the set

Σ(z,m) := {I ∈ ∪j≤j0Λj : εI(z) ≥ τm}, (2.24)

where τm is a threshold to be set further. We then define the partition Λ = Λ(τm, z)
associated to this tree and the corresponding estimator fz := fz,Λ. Obviously, the role of
the integer j0 is to limit the depth search for the coefficient εI(z) which are larger than
the threshold τm. Without this restriction, the tree T (τm, z) could be infinite preventing
a numerical implementation. The essential steps of the adaptive algorithm in the present
setting read as follows:

Algorithm: Given z, choose γ > 0, τm := κ
√

log m
m

and

• for j0(m, γ) determine the set Σ(z,m) according to (2.24);

• form T (τm, z),Λ(τm, z) and compute fz according to (2.22).

For further comments concerning the treatment of streaming data we refer to an
analogous strategy outlined in [1].

In our previous work [1], we have analyzed the above algorithm in the case of piecewise
constant approximation and we have proved the following result.

Theorem 2.1 Let β, γ > 0 be arbitrary. Then, using piecewise constant approximations
in the above scheme, i.e. K = 0, there exists κ0 = κ0(β, γ,M) such that if κ ≥ κ0 in the
definition of τm, then whenever fρ ∈ Aγ ∩ Bs for some s > 0, the following concentration
estimate holds

P
{
‖fρ − fz‖ ≥ c̃

( logm

m

) s
2s+1

}
≤ Cm−β, (2.25)

where the constants c̃ and C are independent of m.

Let us make some remarks on this theorem. First note that truncation does not play
any role in the case of piecewise constant approximation since in that case the constant of
best empirical approximation automatically is ≤M in absolute value. The theorem gives
an estimate for the error ‖fρ − fz‖ in probability which is the type of estimate we are
looking for in this paper. From this one obtains a corresponding estimate in expectation.
The order of approximation can be shown to be optimal save for the logarithmic term
by using the results on lower estimates from [6]. Finally, note that the role of the space
Aγ is a minor one since the only assumption on γ is that it be positive. This assumption
merely guarantees that a finite depth search will behave close to an infinite depth search.

The goal of the present paper is to determine whether the analogue of Theorem 2.1
holds when piecewise polynomials are used in place of piecewise constants. We shall see
that this is not the case by means of a counterexample in §3. We shall then show that
such estimates are possible if we place restrictions on the measure ρX .
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2.3 Estimates in Expectation

Before starting the analysis of results in probability for the higher order piecewise poly-
nomial case, let us point out that it is possible to derive estimates in expectation for
adaptive partitions constructed by other strategies, such as model selection by complex-
ity regularization. In particular, the following result can easily be derived from Theorem
12.1 in [8].

Theorem 2.2 Let γ > 0 be arbitrary and let j0 = j0(γ,m) be defined again as the smallest
integer j such that 2−jd ≤ (logm/m)1/2γ. Consider the set M of all partitions Λ induced
by proper trees T ⊂ ∪j≤j0Λj. Then, there exists κ0 = κ0(d,K) such that if

penm(Λ) =
κ logm

m
#(Λ).

for some κ ≥ κ0, the estimator defined by fz := fz,Λ∗ with

Λ∗ := argminΛ∈M
{
‖fz,Λ − y‖2

m + penm(Λ)
}
,

satisfies

E(‖fρ − fz‖) ≤ C
( logm

m

) s
2s+1

, m = 1, 2, . . . , (2.26)

if fρ ∈ Aγ ∩ Bs where the constant C depends on κ,M, |fρ|Bs , |fρ|As, but not on m.

Let us also remark that the search of the optimal partition Λ∗ in the above theorem
can be performed at a reasonable computational cost using a CART algorithm (see e.g.
[3] or [7]). Note that our approach for selecting the appropriate partition differs from the
CART algorithms, in the sense that it is based on a thresholding procedure rather than
solving an optimization problem.

3 A counterample

We begin by showing that in general we cannot obtain optimal estimates with high proba-
bility when using empirical risk minimization with piecewise polynomials of degree larger
than zero. We shall first consider the case of approximation by linear functions on the
interval X = [−1, 1] for the bound M = 1. For each m = 1, 2, . . ., we will construct
a measure ρ = ρm on [−1, 1] × [−1, 1] for which empirical risk minimization does not
perform well in probability.

