
Numbering Techniques for Preconditioners in

Iterative Solvers for Compressible Flows

Bernhard Pollul ∗ † Arnold Reusken ∗ †

March 2, 2006

Subject Classification: [msc2000] 65F10, 65N22
Key Words: Euler equations, Krylov subspace methods, preconditioning, or-
dering algorithms
Copyright notice: This is a preprint of an article published in International

Journal for Numerical Methods in Fluids Volume 55(3), 241–261

Abstract

We consider Newton-Krylov methods for solving discretized compress-

ible Euler equations. A good preconditioner in the Krylov subspace

method is crucial for the efficiency of the solver. In this paper we consider

a point-block Gauss-Seidel method as preconditioner. We describe and

compare renumbering strategies that aim at improving the quality of this

preconditioner. A variant of reordering methods known from multigrid

for convection-dominated elliptic problems is introduced. This reordering

algorithm is essentially black-box and significantly improves the robust-

ness and efficiency of the point-block Gauss-Seidel preconditioner. Results

of numerical experiments using the QUADFLOW solver and the PETSc

library are given.

1 Introduction

We are interested in efficient numerical techniques for the numerical simulation
of two- and three-dimensional compressible flows. One important issue in this
field is the solution of large sparse nonlinear systems of equations that arise
after spatial discretization combined with an implicit time integration method.
Two popular approaches for solving such nonlinear systems of equations are
nonlinear multigrid solvers and Newton-Krylov methods. Well-known nonlin-
ear multigrid techniques are the FAS method by Brandt [12], the nonlinear
multigrid method by Hackbusch [17] and the algorithm introduced by Jame-
son [21]. It has been shown that a nonlinear multigrid approach can result in
very efficient solvers which can even have optimal complexity for a certain class
of problems [22, 26, 27, 29]. Multigrid methods, however, require a coarse-to-
fine grid hierarchy, whereas Newton-Krylov algorithms only need the matrix

∗This research was supported by the German Research Foundation through the Collabo-

rative Research Centre SFB 401
†Institut für Geometrie und Praktische Mathematik, RWTH-Aachen, D-52056 Aachen,

Germany pollul@igpm.rwth-aachen.de , reusken@igpm.rwth-aachen.de

1

http://www3.interscience.wiley.com/search/allsearch?mode=viewselected&product=journal&ID=114116392&view_selected.x=35&view_selected.y=5&view_selected=view_selected

of the linearized system. Due to this and to the fact that efficient implemen-
tations of many (preconditioned) Krylov subspace algorithms in sparse matrix
libraries are available, the Newton-Krylov algorithms are in general much easier
to implement than multigrid solvers. Furthermore, concerning efficiency, the
Newton-Krylov approach with appropriate preconditioning can be competitive
with multigrid. Thus it is not surprising that Newton-Krylov techniques are
often used in practice (cf., for instance, [28, 30, 31, 32, 33, 45]).

In this paper we consider the Newton-Krylov approach. A method of this
class has been implemented in the QUADFLOW package, which is an adaptive
multiscale finite volume solver for stationary and instationary compressible flow
computations. Descriptions of this solver are given in [5, 9, 10, 11, 39]. For the
linearization we use a standard (approximate) Newton method. The resulting
linear systems are solved by a preconditioned BiCGSTAB method using methods
implemented in the PETSc-Library [3, 4].

Incomplete LU-factorization and Gauss-Seidel techniques are popular pre-
conditioners that are used in solvers in the numerical simulation of compressible
flows [1, 2, 33, 38]. The “point-block”-variants of these preconditioners are ob-
tained by applying the original point versions to the blocks of unknowns corre-
sponding to each cell. Both preconditioners depend on the ordering of the cells
(grid-points) [2, 8, 18, 19, 33, 36, 42]. In combination with PBILU the reverse
Cuthill-McKee ordering algorithm [13, 14] is often used. This ordering yields a
matrix with a “small” bandwidth.

In this paper we focus on ordering algorithms for the PBGS preconditioner.
We do not know of any literature that deals with ordering techniques for Gauss-
Seidel preconditioners applied to linearized Euler equations. The ordering algo-
rithms consist of three steps. First a weighted directed graph, in which every
vertex corresponds to a block unknown, is constructed. Then this graph is re-
duced by deleted edges with relatively small weights. This graph reduction is
very similar to techniques used in algebraic multigrid methods [40]. Finally a
renumbering of the vertices in this reduced graphall pictures can also used in
black/white is determined. For this we consider three different algorithms. Two
of them are known (due to Bey, Wittum [8] and Hackbusch [16, 18]) from the
field of robust multigrid solvers for convection-dominated elliptic problems. The
third one is new. These methods are implemented in the QUADFLOW solver
using the PETSc library. A systematic comparative study shows that for our
problem class the new variant yields the best results. The reordering algorithm
is essentially black-box. Using this reordering we can improve the robustness
of the iterative solver: For large CFL numbers we encounter linear systems for
which the BiCGSTAB method with PBGS preconditioner converges only if we
first apply the reordering. Using the reordering we can also improve the ef-
ficiency of the linear solver significantly. The execution time of the iterative
solver part can be reduced by 10% (for complex transonic flows) up to 50% (for
supersonic flows).

The remainder of this paper is organized as follows. In the following sec-
tion we outline the discretization and linearization methods that are used in
QUADFLOW for the numerical solution of the compressible Euler equations.
In section 3 we describe the point-block-Gauss-Seidel preconditioner. Section 4
gives a detailed description of three renumbering algorithms. In section 5 we
apply these algorithms, implemented in the QUADFLOW solver, to some test
problems. Finally we summarize some main results of the paper (section 6).

