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Abstract

We consider the problem of approximating a given element f from a Hilbert
space H by means of greedy algorithms and the application of such procedures to
the regression problem in statistical learning theory. We improve on the existing
theory of convergence rates for both the orthogonal greedy algorithm and the relaxed
greedy algorithm, as well as for the forward stepwise projection algorithm. For all
these algorithms, we prove convergence results for a variety of function classes and
not simply those that are related to the convex hull of the dictionary. We then show
how these bounds for convergence rates leads to a new theory for the performance
of greedy algorithms in learning. In particular, we build upon the results in [18] to
construct learning algorithms based on greedy approximations which are universally
consistent and provide provable convergence rates for large classes of functions. The
use of greedy algorithms in the context of learning is very appealing since it greatly
reduces the computational burden when compared with standard model selection
using general dictionaries.

Key Words: Orthogonal, relaxed greedy algorithm, convergence estimates for a scale of
interpolation spaces, universal consistency, applications to learning, neural networks.
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1 Introduction

We consider the problem of approximating a function f from a Hilbert space H by a finite
linear combination f̂ of elements of a given dictionary D = (g)g∈D . Here by a dictionary
we mean any family of functions from H. In this paper, this problem is adressed in two
different contexts, namely

(i) Deterministic approximation: f is a known function in a Hilbert space H. The
approximation error is naturally measured by ‖f−f̂‖ where ‖·‖ is the corresponding
norm generated from the inner product 〈·, ·〉 on H, i.e., ‖g‖2 := ‖g‖2

H := 〈g, g〉.
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(ii) Statistical learning: f = fρ where fρ(x) = E(y|x) is the regression function of an
unknown distribution ρ on X × Y with x ∈ X and y ∈ Y respectively representing
the feature and output variables, from which we observe independent realizations
(zi) = (xi, yi) for i = 1, · · · , n. The approximation error is now measured in the
Hilbertian norm ‖u‖2 := E(|u(x)|2).

In either of these situations, we may introduce the set ΣN of all possible linear combi-
nations of elements of D with at most N terms and define the best N -term approximation
error σN(f) as the infimum of ‖f − f̂‖ over all f̂ of this type,

σN(f) = inf
#(Λ)≤N

inf
(cg)

‖f −
∑
g∈Λ

cgg‖. (1.1)

In the case where D is an orthonormal basis, the minimum is attained by

f̂ =
∑

g∈ΛN (f)

cgg, (1.2)

where ΛN(f) corresponds to the coordinates cg := 〈f, g〉 which are the N -largest in
absolute value. The approximation properties of this process are well understood, see e.g.
[9]. In particular one can easily check that the convergence rate ‖f − f̂‖H <∼ N−s is
equivalent to the property that the sequence (cg)g∈D belongs to the weak space w`p with
1/p = 1/2 + s (see e.g. the survey [9] or standard books on functional analysis for the
definition of weak `p spaces). Here and later in this paper we use the notation A <∼ B
to mean A ≤ CB for some absolute constant C that does not depend on the parameters
which define A and B.

One of the motivations for utilizing general dictionaries rather than orthonormal sys-
tems is that in many applications, such as signal processing or statistical estimation, it is
not clear which orthonormal system, if any, is best for representing or approximating f .
Thus, dictionaries which are a union of several bases or collections of general waveforms
are preferred. Some well known examples are the use of Gabor sytems, curvelets, and
wavepackets in signal processing and neural networks in learning theory.

When working with dictionaries D which are not orthonormal bases, the realization of
a best N -term approximation is usually out of reach from a computational point of view
since it would require minimizing ‖f − f̂‖ over all f̂ in an infinite or huge number of N
dimensional subspaces. Greedy algorithms or matching pursuit aim to build “sub-optimal
yet good” N -term approximations through a greedy selection of elements gk, k = 1, 2, · · ·,
within the dictionary D, and to do so with a more manageable number of computations.