Let p be the polynomial

p = argming∈Π1
E(|g − y|2) = argming∈Π1

‖fρ − g‖2, (3.1)

with fρ the regression function and ‖ · ‖ the L2(X, ρX) norm. Consider also the empirical
least square minimizer

p̂ = argming∈Π1

m∑
i=1

|g(xi)− yi|2. (3.2)
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We are interested in the concentration properties between T (p) and T (p̂) in the ‖·‖metric,
where T (u) = sign(u) max{1, |u|} is the truncation operator. We shall prove the following
result, which expresses the fact that we cannot hope for a distribution free concentration
inequality with a fast rate of decay of the probability.

Lemma 3.1 Given any β > 2, there exist absolute constants c, c̃ > 0 such that for each
m = 1, 2, . . ., there is a distribution ρ = ρm such that the following inequalities hold

P{‖T (p)− T (p̂)‖ ≥ c} ≥ c̃m−β+1 (3.3)

and
P{‖fρ − T (p̂)‖ ≥ c} ≥ c̃m−β+1. (3.4)

On the other hand, we have

‖fρ − T (p)‖2 ≤ C0[m
−2β+4 +m−β] (3.5)

for an absolute constant C0.

Remark 3.2 Note that this clearly implies the same results as in (3.3) and (3.4) with the
truncation operator removed. By contrast, for least square approximation by constants q,
we have (see [1]) for all ρ, m and η

P{‖q − q̂‖ ≥ η} <∼ e−cmη2

. (3.6)

Proof of Lemma 3.1: In order to prove this result, we consider the probability measure

ρX := (1/2− κ)(δ−γ + δγ) + κ(δ−1 + δ1), (3.7)

where γ := γm = 1
3m

and κ := κm := m−β. We then define ρ = ρm completely by

y(γ) = 1, y(−γ) = −1, y(±1) = 0, with probability 1. (3.8)

Therefore, there is no randomness in the y direction. It follows that

fρ(γ) = 1, fρ(−γ) = −1, fρ(±1) = 0. (3.9)

We next proceed in three steps.

1. Properties of p: By symmetry, the linear function that best approximates fρ

in L2(ρX) is of the form p(x) = ax, where a minimizes

F (a) = (1/2− κ)(aγ − 1)2 + κa2. (3.10)

We therefore find that

p(±γ) = ±aγ = ± (1/2− κ)γ2

(1/2− κ)γ2 + κ
= ±1 +O(m−β+2). (3.11)
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This shows that

‖fρ − Tp‖2 ≤ C0m
−2β+4 + 2κ ≤ C0[m

−2β+4 +m−β] (3.12)

with C0 an absolute constant.

2. Properties of p̂: We can write the empirical least square polynomial p̂ as

p̂(x) = b̂+ â(x− ξ̂), (3.13)

where b̂ = 1
m

∑m
i=1 yi and ξ̂ := 1

m

∑m
i=1 xi. (Notice that 1 and x − ξ̂ are orthogonal with

respect to the empirical measure 1
m

∑m
i=1 δxi

.) From

p̂(γ)− p̂(−γ)
2γ

= â =
p̂(ξ̂)− p̂(γ)

(ξ̂ − γ)
, (3.14)

it follows that

p̂(γ) = p̂(−γ)(1 +
2γ

ξ̂ − γ
)−1 + p̂(ξ̂)(1 +

ξ̂ − γ

2γ
)−1. (3.15)

Since p̂(ξ̂) = b̂ ∈ [−1, 1], (3.15) shows that whenever ξ̂ ≥ 2γ, then either p̂(γ) ≤ 1/2 or
p̂(−γ) ≥ −1/2. It follows that whenever ξ̂ ≥ 2γ, we have

‖fρ − T (p̂)‖2 ≥ (1/2− κ)(1/2)2 ≥ c2 (3.16)

with c an absolute constant. Using (3.12), we see that (3.3) is also satisfied provided that
P{ξ̂ > 2γ} ≥ c̃m−β+1.

