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Abstract

We consider a relatively simple model for pool boiling processes. This model in-
volves only the temperature distribution within the heater and desribes the heat
exchange with the boiling fluid via a nonlinear boundary condition imposed on the
fluid-heater interface. This results in a standard heat equation with a nonlinear
Neumann boundary condition on part of the boundary. In this paper we analyze
the qualitative structure of stationary solutions of this heat equation. It turns
out that depending the model allows both multiple homogeneous and multiple
heterogeneous solutions in certain regimes of the parameter space. The latter so-
lutions originate from bifurcations on a certain branch of homogeneous solutions.
We present a bifurcation analysis that reveals the multiple solution structure in
this mathematical model. In the numerical analysis a continuation algorithm is
combined with the method of separation-of-variables and a Fourier collocation
technique. For both, the continuous and discrete problem a fundamental symme-
try property is derived that implies multiplicity of heterogeneous solutions. It will
be shown that numerical simulations for this model problem predict phenomena
that are consistent with laboratory observations for pool boiling processes.

AMS subject classification. 35K55, 65P30, 80A20, 93A30

Keywords. pool boiling, nonlinear heat transfer, bifurcation analysis, numerical simula-
tion

1 Introduction

Pool boiling refers to boiling processes that lean on natural convection as a means for heat
transfer between a heater surface and the boiling fluid; it is the key mode of thermal trans-
port in many practical applications. Local heat transfer phenomena near heating walls in
industrial boiling equipment (e.g. evaporators and kettle reboilers) for instance are essen-
tially pool boiling processes (see e.g. Thome (2003)). Furthermore, pool boiling is emerging
as novel cooling technique for electronics components (see e.g. Mudawar (2001)). Despite its
importance, many aspects of (pool) boiling remain largely unexplored to date, mainly due to
the immense complexity of the process emanating from the intricate interplay between fluid
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dynamics, heat transfer from the heater to the fluid and phase transfer. Studies on boiling
known in the literature are mainly experimental and empirical. Numerical studies based on
a model of reasonable degree of detail are numerous but theoretical investigations aiming at
a rigorous analysis of such models are scarce. The theoretical analysis of a simple boiling
model presented in this paper is intended to contribute to a better qualitative understanding
of fundamental phenomena in pool boiling.

In pool boiling there are three fundamental boiling modes – namely nucleate, transition
and film boiling – that occur successively with increasing temperature (see Dhir (1998)).
Nucleate boiling is, as opposed to film boiling, an efficient and safe mode of heat transfer; it
is the desired boiling mode in most practical applications. Nucleate boiling transits into film
boiling upon exceeding the so-called critical heat flux (CHF) through the intermediate state
of transition boiling. This transition results in a dramatic increase in interface temperature
due to the substantial drop in the heat transfer coefficient when going from nucleate boiling
(homogeneous liquid-like mixture) to film boiling (vapour blanket on the interface). This
manifests itself in the essentially nonlinear relation between the mean heat flux and the
mean interface temperature (the so-called boiling curve; see Dhir (1998)) which results from
averaging over the heater surface of the experiment and over the measurement time interval.
The improvement of the efficiency of boiling processes involves finding a good balance between
high heat transfer coefficients (close to CHF) and low risk (safe distance from CHF). In-depth
understanding of transition boiling and its underlying mechanisms is imperative to achieve
such a balance (see e.g. Theofanous et al. (2002)).

Transition boiling has been interpreted as a boiling mode with coexisting nucleate boiling
and film boiling regions (“two-mode boiling’”) and thus resulting essentially in a heteroge-
neous state at the surface (see e.g. Dhir (1991)). A more intricate and most likely more
precise description of the two-phase structure in transition boiling has been derived in a se-
ries of papers by Auracher and co-workers (see Auracher & Marquardt (2004) for a survey).
Moreover, transition boiling is an inherently unstable state that naturally evolves towards
one of the two stable boiling modes, i.e. to nucleate or film boiling, unless actively stabilised
through temperature control (see Auracher & Marquardt (2002)). On mesoscopic length and
time scales two-mode boiling states correspond to heterogeneous temperature fields on the
interface: “lower” temperatures correspond to nucleate boiling regions; “higher” tempera-
tures are associated with film boiling regions.1 Furthermore, the propagation of boundaries
between adjacent boiling regions during evolution of the transition mode towards one of the
stable modes is consistent with the propagation of thermal waves at the fluid-heater interface
(see e.g. Zhukov et al. (1980), Blum et al. (1999)). This phenomenological connection be-
tween a (mesoscopic) boiling mode and interface temperature admits a heater-only modelling
approach that leaves out the boiling fluid and describes the (qualitative) behaviour of the
boiling system entirely in terms of the temperature distribution within the heater. The heat
exchange between the heater and the fluid is modelled by a nonlinear heat flux relation that
is similar to the boiling curve Blum et al. (1999). The simplification from the multi-phase
problem to a heater-only model naturally disqualifies this approach for detailed quantitative
studies. However, the heater-only approach allows the analysis of fundamental (mesoscopic)
boiling phenomena using numerical analysis.

This approach has found widespread application for the analysis of pool boiling on “thin”

1Here mesoscopic means locally averaged in space and time over intervals larger than bubble dimensions
and bubble lifetimes in order to smooth out microscopic short-term fluctuations (see van Ouwekerk (1972)).
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heaters such as wires and foils (cf. Gabaraev et al. (2001), Kovalev (1966), Kovalev &
Rybchinskaya (1978), Kovalev & Usitakov (2003), Zhukov et al. (1980), Zhukov & Barelko
(1983)). In such thin configurations the heat flux relation results in a nonlinear source term
in the heat governing equations that thus these are very similar to reaction-diffusion systems
(see e.g. Blum et al. (1999)) and generic current-carrying systems (see Gurevich & Mints
(1987)). First extensions to finite-thickness heaters, where the heat flux relation leads to
a nonlinear boundary condition and thus an essentially different heat transfer model, are
presented in Blum et al. (1999).

The transition behaviour of the heater-only problem basically involves two issues: (i)
formation and (ii) dynamics of heterogeneous temperature fields (see Auracher & Marquardt
(2004)). These two issues lead to questions concerning existence and stability of steady-state
solutions. Analysis of thin heaters has shown the existence of multiple steady-state solutions
for given heating conditions. Each set of steady-state solutions turns out to contain at most
two stable solutions; other solutions are unstable (see e.g. Kovalev & Usitakov (2003)).
Results obtained for cylindrical heaters with linearised heat flux relations are consistent with
these results (see Blum et al. (1998)). However, similar studies on thick heaters for the
generic case of nonlinear heat flux relations and heterogeneous interface temperatures are
restricted to the analysis of Blum et al. (1999). The latter contains a numerical study of the
evolution of two-mode boiling states towards one of the two stable boiling modes (i.e nucleate-
or film boiling) on a 2D thick heater. Initial two-mode boiling states (unstable steady states)
are represented by discontinuous – and thus rather artificial – temperature profiles, though.
Numerical studies which show the existence of realistic heterogeneous steady-state solutions
are not known to the authors.

In this paper we present an extensive analysis of the steady-state behaviour of a spatially
two-dimensional (2D) thick heater problem. The heat transfer model that we use is similar
to the one introduced by Blum et al. (1999). We show that multiple steady-state solutions
occur in this model for specific experimental conditions. A main topic is the analysis of
the dependence of the multiple solution structure on the system parameters. To this end a
bifurcation analysis of the governing mathematical model is performed in order to identify
solution branches and bifurcations as a function of the system parameters. This analysis is
based on a numerical continuation algorithm combined with the method of separation-of-
variables and a Fourier collocation method for the governing heat equation.

The paper is organised as follows. In Section 2 we present the model problem. Basic
properties of this continuous model are derived in Section 3. In Section 4 the discretization
method and the continuation algorithm are explained. In Section 5 we apply these methods
to a representative case study. In Section 6 a comprehensive bifurcation analysis of the system
is presented. A few main conclusions are summarised in Section 7.

2 Problem definition and mathematical model

2.1 Dimensional heater-only model

Our pool boiling investigations are based on the heater-only modelling approach introduced
in Section 1 and following Blum et al. (1999). We consider the two-dimensional rectangular
heater D = [0, L] × [0, H], with boundary Γ = ∂D = ΓH ∪ ΓA ∪ ΓF . The boundary segments
are ΓH = {(x, y) ∈ D | y = 0 } (heat supply), ΓA = {(x, y) ∈ D | x = 0 or x = L } (adiabatic
sidewalls) and ΓF = {(x, y) ∈ D | y = H } (fluid-heater interface), cf. Figure 1a. The heat
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transfer is described in terms of the superheat T = Ta − TS , i.e. the temperature difference
between the actual temperature Ta of the heater and the boiling temperature TS of the fluid.
The temperature distribution T (x, t) in D × [0, tend] is modelled by the heat equation

∂T

∂t
= α∆T in D × [0, tend], α =

λ

ρcp
, (1)

−λ
∂T

∂n
|ΓH

= qH , −λ
∂T

∂n
|ΓF

= qF (TF ),
∂T

∂n
|ΓA

= 0, (2)

T (x, 0) = T0(x) for x ∈ D, (3)

where TF denotes the interface temperature on the boundary segment ΓF . The constants
ρ, cp and λ are density, specific heat and thermal conductivity of the heater and α the
corresponding thermal diffusivity; qH and qF represent the (spatio-temporally constant) heat
supply and temperature-dependent heat transfer to the boiling fluid, respectively.