1.1 Greedy algorithms

Greedy algorithms have been introduced in the context of statistical estimation. They
have also been considered for applications in signal processing [1]. Their approximation
properties have been explored in [4, 14, 18] in relation with neural network estimation, and
in [10, 15, 19] for general dictionaries. A recent survey of the approximation properties
of such algorithms is given in [21].
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There exists several versions of these algorithms. The four most commonly used are
the pure greedy, the orthogonal greedy, the relaxed greedy and the stepwise projection
algorithms, which we respectively denote by the acronyms PGA, OGA, RGA and SPA.
We describe these algorithms in the deterministic setting. We shall assume here and later
that the elements of the dictionary are normalized according to ‖g‖ = 1 for all g ∈ D
unless it is explicitly stated otherwise.

All four of these algorithms begin by setting f0 := 0. We then define recursively the
approximant fk based on fk−1 and its residual rk−1 := f − fk−1.

In the PGA and the OGA, we select a member of the dictionary as

gk := Argmax
g∈D

|〈rk−1, g〉|. (1.3)

The new approximation is then defined as

fk := fk−1 + 〈rk−1, gk〉gk, (1.4)

in the PGA, and as
fk = Pkf, (1.5)

in the OGA, where Pk is the orthogonal projection onto Vk := Span{g1, · · · , gk}. It
should be noted that when D is an orthonormal basis both algorithms coincide with the
computation of the best k-term approximation.

In the RGA, the new approximation is defined as

fk = αkfk−1 + βkgk, (1.6)

where (αk, βk) are real numbers and gk is a member of the dictionary. There exists many
possibilities for the choice of (αk, βk, gk), the most greedy being to select them according
to

(αk, βk, gk) := Argmin
(α,β,g)∈IR2×D

‖f − αfk−1 − βg‖. (1.7)

Other choices specify one or several of these parameters, for example by taking gk as in
(1.3) or by setting in advance the value of αk and βk, see e.g. [14] and [4]. Note that the
RGA coincides with the PGA when the parameter αk is set to 1.

In the SPA, the approximation fk is defined by (1.5) as in the OGA, but the choice
of gk is made so as to minimize over all g ∈ D the error between f and its orthogonal
projection onto Span{g1, · · · , gk−1, g}.

Note that, from a computational point of view, the OGA and SPA are more expensive
to implement since at each step they require the evaluation of the orthogonal projection
Pkf (and in the case of SPA a renormalization). Such projection updates are computed
preferrably using Gram-Schmidt orthogonalization (e.g. via the QR algorithm) or by
solving the normal equations

Gkak = bk, (1.8)

where Gk := (〈gi, gj〉)i,j=1,···,k is the Grammian matrix, bk := (〈f, gi〉)i=1,···,k, and ak :=

(αj)j=1,···,k is the vector such that fk =
∑k

j=1 αjgj.
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In order to describe the known results concerning the approximation properties of
these algorithms, we introduce the class L1 := L1(D) consisting of those functions f
which admit an expansion f =

∑
g∈D cgg where the coefficient sequence (cg) is absolutely

summable. We define the norm

‖f‖L1 := inf{
∑
g∈D

|cg| : f =
∑
g∈D

cgg} (1.9)

for this space. This norm may be thought of as an `1 norm on the coefficients in represen-
tation of the function f by elements of the dictionary; it is emphasized that it is not to
be confused with the L1 norm of f . An alternate and closely related way of defining the
L1 norm is by the infimum of numbers V for which f/V is in the closure of the convex
hull of D ∪ (−D). This is know as the “variation” of f with respect to D, and was used
in [16, 17], building on the earlier terminology in [3].

In the case where D is an orthonormal basis, we know that

σN(f) ≤ ‖f‖L1N
−1/2, f ∈ L1. (1.10)

For the PGA, it was proved [10] that f ∈ L1 implies that

‖f − fN‖ <∼ N−1/6. (1.11)

This rate was improved to N− 11
62 in [15], but on the other hand it was shown [19] that for

a particular dictionary there exists f ∈ L1 such that

‖f − fN‖ >∼ N−0.27. (1.12)

When compared with (1.10), we see that the PGA is far from being optimal.
The RGA, OGA and SPA behave somewhat better: it was proved respectively in [14]

for the RGA and SPA, and in [10] for the OGA, that one has

‖f − fN‖ <∼ ‖f‖L1N
−1/2, (1.13)

for all f ∈ L1.
For each of these algorithms, it is known that the convergence rate N−1/2 cannot

in general be improved even for functions which admit a very sparse expansion in the
dictionary D (see [10] for such a result with a function being the sum of two elements of
D).