3. Study of ξ̂: We consider the event where xi = 1 for one i ∈ {1, · · · ,m} and xj = γ
or −γ for the other j 6= i. In such an event, we have

ξ̂ ≥ 1

m
(1− (m− 1)γ) >

1

m
(1− 1/3) =

2

3m
= 2γ. (3.17)

The probability of this event is

P = mκ(1− 2κ)m−1 ≥ c̃m−β+1. (3.18)

This concludes the proof of (3.3). 2

Let us now adjust the example of the lemma to give information about piecewise
linear approximation on adaptively generated dyadic partitions. We first note that we
can rescale the measure of the lemma to any given interval I. We choose a dyadic interval
I of length 2−m and scale the measure of the lemma to that interval. We denote this
measure again by ρm. The regression function fρ will be denoted by fm and it will take
values ±1 at the rescaled points corresponding to γ and −γ and will take the value 0
everywhere else. We know from Lemma 3.1 that we can approximate fm by a single
polynomial to accuracy

‖fρ − p‖2 ≤ C0[m
−2β+4 +m−β]. (3.19)
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Also, if we allow dyadic partitions with more than m elements, we can approximate fρ

exactly. In other words, fρ is in Bs with s = min(β − 2, β/2).
On the other hand, any adaptively generated partition with at most m elements will

have an interval J containing I. The empirical data sets will be rescaled to I and the
empirical p̂J ’s will all be the empirical linear functions of Lemma 3.1 scaled to I. Hence,
for any of the bad draws z of Lemma 3.1, we will have

‖fρ − f̂z‖ ≥ c (3.20)

on a set of z with probability larger than c̃m−β+1.
This shows that empirical least squares using piecewise linear functions on adaptively

generated partitions will not provide optimal bounds with high probability. Note that
the above results are not in contradiction with optimal estimates in expectation. The
counter example also indicates, however, that the arguments leading to optimal rates in
expectation based on complexity regularization cannot be expected to be refined towards
estimates in probability.

4 Optimal results in probability under regularity as-

sumptions on ρX

In view of the results of the previous section, it is not possible to prove optimal convergence
rates with high probability for adaptive methods based on piecewise polynomials for the
general setting of the regression problem in learning. In this section, we want to show
that if we impose some restrictions on the marginal measure ρX , then high probability
results are possible.

We fix the value K of the polynomial space ΠK in this section. For each dyadic
cube I ∈ Rd and any function f ∈ L2(X, ρX), we define pI(f) as in (2.10). This means
that given any dyadic partition Λ, the best approximation to f from SΛ is given by the
projector

PΛf =
∑
I∈Λ

pI(f)χI . (4.1)

We shall work under the following assumption in this section:

Assumption A : There exists a constant CA > 0 such that for each dyadic cube I, there
exists an L2(I, ρX)-orthonormal basis (LI,k)k=1,···,λ of ΠK (with λ the algebraic dimension
of ΠK) such that

‖LI,k‖L∞(I) ≤ CA(ρX(I))−1/2, k = 1, . . . , λ. (4.2)

Note that this assumption implies that the least squares projection is uniquely defined on
each I by

pI(f) =
λ∑

k=1

〈f, LI,k〉L2(I,ρX)LI,k, (4.3)
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and in particular ρX(I) 6= 0. It also implies that for all partitions Λ and for all f ∈ L∞(X),

‖PΛf‖L∞ ≤ λCA‖f‖L∞ , (4.4)

i.e. the projectors PΛ are bounded in L∞ independently of Λ. Indeed, from Cauchy-
Schwartz inequality, we have

‖LI,k‖L1(I,ρX) ≤ (ρX(I))1/2‖LI,k‖L2(I,ρX) = (ρX(I))1/2 (4.5)

and therefore for all x ∈ I ∈ Λ

|(PΛf)(x)| ≤
λ∑

k=1

|〈f, LI,kχI〉LI,k(x)| ≤ λCA‖f‖L∞(I). (4.6)

It is readily seen that Assumption A holds when ρX is the Lebesgue measure dx. On
the other hand, it may not hold when ρX is a very irregular measure. A particular simple
case where Assumption A always holds is the following:

Assumption B : We have dρX = ω(x)dx and there exists a constant CB > 0 such
that for all I ∈ D, there exists a convex subset D ⊂ I with |I| ≤ B|D| and such that
0 < ρX(I) ≤ CB|I| infx∈D ω(x).