2

2 Discrete Euler equations

We consider the conservative formulation of the Euler equations. For an arbi-
trary control volume V ⊂ Ω ⊂ R

d (d = 2, 3) one has equations of the form

∫

V

∂u

∂t
dV +

∮

∂V

Fc(u)n dS = 0 . (1)

Here n is the outward unit normal on ∂V , u = (ρ, ρv, ρetot)
T the vector of

unknown conserved quantities and the convective flux is given by

Fc(u) =





ρv
ρv ◦ v + pI

ρhtotv



 . (2)

The symbol ◦ denotes the dyadic product and htot is the total enthalpy. The
system is closed by the equation of state for a perfect gas and suitable initial and
boundary conditions. For the numerical simulation of the compressible Euler
equations we use the software package QUADFLOW, which is currently under
development at Aachen University, cf. [5, 9, 10, 11, 39]. We briefly describe a few
main features of this solver. QUADFLOW contains methods for the numerical
simulation of two- and three-dimensional compressible Euler- and Navier-Stokes
equations. It is based on block-structured grids. The geometry of these blocks
is described using tensor-product B-splines. For discretization finite volume
techniques are applied. Several upwind methods, for instance flux-difference
splitting (HLLC [41]), flux-vector splitting (van Leer [25], Hänel/Schwane [20])
and AUSDMV(p) [15, 46] have been implemented. A key ingredient in QUAD-
FLOW is the use of local grid refinement in regions of high activity, for example
in the neighborhood of shocks. Both explicit and implicit time integration
routines are available. The computation of an accurate approximation of a sta-
tionary solution is based on a nested iteration approach. One starts with an
initial coarse grid and an initial CFL number γ0, which determines the size of
the timestep. After each timestep in the time integration the CFL number (and
thus the timestep) is increased by a constant factor until an a-priori fixed upper
bound γmax is reached. Time integration is continued until a tolerance criterion
for the residual is satisfied. Then a (local) grid refinement is performed and
the procedure starts again with an interpolated initial condition and a starting
CFL number equal to γ0. The indicator for the local grid refinement is based on
a multiscale analysis using wavelets. The nonlinear systems that arise in each
timestep of an implicit method are solved using a Newton-Krylov approach. In
every timestep one approximate Newton iteration is performed. The resulting
linear equations are solved using preconditioned Krylov-subspace methods that
are available the PETSc library [3, 4]. For this an interface between QUAD-
FLOW and PETSc has been developed. A first parallel version of QUADFLOW
is available now. In this paper, however, we restrict ourselves to the sequential
version. To give an impression of the multi-block and adaptivity features of
QUADFLOW we show grids that are used in a simulation of an inviscous flow
around a BAC 3-11/RES/30/21 airfoil (cf. section 5.2) in fig. 1.

In most simulations an implicit time integration is used. Then the computa-
tional work for solving the large sparse systems in the Newton-Krylov method
determines to a large extent the total computing time in a simulation run.

3

Figure 1: 12-block grid of BAC 3-11/RES/30/21 airfoil: part of the original grid
and of the grid after 10 levels of local refinement. Test problem 2, cf. section
5.2

Hence, the efficiency of the iterative solvers for these systems is an important
issue. In general for stationary problems this issue plays a bigger role than
for nonstationary problems. We therefore focus on stationary problems in this
paper.

For the discretization we choose methods that are available in QUADFLOW.
For spatial discretization the flux-vector splitting by Hänel and Schwane [20] is
applied. A linear reconstruction technique is used to obtain second order ac-
curacy in regions where the solution is smooth. This is combined with the
Venkatakrishnan limiter [44]. Although we are interested in stationary solu-
tions the time derivative is not skipped. This time derivative is discretized by
a numerical integration method which then results in a numerical method for
approximating the stationary solution. To obtain fast convergence towards the
stationary solution one wants to use large timesteps and thus an implicit time
discretization method is preferred. We use the b2-scheme by Batten et. al. [7].
This approach then results in a nonlinear system of equations in each timestep.
Per timestep one inexact Newton iteration is applied. In this inexact New-
ton method an approximate Jacobian is used in which the linear reconstruction
technique is neglected and the Jacobian of the first order Hänel-Schwane dis-
cretization is approximated by one-sided difference operators (as in [43]). These
Jacobian matrices have the structure

DF (U) = diag
(|Vi|

∆t

)

+
∂RHS(U)

∂U
, (3)

where |Vi| is the volume of cell Vi, ∆t the (local) timestep and RHS(U) the
residual vector corresponding to the Hänel-Schwane fluxes. Details are given in
[11]. Note that in general a smaller timestep will improve the condition number
of the approximate Jacobian in (3).

In this paper we introduce and compare several renumbering techniques that
aim at improving the efficiency of preconditioned Krylov subspace methods for
solving these linear systems in the approximate Newton linearization. We em-
phasize that for these ordering techniques the particular choice of discretization

4

components is not essential. The renumbering methods show a similar behavior,
if instead of the Hänel-Schwane method, one uses another upwind method (see
above), or if, instead of the Batten b2-scheme, one uses another implicit time
integration method.

3 Point-block-Gauss-Seidel preconditioner

The approximate Newton method described above leads to large sparse linear
systems of equations. For solving these systems we use a standard precondi-
tioned Krylov subspace method, available in PETSc. We choose BiCGSTAB
with a point-block-Gauss-Seidel preconditioner. We briefly explain the latter.