At this point, some remarks are in order regarding the meaning of the condition f ∈ L1

for some concrete dictionaries. A commonly made statement is that greedy algorithms
break the curse of dimensionality in that the rate N−1/2 is independent of the dimension
d of the variable space for f , and only relies on the assumption that f ∈ L1. This is not
exactly true since in practice the condition that f ∈ L1 becomes more and more stringent
as d grows. For instance, in the case where we work in the Hilbert space H := L2([0, 1]

d)
and when D is a wavelet basis (ψλ), it is known that the smoothness property which
ensures that f ∈ L1 is that f should belong to the Besov space Bs

1(L1) with s = d/2,
which roughly means that f has all its derivatives of order less or equal to d/2 in L1

4



(see [9] for the characterization of Besov spaces by the properties wavelet coefficients).
Moreover, for this to hold it is required that the dual wavelets ψ̃λ have at least d/2 − 1
vanishing moments. Another instance is the case where D consists of sigmoidal functions
of the type σ(v · x− w) where σ is a fixed function and v and w are arbitrary vectors in
IRd. For such dictionaries, it was proved in [4] that a sufficient condition to have f ∈ L1

is the convergence of
∫
|ω||Ff(ω)|dω where F is the Fourier operator. This integrability

condition requires a larger amount of decay on the Fourier transform Ff as d grows.
Assuming that f ∈ L1 is therefore more and more restrictive as d grows. Similar remarks
also hold for other dictionaries (hyperbolic wavelets, Gabor functions etc.).

1.2 Results of this paper

The discussion of the previous section points to a significant weakness in the present
theory of greedy algorithms in that there are no viable bounds for the performance of
greedy algorithms for general functions f ∈ H. This is a severe impediment in some
application domains (such as learning theory) where there is no a priori knowledge that
would indicate that the target function is in L1. One of the main contributions of the
present paper is to provide error bounds for the performance of greedy algorithms for
general functions f ∈ H. We shall focus our attention on the OGA and RGA, which
as explained above have better convergence properties in L1 than the PGA. We shall
consider the specific version of the RGA in which αk is fixed to 1 − 1/k and (βk, gk) are
optimized.

Inspection of the proofs in our paper show that all further approximation results
proved for this version of the RGA also hold for any greedy algorithm such that

‖f − fk‖ ≤ min
β,g

‖f − αkfk−1 + βg‖, (1.14)

irrespective of how fk is defined. In particular, they hold for the more general version of
the RGA defined by (1.7) as well as for the SPA.

In §2, we introduce both algorithms and recall the optimal approximation rate N−1/2

when the target function f is in L1. Later in this section, we develop a technique based
on interpolation of operators that provides convergence rates N−s, 0 < s < 1/2, whenever
f belongs to a certain intermediate space between L1 and the Hilbert space H. Namely,
we use the spaces

Bp := [H,L1]θ,∞, θ := 2/p− 1, 1 < p < 2, (1.15)

which are the real interpolation spaces between H and L1. We show that if f ∈ Bp,
then the OGA and RGA, when applied to f , provide approximation rates CN−s with
s := θ/2 = 1/p − 1/2. Thus, if we set B1 = L1, then these spaces provide a full range
of approximation rates for greedy algorithms. Recall, as discussed previously, for general
dictionaries, greedy algorithms will not provide convergence rates better than N−1/2 for
even the simplest of functions. The results we obtain are optimal in the sense that
we recover the best possible convergence rate in the case where the dictionary is an
orthonormal basis. For an arbitrary target function f ∈ H, convergence of the OGA and
RGA holds without rate. We also discuss in that section how the OGA can be monitored
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by a threshold parameter. Finally, we conclude the section by discussing several issues
related to numerical implementation of these greedy algorithms. In particular, we consider
the effect of reducing the dictionary D to a finite sub-dictionary.