This assumption is obviously fulfilled by weight functions such that 0 < c ≤ ω(x) ≤ C,
but it is also fulfilled by functions which may vanish (or go to +∞) with a power-like be-
haviour at isolated points or lower dimensional manifolds. Let us explain why Assumption
B implies Assumption A. Any convex domain D can be framed by E ⊂ D ⊂ Ẽ where E is
an ellipsoid and Ẽ a dilated version of E by a fixed factor depending only on the dimension
d. Therefore, if P is a polynomial with ‖P‖L2(I,ρX) = 1, we have ‖P‖2

L∞(I) ≤ C‖P‖2
L∞(D)

holds for a constant C depending only on the degree K, the spatial dimension d and the
constant B in Assumption B. Hence, using Assumption B, we further conclude

‖P‖2
L∞(I)

<∼ ‖P‖2
L∞(D)

<∼ |D|−1

∫
D

|P (x)|2dx

<∼ |D|−1

∫
D

|P (x)|2ρX(I)−1|I|ω(x)dx

<∼ ρX(I)−1

∫
I

|P (x)|2dρ = ρX(I)−1.

Here, all the constants in the inequalities depend on d,K,B,CB but are independent of
I ∈ T .

4.1 Probability estimates for the empirical estimator

We shall now show that under Assumption A, we can estimate the discrepancy between the
truncated least squares polynomial approximation to fρ and the truncated least squares
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polynomial fit to the empirical data. This should be compared with the counterexample
of the last section which showed that for general ρ we do not have this property.

Lemma 4.1 There exists a constant c > 0 which depends on the constant CA in Assump-
tion A, on the polynomial space dimension λ = λ(K) of ΠK and on the bound M , such
that for all I ∈ D

P{‖TM(pI)χI − TM(pI,z)χI‖ > η} ≤ c̃e−cmη2

, (4.7)

where c̃ = 2(λ+ λ2),

Proof : We clearly have

‖TM(pI)χI − TM(pI,z)χI‖2 ≤ 4M2ρX(I), (4.8)

and therefore it suffices to prove (4.7) for those I such that η2 < 4M2ρX(I). We use the
basis (LI,k)k=1,···,L of Assumption A to express pI and pI,z according to

pI =
λ∑

k=1

cI,kLI,k and pI,z =
λ∑

k=1

cI,k(z)LI,k, (4.9)

and we denote by cI and cI(z) the corresponding coordinate vectors. We next remark
that since TM is a contraction

‖TM(pI)χI − TM(pI,z)χI‖ ≤ ‖pIχI − pI,zχI‖, (4.10)

it follows that

‖TM(pI)χI − TM(pI,z)χI‖2 ≤
λ∑

k=1

|cI,k − cI,k(z)|2 = ‖cI − cI(z)‖2
`2(Rλ), (4.11)

were ‖ · ‖`2(Rλ) is the λ-dimensional Euclidean norm. Introducing

αI,k =

∫
Z

yLI,k(x)χI(x)dρ and αI,k(z) :=
1

m

m∑
i=1

yiLI,k(xi)χI(xi), (4.12)

with αI and αI(z) the corresponding coordinate vectors, we clearly have

cI = αI . (4.13)

On the other hand, we have
GI(z)cI(z) = αI(z),

where

(GI(z))k,l :=
1

m

m∑
i=1

LI,k(xi)LI,l(xi) = 〈LI,k, LI,l〉m,
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and cI(z) := 0 when there are no xi’s in I. Therefore, when GI(z) is invertible, we can
write

cI(z)− cI = GI(z)
−1αI(z)− αI = GI(z)

−1[αI(z)−GI(z)αI ],

and therefore

‖cI(z)− cI‖`2(Rλ) ≤ ‖GI(z)
−1‖`2(Rλ)

(
‖αI(z)− αI‖`2(Rλ) + ‖GI(z)− I‖`2(Rλ)‖αI‖`2(Rλ)

)
,

(4.14)
where we also denote by ‖G‖`2(Rλ) the spectral norm for an λ × λ matrix G. Since
‖GI(z)− I‖`2(Rλ) ≤ 1/2 implies ‖GI(z)

−1‖`2(Rλ) ≤ 2 it follows that ‖cI(z)− cI‖`2(Rλ) ≤ η
provided that we have jointly

‖αI(z)− αI‖`2(Rλ) ≤
η

4
, (4.15)

and

‖GI(z)− I‖`2(Rλ) ≤ min
{1

2
,
η

4
‖αI‖−1

`2(Rλ)

}
. (4.16)

By Bernstein’s inequality, we have

P {‖αI(z)− αI‖`2(Rλ) >
η

4
} ≤ P{|αI,k(z)− αI,k| >

η

4λ1/2
for some k}

≤ 2λe
−c mη2

σ2+Sη , (4.17)

with c depending on λ where, on account of (4.2),

S := sup
k

sup
x,y

|yLI,k(x)| ≤MCAρX(I)−1/2,

and
σ2 := sup

k
E(y2|Li,k|2) ≤M2.