If the cells are numbered i = 1, . . . , N , then the approximate Jacobian has
a point-block structure DF (U) = blockmatrix(Ai,j)0≤i,j≤N with Ai,j ∈ R

d×d

for all i, j and Ai,j 6= 0 only if i = j or i and j correspond to neighboring cells.
Thus we have linear systems of the form

Ax = b , A = blockmatrix(Ai,j)1≤i,j≤N , Ai,j ∈ R
d×d . (4)

For the right hand side we use a block representation b = (b1, . . . , bN)T , bi ∈
R

d, that corresponds to the block structure of A. The same is done for the
iterands xk that approximate the solution of the linear system in (4). The
point-block-Gauss-Seidel method (PBGS) is the standard block Gauss-Seidel
method applied to (4). Let x0 be a given starting vector. For k ≥ 0 the iterand
xk+1 = (xk+1

1 , . . . , xk+1

N)T should satisfy

Ai,ix
k+1

i = bi −

i−1
∑

j=1

Ai,jx
k+1

j −

N
∑

j=i+1

Ai,jx
k
j , i = 1, . . . , N . (5)

This method is well-defined if the d × d linear systems in (5) are uniquely
solvable, i.e., if the diagonal blocks Ai,i are nonsingular. In our applications
this was always the case. This elementary method is very easy to implement
and needs no additional storage. The algorithm is available in the PETSc library
[3, 4].

4 Renumbering techniques

Incomplete LU-decomposition and Gauss-Seidel techniques are often used for
preconditioning Krylov subspace methods applied to linear systems that arise
in numerical simulations of compressible flows (cf. [1, 2, 33, 38]). Both precon-
ditioners depend on the ordering of the cells (points) [8, 18, 19, 33, 36, 42]. This
holds for the point-block variants point-block-ILU (PBILU) and PBGS, too.
There are many studies available on numbering techniques for ILU precondi-
tioners (cf. [2, 37] and references therein). For PBILU a reverse Cuthill-McKee
ordering algorithm [13, 14] often leads to good results. This ordering yields a
matrix with a “small” bandwidth which is favorable for PBILU. Such PBILU
methods combined with reordering techniques are often used in iterative solvers
for compressible flow problems. A PBGS preconditioner is particularly useful in
parallel and/or matrix-free iterative solvers. As for PBILU this preconditioner
can be improved significantly by reordering techniques. For PBGS the ordering

5

should be such that one approximately follows the directions in which infor-
mation is propagated. In this section we introduce three renumbering methods
that aim at realizing this. The first two of these algorithms are from the field
of robust multigrid methods for convection-dominated problems and are due to
Bey, Wittum [8] and Hackbusch [18]. The third one is a new variant, which for
our applications turns out to be better.

All three algorithms are completely matrix-based, in the sense that one needs
as input only the block-structured matrix from (4). In these algorithms we
distinguish the following three steps:

1. Construct a weighted directed matrix graph in which every vertex corre-
sponds to a block unknown and each edge to a nonzero off-diagonal block
of the given matrix A.

2. Construct a reduced weighted directed matrix graph. The reduction is ob-
tained by deleting edges with relatively small weights.

3. Determine a renumbering of the vertices, based on the reduced weighted
matrix graph. This provides a point-block-permutation of the given matrix
A.

While for all three algorithms presented below steps 1 and 2 are identical, they
differ in the methods used in step 3. We explain these first two steps in sections
4.1 and 4.2.

4.1 Construction of weighted directed matrix graph G(A)

We introduce standard notation related to matrix graphs. Let V = {1, . . . , N}
be a vertex set (each vertex corresponds to a discretization cell). The set of
edges E contains all directed edges

E = {(i, j) ∈ V × V | Ai,j 6= 0, i 6= j} (6)

Note that E does not contain edges (i, i). The mapping

ω : E → (0,∞) (7)

assigns to every directed edge (i, j) ∈ E a weight

ωij := ω(i, j) := ‖Ai,j‖F . (8)

We take the Frobenius-norm because it is easy to compute and all entries in a
block Ai,j are weighted equally. This yields a weighted directed matrix graph
G = G(A)

G(A) := (V , E , ω) . (9)

Every edge (i, j) ∈ E is called an inflow edge of vertex i ∈ V and an outflow

edge of vertex j ∈ V . For (i, j) ∈ E we call j a predecessor of i and i a successor

of j. The set of predecessors of vertex i ∈ V is denoted by

Ii := { j ∈ V | (i, j) ∈ E } . (10)

In the construction of G(A) one only has to compute the weights ωij in (8). For
storage of this information we use a sparse matrix format. Note that the size
of the sparse matrix corresponding to G(A) is N × N (and not Nd × Nd, as
for A). Hence, the costs both for the computation and the storage of G(A) are
low.

6

4.2 Construction of reduced matrix graph Ĝ

Based on reduction techniques from algebraic multigrid methods in which strong

couplings and weak couplings are distinguished [40, 35, 24], we separate strong

edges from weak edges. For every vertex i ∈ V we neglect all inflow edges
(i, j) ∈ E with a weight smaller than τ -times the average of the weights of all
inflow edges of vertex i. Thus we obtain a reduced set of strong edges Ê and a
corresponding reduced (weighted directed) graph Ĝ(A):

σi :=
1

|Ii|

∑

j∈Ii

ωij , (11)

Ê := {(i, j) ∈ E | ωij ≥ τ · σi} , (12)

Ĝ(A) := (V , Ê , ω|Ê) . (13)

This simple construction of a reduced matrix graph Ĝ(A) can be realized with
low computational costs. In the rest of the reordering method we do not need
G(A) anymore, and thus we do not need additional storage because we can
overwrite G(A) with Ĝ(A).

In the following sections we present three different methods that are used in
step 3, resulting in three different ordering algorithms.