In §3, we consider the learning problem under the assumption that the data y :=
(y1, . . . , yn) are bounded in absolute value by some fixed constant B. Our estimator is
built on the application of the OGA or RGA to the noisy data y in the Hilbert space
defined by the empirical norm

‖f‖n :=
1

n

n∑
i=1

|f(xi)|2, (1.16)

and its associated inner product. At each step k, the algorithm generates an approxima-
tion f̂k to the data. Our estimator is defined by

f̂ := T f̂k∗ (1.17)

where
Tx := TBx := min{B, |x|}sgn(x) (1.18)

is the truncation operator at level B and the value of k∗ is selected by a complexity
regularization procedure. The main result for this estimator is (roughly) that when the
regression function fρ is in Bp (where this space is defined with respect to the norm
‖u‖2 := E(|u(x)|2)), the estimator has convergence rate

E(‖f̂ − fρ‖2) <∼
( n

log n

)− 2s
1+2s

, (1.19)

again with s := 1/p − 1/2. In the case where fρ ∈ L1, we obtain the same result with
p = 1 and s = 1/2. We also show that this estimator is universally consistent.

In order to place these results into the current state of the art of statistical learning
theory, let us first remark that similar convergence rate for the denoising and the learning
problem could be obtained by a more “brute force” approach which would consist in
selecting a proper subset of D by complexity regularization with techniques such as those
in [2] or Chapter 12 of [13]. Following for instance the general approach of [13], this
would typically first require restricting the size of the dictionary D (usually to be of
size O(na) for some a > 1) and then considering all possible subsets Λ ⊂ D and spaces
GΛ := Span{g ∈ Λ}, each of them defining an estimator

f̂Λ := TB

(
Argminf∈GΛ

‖y − f‖2
n

)
(1.20)

The estimator f̂ is then defined as the f̂Λ which minimizes

min
Λ⊂D

{‖y − f̂Λ‖2
n + Pen(Λ, n)} (1.21)

with Pen(Λ, n) a complexity penalty term. The penalty term usually restricts the size
of Λ to be at most O(n) but even then the search is over O(nan) subsets. In some
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other approaches, the sets GΛ might also be discretized, transforming the subproblem of
selecting f̂Λ into a discrete optimization problem.

The main advantage of using the greedy algorithm in place of (1.21) for constructing
the estimator is a dramatic reduction of the computational cost. Indeed, instead of consid-
ering all possible subsets Λ ⊂ D the algorithm only considers the sets Λk := {g1, · · · , gk},
k = 1, . . . , n, generated by the empirical greedy algorithm.

This approach was proposed and analyzed in [18] using a version of the RGA in which

αk + βk = 1 (1.22)

which implies that the approximation fk at each iteration stays in the convex hull C1 of
D. The authors established that if f does not belong to C1, the RGA converges to its
projection onto C1, In turn, the estimator was proved to converge in the sense of (1.19)
to fρ, with rate (n/ log n)−1/2, if fρ lies in C1, and otherwise to its projection onto C1. In
that sense, this procedure is not universally consistent.

One of the main contributions of the present paper is to remove requirements of
the type fρ ∈ L1 when obtaining convergence rates. In the learning context, there is
indeed typically no advanced information that would guarantee such restrictions on fρ.
The estimators that we construct for learning are now universally consistent and have
provable convergence rates for more general regression functions described by means of
interpolation spaces. One of the main ingredient in our analysis of the performance of our
greedy algorithms in learning is a powerful exponential concentration inequality which
was introduced in [18]. Let us mention that a closely related analysis, which however
does not involve interpolation spaces, was developed in [6, 5].

The most studied dictionaries in learning theory are in the context of neural networds.
In §4 we interpret our results in this setting and in particular describe the smoothness
conditions on a function f which ensure that it belongs to the spaces L1 or Bp.

2 Approximation properties

Let D be a dictionary in some Hilbert space H, with ‖g‖ = 1 for all g ∈ D. We recall
that, for a given f ∈ H, the OGA builds embedded approximation spaces

Vk := Span{g1, · · · , gk}, k = 1, 2, . . . , (2.1)

and approximations
fk := Pkf (2.2)

where Pk is the orthogonal projection onto Vk. The rule for generating the gk is as follows.
We set V0 := {0}, f0 := 0 and r0 := f , and given Vk−1, fk−1 = Pk−1f and rk−1 := f−fk−1,
we define gk by

gk := Argmax
g∈G

|〈rk−1, g〉|, (2.3)

which defines the new Vk, fk and rk.
In its most general form, the RGA sets

fk = αkfk−1 + βkgk, (2.4)
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where (αk, βk, gk) are defined according to (1.7). We shall consider a simpler version in
which the first parameter is a fixed sequence. Two choices will be considered, namely