Since η2 < 2M2ρX(I), we thus have, up to a change in the constant c,

P
{
‖αI(z)− αI‖`2(Rλ) >

η

4

}
≤ 2λe

−c mη2

M2+MρX (I)−1/2η ≤ 2λe−cmη2

, (4.18)

with c depending on λ, CA and M . In a similar way, we obtain by Bernstein’s inequality
that

P {‖GI(z)− I‖`2(Rλ) > ξ} ≤ P {|(GI(z))k,l − δk,l| >
ξ

λ
for some (k, l)}

≤ λ2e
−c mξ2

σ2+Sξ , (4.19)

with c depending on λ, where now again by (4.2)

S := sup
k,l

sup
x
|LI,k(x)LI,l(x)| ≤ C2

AρX(I)−1, (4.20)

and
σ2 := sup

k,l
E(|LI,k(x)LI,l(x)|2) ≤ C2

AρX(I)−1. (4.21)
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In the case ξ = 1
2
≤ η

4
‖αI‖−1, we thus obtain from (4.19), using that η2 ≤ 2M2ρX(I),

P {‖GI(z)− I‖`2(Rλ) > ξ} ≤ 2λ2e
−c m

ρX (I)−1 ≤ 2λ2e−cmη2

, (4.22)

with c depending on λ, CA and M . In the case ξ = η
4
‖αI‖−1 ≤ 1

2
, we notice that

‖αI‖`2(Rλ) ≤ λ1/2M sup
k
‖LI,k‖L1(I,ρX) ≤ λ1/2MCAρX(I)1/2, (4.23)

because of Assumption A. It follows that ξ ≥ η(16λM2C2
AρX(I))−1/2 and the absolute

value of the exponent in the exponential of (4.19) is bounded from below by

cmη2ρX(I)−1

24λM2C4
AρX(I)−1

≥ cmη2, (4.24)

with c depending on λ, CA and M . The proof of (4.7) is therefore complete. 2

Remark 4.2 The constant c in (4.7) depends on M and CA and behaves like (MC2
A)−2.

4.2 Learning on Fixed and Uniform Partitions

From the basic estimate (4.7), we can immediately derive an estimate for an arbitrary
but fixed partition Λ consisting of disjoint dyadic cubes. If |Λ| = N , we have

P {‖fz,Λ − TM(PΛfρ)‖ > η} ≤ P {‖TM(pI)χI − TM(pI,z)χI‖ >
η

N1/2

for some I ∈ Λ},

which yields the following analogue to Theorem 2.1 of [1].

Remark 4.3 Under Assumption A one has for any fixed integer K ≥ 0, any partition Λ
and η > 0

P {‖fz,Λ − TM(PΛfρ)‖ > η} ≤ C0Ne
−c mη2

N , (4.25)

where N := #(Λ) and C0 = C0(λ) and c = c(λ,M,CA).

We can then derive by integration over η > 0 an estimate in the mean square sense

E (‖fz,Λ − TM(PΛfρ)‖2) ≤ C
N logN

m
, (4.26)

similar to Corollary 2.2 of [1], with C = C(M,CA, λ). Combining these estimates with
the definition of the approximation classes As, we obtain similar convergence rates as in
Theorem 2.3 of [1].

Theorem 4.4 If fρ ∈ As and the estimator is defined by fz := fΛj ,z with j chosen as the

smallest integer such that 2jd(1+2s) ≥ m
log m

, then given any β > 0, there exist constants

C = C(M,CA, λ, β) and c̃ = c̃(M,CA, λ, β) such that

P
{
‖fρ − fz‖ > (c̃+ |fρ|As)

( logm

m

) s
2s+1

}
≤ Cm−β. (4.27)

There also exists a constant C = C(M,CA, λ) such that

E
(
‖fρ − fz‖2

)
≤ (C + |fρ|2As)

( logm

m

) 2s
2s+1

. (4.28)
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As we have noted earlier, the second estimate (4.28) could have been obtained in a
different way, namely by using Theorem 11.3 in [8] and without Assumption A. On the
other hand, it is not clear that the probability estimate (4.27) could be obtained without
this assumption.

4.3 Learning on Adaptive Partitions

We now turn to the adaptive algorithm as defined in the §2.2. Here, we shall extend
Theorem 2.5 of [1] in two ways. Recall that the depth of the tree is limited by j0 = j0(m, γ)

the smallest integer j such that 2jd ≥ τ
−1/γ
m .