4.3 Downwind numbering based on (V, Ê) (Bey and Wit-
tum)

A numbering algorithm due to Bey and Wittum (Algorithm 4.3 in [8]) is pre-
sented in fig. 2 and denoted by “BW”. It is used in multigrid methods for scalar
convection-diffusion problems to construct so-called robust smoothers. To ap-
ply this algorithm for our class of problems we need the reduced directed graph
(V , Ê) as input. Note that the weights ωij are not used.

for all P ∈ V : Index(P) := −1 ;
nF := 1
for P ∈ V

(if Index(P) < 0) SetF(P);
end P

procedure SetF(P)
(if all predecessors B of P have Index(B) > 0)

Index(P) := nF ;
nF := nF + 1;
for Q successor of P

if (Index(Q) < 0) SetF(Q);
end Q

end if

Figure 2: Downwind numbering algorithm BW

7

remark 1 In the loop over P ∈ V in algorithm BW the ordering of the block-
unknowns (cells) corresponding to the input matrix A is used. In the procedure
SetF(P) a vertex is assigned the next number if all its predecessors have already
been numbered. Hence, the first number is assigned to a vertex that has no
inflow edges. Note that in the procedure SetF(P) there is freedom in the order
in which the successors Q are processed. In our implementation we again use
the ordering induced by the given matrix A. The BW numbering is applied
to the reduced matrix graph. If that graph is cycle-free the algorithm returns
a renumbering that is optimal in the sense that this reordering applied to the
matrix corresponding to Ĝ(A) results in a lower triangular matrix. However, in
our problem class the reduced graphs in general contain cycles. In that case,
after algorithm BW has finished there still are vertices P ∈ V with Index(P)=
−1, i.e., there are N−nF > 0 vertices that have no (new) number. The numbers
nF , . . . , N are assigned to these remaining vertices in the order induced by the
input matrix ordering. The two variants of BW that are treated below in general
have fewer of such “remaining” vertices.

Note that in this algorithm there are logical operations and assignments but
no arithmetic operations.

4.4 Down- and upwind numbering based on (V, Ê) (Hack-
busch)

In fig. 3 we present an ordering algorithm, denoted by “HB”, that is due to
Hackbusch [18]. As input for this algorithm one needs the reduced directed
graph (V , Ê) (no weights required). The presentation of this algorithm is as in
section 2.1 in [16]. The Routine “SetF” is the same as in the BW algorithm in
figure 2.

for all P ∈ V : Index(P) := −1 ;
nF := 1; nL := N ;
for P ∈ V

(if Index(P) < 0) SetF(P);
(if Index(P) < 0) SetL(P);

end P

procedure SetL(P)
(if all sucessors B of P have Index(B) > 0)

Index(P) := nL;
nL := nL − 1;
for Q predecessor of P

if (Index(Q) < 0) SetL(Q);
end Q

end if

Figure 3: Down- and upwind numbering algorithm HB

remark 2 In the BW algorithm the vertices are ordered in one direction,
namely “downwind” (in the “flow direction”). The algorithm due to Hack-
busch uses two directions: “downwind” (setF) and “upwind” (setL). In [18]

8

and [16] techniques for handling cycles are presented. These techniques are
rather complicated and often computationally expensive. In multigrid codes for
convection-dominated problems one usually encounters the ordering algorithm
HB as in fig. 3 which does not treat cycles. If the reduced matrix graph (V , Ê)
is not cycle-free there are remaining vertices. These are treated as described in
remark 1. The computational cost of algorithm HB is comparable to that of
BW.

4.5 Weighted reduced graph numbering based on (V, Ê , ω|Ê)

In this section we present a modification of the methods of Bey, Wittum and
Hackbusch. As input for our method we now need the weighted reduced graph
(V , Ê , ω|Ê). The algorithm is denoted by “WRG” and is given in figure 4.

for all P ∈ V : Index(P) := −1 ;
nF := 1; nL := N ;

/* (i) apply SetF and SetL to starting vertices */
do in an outflow-ordered list : for P ∈ V (14)

(if Index(P) < 0) SetF(P, 1);
end P
do in an inflow-ordered list :for P ∈ V (15)

(if Index(P) < 0) SetL(P);
end P

/* (ii) number remaining vertices */
do in an outflow-ordered list : for P ∈ V (16)

(if Index(P) < 0) SetF(P, 0);
end P

procedure SetF(P, s)
(if all predecessors B of P have Index(B) > 0) or (s = 0)

Index(P) := nF ;
nF := nF + 1;
do in an outflow-ordered list : for Q successor of P (17)

if (Index(Q) < 0) SetF(Q, 1);
end Q

end if

procedure SetL(P)
(if all sucessors B of P have Index(B) > 0)

Index(P) := nL;
nL := nL − 1;
do in an inflow-ordered list : for Q predecessor of P (18)

if (Index(Q) < 0) SetL(Q);
end Q

end if

Figure 4: Weighted reduced graph numbering algorithm WRG

9

remark 3 There are two important differences to the algorithms HB and BW.
The first difference is related to the arbitrariness of the order in which the
vertices are handled in the loops in HB and BW, cf. remark 1. If there are
different possibilities for which vertex is to be handled next we now use the
weights ωij of the reduced graph to make a decision. This decision is guided by
the principle that edges with larger weights are declared to be more important
than those with relatively small weights. A weight based sorting occurs at
several places, namely in (14) - (18). In (14) the vertices with no inflow edges
are sorted (“starting” vertices) using the sum of the weights of the outflow
edges at each vertex. Similarly, in (15) the vertices with no outflow edges are
sorted. The “remaining” vertices are finally sorted based on the sum of the
outflow edges at each vertex in (16). In all three cases the number of vertices to
be sorted is much smaller than N and thus the time for sorting is acceptable.
Sorting is also used in (17) and (18) to determine the order in which successors
and predecessors are handled. In SetF(·, ·) the successors Q of the current P

are sorted using the sum over the weights of all outflow edges for each Q. This
is done similarly in SetL(·) for all predecessors of the current P .

The second difference is that the loop over the numbering routine SetF is
called two times. The first call SetF(P, 1) in part (i) of algorithm WRG is
similar to the call of SetF(P) in the algorithms BW and HB but now with an
ordering procedure used in SetF. The second call SetF(P, 0) (in part (ii) in
WRG) is introduced to handle the remaining vertices that still have index value
−1. In this call we do not consider the status of inflow edges and continue num-
bering in downwind direction (SetF(·,0)). The inner call SetF(Q, 1) to number
the successors still requires that all predecessors have been numbered. After
part (ii) of the algorithm is finished the only possibly not yet numbered ver-
tices are trivial ones, in the sense that these are vertices that have no edges to
other vertices.