Closure of the heat transfer model requires specification of the heat flux function qF (TF ).
The boiling curve is not guaranteed to hold locally on the heater surface at any particular point
in time since it is obtained from experiments which average over time and space in a certain
experimental situation. However, if we pragmatically assume that either liquid or vapor is in
contact with a certain point on the surface at a certain time, the local heat transfer model is
supposed to reflect heat transfer correlations specific to liquid contact below some threshold of
the local heater surface temperature and specific to vapor contact above this threshold. Since
discontinuous heat transfer correlations will not occur in practice, the discontinuity between
these two heat transfer modes will be mollified by some smooth transition. For simplicity,
we identify qF (TF ) with the functional form of the global boiling curve. Such boiling curves
are of the functional form sketched in Figure 1b. They consist of three distinct regimes, of
which each corresponds to one of the boiling modes: nucleate boiling (0 ≤ T ≤ TC), transition
boiling (TC < T < TM ) and film boiling (T ≥ TM ). The nucleate and film boiling regions refer
to local liquid and vapor contacts respectively, while the film boiling region represents the
mollification of the discontinuity. Temperatures TC and TM coincide with the local maximum
(QC ; CHF of the boiling curve) and the local minimum (QM ; Leidenfrost point of the boiling
curve) heat fluxes, respectively, and TD is a typical temperature in the mollification region
(or during transition boiling). An explicit expression for the relation qF (TF ) that we use is
given below.

2.2 Non-dimensional formulation

We formulate the heat transfer problem (1)-(3) in non-dimensional form through rescaling
of the relevant variables according to x′ = x/L, T ′ = T/TD, t′ = t/τ , q′H = qH/QH and
q′F = qF /QH . The quantity QH is a typical value for the heat supply. Substitution into the
governing equations and dropping primes yields the non-dimensional model

∂T

∂t
= κ∆T in D × [0, tend/τ ] , D := [0, 1] × [0, D],

−Λ
∂T

∂y
|ΓH

= 1, −Λ
∂T

∂y
|ΓF

= Π2 qF (TF ),
∂T

∂n
|ΓA

= 0,

T (x, 0) = T0(x) for x ∈ D,

(4)
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with non-dimensional parameters

Λ =
λTD

QHL
, κ =

λτ

ρcpL2
, D =

H

L
, Π1 =

QC

QM

, Π2 =
QC

QH

, Π3 =
TC

TM

. (5)

Note that qF (TF ) is the normalised boiling curve; the dimensionless interfacial heat flux
is given by Π2qF (TF ). Figure 2 shows the non-dimensional heater configuration (panel a)
and the corresponding normalised boiling curve qF (TF ) (panel b). Physical considerations
suggest τ = ρcpHTD/|QH − QC | and lead to ΛD/κ = |1 − Π2|. Thus the model contains
five independent system parameters. Parameters Λ and κ are the non-dimensional thermal
conductivity and thermal diffusivity, respectively, and thus determine the thermal properties
of the heater; parameter Π2 is the non-dimensional CHF, or alternatively, its reciprocal can
be interpreted as the non-dimensional heat supply; hence Π2 controls the heating conditions.

The normalised boiling curve can be parametrized by

qF (TF ) = h(TF )TF , (6)

with a temperature-dependent heat transfer coefficient h(TF ),

h(TF ) := CD {F1 − F2H(CDTF − 1)} , H(x) =
1

2

[
tanh

(
2x

W

)
+ 1

]
, (7)

where H(x) is a smoothed version of the Heaviside function. The parameter W sets the
width of the transition region (from H = 0 to H = 1) around x = 0 and is specified a-priori.
The coefficient CD rescales the temperature such that the single deflection point of qF (TF )
coincides with TF = 1. Its value is defined implicitly through

2
dH

dT
(CD − 1) +

d2H

dT 2
(CD − 1) = 0,

and thus depends only on W . The coefficients F1 and F2 scale qF (TF ) such that the conditions

q̇F (Tmax) = 0, q̇F (Tmin) = 0, qF (Tmax) = 1, qF (Tmin) = Π−1
1 , (8)

are fulfilled, i.e. the extrema of the normalised boiling curve are consistent with their dimen-
sional counterparts, where q̇F = dqF /dT . These conditions result for given W and Π1 in four
nonlinear equations for the four unknowns (F1, F2, Tmin, Tmax). (It can be shown that qF

according to (7) possesses a local maximum and minimum at Tmax < 1 and Tmin > 1, respec-
tively.) The temperatures Tmax, 1, Tmin are the non-dimensional counterparts to TC , TD, TM ;
the heat fluxes qF = 1 and qF = Π−1

1 are the normalised counterparts to the critical heat
flux (QC) and the Leidenfrost heat flux (QM ), respectively. Figure 2b shows the boiling curve
thus attained for W = 1 and Π1 = 4. Note that W indirectly sets Π3; both parameters may
therefore be used interchangeably without loss of generality. The present boiling curve is a
generalisation of that proposed by Blum et al. (1999) in that here the transition width W is
an additional system parameter. For W ↓ 0 we obtain the boiling curve used by Blum et al.
(1999).

3 Analysis of the steady-state problem

We study the steady-state behaviour of the 2D nonlinear heat transfer problem introduced in
Section 2. Similar to the thin counterparts, the model (4)-(7) is expected to admit multiple
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a) Heater configuration. b) Boiling curve.

Figure 1: Heater configuration (panel a) and boiling curve (panel b). Temperatures TC and
TM coincide with the local maximum (QC ; CHF) and local minimum (QM ; Leidenfrost point)
heat fluxes, respectively; TD is a typical temperature during transition boiling.
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a) Heater configuration. b) Boiling curve.

Figure 2: Non-dimensional model: heater configuration (panel a) and normalised boiling curve
for Π1 = 4 and W = 1 (panel b). T = 1 is the non-dimensional counterpart of TD; the local
maximum and minimum (stars) are the normalised CHF (qF = 1) and Leidenfrost points
(qF = Π−1

1 ), respectively. The dashed line represents the normalised heat supply q∗H = Π−1
2 .

steady-state solutions. For an analysis of this conjecture we consider the corresponding steady-
state heat transfer problem

∆T = 0 in D = [0, 1] × [0, D],

−Λ
∂T

∂y
|ΓH

= 1, −Λ
∂T

∂y
|ΓF

= Π2 qF (TF ),
∂T

∂n
|ΓA

= 0,
(9)

with the associated set of parameters (Λ, D,Π1, Π2, W ). We apply the method of separation-
of-variables (see e.g. Kreyszig (1999)) to derive a (formal) representation of the solution of
the Laplace equation and the linear Neumann boundary conditions on ΓH and ΓA in (9).
This results in

T (x, y) =
∞∑

n=0

T̃n
cosh(nπy)

cosh(nπD)
cos(nπx) +

D − y

Λ
, (10)

which can easily be checked by substitution. The coefficients T̃n form the spectrum of the
Fourier cosine expansion

TF (x) := T (x, D) =
∞∑

n=0

T̃n cos(nπx) (11)
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of the fluid-heater interface temperature. The coefficients T̃n are determined by the nonlinear
Neumann boundary condition on ΓF . Substitution of (10) into the nonlinear boundary
condition in (9) and using (6) leads to

∞∑

n=0

nπ tanh(nπD)T̃n cos(nπx) + α(TF (x))TF (x) −
1

Λ
= 0 for all x ∈ [0, 1], (12)

where

α(TF ) =
Π2

Λ
h(TF ) =

Π2

Λ

qF (TF )

TF

is the scaled heat transfer coefficient. The nonlinear equation (12) is the characteristic equa-
tion that determines the particular properties of the steady-state solutions to (9). The series
in (11) and (12) are formal expressions. Convergence of these series is discussed below.

Thus the 2D steady-state problem (9) simplifies to the 1D problem (12) involving only the
temperature profile TF (x) on the boundary ΓF .