Theorem 4.5 We fix an arbitrary β ≥ 1 and γ > 0. If we take the threshold τm :=

κ
√

log m
m

with κ ≥ κ0 = κ0(γ, β,M, λ, d, CA), then for any ρ such that fρ ∈ Aγ ∩Bs, s > 0,

the adaptive algorithm gives an fz satisfying the concentration estimate

P
{
‖fρ − fz‖ ≥ c

( logm

m

) s
2s+1

}
≤ m−β, (4.29)

with c = c(s, d, λ, β, |fρ|Bs , |fρ|Aγ ). We also have the following expectation bound

E (‖fρ − fz‖2) ≤ C
( logm

m

) 2s
2s+1

, (4.30)

with C = C(s, λ,M,CA, d, β, |fρ|Bs , |fρ|Aγ ).

A defect of this theorem is the dependency of κ0 on CA which may be unknown in
our regression problem. We shall propose later another convergence theorem where this
defect is removed.

The strategy for proving Theorem 4.5 is similar to the one for Theorem 2.5 in [1]. The
idea is to show that the set of coefficients chosen by the adaptive empirical algorithm are
with high probability similar to the set that would be chosen if the adaptive thresholding
took place directly on fρ. This will be established by probability estimates which control
the discrepancy between εI and εI(z). This is given by the following result, which is a
substitute to Lemma 4.1 in [1].

Lemma 4.6 For any η > 0 and any element I ∈ Λj0, one has

P {εI(z) ≤ η and εI ≥ 8λCAη} ≤ c̃(1 + η−C)e−cmη2

(4.31)

and
P {εI ≤ η and εI(z) ≥ 4η} ≤ c̃(1 + η−C)e−cmη2

, (4.32)

where c̃ = c̃(λ,M, d), c = c(λ,M,CA, d) and C = C(λ, d).

The proof of Lemma 4.6 is rather different from the counterpart in [1] and is postponed
to the end of this section. Its usage in deriving the claimed bounds in Theorem 4.5,
however, is very similar to the proof in [1]. Because of a few changes due to the truncation
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operator we briefly recall first its main steps suppressing at times details that could be
recovered from [1].

For any two partitions Λ0,Λ1 we denote by Λ0 ∩ Λ1, Λ0 ∪ Λ1 the partitions induced
by the corresponding trees T0 ∩ T1, T0 ∪ T1, respectively. Recall that the data dependent
partitions Λ(η, z), defined in (2.24), do not contain cubes from levels higher than j0.
Likewise, for any threshold η > 0, we need the deterministic analogue Λ(η) := Λ(fρ, η),
where Λ(fρ, η) is the partition associated to the smallest tree T (fρ, η) that contains all I
for which |εI(fρ)| > η.

As in the proof of Theorem 2.5 in [1], we estimate the error by

‖fρ − fz,Λ(τm,z)‖ ≤ e1 + e2 + e3 + e4 (4.33)

with each term now defined by

e1 := ‖fρ − TM(PΛ(τm,z)∪Λ(8CAλτm)fρ)‖,
e2 := ‖TM(PΛ(τm,z)∪Λ(8CAλτm)fρ)− TM(PΛ(τm,z)∩Λ(τm/4)fρ)‖,
e3 := ‖TM(PΛ(τm,z)∩Λ(τm/4)fρ)− fz,Λ(τm,z)∩Λ(τm/4)‖,
e4 := ‖fz,Λ(τm,z)∩Λ(τm/4) − fz,Λ(τm,z)‖.

The first term e1 is treated by approximation

e1 ≤ Cs(8CAλτm)
2s

2s+1 |fρ|Bs + τm|fρ|Aγ ≤ c(|fρ|Bs + |fρ|Aγ )
( m

logm

)− s
2s+1

, (4.34)

where c = c(s, CA, λ, κ). The second summand in the first estimate of (4.34) stems from
the fact that optimal trees might be clipped by the restriction to Λj0 and this missing
part exploits the assumption fρ ∈ Aγ.