Due to the additional sorting routines in (14) - (18) the computational costs
of the renumbering algorithm WRG are higher than of those BW and HB.
However, if we use algorithm WRG in step 3 the total time needed for the
execution of the steps 1,2,3 is still acceptable, cf. remark 4.

remark 4 As indicated in our comments above, in all three algorithms the
computational time that is needed and the storage requirements are modest
compared to other components of the iterative solver. Of course this will not
be true for general matrices but it does hold for the class of large sparse point-
block-matrices that forms our problem class. In our pseudo-time integration we
have a sequence of time steps on every level of adaptation. The time needed
for solving the linear systems is typically increasing during the discrete time
integration. This is due to the increase of the CFL-number, cf. section 2. Since
the Jacobian matrices of consecutive timesteps are in some sense similar we
apply reordering not in each iteration but only “now and then” and keep it for
the subsequent time steps, cf. section 5. Thus the total execution time for the
reordering routines is very small compared to the total time needed for the linear
solves with the preconditioned Krylov-subspace method. In our test problems
the reordering routines consume at most a few percent of the total execution
time of the iterative solver.

Both the computational costs and the quality of the reordering algorithm
depend on the parameter τ used in step 2, cf. (12). For large τ -values the

10

reduced set of edges Ê contains only few elements and thus the reduced graph
Ĝ(A) is close to a trivial one. The computational costs for constructing the
corresponding renumbering (step 3) are relatively low but the resulting renum-
bering will in general hardly improve the quality of the PBGS preconditioner.
The choice of the value for the parameter τ is discussed in section 5.

5 Numerical experiments

In this section we present results of numerical experiments. We will illustrate
the behavior of the different numberings presented above for a few test problems.

In all experiments below we use a left preconditioned BiCGSTAB method.
The approximate Jacobian matrices as in (3) are computed in QUADFLOW.
For the preconditioned BiCGSTAB method and the PBGS preconditioner we
use routines from the PETSc library [3, 4]. As described in section 2, in the time
integration on a given discretization level the CFL-number is increased, aiming
at fast convergence towards the stationary solution. In QUADFLOW the default
strategy for determining this CFL-number γk in the k-th timestep is as follows:
γk = max{γ0γ

k, γmax}. In all experiments we set γ0 = 1, γ = 1.1 (default
values in QUADFLOW). We continue time integration on every discretization
level until the residual of the density has been reduced by a factor 102. On the
finest discretization level we require a reduction by a factor 104. The number
of discretization levels used depends on the problem and on certain parameters
used in the adaptive refinement strategy.

In a typical computation most time is spent on solving the linear equation
systems on the grid that corresponds to the finest level of adaptation. Therefore
we present the number of iterations of the preconditioned BiCGSTAB method
that is needed to reduce the starting residual of the linear (Jacobian) system by
a factor 104 on the finest grid in order to measure the quality of the renumber-
ings. We compare four different numberings. The BW, HB and WRG methods
have been explained above. The fourth numbering is the one induced by the
discretization routines in QUADFLOW and is denoted by QN. One central fea-
ture of the QUADFLOW solver is the multiscale analysis that is used for error
estimation and induces local refinement. This results in a hierarchy of locally
refined grids, cf. section 2. In this process the cells are numbered levelwise
from the coarsest to the finest level. This leads to a sort of hierarchical block-
structure of the matrix. A typical pattern of the Jacobian is shown in figure 5.

After a prolongation to the next finer level in the nested iteration method
we perform a renumbering after the first timestep. In each of the following
timesteps we have a new Jacobian system to which a renumbering algorithm
can be applied. For efficiency reasons we do not apply the renumbering method
(steps 1,2,3) to every new Jacobian but use the known renumbering as computed
in the first time step. We determine a new renumbering only after every kr

timesteps. Typical values for kr are kr = 10, kr = ∞. All three numbering
techniques are sensitive with respect to the choice of the value for the parameter
τ . In our sub- and supersonic problems τ = 1.25 turned out to be a good default
value. In transonic problems the performance can often be improved by taking
a somewhat large τ -value (e.g. τ = 2.00).

11

0 1 2 3 4 5

x 10
4

0

1

2

3

4

5

x 10
4

nz = 1125230

Figure 5: Test problem 2: Nonzero pattern of the matrix on the finest level
(BAC 3-11/RES/30/21)

5.1 Test problem 1: Stationary flow around NACA0012
airfoil

The first problem is a standard test case for inviscid compressible flow solvers.
We consider the inviscid, transonic stationary flow around the NACA0012 airfoil
(cf. [23]). In this section we present some results for the following three test
cases:

M∞ α

test case A 0.80 1.25◦

test case B 0.95 0.00◦

test case C 1.20 0.00◦

Table 1: Test problem 1, cases A,B,C: parameters for NACA0012 airfoil

Results of a numerical simulation for case B are shown in figure 6. Renumber-
ing is applied only once after every prolongation to the next finer discretization
level (kr = ∞). The maximum CFL-number was set to γmax = 1000. Compu-
tations are done as in [11]: We allow 8 maximum levels of refinement. In the
cases A and C 10 cycles of adaptations are performed, 13 levels are used in case
B.

Tables 5.1 - 5.1 show the average iteration count on the finest level for
the different orderings. The average is taken over all timesteps used on the
finest discretization level. The savings compared to the original QUADFLOW
numbering QN are displayed in the last row. In all three cases the savings were
not improved significantly when using smaller kr values.