We first consider the special case of spatially homogeneous interface temperatures TF , im-
plying TF (x) = T̃0 and T̃n = 0 for n > 0. Then the nonlinear condition (12) simplifies
to

qF (T̃0) = Π−1
2 (13)

and T̃0 coincide(s) with the intersection(s) between the boiling curve (solid line in Figure 2b)
and the normalised heat supply q∗H = Π−1

2 (dashed line in Figure 2b). From Figure 2b it
follows that, depending on the system parameters, we can have one, two or three solutions
for T̃0. Note that the heat transfer coefficient h(TF ) is constant in this homogeneous case and
thus that the Neumann boundary condition on ΓF is linear. The corresponding solution in
D is given by

T (x, y) =
D

Λ

(
1 −

y

D

)
+ T̃0 , (14)

which is a linear temperature profile with the constant interface temperature TF (x) = T̃0

defined by (13).
We now return to the general case and derive two properties, that play an important role

in the remainder of this paper. We first introduce the Fourier space of convergent Fourier
cosine series

Vk := { g : R → R | g(x) =
∞∑

n=0

akn cos(knπx) ∀ x ∈ R }, k = 1, 2, . . . (15)

Functions from this space are 2
k
-periodic and even (i.e. g(x) = g(−x)). Such functions are

uniquely determined by their values at x ∈ [0, 1
k
]. For the Fourier coefficients akn we have the

representation

a0 =

∫ 1

0
g(x) dx, akn = 2

∫ 1

0
g(x) cos(knπx) dx (kn > 0).
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Note that Vk+1 ⊂ Vk for all k. The Fourier transform on V1 is denoted by F : V1 → ℓ2:

for g(x) =
∞∑

n=0

an cos(nπx), F(g) := (an)n≥0.

For (bn)n≥0, (cn)n≥0 ∈ ℓ2 we define the product (bn)n≥0 · (cn)n≥0 := (bncn)n≥0, i.e., element-
wise multiplication of the entries in the sequences. In view of (12) we introduce the sequence
d = (dn)n≥0 defined by

dn := nπ tanh(nπD) for all n.

To guarantee that the expressions on the left handside in (12) are well-defined we only consider
functions from the following subset of V1:

S := { g ∈ V1 | d · F(g) ∈ range(F) and (α ◦ g)g ∈ V1 }.

Remark 1 Functions g ∈ V1 that are sufficiently smooth are elements of S. We do not study
this smoothness issue here, but only give one simple result related to this. Elementary Fourier
analysis yields that if g ∈ V1 and g ∈ C3(R) then g ∈ S holds.

The operator on the left handside in (12) has the following form

G(TF ) := F−1
(
d · F(TF )

)
+ (α ◦ TF )TF −

1

Λ
, for TF ∈ S. (16)

From the definition of S it immediately follows that G : S → V1. Thus (12) leads to the
following problem:

Determine TF ∈ S, such that G(TF ) = 0 . (17)

The operator G, defined on S, is (strongly) nonlinear. The homogeneous solutions given by
(13) satisfy G(T̃0) = 0.We now show that for every k ≥ 1 the range of G|Vk

is contained in Vk.

Theorem 1 The following holds:

G : Vk ∩ S → Vk for all k ≥ 1.

Proof. For k = 1 this is trivial due to the definition of S. Take TF ∈ Vk ∩S. Then TF can be
represented as TF (x) =

∑∞
n=0 T̃kn cos(knπx) and all Fourier coefficients T̃m with mmod k 6= 0

are equal to zero. We obtain

G(TF )(x) =
∞∑

n=0

dnT̃n cos(nπx) + α(TF (x))TF (x) −
1

Λ

=
∞∑

n=0

dknT̃kn cos(knπx) + α(TF (x))TF (x) −
1

Λ

=: w1(x) + w2(x) −
1

Λ
.

From TF ∈ S it follows that the series w1(x) =
∑∞

n=0 dknT̃kn cos(knπx) converges and thus
w1 ∈ Vk. From TF ∈ S it also follows that w2 = (α◦TF )TF ∈ V1 and thus w2 has a convergent
cosine Fourier series. Furthermore, because TF is 2

k
-periodic and even it follows that w2 is

2
k
-periodic and even, and thus w2 ∈ Vk. Hence, we have G(TF ) = w1 + w2 −

1
Λ ∈ Vk. 2

In the next theorem we present a symmetry property of heterogeneous solutions.
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Theorem 2 Assume that there exists k ≥ 1 and TF ∈ Vk ∩S such that TF ∈/ Vℓ for ℓ > k and

TF (x) =
∞∑

n=0

T̃kn cos(knπx) (18)

satisfies G(TF ) = 0. Define

T ∗
F (x) := TF (x +

1

k
) =

∞∑

n=0

T̃ ∗
kn cos(knπx), with T̃ ∗

kn = (−1)nT̃kn. (19)

Then T ∗
F ∈ Vk ∩ S satisfies G(T ∗

F ) = 0, and T ∗
F 6= TF .

Proof. Since TF ∈ Vk ∩S is even and 2
k
-periodic and T ∗

F is a translation of TF by 1
k

it follows
that T ∗

F ∈ Vk ∩ S. Using

TF (x +
1

k
) =

∞∑

n=0

T̃kn cos(knπ(x +
1

k
)) =

∞∑

n=0

(−1)nT̃kn cos(knπx)

we obtain the representation in (19). Note that

TF (x) − T ∗
F (x) =

∞∑

n=0

(1 − (−1)n)T̃kn cos(knπx).

Assume that TF = T ∗
F holds. Then T̃kn = 0 must hold for all odd n, and thus we obtain the

representation TF (x) =
∑∞

n=0 T̃2kn cos(2knπx). This implies TF ∈ V2k, which contradicts the
assumption TF ∈/ Vℓ for ℓ > k. Thus T ∗

F 6= TF must hold. For arbitrary x ∈ R we have

G(T ∗
F )(x) = F−1

(
d · F(T ∗

F )
)
(x) + α(T ∗

F (x))T ∗
F (x)

=
∞∑

n=0

dkn(−1)nT̃kn cos(knπx) + α(TF (x +
1

k
))TF (x +

1

k
)

=
∞∑

n=0

dknT̃kn cos(knπ(x +
1

k
)) + α(TF (x +

1

k
))TF (x +

1

k
)

= F−1
(
d · F(TF )

)
(x +

1

k
) + α(TF (x +

1

k
))TF (x +

1

k
)

= G(TF )(x +
1

k
) = 0.

Hence, G(T ∗
F ) = 0 holds. 2

This result shows that heterogeneous solutions in V1 ∩ S, if they exist, always occur as a
conjugate pair: (18) and (19). (Note that the dual solution T ∗

F is obtained from TF by a
translation with half the period of TF .) This implies a fundamental non-uniqueness in the
steady states under heterogeneous boiling conditions, consistent with laboratory experiments
(see e.g. Auracher & Marquardt (2004)).

In the proof of Theorem 2 we derived the following fundamental property of the operator
G. Let sk : R → R be the linear shift function sk(x) := x + 1

k
. For TF ∈ Vk ∩ S the relation

G(TF ◦ sk) = sk ◦ G(TF ) (20)

holds. Due to this commutator property of the nonlinear operator G and the linear shift
operator sk we obtain the symmetry result in Theorem 2.
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Remark 2 In the proofs of Theorem 1 and Theorem 2 we did not use any specific information
about the form of the function α(·). Hence these results hold for an arbitrary (smooth) boiling
curve qF .

4 Numerical solution method

The steady-state solutions are obtained by solving the characteristic equation (12). For ho-
mogeneous solutions the latter simplifies to (13) which can easily be solved by a standard
root-finding algorithm. Hence, homogeneous solution branches are easily identified. Het-
erogeneous solutions, however, have to be determined via a discretisation and continuation
approach that is explained in this section. Numerical results obtained with this method will
be presented in Sections 5 and 6.

4.1 Discretisation method

Discretisation of (12) is based on a standard Fourier collocation method (see Canuto et al.
(1987)). We briefly review a few basic facts from discrete Fourier analysis. Consider for
N ∈ N the equidistant mesh xj = j/N, j ∈ N. The discrete Fourier cosine transform of an
even 2-periodic function u(x) = u(x + 2) is given by

N∑

n=0

ũn cos(nπx), ũn :=
cn

N



u(0) + 2

N−1∑

j=1

u(xj) cos(nπxj) + (−1)nu(1)



 , (21)

with c0 = cN = 1/2 and cn = 1 otherwise. This function satisfies

N∑

n=0

ũn cos(nπxi) = u(xi) for all 0 ≤ i ≤ N.

Hence, the (physical) values u = (u0, . . . , uN )T , with uj := u(xj), relate to the spectral
coefficients ũ = (ũ0, . . . , ũN )T via

u = V ũ, , V :=




1 cos(πx0) . . . cos(Nπx0)
...

...
...

1 cos(πxN ) . . . cos(NπxN )


 . (22)

An elementary computation yields

(V D)−1 =
2

N
V D, with D =




1/2
1

. . .