αk = 1− 1

k
, (2.5)

and

αk = 1− 2

k
if k > 1, α1 = 0. (2.6)

The two other parameters are optimized according to

(βk, gk) := Argmin
(β,g)∈IR×D

‖f − αkfk−1 − βg‖. (2.7)

Since
‖f − αkfk−1 − βg‖2 = β2 − 2β〈f − αkfk−1, g〉+ ‖f − αkfk−1‖2, (2.8)

it is readily seen that (βk, gk) are given explicitely by

βk = 〈f − αkfk−1, gk〉, (2.9)

and
gk := Argmax

g∈D
|〈f − αkfk−1, g〉|. (2.10)

Therefore, from a computational point of view this RGA is very similar to the PGA.
We denote by Lp the functions f which admit a converging expansion f =

∑
cgg with∑

|cg|p < +∞, and we write ‖f‖Lp = inf ‖(cg)‖`p where the infimum is taken over all such
expansions. In a similar way, we consider the spaces wLp corresponding to expansions
which are in the weak space w`p. We denote by σN(f) the best N-term approximation
error in the H norm for f and for any s > 0 define the approximation space

As := {f ∈ H : σN(f) ≤MN−s, N = 1, 2, . . .}. (2.11)

Finally, we denote by Gs the set of functions f such that the greedy algorithm under
consideration converges with rate ‖rN‖ <∼ N−s, so that obviously Gs ⊂ As.

In the case D is an orthonormal basis, the space As contains the space Lp with
1/p = 1/2 + s, and in fact actually coincides with the weak versions wLp of these spaces.
In those cases, an algorithm for building a best (or near best) N -term approximation is
simply to keep the N largest coefficients of f and discard the others. The best N -term
approximation is also obtained by the orthogonal greedy algorithm so that obviously
As = Gs.

2.1 Approximation of L1 functions

In this section, we recall for convenience the approximation properties of the OGA and
RGA for functions f ∈ L1. We first recall the result obtained in [10] for the OGA. We
shall make use of the following fact: if f, g ∈ H with ‖g‖ = 1, then 〈f, g〉g is the best
approximation to f from the one dimensional space generated by g and

‖f − 〈f, g〉g‖2 = ‖f‖2 − |〈f, g〉|2. (2.12)
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Theorem 2.1 For all f ∈ L1 the error of the OGA satisfies

‖rN‖ ≤ ‖f‖L1(N + 1)−1/2, N = 1, 2, . . . . (2.13)

Proof: Since fk is the best approximation to f from Vk, we have from (2.12)

‖rk‖2 ≤ ‖rk−1 − 〈rk−1, gk〉gk‖2 = ‖rk−1‖2 − |〈rk−1, gk〉|2, (2.14)

with equality in the case where gk is orthogonal to Vk−1. Since rk−1 is orthogonal to fk−1,
we have

‖rk−1‖2 = 〈rk−1, f〉 ≤ ‖f‖L1 sup
g∈D

|〈rk−1, g〉| = ‖f‖L1|〈rk−1, gk〉|, (2.15)

which combined with (2.14) gives the reduction property

‖rk‖2 ≤ ‖rk−1‖2(1− ‖rk−1‖2‖f‖−2
L1

). (2.16)

We also know that ‖r1‖ ≤ ‖r0‖ = ‖f‖ ≤ ‖f‖L1 .
We then check by induction that a decreasing sequence (an)n≥0 of nonnegative numbers

which satisfy a0 ≤M and ak ≤ ak−1(1−ak−1

M
) for all k > 0 has the decay property an ≤ M

n+1

for all n ≥ 0. Indeed, assuming an−1 ≤ M
n

for some n > 0, then either an−1 ≤ M
n+1

so that

an ≤ M
n+1

, or else an−1 ≥ M
n+1

so that

an ≤
M

n
(1− 1

n+ 1
) =

M

n+ 1
. (2.17)

The result follows by applying this to ak = ‖rk‖2 and M := ‖f‖2
L1

, since we indeed have

a0 = ‖f‖2 ≤ ‖f‖2
L1
. (2.18)

2

We now turn to the RGA for which we shall prove a slightly stronger property.