The third term e3 can be estimated by an inequality similar to (4.25) although
Λ(τm, z) ∩ Λ(τm/4) is a data-dependent partition. We use the fact that all the cubes
in this partition are always contained in the tree consisting of T (fρ, τm/4) completed by
its outer leaves, i.e. by the cubes of Λ(τm/4). We denote by T ∗(fρ, τm/4) this tree and
by N its cardinality. Using the same argument that led us to (4.25) for a fixed partition,
we obtain

P {e3 > η} ≤ C0Ne
−c mη2

N (4.35)

with c and C0 the same constants as in (4.25). From the definition of the space Bs, we
have the estimate

N ≤ (2d + 1)#(T (fρ, τm/4)) ≤ (2d + 1)(4κ−1|fρ|Bs)
2

2s+1

( m

logm

) 1
2s+1

. (4.36)

Thus, for κ larger than κ0(β) we obtain that

P
{
e3 > c

( logm

m

) s
2s+1

}
≤ m−β, (4.37)

with c = c(d, λ, β, CA, |fρ|Bs , s, κ, d).
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The terms e2 and e4 are treated using the probabilistic estimates of Lemma 4.6. From
these estimates it follows that

P {e2 > 0}+ Pr{e4 > 0} ≤ 2#(Λj0)c̃(1 + η−C)e−cmη2

(4.38)

with η = τm/4. It follows that for κ ≥ κ0(β, γ, λ,M,CA, d), we have

P {e2 > 0}+ P {e4 > 0} ≤ m−β. (4.39)

Combining the estimates for e1, e2, e3 and e4, we therefore obtain the probabilistic estimate
(2.25).

For the expectation estimate, we clearly infer from (4.34)

E (e2
1) ≤ c2(|fρ|2Bs + |fρ|2Aγ )

( logm

m

) 2s
2s+1

(4.40)

with c = c(s, CA, λ, κ). Also, since e2
2, e

2
4 ≤ 4M2, we obtain

E (e2
2) + E (e2

4) ≤ ∗M2m−β, (4.41)

with C = C(κ, λ, CA,M, d). We can estimate E (e2
3) by integration of (4.35) which gives

E (e23) ≤ 4M2m−β + c2
( logm

m

) 2s
2s+1

, (4.42)

with c as in (4.37). This completes the proof of the Theorem 4.5. 2

We now turn to the proof of Lemma 4.6. We shall give a different approach than that
used in [1] for piecewise constant approximation. Recall that

εI(z) := ‖TM(
∑

J∈C(I)

pJ,zχJ − pI,zχI)‖m, (4.43)

and
εI := εI(fρ) := ‖

∑
J∈C(I)

pJχJ − pIχI‖. (4.44)

We introduce the auxiliary quantities

ε̃I(z) := ‖TM(
∑

J∈C(I)

pJ,zχJ − pI,zχI)‖, (4.45)

and
ε∗I := ‖TM(

∑
J∈C(I)

pJχJ − pIχI)‖. (4.46)

For the proof of (4.31), we first remark that from the L∞ bound (4.4) on the least square
projection, we know that

‖
∑

J∈C(I)

pJχJ − pIχI‖L∞ ≤ sup
J∈C(I)

‖pJχJ‖L∞ + ‖pIχI‖L∞ ≤ 2λCAM. (4.47)
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It follows that the inequality

|
∑

J∈C(I)

pJχJ − pIχI | ≤ 2λCA|TM(
∑

J∈C(I)

pJχJ − pIχI |), (4.48)

holds at all points, and therefore εI ≤ 2λCAε
∗
I so that

P {εI(z) ≤ η and εI ≥ 8λCAη} ≤ P {εI(z) ≤ η and ε∗I ≥ 4η}. (4.49)

We now write

P {εI(z) ≤ η and ε∗I ≥ 4η} ≤ P {ε̃I(z) ≤ 3η and ε∗I ≥ 4η}
+ P {εI(z) ≤ η and ε̃I(z) ≥ 3η}

≤ P {|ε̃I(z)− ε∗I | ≥ η}+ P {ε̃I(z)− 2εI(z) ≥ η}
= p1 + p2.