1
1/2




. (23)

The discretisation of (12) is as follows: determine TF (xj) =
∑N

n=0 T̃n cos(nπxj), 0 ≤ j ≤ N,
such that

N∑

n=0

dnT̃n cos(nπxj) + α(TF (xj))TF (xj) −
1

Λ
= 0 for all 0 ≤ j ≤ N. (24)
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This set of N + 1 (nonlinear) equations for the unknowns T̃n (0 ≤ n ≤ N) or, equivalently,
TF (xj) (0 ≤ j ≤ N), can be represented in a compact matrix-vector formulation. We use

the notation Tj := TF (xj) (j = 0, . . . , N) , t = (T0, . . . , TN )T and t̃ = (T̃0, . . . , T̃N )T . Note
that t consists of the discrete temperature values on the boundary ΓF and t̃ contains the
corresponding Fourier coefficients. We introduce the diagonal matrices

KS = diag(dn)0≤n≤N , M(t) = diag
(
α(Tj)

)
0≤j≤N

,

the vector g = (1/Λ, . . . , 1/Λ)T and the matrix K := V KSV −1. Then the discrete problem
(24) can be formulated as follows: determine t ∈ R

N+1 such that

G(t) :=
(
K + M(t)

)
t − g = 0. (25)

The above defines a nonlinear system in the (physical) unknown t. The equivalent represen-
tation in the (spectral) unknown t̃ is given by

(
KS + MS(t̃)

)
t̃ = V −1g , MS(t̃) := V −1M(V t̃)V . (26)

The nonlinearity of the problems (25) and (26) is contained in the diagonal matrix M(t) and
the full matrix MS(t̃), respectively. The former admits a more efficient numerical treatment
and thus we have used the physical representation (25) in our numerical simulations.

For the discrete nonlinear operator G : R
N+1 → R

N+1 in (25) we will derive properties
similar to those for the continuous operator G in the Theorems 1 and 2. For this we first
introduce some further notation. Let vm be the m-th column of the matrix V in (22). Define

V N
k := span{vkn | 0 ≤ n ≤

N

k
}, k = 1, . . . , N.

This space is the discrete analogon of Vk in (15). Note that V N
k ⊂ V N

1 = R
N+1 for all k. We

now derive a discrete analogon of Theorem 1. For this we need the following lemma.

Lemma 1 Let 1 ≤ k ≤ N be such that N mod k = 0. For t ∈ V N
k we then have M(t)t ∈ V N

k .

Proof. Define m := N
k

. For a vector z ∈ R
N+1 we use the notation z = (z0, z1, . . . , zN )T .

For t ∈ V N
k we have t =

∑m
n=0 αnvkn and thus ti =

∑m
n=0 αn cos(knπxi) for 0 ≤ i ≤ N . From

this it follows that

tm+i = tm−i (0 ≤ i ≤ m), ti+2m = ti (0 ≤ i ≤ N − 2m).

The vector r := M(t)t has entries ri = α(ti)ti and thus we have

rm+i = rm−i (0 ≤ i ≤ m), ri+2m = ri (0 ≤ i ≤ N − 2m). (27)

The vector (rj)0≤j≤m has a Fourier transform, cf. (21),

rj =

m∑

ℓ=0

r̃ℓ cos(ℓπx̂j) (x̂j :=
j

m
)

=
m∑

ℓ=0

r̃ℓ cos(kℓπxj), 0 ≤ j ≤ m.

11



Due to (27) and cos(kℓπxm+j) = cos(kℓπxm−j) (0 ≤ j ≤ m), cos(kℓπxj+2m) = cos(kℓπxj)
(0 ≤ j ≤ N − 2m) we obtain

rj =
m∑

ℓ=0

r̃ℓ cos(kℓπxj) for all 0 ≤ j ≤ N.

Hence, r =
∑m

ℓ=0 r̃ℓvkℓ, i.e., r ∈ V N
k holds. 2

Theorem 3 Let 1 ≤ k ≤ N be such that N mod k = 0. The following holds:

G : V N
k → V N

k . (28)

Proof. The operator G : V N
1 → V N

1 is defined by G(t) = Kt + M(t)t − g. For t ∈ V N
k we

have M(t)t ∈ V N
k due to Lemma 1. Note that g ∈ V N

k for all k and N . We now consider
the term Kt = V KSV −1t with KS = diag(dn)0≤n≤N . For t ∈ V N

k , with m := N
k

, we have
t =

∑m
n=0 αknvkn. Thus

V KSV −1t =
m∑

n=0

dknαknvkn

holds. This yields Kt ∈ V N
k and completes the proof. 2

The symmetry property for the continuous problem as formulated in Theorem 2 is inher-
ited by the discretisation. We formulate a discrete analogon of Theorem 2:

Theorem 4 Let 1 ≤ k ≤ N be such that N mod k = 0 and define m := N
k
. Assume that

there exists t =
∑m

n=0 t̃knvkn ∈ V N
k such that t ∈/ V N

ℓ for ℓ > k and G(t) = 0. Define

t∗ =
m∑

n=0

(−1)nt̃knvkn. (29)

Then t∗ ∈ V N
k satisfies G(t∗) = 0, and t∗ 6= t.

Proof. Assume that t = t∗. Then
∑m

n=0(1 − (−1)n)t̃knvkn = 0 and thus t̃kn = 0 for all odd

n. This yields t =
∑[ 1

2
m]

n=0 t̃2knv2kn, i.e., t ∈ V N
2k , which contradicts the assumption t ∈/ V N

ℓ for
ℓ > k. Thus t 6= t∗.
From

tj =
m∑

n=0

t̃kn cos(knπxj)

t∗j =
m∑

n=0

t̃kn cos(knπ(xj +
1

k
)) =

m∑

n=0

t̃kn cos(knπxj+m),

for 0 ≤ j ≤ N , it follows that

t∗j = tj+m for 0 ≤ j ≤ N − m

t∗j = t2N−m−j for N − m ≤ j ≤ N.
(30)
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From

G(t)j =
m∑

n=0

dknt̃kn cos(knπxj) + α(tj)tj −
1

Λ

G(t∗)j =

m∑

n=0

dknt̃kn cos(knπxj+m) + α(t∗j )t
∗
j −

1

Λ
,

for 0 ≤ j ≤ N , and (30) it follows that

G(t∗)j = G(t)j+m for 0 ≤ j ≤ N − m

G(t∗)j = G(t)2N−m−j for N − m ≤ j ≤ N.
(31)

Since G(t)j = 0 for all 0 ≤ j ≤ N we obtain G(t∗) = 0. 2

The result in this theorem shows that if a discrete heterogeneous solution t ∈ V N
k exists,

then the “shifted” vector t∗ ∈ V N
k as in (30) also satisfies the discrete equations. The results

in (30) and (31) form the discrete analogon of the commutator property in (20).
We note that the assumption N mod k = 0 used in the Theorems 3 and 4 is not very

restrictive. Firstly note that it is fulfilled for k = 1. Assume that we have a discrete solution
t ∈ V N

k with k > 1 and N = N0. This solution t = t(N0) is only of interest if it is a
member of a sequence (t(N))N≥N0

of discrete solutions with t(N) ∈ V N
k and t(N) converges

for N → ∞ (i.e., in the process of repeated grid refinement) to a continuous heterogenous
solution TF ∈ Vk. It is no strong restriction to consider only mesh sizes such that N is an
integer multiple of k.

Remark 3 Related to the discrete problem the same comment as in Remark 2 holds. The
results in the Theorems 3 and 4 do not depend on the specific form of the function α(·).

4.2 Continuation strategy

For solving the discrete nonlinear system (25) we apply a continuation method. The nonlin-
earity in the model is caused by the nonlinear boundary heat flux condition

qF (TF ) = CD {F1 − F2H(CDTF − 1)}TF

with coefficients CD, F1, F2 and a Heaviside function H(·) as explained in Section 2.2. The
model is linear if qF is a linear function of TF . This motivates our choice of an additional non-
physical parameter, P , which is well suited for continuation from the linear to the nonlinear
regime. We define

qF (TF , P ) := CD {F1 − PF2H(CDTF − 1)}TF , for 0 ≤ P ≤ 1. (32)

For P = 0 we have a linear boundary condition; for P = 1 the original nonlinear condition is
recovered. Figure 3 demonstrates the smooth transition of the boiling curve qF (TF , P ) from
the linear state (P = 0) to the final nonlinear state (P = 1) in Figure 2b.

The discrete nonlinear problem (25) with the P -dependent heat transfer condition (32)
can be represented as

G(t, P ) :=
(
K + MP (t)

)
t − g = 0. (33)
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Note that MP (t) depends on P via MP (t) = diag
(
αP (Tj)

)
0≤j≤N

with αP (TF ) = Π2

Λ
qF (TF ,P )

TF

and qF (TF , P ) as in (32). For each P ∈ [0, 1] the set of homogeneous solutions (i.e. t =constant)
of this system can be easily computed. Starting on a branch of homogeneous solutions we
apply a continuation algorithm2 to P → G(t, P ) = 0 and determine bifurcations points on
the homogeneous branches from which branches of heterogeneous solutions originate. These
strategies and the resulting bifurcation diagrams are discussed in the following.

0 1 2 3 4 5
0

0.5

1

1.5

2

T
F

q
F

P = 0

P = 1

PQ
Q

Q
QQs

Figure 3: Controlling the degree of nonlinearity of the boiling curve via the nonlinearity
parameter P . Shown is the smooth transition from a linear profile (P = 0) towards the
physical boiling curve (heavy; P = 1) with increasing P (arrow). The stars denote the local
maxima and minima that occur for P beyond some non-zero lower limit.