Numbering QN BW HB WRG

Average iteration count 32.0 30.6 28.6 23.0
Saving 0% 4.4% 10.6% 28.1%

Table 2: Case A, average iteration count on finest level (10th discretization
level)

12

Figure 6: Case B: computational grid (left) and Mach distribution (right),
Mmin = 0.0, Mmax = 1.45

Numbering QN BW HB WRG

Average iteration count 20.2 20.1 18.2 18.4
Saving 0% 0.5% 9.9% 8.9%

Table 3: Case B, average iteration count on finest level (13th discretization
level)

Numbering QN BW HB WRG

Average iteration count 20.6 12.1 12.2 10.0
Saving 0% 41.1% 40.1% 51.5%

Table 4: Case C, average iteration count on finest level (10th discretization
level)

In all cases the reduced matrix graph was constructed with τ = 1.25.
With the WRG renumbering method we save between 9% and 52% of PBGS-
preconditioned BiCGSTAB iterations on the finest level compared to the original
numbering QN. Since the renumbering has to be computed only once (kr = ∞)
the additional computational costs for WRG are negligible. The improvement is

13

strongest for case C, which is due to the fact that in this case the flow is almost
supersonic and thus there is a main stream in which information is transported.

0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4

nz = 135101
0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4

nz = 42713
0 0.5 1 1.5 2 2.5 3 3.5 4

x 10
4

0

0.5

1

1.5

2

2.5

3

3.5

4

x 10
4

nz = 42713

Figure 7: Test problem 1, case C: graph G(A), reduced graph Ĝ(A) and renum-
bered reduced graph of Jacobian matrix on finest grid.
.

In case B the results for WRG numbering can be improved by a stronger
reduction of the graph. With τ = 2.00 the saving with WRG is about 21%. In
this transonic case the pattern of directions in which information is propagated
has a more complex structure than in the other cases. Therefore the savings
are less than in the other examples. We want to point out that the ordering
QN induced by the QUADFLOW discretization routines is already quite good.
If namely a (point-block) random numbering is used, then the PBGS precon-
ditioned BiCGSTAB method turns out to diverge in most cases, even when
computing supersonic flow.

In cases with higher CFL-numbers γmax the linear systems are in general
harder to solve and the importance of an improvement due to a better numbering
increases.

5.2 Test problem 2: Stationary flow around BAC 3-11/
RES/30/21 airfoil

This test case is a standard cruise configuration [6] of the Collaborative Research
Center SFB 401 [39] with M∞=0.77 and α=0.00◦, see also [34]. In figure 1 we
give a typical grid that is used in the simulation. We take parameter values
τ = 1.25, γmax = 200 and kr = 10. For a typical Jacobian A we show graph
G(A), reduced graph Ĝ(A) and the effect of the WRG renumbering in figure 8.

0 2000 4000 6000 8000 10000 12000 14000

0

2000

4000

6000

8000

10000

12000

14000

nz = 56282
0 2000 4000 6000 8000 10000 12000 14000

0

2000

4000

6000

8000

10000

12000

14000

nz = 19025
0 2000 4000 6000 8000 10000 12000 14000

0

2000

4000

6000

8000

10000

12000

14000

nz = 19025

Figure 8: Test problem 2: graph G(A), reduced graph Ĝ(A) and renumbered
reduced graph of Jacobian matrix A from figure 5.

.

14

The behavior of the preconditioned BiCGSTAB method is illustrated in
figure 9. In this figure we give the number of iterations that the PBGS-
preconditioned BiCGSTAB method needs to satisfy the stopping criterion for
the linear solver in every timestep. We only give results for the timesteps after
the last (10th) adaptation.

450 500 550 600 650 700 750 800
0

5

10

15

20

25

30

35

40

45

50

55

WRG

QN

Figure 9: Test problem 2: number of PBGS-preconditioned BiCGSTAB-
iterations in every timestep, timesteps on finest level.

There is a clear systematic improvement when using the WRG renumbering.
The savings are about 38%. A comparison to the BW and HB renumbering
methods is shown in table 5.2.

Numbering QN BW HB WRG

Average iteration count 33.5 22.2 22.2 20.6
Saving 0% 33.7% 33.6% 38.4%

Table 5: Test problem 2: average iteration count on finest level (10th discretiza-
tion level)

5.3 Test problem 3: Stationary flow in oblique 3D-channel

In this problem we consider a flow through a 3D-channel with a bump at the
bottom. Cross-sections of this channel with the x-y and x-z-plane are given in
figure 10. The non-rectangular form is used to obtain a truly three-dimensional
flow. Inflow and outflow conditions are prescribed at both ends of the channel.
At inflow we take M∞ = 1.3 and α = 0.00◦.

The parameters in this test case are γmax = 200, τ = 1.25 and kr = ∞.
Some results are presented in table 5.3. If instead of γmax = 200 we take
γmax = 1000 then with the orderings resulting from QN, BW and HB the PBGS-
preconditioned BiCGSTAB solver diverged in at least one timestep during the
time integration on the finest discretization level. With WRG renumbering,

15

Figure 10: Test problem 3: Oblique channel with a bump. Left: x-y plane.
Right: x-z plane

however, this was not the case. Thanks to the higher value γmax = 1000 we need
about 16.1% of timesteps less than with γmax = 200. The average iteration count
then is 13.9 for WRG. When summing up all Krylov-Iterations on the finest
level, the total amount of iterations is 22.3% less than with QN numbering and
γmax = 200.

Hence, this illustrates a further important advantage of the WRG renum-
bering, namely that it improves the robustness of the linear solver.