The first probability p1 is estimated by

p1 ≤ P {‖TM(
∑

J∈C(I)

pJχJ − pIχI)− TM(
∑

J∈C(I)

pJ,zχJ − pI,zχI)‖ > η} ≤ c̃e−cmη2

, (4.50)

with c̃ = c̃(λ, d) and c = c(λ,M,CA, d), where the last inequality is obtained by the same
technique as in the proof of Lemma 4.1 applied to

∑
J∈C(I) pJχJ − pIχI instead of pIχI

only.
The second probability p2 is estimated by using results from [8]. Fix I and let F =

F(I) be the set of all functions f of the form

f = TM(
∑

J∈C(I)

qJχJ − qIχI). (4.51)

where qI and the qJ are arbitrary polynomials from ΠK . Let t = (t1, . . . , t2m) with the
tj chosen independently and at random with respect to the measure ρX and consider the
discrete norm

‖f‖t :=
1

2m

2m∑
j=1

|f(tj)|2. (4.52)

We will need a bound for the covering number N (F , η, t) which is the smallest number
of balls of radius η which cover F with respect to the norm ‖ · ‖t. It is well known that
if V is a linear space of dimension q and G := {TMg : g ∈ V } then

N (G, η, t) ≤ (Cη)−(2q+1), 0 < η ≤ 1, (4.53)

with C = C(M) (see e.g. Theorems 9.4 and 9.5 in [8]). In our present situation, this
leads to

N (F , η, t) ≤ (Cη)−2λ[2d+1]+2, 0 < η < 1, (4.54)

We apply this bound on covering numbers in Theorem 11.2 of [8] which states that

P {‖f‖ − 2‖f‖m > η for some f ∈ F} ≤ 3e−
mη2

288M2 E (N (F , η, t)) (4.55)
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Here the probability is with respect to z and the expectation is with respect to t. We can
put in the entropy bound (4.54) for N into (4.55) and obtain

p2 ≤ P {‖f‖ − 2‖f‖m > η for some f ∈ F} ≤ c̃η−Ce−cmη2

(4.56)

with c̃, C, c as stated in the lemma. This is the estimate we wanted for p2.
For the proof of (4.32), we first remark that obviously ε∗I ≤ εI so that

P {εI ≤ η and εI(z) ≥ 4η} ≤ P {ε∗I ≤ η and εI(z) ≥ 4η}. (4.57)

We proceed similarily to the proof of (4.31) by writing

P {ε∗I ≤ η and εI(z) ≥ 4η} ≤ P
{
ε∗I ≤ η and ε̃I(z) ≥

3

2
η
}

+ P
{
ε̃I(z) ≤

3

2
η and εI(z) ≥ 4η

}
≤ P {|ε̃I(z)− ε∗I | ≥ η/2}+ P {εI(z)− 2ε̃I(z) ≥ η}
= p1 + p2. (4.58)

The first probability p1 is estimated as previously. For the second probability p2, we need
a symmetric statement to Theorem 11.2 in [8], to derive

P {‖f‖m − 2‖f‖ > η for some f ∈ F} ≤ Ce−cmη2

(4.59)

with c and C as before. It is easily checked from the proof of Theorem 11.2 in [8],
that such a statement also holds (one only needs to modify the first page of the proof
of this theorem in [8] in order to bound P{‖f‖m − 2‖f‖ > η for some f ∈ F} by
3P{‖f‖m − ‖f‖′m > η/4 for some f ∈ F}/2 and the rest of the proof is then identi-
cal). The proof of Lemma 4.6 is therefore complete. 2

We finally modify our algorithm slightly by choosing a slightly larger threshold which
is now independent of the unknown constant CA, namely τm := log m√

m
. We could actually

use any threshold of the type

τm := κ(m)

√
logm

m
, (4.60)

where κ(m) is a sequence which grows very slowly to +∞. This results in an additional
logarithm factor in our convergence estimates. Moreover, the same analysis as in §5 of [1]
shows that this new algorithm is universally consistent. We record this in the following
theorem for which we do not give a proof since it is very similar to the proof of Theorem
4.5.

Theorem 4.7 Given an arbitrary β ≥ 1 and γ > 0, we take the threshold τm := log m√
m

.
Then the adaptive algorithm has the property that whenever fρ ∈ Aγ ∩Bs for some s > 0,
the following concentration estimate holds

P
{
‖fρ − fz‖ ≥ c

( logm√
m

) 2s
2s+1

}
≤ m−β, (4.61)
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with c = c(s, CA, λ, |fρ|Bs , |fρ|Aγ ), as well as the following expectation bound

E (‖fρ − fz‖2) ≤ C
( logm√

m

) 4s
2s+1

(4.62)

with C = C(s, λ,M,CA, d, |fρ|Bs , |fρ|Aγ ). For a general regression function fρ, we have
the universal consistency estimate

lim
m→+∞

E(‖fρ − fz‖2) = 0, (4.63)

which in turn implies the convergence in probability: for all ε > 0,

lim
m→+∞

P{‖fρ − fz‖ > ε} = 0. (4.64)
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