5 Numerical experiments: a case study

In this section we consider the discrete steady-state problem for a fixed parameter set, namely
for Λ = 0.2, D = 0.2, Π1 = 4, Π2 = 2 and W = 1. The set of steady-state solutions is
determined with the method explained in Section 4. Homogeneous solutions are obtained
by means of a standard Newton-type root-finding algorithm applied to (13); heterogeneous
solutions follow from continuation of the nonlinear system (33) in the nonlinearity parameter
P . Note that for smooth boiling curves (i.e. W > 0) the truncated Fourier expansion on
which our discretization method is based exhibits exponential convergence and thus already
for modest values of N the discrete problem (25) is a highly accurate approximation of the
continuous solution. In our experiments we use N = 128.

5.1 Homogeneous solutions

The homogeneous steady-state solutions (14) are uniquely determined by the constant inter-
face temperature TF as in (13). This interface temperature is given by the (multiple) inter-
section(s) of the boiling curve with the normalised heat supply q∗H = Π−1

2 (see Figure 2b).
For the determination of the physically-meaningful homogeneous solutions it is sufficient to

2Here an in-house algorithm has been used, which is based upon techniques described in Govaerts (2000).
Elaboration on this continuation algorithm is beyond the present scope.
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solve (13) for P = 1. However, to obtain bifurcation points from which branches of het-
erogeneous solutions originate we have to determine the homogeneous branches in the entire
range 0 ≤ P ≤ 1. These branches readily follow from solving (13) in this P -range. Two
essentially different situations can be distinguished, as illustrated in Figure 4, namely: (i) one
solution T (1)

F for 0 ≤ P < PB (Figure 4a); (ii) three solutions (T (1)

F , T (2)

F , T (3)

F ) for PB < P ≤ 1
(Figure 4c). Both situations are connected through the degenerate case P = PB, for which
the local minimum of the boiling curve qF (·, PB) touches the normalised heat supply Π−1

2 ,
causing the second and third solutions to coincide (Figure 4b). Thus the system undergoes a
qualitative change at P = PB through a so-called tangent bifurcation (see Ott (2002)).

Π2
−1

Τ F
(1)

q
F

T

Π2
−1

Τ F
(1) Τ F

(2,3)

q
F

T

Π2
−1

Τ F
(1) Τ F

(2) Τ F
(3)

q
F

T

a) 0 ≤ P < PB b) P = PB c) PB < P ≤ 1

Figure 4: Homogeneous solutions to the nonlinear system as a function of the nonlinearity
parameter P . Transition from the single-solution state (panel a) to the triple-solution state
(panel c).

A diagram of the solutions as a function of the nonlinearity parameter P is shown in the
bifurcation diagram in Figure 5, where solutions are represented in terms of the functional
TΣ =

∑
n T̃n. The heavy curves are the solution branches corresponding to the homogeneous

solutions (14). The lower (nearly-horizontal) branch coincides with the intersection T (1)

F that
exists for all 0 ≤ P ≤ 1; the upper branch, with a turning point at PB, coincides with the
two intersections T (2,3)

F that exist only in the interval PB ≤ P ≤ 1 (here PB ≈ 0.926). The
lower and upper legs of this upper branch, connected at the turning point, correspond to T (2)

F

and T (3)

F , respectively. The solid curves are heterogeneous solution branches that originate
from pitchfork bifurcations (dots) on the T (2)

F -branch. An analysis of these bifurcation points
is presented in the next section.

5.2 Bifurcation points on branches of homogeneous solutions

Starting on the branches of homogeneous solutions we found the bifurcation diagram shown
in Figure 5.
Bifurcations can only occur at P -values for which the Jacobian of G with respect to t is
singular (see e.g. Govaerts (2000)). This Jacobian is given by

J =
∂G

∂t
= K + Q(t), Q(t) = diag

(
γ(Tk)

)
0≤k≤N

, γ(T ) :=
Π2q̇F (T )

Λ
. (34)

On a homogeneous branch we have t = TF (1, . . . , 1)T and thus Q(t) = γ(TF )I, with I the
identity matrix and TF the homogeneous interface temperature. Hence we obtain

J = K + γ(TF )I = V KSV −1 + γ(TF )I = V JSV −1, (35)
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Figure 5: Bifurcation diagram for the nonlinearity parameter P and fixed system parameters
Λ = 0.2, D = 0.2, Π1 = 4, Π2 = 2 and W = 1. Heavy curves correspond to homogeneous
solutions; solid curves correspond to heterogeneous solutions. Filled circles represent bifurca-
tions. The left-most bifurcation is the tangent bifurcation that leads to multiple homogeneous
solutions; the bifurcations from which the heterogeneous branches emerge are pitchfork bifur-
cations.

with JS = diag
(
nπ tanh(nπD) + γ(TF )

)
0≤n≤N

. Thus on the homogeneous branches we have
an explicit eigenvector decomposition of the Jacobian. The eigenvalues and corresponding
eigenvectors are given by

λn = nπ tanh(nπD) + γ(TF )

vn = (cos(nπx0), . . . , cos(nπxN ))T , 0 ≤ n ≤ N.
(36)

The eigenvector vn coincides with the n-th Fourier mode. The Jacobian is singular if one or
more of its eigenvalues λn vanish. Because nπ tanh(nπD) ≥ 0 for all n ≥ 0, this can only
happen if γ(TF ) ≤ 0. Thus a bifurcation on a homogeneous solution branch can only occur for
those TF for which the boiling curve has a negative slope (q̇F ≤ 0). From Figure 4 it follows
that only intersection T (2)

F satisfies this criterion. This explains why bifurcations are restricted
to the T (2)

F -branch in the bifurcation diagram (Figure 5). This implies that bifurcations – and
thus multiple (heterogeneous) solutions – can only occur for surface temperature values in
the transition range of the boiling curve. Figure 6 displays γ (heavy curve) as a function of
P on the T (2)

F -branch together with F (n) = −nπ tanh(nπD) (dashed lines) for various n.
The intersections γ = F (n) correspond to λn = 0. These eigenvalues are simple and the
corresponding eigenspace is one-dimensional. From basis results in analysis (eg., Thm. 28.3
in Deimling (1985)) it follows that at these P -values the system undergoes a bifurcation.
These four P -values correspond to the positions of the bifurcations (filled circles) on the
T (2)

F -branch (Figure 5). From Figure 6 we see that for the case considered in this section the
system has λn = 0 only for n = 0, 1, 2, 3. The bifurcations on the T (2)

F -branch in Figure 5
correspond from left to right to the cases n = 0, n = 1, n = 2 and n = 3. This ordering
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Figure 6: Function P → γ(TF (P )) = Π2q̇F (TF (P ))/Λ along the homogeneous T (2)

F -branch
(heavy). The dashed horizontal lines are the values of F (n) = −nπ tanh(nπD) for n =
0, 1, 2, 3. Intersections of γ with F (n) correspond to a singular Jacobian J and thus to a
bifurcation.

results from the monotonic dependence of γ on P . It also follows that in the range P ∈ [0, 1]
bifurcation points on the homogeneous T (2)

F -branch with constant temperature values TF,P

occur for those wave numbers n = 0, 1, 2, . . . that satisfy the inequality

nπ tanh(nπD) + γ(TF,1) ≤ 0. (37)

5.3 Heterogeneous solutions

The eigenvector vn corresponding to an eigenvalue λn is given in (36). Hence, it follows that
for n ≥ 1 a heterogeneous discrete solution of the form

TF (xj) = T (2)

F + ǫ cos(nπxj), 0 ≤ j ≤ N, ǫ ↓ 0, (38)

emerges from the bifurcation point corresponding to λn (Thm. 28.3 in Deimling (1985)). Due
to the symmetry property derived in Section 4.1 we can conclude that there exists a pair of
heterogeneous solutions

TF as in (38), T ∗
F (x) = TF (x +

1

n
). (39)

(Where T ∗
F is a discrete solution in the sense as explained in Theorem 4). The first bifurcation

(n = 0; turning point on the T (2)

F -branch) corresponds with a superimposed zero-th Fourier-
mode v0, hence the solution that emerges from this bifurcation point is homogeneous. Thus
the first bifurcation point (n = 0) is of tangent type (shown schematically in Figure 4b)
resulting in two homogeneous solutions. The bifurcations for n > 0 involve non-coinciding
superimposed modes that, due to symmetry properties (Theorems 2 and 4), form conjugate
pairs of heterogeneous solutions; hence for n > 0 we have pitchfork bifurcations.