Theorem 2.2 For all f ∈ L1 the error of the RGA using (2.5) satisfies

‖rN‖ ≤ (‖f‖2
L1
− ‖f‖2)1/2N−1/2, N = 1, 2, . . . . (2.19)

Proof: From the definition of the RGA, we see that the sequence fk remains unchanged
if the dictionary D is symmetrized by including the sequence (−g)g∈D. Under this as-
sumption, since f ∈ L1, for any ε > 0 we can expand f according to

f =
∑
g∈D

bgg, (2.20)

where all the bg are non-negative and satisfy∑
g∈D

bg = ‖f‖L1 + δ, (2.21)
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with 0 ≤ δ ≤ ε. According to (2.7), we have for all β ∈ IR and all g ∈ D

‖rk‖2 ≤ ‖f − αkfk−1 − βg‖2

= ‖αkrk−1 + 1
k
f − βg‖2

= α2
k‖rk−1‖2 − 2αk〈rk−1,

1
k
f − βg〉+ ‖ 1

k
f − βg‖2

= α2
k‖rk−1‖2 − 2αk〈rk−1,

1
k
f − βg〉+ 1

k2‖f‖2 + β2 − 2β
k
〈f, g〉.

This inequality holds for all g ∈ D, so it also holds on the average with weights bgP
g∈D bg

,

which gives for the particular value β = 1
k
(‖f‖L1 + δ),

‖rk‖2 ≤ α2
k‖rk−1‖2 − 1

k2
‖f‖2 + β2. (2.22)

Therefore, letting ε go to 0, we obtain

‖rk‖2 ≤ (1− 1

k
)2‖rk−1‖2 +

1

k2
(‖f‖2

L1
− ‖f‖2). (2.23)

We now check by induction that a sequence (ak)k>0 of positive numbers such that a1 ≤M
and ak ≤ (1− 1

k
)2ak−1 + 1

k2M for all k > 0 has the decay property an ≤ M
n

for all n > 0.
Indeed, assuming that an−1 ≤ M

n−1
, we write

an − M
n

≤ (1− 1
n
)2 M

n−1
+ 1

n2M − M
n

= M(n−1
n2 + 1

n2 − 1
n
) = 0.

The result follow by applying this to ak = ‖rk‖2 and M := ‖f‖2
L1
−‖f‖2, since (2.23) also

implies that a1 ≤M . 2

The above results show that for both OGA and RGA we have

L1 ⊂ G1/2 ⊂ A1/2. (2.24)

From this, it also follows that wLp ⊂ As with s = 1/p − 1/2 when p < 1. Indeed,
from the definition of wLp, any function f in this space can be written as f =

∑∞
j=1 cjgj

with each gj ∈ D and the coefficients cj decreasing in absolute value and satisfying

|cj| ≤ Mj−1/p, j ≥ 1 with M := ‖f‖wLp . Therefore, f = fa + fb with fa :=
∑N

j=1 cjgj

and ‖fb‖L1 ≤ CpMN1−1/p. It follows from Theorem 2.1 for example, that fb can be
approximated by an N -term expansion obtained by the greedy algorithm with accuracy
‖fb − PNfb‖ ≤ CpMN1/2−1/p = N−s, and therefore by taking fa + PNfb as a 2N term
approximant of f , we obtain that f ∈ As. Observe, however, that this does not mean
that f ∈ Gs in the sense that we have not proved that the greedy algorithm converges
with rate N−s when applied to f . It is actually shown in [10] that there exists simple
dictionaries such that the greedy algorithm does not converge faster than N−1/2, even for
functions f which are in wLp for all p > 0.
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2.2 Approximation of general functions

We now want to study the behaviour of the OGA and RGA when the function f ∈ H
is more general in the sense that it is less sparse than being in L1. The simplest way of
expressing this would seem to be by considering the spaces Lp or wLp with 1 < p < 2.
However for general dictionaries, these spaces are not well adapted, since ‖f‖Lp does not
control the Hilbert norm ‖f‖.