Numbering QN BW HB WRG

Average iteration count 15.0 14.3 14.1 12.9
Saving 0% 4.2% 6.0% 13.9%

Table 6: Test problem 3, average iteration count on finest level (after 4th adap-
tation)

6 Summary

Both the PBILU and PBGS methods are useful preconditioners in Newton-
Krylov methods for compressible flow simulations. The behavior of these precon-
ditioners depends on the ordering of the block-unknowns (cells). In this paper
we present ordering techniques for the PBGS method that use ideas from alge-
braic multigrid methods. First a reduced weighted directed graph is constructed
and then a renumbering of the vertices in this graph is determined. For this
renumbering we use methods from the field of multigrid solvers for convection-
dominated problems (BW and HB) and a modification of these (WRG). All
three methods are implemented in QUADFLOW using the PETSc library. The
reordering algorithm is black-box, except for the (critical) graph reduction pa-
rameter τ in (12). In most test cases a good choice for this grid-reduction
parameter turns out to be τ = 1.25. A systematic comparative study shows
that for our problem class the WRG reordering yields the best results. Using
this reordering we improve the robustness of the iterative solver. Even with
large CFL-numbers (e.g. 200, 1000, 5000) the linear solver always converges if
we use PBGS with WRG reordering, whereas with other orderings the solver

16

sometimes diverges. This implies that with WRG reordering it is possible to use
larger CFL-numbers in order to reduce the total number of time steps. Using
the reordering one can improve the efficiency of the linear solver significantly.
The execution time of the iterative solver part can be reduced by 10% (for com-
plex transonic flows) up to 50% (for supersonic flows). For efficiency reasons the
reordering is not computed for each new Jacobian but kept fixed in a number
of time steps.

The reordering algorithm can also be applied in the setting of (linear or
nonlinear) multigrid solvers with block-Gauss-Seidel type smoothers for com-
pressible flow problems.

Acknowledgment

The experiments in section 5 are done using the QUADFLOW solver developed
in the Collaborative Research Center SFB 401. The authors acknowledge the
fruitful collaboration with several members of the QUADFLOW research group.

References

[1] K. Ajmani, W.-F. Ng and M. Liou, Preconditioned Conjugate Gradi-
ent Methods for the Navier-Stokes Equations, Journal of Computational

Physics, 1994; 110: 68–81.

[2] E. F. D’Azevedo, P.A. Forsyth and W.-P. Tang, Ordering Methods for
Preconditioned Conjugate Gradient Methods Applied to Unstructured
Grid Problems, SIAM Journal on Matrix Analysis and Applications, 1992;
13(3): 944-961.

[3] S. Balay, K. Buschelman, W. D. Gropp, D. Kaushik, M. Knepley,
L. C. McInnes. B. F. Smith and H. Zhang, PETSc, http://www-
fp.mcs.anl.gov/petsc/, 1992

[4] S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G.
Knepley, L. C. McInnes, B. F. Smith and H. Zhang, PETSc Users Manual,
ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2004.

[5] J. Ballmann (editor), Flow Modulation and Fluid-Structure-Interaction at
Airplane Wings, Numerical Notes on Fluid Mechanics, Springer 2003; 84.

[6] J. Ballmann, Flow Modulation and Fluid-Structure-Interaction at Airplane
Wings - Survey and Results of the Collaborative Research Center SFB 401.
DGLR 2002-009, 2002.

[7] P. Batten, M. A. Leschziner and U.C. Goldberg, Average-State Jacobians
and Implicit Methods for Compressible Viscous and Turbulent Flows, Jour-

nal of Computational Physics, 1997; 137: 38–78.

[8] Bey, J. Wittum, Downwind numbering: robust multigrid for convection-
diffusion problems, Applied Numerical Mathematics, 1997; 23: 177-192.

17

[9] K.H. Brakhage and S. Müller, Algebraic-hyperbolic Grid Generation with
Precise Control of Intersection of Angles, International Journal for Numer-

ical Methods in Fluids, 2000; 33: 89–123.

[10] F. Bramkamp, B. Gottschlich-Müller, M. Hesse, Ph. Lamby, S. Müller, J.
Ballmann, K.-H. Brakhage, W. Dahmen, H-adaptive Multiscale Schemes
for the Compressible Navier-Stokes Equations: Polyhedral Discretization,
Data Compression and Mesh Generation, 2001; in [5], 125–204.

[11] F. Bramkamp, Ph. Lamby and S. Müller, An adaptive multiscale finite
volume solver for unsteady and steady state flow computations, Journal of

Computational Physics, 2004; 197/2 460–490.

[12] A. Brandt, Multi-level Adaptive Solutions to Boundary Value Problems,
Mathematics of Computation, 1997; 31: 333–390.

[13] E. Cuthill, Several strategies for reducing the band width of matrices.
Sparse Matrices and Their Applications, D. J. Rose and R. A. Willoughby,
eds., New York, 1997; 157-166.

[14] E. Cuthill, J. McKee, Reducing the bandwidth of sparse symmetric matri-
ces. in: Proc. ACM Nat. Conf., New York, 1969; 157-172.

[15] J. Edwards and M.S.Liou, Low-Diffusion Flux-Splitting Methods for Flows
at All Speeds. AIAA Journal, 1993; 36(9): 457–497.

[16] S. Gutsch., T. Probst, Cyclic and feedback vertex set ordering for the 2D
convection-diffusion equation. Technical Report, Universit Kiel, 1997; 97-
22.

[17] W. Hackbusch, Multi-grid Methods and Applications, Springer 1985.

[18] W. Hackbusch, On the Feedback Vertex Set for a Planar Graph, Computing,
1997; 58: 129–155.

[19] W. Hackbusch and T.Probst, Downwind Gauß-Seidel Smoothing for Con-
vection Dominated Problems, Numerical Linear Algebra With Applications,
1997; 4(2): 85–102.

[20] D. Hänel and F. Schwane, An Implicit Flux-Vector Splitting Scheme for
the Computation of Viscous Hypersonic Flow, AIAA paper, 1989; 0274.

[21] A. Jameson, Solution of the Euler Equations for Two-Dimensional Tran-
sonic Flow by a Multigrid Method, Applied Mathematics and Computation,
1983; 13: 327–356.

[22] A. Jameson, D.A. Caughey, How Many Steps are Required to Solve the
Euler Equations of Steady, Compressible Flow: in search of a Fast Solution
Algorithm, AIAA paper, 2001; 2673.