The bifurcation diagram in Figure 5 shows the structure of the solution branches as a
function of the continuation parameter P . Figure 7a shows the evolution of the heterogeneous
solutions near the first pitchfork bifurcation (n = 1; P = 0.9297) for several P -values slightly
larger than P = 0.9297.
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a) First pitchfork bifurcation (P = 0.9297). b) Corresponding final state (P = 1).
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Figure 7: Heterogeneous solutions originating from pitchfork bifurcations (left column) and
corresponding final states at P = 1 (right column). The heavy line in panel a represents
the bifurcating homogeneous solution; solid and dashed curves represent the corresponding
conjugate pair of heterogeneous solutions. The final states are steady-state solutions of (25).
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The final (i.e. physically-meaningful) heterogeneous states at P = 1 are shown in Figure 7b.
At this pitchfork bifurcation the heterogeneous solutions originate from the first non-constant
Fourier mode (i.e. n = 1 in (39)), which can be clearly seen in Figure 7a. Figure 7b shows
that the form of this first Fourier mode is roughly maintained throughout the evolution from
the pitchfork bifurcation to the final state at P = 1. For the second (n = 2) and third (n = 3)
bifurcations similar behaviour occurs. In Figure 7c (n = 2) and Figure 7e (n = 3) it is shown
how heterogeneous solutions originate from these bifurcations. The final states (P = 1) are
given in Figure 7d and Figure 7f , respectively. The final states at P = 1 (right column of
Figure 7) are the physically-meaningful heterogeneous steady-state solutions at the heater-
fluid interface ΓF . These solutions are denoted mode-n solutions (with n ∈ {1, 2, 3}). Figure 8
shows the temperature distributions in the heater corresponding to these mode-n solutions,
revealing that the heterogeneous features occur mainly in lateral (i.e. x-wise) direction.

One further interesting feature that can be observed in Figure 7 is the following. The
mode-n (n ∈ {1, 2, 3}) solution TF emerges from a perturbation vn ∈ Vn. In a neighbourhood
of the bifurcation point we have a heterogeneous solution TF ∈ Vn and thus, due to Theorem 4,
also a dual solution T ∗

F with the symmetry property T ∗
F (x) = TF (x + 1

n
). It turns out that

during the continuation from the bifurcation point to the final value P = 1 the heterogeneous
solution TF remains in Vn and thus the symmetry property T ∗

F (x) = TF (x + 1
n
) holds for the

whole range P ∈ [Pbifur, 1].

Remark 4 An explanation for this “conservation of symmetry” property (for P ∈ [Pbifur, 1])
is the following. From Theorem 3 and Remark 3 it follows that the operator G(t, P ) has the
property G(·, P ) : V N

k → V N
k for all P ∈ [0, 1] and all k ≥ 1 such that N mod k = 0. Note

that a homogeneous solution lies in V N
k for all k. Let P = Pn be such that λn = 0 (n ≥ 1)

holds, i.e. Pn corresponds to a mode-n bifurcation point. We take N such that N modn = 0
is satisfied. In a neighbourhood of Pn we can consider

G(·, P ) : V N
n → V N

n . (40)

Starting from the bifurcation point we then have for increasing P a heterogeneous solution,

starting from T
(2)
F + ǫvn ∈ V N

n (with ǫ = P − Pn), which due to (40) remains in V N
n , until

a new singularity is encountered. Thus during the continuation the solution TF = TF,P

remains in V N
n and has a dual solution with the symmetry property T ∗

F (x) = TF (x + 1
n
) (cf.

Theorem 4).

First results of a stability analysis show that all heterogeneous solutions as well as the
homogeneous solution T (2)

F are unstable as a function of time. Only the homogeneous solu-
tions in the nucleate (T (1)

F ) and film (T (3)

F ) boiling regimes are stable. If we use a slightly
perturbed heterogeneous mode-n stationary solution as initial condition for the parabolic
nonlinear problem (4) then the solution of this instationary problem converges to one of the
two homogeneous solutions T (1)

F or T (3)

F . The time scale for which the mode-n heterogenity is
still clearly visible in the instationary solution is significant for small n-values and decreases
rapidly for larger n-values.

6 Numerical experiments: variation of system parameters

The steady-state pool boiling model is determined by the system parameters (Λ,D,Π1,Π2,W ),
cf. Section 2.2. These parameters control the following physical phenomena: (i) fluid-heater
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a) Mode-1 solution. b) Mode-2 solution. c) Mode-3 solution.

Figure 8: Temperature distributions T (x, y) for the mode-n solutions. Heat supply and heat
extraction is through the lines y = 0 and y = 0.2, respectively.

interaction via the boiling curve (Π1 and W ); (ii) properties of the heater (Λ and D); (iii)
heating conditions (Π2). Changes in the steady-state behaviour due to variation of these
parameters is investigated below. We first perform a bifurcation analysis for the system
parameters similar to that for the continuation parameter P (Section 6.1). Then we study
the physical changes in steady-state solutions with changing parameter values (Section 6.2).
The bifurcation analysis is carried out with the continuation procedure proposed in Section 4,
using the steady-state solutions determined in Section 5 as initial conditions.

6.1 Bifurcation analysis for the system parameters

Regions of existence of bifurcations and multiple solutions

Bifurcations imply multiple solutions and occur (only) if the T (2)

F -branch exists (see Section 5),
or equivalently, if the boiling curve and the normalised heat supply q∗H = Π−1

2 have three
intersections. This is equivalent to the condition 1 ≤ Π2 ≤ Π1. Furthermore, it follows
from (37) that within this regime mode-n solutions (n ≥ 1) exist only if the inequality (37)

is satisfied. The homogeneous solution TF,1 on the T
(2)
F -branch depends on the parameters

Π1, Π2, W , thus we write TF,1 = TF,1(Π1, Π2, W ). Using the definition of γ in (34) we obtain
the condition

Λ ≤ −
Π2 q̇F (TF,1(Π1, Π2, W ))

nπ tanh(nπD)
(41)

from (37) for the existence of a mode-n solution (n ≥ 1). We introduce the notation

Λ(n)(Π1, Π2, D, W ) := −
Π2 q̇F (TF,1(Π1, Π2, W ))

nπ tanh(nπD)
.

This function bounds the region of existence of mode-n solutions (Λ ≤ Λ(n)(Π1, Π2, D, W ))
and is therefore a separatrix. Due to q̇F (T (2)

F ) < 0 we have Λ(n) > 0. As a function of n the
separatrices are strictly ordered: Λ(1) > Λ(2) > · · · > Λ(∞). This implies that (i) regions of
existence of mode-n solutions are smaller with increasing wave number n and (ii) within the
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range 1 ≤ Π2 ≤ Π1 heterogeneous solutions are restricted to the subregime Λ > Λ(1). We
consider a given boiling curve with W = 1 and Π1 = 4. Figure 9 shows Λ(n) = Λ(n)(4, Π2, D, 1)
for 1 ≤ n ≤ 5. The surfaces represent from left to right the separatrices Λ(1) > Λ(2) > . . . ; the
region to the right of each separatrix is the region of existence of the corresponding mode-n
solution. All Λ(n) vanish for Π2 = 1 and Π2 = Π1, which is consistent with the fact that
multiple solutions do not exist outside the range 1 ≤ Π2 ≤ Π1.

In the hyperplanes Π2 = 1 and Π2 = Π1 the system undergoes the tangent bifurcation
that leads to the transition from one to three homogeneous solutions. On the separatrices
Λ(n) the system undergoes pitchfork bifurcations that result in pairs of mode-n solutions.
Thus for a given boiling curve these hyperplanes and separatrices represent bifurcations in
the (Λ, Π2, D)-parameter space. It should be noted that the qualitative behaviour is not
dramatically changed if the thickness of the heater (D) is changed. The regions do only
quantitatively change with D.

Figure 9: Separatrices Λ(n) for 1 ≤ n ≤ 5 in case of a given boiling curve (W = 1; Π1 = 4).
The surfaces coincide from left to right with separatrices Λ(1) > Λ(2) > . . . ; the region to the
right of each separatrix is the region of existence of the corresponding mode-n solution.

Effect of changes in the boiling curve: variation of W and Π1

For an arbitrary transition width W homogeneous steady-state solutions TF are given as
solution of qF (TF ) = Π−1

2 . From the shape of the boiling curve qF it is clear that variation of
W does not result in qualitative changes in the set of homogeneous solutions. We illustrate
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this in Figure 10a for the boiling curves with W = 1 (heavy), W = 0.1, W = 0.5 (solid)
and corresponding homogeneous solutions T (1,2)

F (dots) for Π2 = 2. (Note that the third
intersection T (3)

F is not shown.) Heterogeneous mode-n solutions originate from bifurcations
on the T (2)

F -branch occurring when F (n) = γ(T (2)

F ) holds (see Section 5.2). Figure 10b shows
F (n) and γ(T (2)

F ) for 0.5 ≤ W ≤ 1 and n ≥ 1. The boiling curve becomes steeper for smaller
W -values, resulting in decreasing γ-values. This causes the number of intersections (and thus
bifurcations) to increase monotonically with decreasing W . Narrowing the transition region
thus progressively augments the number of mode-n solutions and increases the wave-number
range 1 ≤ n ≤ nmax for which heterogeneous solutions exist. For W = 1 three intersections
occur and thus we have nmax = 3; for W = 0.5 and W = 0.1 the wave-number ranges increase
to nmax = 5 and nmax = 21, respectively.
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Figure 10: Effect of changing transition width W . Panel a illustrates the qualitative invariance
of the solutions of qF (T ) = Π−1

2 (dots) w.r.t. variation in W . The heavy curve is the boiling
curve for the case W = 1. The other curves are for W = 0.5 and W = 0.1. Panel b shows
F (n) for n > 0 (parallel planes) and γ (surface) as a function of P and W . The number of
intersections F (n) ∩ γ (implying mode-n solutions) grows with decreasing W .

Figure 11a shows the bifurcation diagram corresponding to the continuation parameter P
for the case W = 0.5. (Compare with the case W = 1 in Figure 5.) Figure 11b shows the
T (2)

F -branches and corresponding pitchfork bifurcation points (dots) for the transition widths
W = (0.1, 0.2, 0.5, 1).
The heat flux ratio Π1 influences the boiling curve in a manner comparable to the continuation
parameter P and changes thus have similar effects. This is demonstrated in Figure 12a for
the case of a physical boiling curve (P = 1) with transition width W = 1. Homogeneous
solutions correspond to intersections qF (TF ) = Π−1

2 , which occur according to the scenario
sketched for increasing P in Figure 4. Increasing Π1 lowers the local minimum (Leidenfrost
point) and consequently causes a transition from one (Π1 < Π2) to three (Π1 > Π2) solutions
via the tangent bifurcation at Π1 = Π2. On the T (2)

F -branch a pitchfork bifurcation occurs
if F (n) = γ(T (2)

F ) holds. In Figure 12b the graphs of F (n) and γ(T (2)

F ) as a function of
Π1 and W are given. Note the similarity between Figure 12b and Figure 10b. It follows
that γ(T (2)

F ) decreases monotonically with increasing Π1. Hence, the number of intersections
F (n) = γ(T (2)

F ) (and thus of mode-n solutions) increases with increasing Π1. The bifurcation
diagram for Π1 is qualitatively similar to that for P (Figure 5). Furthermore, increasing Π1
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Figure 11: Set of mode-n solutions for decreasing transition width W . Panel a shows the
bifurcation diagram for W = 0.5. Panel b shows the T (2)

F -branches and corresponding pitchfork
bifurcations (dots) for the indicated transition widths W .

has a effect similar to decreasing the transition width W : The wave-number range in which
bifurcations exist is enlarged.

The above reveals that variations of W and Π1 (in realistic ranges) do not lead to qualitative
changes in the behaviour of the system. Therefore it is no severe restriction to consider only
one fixed boiling curve. In the remainder we use as default the boiling-curve parameters
Π1 = 4 and W = 1 and investigate the role of the heating conditions (Π2) and heater
properties (Λ and D) on the behaviour of the pool boiling model.
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Figure 12: Effect of changing heat ratio Π1 on the steady-state behaviour. Panel a shows the
boiling curve as a function of Π1 (cf. Figure 3). The heavy curve is the boiling curve for
W = 1. Panel b shows F (n) for n > 0 (parallel planes) and γ as a function of W and Π1.
The number of intersections F (n) ∩ γ (implying mode-n solutions) grows with increasing Π1.
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Effect of changes in the heating conditions: variation of Π2

The heating conditions (Π2) determine the regions of existence of multiple solutions (see
before) and thus the global boiling mode. Multiple (heterogeneous) solutions are restricted
to the regime 1 ≤ Π2 ≤ Π1. Outside the range 1 ≤ Π2 ≤ Π1 only one homogeneous solution –
and consequently only one homogeneous boiling state – exists, namely T (1)

F (nucleate boiling)
for Π2 > Π1 and T (3)

F (film boiling) for 0 ≤ Π2 < 1. The link between multiplicity of steady-
state solutions and heating conditions is consistent with laboratory experiments (see Auracher
& Marquardt (2004)) and is a fundamental property of pool boiling systems.

Figure 14a shows a typical bifurcation diagram for Π2 with heater properties Λ = 0.2 and
D = 0.2. The homogeneous branches are combined into the heavy curve and connected via
the turning points at Π2 = 1 and Π2 = Π1(= 4). These turning points correspond to the
boundaries of the parameter range 1 ≤ Π2 ≤ Π1 and are the tangent bifurcations that lead to
multiple homogeneous solutions. The lower and upper sections of the combined homogeneous
branch coincide with the T (1)

F -and T (3)

F -branches, respectively. The centre section corresponds
to the T (2)

F -branch. The heterogeneous branches corresponding to the mode-n solutions (solid)
originate pair-wise from this branch and form closed concentric loops, with n increasing from
n = 1 in inward direction (here n = 1, 2, 3). The dashed line refers to the case study of
Section 5.

The fact that the heterogeneous branches are closed curves can be explained as follows.
Introduce the function

g : Π2 → Π2 q̇F (TF (Π2)), Π2 ∈ [1, 4],

with TF (Π2) such that qF (TF ) = Π−1
2 and q̇F (TF ) ≤ 0. From the graph of qF (for the case

Π1 = 4, W = 1) it follows that g(1) = g(4) = 0, g(x) ≤ 0 for all x ∈ [1, 4] and there is a
unique x∗ ∈ (0, 4) where g attains its minimal value, cf. Figure 13.
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Figure 13: Effect of changing heating condition (Π2) on the steady-state behaviour. Panel a
shows the profiles of qF (dashed) and g = Π2q̇F (heavy) on the T (2)

F -branch. Panel b shows
g (heavy) and −Λnπ tanh(nπD) for n ≥ 1 (dashed) on the T (2)

F -branch. The intersections
between g and dashed lines occur pair-wise and correspond with one mode-n solution branch.

Bifurcations on the homogeneous T (2)

F -branch occur if an eigenvalue of the Jacobian equals
zero, i.e., cf. (36), if TF = TF (Π2) is such that

Π2 q̇F (TF (Π2)) = −Λnπ tanh(nπD)
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holds. The values for the parameters Λ and D are given (Λ = D = 0.2). Hence, a bifurcation
occurs if Π2 ∈ [0, 4] and n ≥ 1 are such that

g(Π2) = −Λnπ tanh(nπD). (42)

From the shape of the graph of g it follows that solutions of (42) occur as pairs ΠL
2 (n), ΠR

2 (n)
with 1 < ΠL

2 (n) < ΠR
2 (n) < 4. Thus mode-n bifurcation points occur in pairs, which leads

to the closed heterogeneous branches in Figure 14a. Furthermore, the function n → ΠL
2 (n)

(n → ΠR
2 (n)) is strictly increasing (decreasing). This explains the specific ordering of the

heterogeneous branches.
The bifurcation diagram (Figure 14a) provides information on the qualitative steady-state

behaviour of the pool boiling system as a function of the heating conditions. Regimes Π2 > Π1

(nucleate boiling) and 0 ≤ Π2 < 1 (film boiling) allow only one single solution branch. In
the range 1 ≤ Π2 ≤ Π1 (transition boiling) multiple solution branches occur. Multiplicity
phenomena increase (more mode-n solutions) when Π2 moves the borders of the interval
[1, Π1] towards its centre. The multiple solution branches allow different steady states that
the pool boiling system may have during transition from nucleate to film boiling (and vice
versa) with changing heat supply.

Effect of changes in the heater properties: variation of Λ and D

We take a fixed value Π2 = 2 and vary Λ and D. First we consider the effects of changing
the non-dimensional thermal conductivity Λ, with a fixed D = 0.2. The resulting bifurcation
diagram is shown in Figure 14b. The heavy lines are the homogeneous branches (which do
not depend on Λ); the solid curves are the heterogeneous branches originating from the T (2)

F -
branch. The dashed line refers to the case study of Section 5. The wave number n of the
mode-n solutions corresponding to the heterogeneous branches increases from n = 1 (right-
most heterogeneous branch) monotonically with decreasing Λ. This ordering can be explained
as follows. A bifurcation point on the T (2)

F -branch occurs if

Λ = −
Π2q̇F (TF )

nπ tanh(nπD)
(43)

holds, with TF such that qF (TF ) = Π−1
2 and q̇F (TF ) ≤ 0. This homogeneous solution TF does

not depend on Λ. Therefore, since D is also constant, for every n ≥ 1 there is a unique solution
Λ(n) of (43). Furthermore, the function n → Λ(n) is strictly monotonically decreasing.