[23] D. J. Jones, Reference Test Cases and Contributors, Test Cases For Inviscid
Flow Field Methods. AGARD Advisory Report, 1986; 211(5).

18

[24] F. Kickinger, Algebraic Multigrid for Discrete Elliptic Second-Order Prob-
lems, Multigrid Methods V. Proceedings Of The 5th European Multigrid
Conference (W.Hackbusch ed.), Springer Lecture Notes in Computational

Science and Engineering, 1998; 3: 157-172.

[25] B. van Leer, Flux Vector Splitting for the Euler Equations. In: Proceedings
of the 8th International Conference on Numerical Methods in Fluid Dynam-
ics (E. Krause, ed.). Lecture Notes in Physics, Springer, Berlin, 1982; 170:
507–512.

[26] B. van Leer and D. Darmofal, Steady Euler Solutions in O(N) Operations,
Multigrid Methods (E. Dick, K. Riemslagh and J. Vierendeels, editors),
1999; VI: 24–33.

[27] I. Lepot, P. Geuzaine, F. Meers, J.-A. Essers and J.-M. Vaassen, Analysis
of Several Multigrid Implicit Algorithms for the Solution of the Euler Equa-
tions on Unstructured Meshes, Multigrid Methods (E. Dick, K. Riemslagh
and J. Vierendeels, editors), 1999; VI: 157–163.

[28] H. Luo, J. Baum and R. Löhner, A Fast, Matrix-free Implicit Method
for Compressible Flows on Unstructured Grids, Journal of Computational

Physics,1998; 146: 664-690.

[29] D.J. Mavripilis and V. Venkatakrishnan, Implicit method for the Computa-
tion of Unsteady Flows on Unstructured Grids, Journal of Computational

Physics, 1996; 127: 380–397.

[30] P.R. McHugh and D.A. Knoll, Comparison of Standard and Matrix-Free
Implementations of Several Newton-Krylov Solvers, AIAA Journal,1994;
32: 394–400.

[31] A. Meister, Comparison of different Krylov Subspace Methods Embed-
ded in an Implicit Finite Volume Scheme for the Computation of Viscous
and Inviscid Flow Fields on Unstructured Grids, Journal of Computational

Physics, 1998; 140: 311–345.

[32] A. Meister, Th. Sonar, Finite-Volume Schemes for Compressible Fluid
Flow. Surveys on Mathematics for Industry, 1998; 8: 1–36.

[33] A. Meister, C. Vömel, Efficient Preconditioning of Linear Systems Aris-
ing from the Discretization of Hyperbolic Conservation Laws, Advances in

Computational Mathematics, 2001; 14: 49–73.

[34] I.R.M. Moir, Measurements on a Two-Dimensional Aerofoil with High-
Lift-Devices, volume 1 and 2 AGARD Advisory Report 303: A Selection
of Experimental Test Cases for the Validation of CFD Codes, 1994.

[35] A. Reusken, On the Approximate Cyclic Reduction preconditioner, SIAM
J. Scientific Comp., 2000; 21: 565–590.

[36] H. Rentz-Reichert and G. Wittum, A comparison of smoothers and num-
bering strategies for laminar flow around cylinder, in E. Hrischel, ed.,
Flow Simulation with High-Performance Computers II, Notes on Numerical

Fluid Mechanics, Vieweg 1996; 52: 134–149.

19

[37] Y. Saad, Iterative methods for sparse linear systems, PWS Publishing Com-
pany, Boston (1996).

[38] Y. Saad, Preconditioned Krylov Subspace Methods for CFD Applications,
in:, Solution techniques for Large-Scale CFD-Problems, ed. W.G. Habashi,
Wiley 1995; 139–158.

[39] SFB 401, Collaborative Research Center, Modulation of flow and fluid-
structure interaction at airplane wings, RWTH Aachen University of Tech-
nology, http://www.lufmech.rwth-aachen.de/sfb401/kufa-e.html

[40] K. Stüben, An Introduction in Algebraic Multigrid, Appendix A in: U.
Trottenberg, C. W. Oosterlee, A. Schller, Multigrid, Academic Press, GMD
Birlinghoven, St.Augustin, 2001.

[41] E.F. Toro, M.Spruce and W.Speares, Restoration of the Contact Surface
in the HLL Riemann Solver. Shock Waves, 1994; 4: 25–34.

[42] S. Turek, On ordering strategies in a multigrid algorithm. In Notes on

Numerical Fluid Mechanics 41, Proceedings 8th GAMM–Seminar, Vieweg
1992.

[43] K.J. Vanden and P. D. Orkwis, Comparison of Numerical and Analytical
Jacobians, AIAA Journal, 1996; 34(6): 1125–1129.

[44] V. Venkatakrishnan, V., Convergence to Steady State Solutions of the Euler
Equations on Unstructured Grids with Limiters, Journal of Computational

Physics, 1995; 118: 120–130.

[45] V. Venkatakrishnan, Implicit schemes and Parallel Computing in Unstruc-
tured Grid CFD, ICASE-report, 1995; 28.

[46] Y. Wada and M.S.Liou A Flux Splitting Scheme with High-Resolution and
Robustness for Discontinuities, AIAA Paper, 1994; 94-0083.

20

	Introduction
	Discrete Euler equations
	Point-block-Gauss-Seidel preconditioner
	Renumbering techniques
	Construction of weighted directed matrix graph G(A)
	Construction of reduced matrix graph
	Downwind numbering based on (V,) (Bey and Wittum)
	Down- and upwind numbering based on (V,) (Hackbusch)
	Weighted reduced graph numbering based on (V,,|)

	Numerical experiments
	Test problem 1: Stationary flow around NACA0012 airfoil
	Test problem 2: Stationary flow around BAC 3-11/RES/30/21 airfoil
	Test problem 3: Stationary flow in oblique 3D-channel

	Summary