We now consider the effect of changes in the aspect ratio D, with a fixed Λ = 0.2. The
corresponding bifurcation diagram is shown in Figure 14c. Heavy and solid lines again indicate
homogeneous and heterogeneous branches; the dashed line refers to the case study of Section 5.
This diagram resembles that for Λ in Figure 14b in that homogeneous branches do not depends
on D and heterogeneous branches correspond from right to left with mode-n solutions with
increasing wave number n. However, bifurcation points occur only for wave numbers n ≥ 4.
For the given Λ and Π2 values the solutions corresponding to the wave numbers 1 ≤ n ≤ 3
exist for any D > 0 and thus do not undergo bifurcations in this parameter range. This
can be explained by similar arguments as used above for Λ. At a bifurcation point on the
T (2)

F -branch we now have

tanh(nπD) = −
Π2q̇F (TF )

nπΛ
(44)
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with TF such that qF (TF ) = Π−1
2 and q̇F (TF ) ≤ 0. This homogeneous solution TF does not

depend on D. For n too small (1 ≤ n ≤ 3) we have −Π2q̇F (TF )
nπΛ ≥ 1 and thus (44) does

not have a solution. For n sufficiently large (n ≥ 4) we have 0 < −Π2q̇F (TF )
nπΛ < 1 and thus

(44) has a unique solution D(n). One easily verifies that n → D(n) is strictly decreasing.

For Λ sufficiently large we have 0 < −Π2q̇F (TF )
nπΛ < 1 for all n ≥ 1 and then we have mode-n

bifurcation points on the homogeneous T (2)

F -branch for all n ≥ 1.
From the above it readily follows that both with decreasing Λ and D the number of sepa-

ratrices passed – and thus the number of bifurcation points occurring – increases. Since each
new bifurcation implies a new pair of mode-n solutions, this implies that decreasing thermal
conductivity (Λ) and/or relative heater thickness (D) induces more multiplicity and hetero-
geneity phenomena in our pool boiling model. Conversely, increasing thermal conductivity
and/or relative heater thickness enhances homogeneity.

This effect of heater thickness is known from laboratory experiments (see e.g. Blum et al.
(1996)). However, an essential difference between the effects of variation in Λ and in D is
that increasing thermal conductivity at some point always causes vanishing of heterogeneous
solutions, whereas for specific ranges of Λ (and Π2) heterogeneous solutions are always present,
irrespective of heater thickness. This can be seen from Figure 9. The bifurcation diagram
in Figure 14c indicates that in this particular range of Λ and Π2 bifurcations occur only for
mode-n solutions with n ≥ 4; solutions for n = (1, 2, 3) exist for any aspect ratio D here.

6.2 Physical changes in steady-state solutions

Mode-n bifurcations occur in Λ- and D-directions if for a certain wave number n the eigenvalue
λn of the Jacobian equals zero. Moving away from the bifurcation, by decreasing the system
parameter, amplifies the heterogeneous features of the corresponding mode-n solutions in a
similar way as demonstrated in Figure 7 for the continuation parameter P .

Figure 15a shows the change of the interface temperature TF (x) of the mode-1 solution
with decreasing thermal conductivity Λ (solid curves) from its nearly homogeneous state at
the bifurcation (heavy line; Λ = 1.20) to its state just above the lower bound Λ = 0 (heavy
curve; Λ = 0.05). The plot reveals a progressive steepening of the profile with decreasing Λ
to such an extent that it suggests a discontinuous profile for Λ ↓ 0. This steepening results
from the higher temperature gradients caused by the higher resistance to heat conduction
due to lower thermal conductivity. For vanishing heat conduction this implies locally-infinite
temperature gradients and consequently discontinuous profiles.

Figure 15b shows the change of TF (x) of the mode-4 solution (the lowest mode-n solution
that originates from a bifurcation here) with decreasing aspect ratio D. The plot reveals
that decreasing the relative heater thickness amplifies, similar to decreasing the thermal
conductivity, the heterogeneous features of the mode-n. The progression suggests that, in
contrast to the behaviour found for Λ, the solution now tends to a smooth profile for vanishing
aspect ratio D. The heavy curve in Figure 15b corresponds to D = 0.01 and is believed to be
a good approximation for the profile associated with the ‘thin’ heater (D = 0).

In Π2-direction, mode-n bifurcations occur pair-wise and thus result in the essentially non-
monotonic dependence of the solution on changing heating conditions. Figure 16 illustrates
this behaviour for the profile TF (x) of the mode-2 solution by increasing Π2 from ΠL

2 = ΠL
2 (2)

(left bifurcation point for n = 2) to ΠR
2 = ΠR

2 (2) (right bifurcation point for n = 2). Thus the
heterogeneous features of the profile are amplified (panel a) until at some ΠL

2 < Π2rev < ΠR
2
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Figure 14: Bifurcation diagrams for system parameters Π2 (Λ = 0.2,D = 0.2), Λ (Π2 = 2,D =
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Figure 5.
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the process reverses (panel b; solid, heavy and dashed curves correspond to Π2 ≤ Π2rev,
Π2 = Π2rev and Π2 > Π2rev, respectively) and the heterogeneous features diminish (panel c)
and eventually vanish upon reaching ΠR

2 . Note Π2rev is defined as the Π2-value for which the
temperature difference ∆TF = max(TF )−min(TF ) reaches its maximum, in other words, the
profile is the most heterogeneous.
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Figure 15: Changes in interface profile of indicated mode-n solutions as a function of Λ
(panel a) and D (panel b). The heavy horizontal lines are the profiles at the bifurcation; the
heavy curves are the profiles farthest away from the bifurcation. The solid curves are the
intermediate states. The arrows indicate progression with decreasing system parameter Λ
or D.

7 Conclusions

In this paper we consider a two-dimensional heat equation with a nonlinear Neumann bound-
ary condition on part of the boundary as a simple model for 2D pool boiling processes. The
nonlinear Neumann boundary condition models the heat flux from the heater to the fluid
by means of a nonlinear local heat flux temperature relation that is similar to the boiling
curve. A key issue is the existence of multiple steady-state solutions with heterogeneous
interface temperature. The seperation of variables technique leads to a reduction of the two-
dimensional problem to a one-dimensional problem for the temperature at the heater-to-fluid
interface, cf. (12). The latter problem is discretised using a collocation method. Both the
continuous and discrete problem (at the interface) have a symmetry property (Theorems 2
and 4) that immediately implies multiplicity of heterogeneous solutions. These originate from
bifurcations on a branch of homogeneous solutions. The existence of symmetries (Theorem 2)
and the conservation of symmetries (Theorem 1) are two fundamental properties of the model.
The multiple solution structure and its dependence on certain system parameters is studied
through a bifurcation analysis applied to the discretised problem.

We outline a few main conclusions from the analysis.
There exist multiple (heterogeneous) steady-state solutions. Multiplicity and heterogene-

ity are restricted to those situations where transition boiling modes can occur; if only nucleate
or film boiling regimes are possible, a unique solution exists, which is always homogeneous.
Heterogeneous solutions represent temperature distributions that correspond to nucleate and
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Figure 16: Changes in interface profile of a mode-2 solution as a function of Π2. The arrows
indicate progression with increasing system parameter Π2. The heavy horizontal lines are
the profiles at the two corresponding bifurcations Π2min and Π2max; the heavy curve in panel
b is the most heterogeneous profile, which occurs at Π2rev. The arrows indicate progression of
parameter Π2 from Π2min to Π2max.

film boiling regions and thus are essentially two-mode boiling states. Heating conditions
are modelled as a constant heat flux on the boundary opposite to the heater-fluid interface.
Heat supply between critical heat flux (CHF) and Leidenfrost heat flux (LHF) implies three
homogeneous solutions, each in one of the three boiling regimes. Heat supply outside this
range results in only homogeneous solution, corresponding to either nucleate or film boiling.
Heterogeneous solutions originate pairwise from pitchfork bifurcation points on the branch of
homogeneous solutions in the transition regime of the boiling curve and can occur only under
specific heating conditions. The actual steady-state solution attained at such pitchfork bifur-
cations is inherently unpredictable. Relevant system parameters are boiling curve coefficients
(transition width W ; CHF-LHF ratio Π1) and heater properties (aspect ratio D; thermal
conductivity Λ). Decreasing (one of) W, D and Λ and/or increasing Π1 enlarges the set of
heterogeneous solutions, suggesting this induces stronger multiplicity and heterogeneity of
solutions of the pool boiling problem. However, variation of these parameters does not cause
fundamental changes in the steady-state behaviour of the system. Multiplicity and hetero-
geneity only show a quantitative dependence on these parameters. The essential condition
is 1 ≤ Π2 ≤ Π1. If this condition is satisfied, there exists a homogeneous solution in the
transition range of the boiling curve, leading to bifurcating pairs of heterogeneous solutions.

Important phenomena resulting from numerical simulations of our model are consistent
with properties known from laboratory experiments. This suggests that the model provides
an (at least qualitatively) adequate description of pool boiling.

Both the present model and the numerical techniques used can be extended relatively
straightforward to 3D pool boiling systems. This is a topic of current research. Furthermore,
results of a stability analysis of the steady-state solutions will be presented in a forthcom-
ing paper. Preliminary results of this analysis reveal that steady-state solutions are always
unstable, except for the two homogeneous solutions corresponding to the nucleate and film
boiling regimes. Miscellaneous issues to be considered in future work may include the effect of
different heating methods (see e.g. Darabi et al. (1999))) and stabilisation via active control
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(see e.g. Auracher & Marquardt (2002)).
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