Instead, we shall consider the real interpolation spaces

Bp = [H,L1]θ,∞, 0 < θ < 1, (2.25)

with again p defined by 1/p = θ+ (1− θ)/2 = (1 + θ)/2. Recall that f ∈ [X,Y ]θ,∞ if and
only if for all t > 0, we have

K(f, t) ≤ Ctθ, (2.26)

where
K(f, t) := K(f, t,X, Y ) := inf

h∈Y
{‖f − h‖X + t‖h‖Y }, (2.27)

is the so-called K-functional. In other words, f can be decomposed into f = fX + fY

with
‖fX‖X + t‖fY ‖Y ≤ Ctθ. (2.28)

The smallest C such that the above holds defines a norm for Z = [X,Y ]θ,∞. We refer to
[8] or [7] for an introduction to interpolation spaces. The space Bp coincides with wLp

in the case when D is an orthonormal system but may differ from it for a more general
dictionary.

The main result of this section is that for both the OGA and the RGA,

‖rN‖ ≤ C0K(f,N−1/2,H,L1), N = 1, 2, . . . , (2.29)

so that, according to (2.26), f ∈ Bp implies the rate of decay ‖rN‖ <∼ N−θ/2. Note that
if fN were obtained as the action on f of a continuous linear operator LN from H onto
itself such that ‖LN‖ ≤ C with C independent of k, then we could write for any h ∈ L1

‖f − fN‖ ≤ ‖(I − LN)[f − h]‖+ ‖h− LNh‖ <∼ ‖f − h‖+ ‖h‖L1N
−1/2, (2.30)

so that (2.29) would follow by minimizing over h ∈ L1. However, fN is obtained by a
highly nonlinear algorithm and it is therefore quite remarkable that (2.29) still holds. We
first prove this for the OGA.

Theorem 2.3 For all f ∈ H and any h ∈ L1 the error of the OGA satisfies

‖rN‖2 ≤ ‖f − h‖2 + 4‖h‖2
L1
N−1, N = 1, 2, . . . , (2.31)

and therefore

‖rN‖ ≤ K(f, 2N−1/2,H,L1) ≤ 2K(f,N−1/2,H,L1), N = 1, 2, . . . . (2.32)
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Proof: Fix an arbitrary f ∈ H. For any h ∈ L1, we write

‖rk−1‖2 = 〈rk−1, h+ f − h〉 ≤ ‖h‖L1|〈rk−1, gk〉|+ ‖rk−1‖ ‖f − h‖ (2.33)

from which it follows that

‖rk−1‖2 ≤ ‖h‖L1|〈rk−1, gk〉|+
1

2
(‖rk−1‖2 + ‖f − h‖2). (2.34)

Therefore, using the shorthand notation ak := ‖rk‖2 − ‖f − h‖2, we have

|〈rk−1, gk〉| ≥
ak−1

2‖h‖L1

. (2.35)

Note that if for some k0 we have ‖rk0−1‖ ≤ ‖f − h‖, then the theorem holds trivially for
all N ≥ k0 − 1. We therefore assume that ak−1 is positive, so that we can write

|〈rk−1, gk〉|2 ≥
a2

k−1

4‖h‖2
L1

. (2.36)

From (2.14), we therefore obtain

‖rk‖2 ≤ ‖rk−1‖2 −
a2

k−1

4‖h‖2
L1

, (2.37)

which by substracting ‖f − h‖2 gives

ak ≤ ak−1(1−
ak−1

4‖h‖2
L1

). (2.38)

As in the proof of Theorem 2.1, we can conclude that aN ≤ 4‖h‖2
L1
N−1 provided that we

have initially a1 ≤ 4‖h‖2
L1

. In order to check this initial condition, we remark that either
a0 ≤ 4‖h‖2

L1
so that the same holds for a1, or a0 ≥ 4‖h‖2

L1
, in which case a1 ≤ 0 according

to (2.38), which means that we are already in the trivial case ‖r1‖ ≤ ‖f − h‖ for which
there is nothing to prove. We have therefore obtained (2.31) and (2.32) follows by taking
the square root. 2

We next treat the case of the RGA for which we have a slightly different result. In this
result, we use the second choice (2.6) for the sequence αk in order to obtain a multiplicative
constant equal to 1 in the term ‖f −h‖2 appearing on the right side the quadratic bound.
This will be important in the learning application. We also give the non-quadratic bound
with the first choice (2.5), since it gives a slightly better result than by taking the square
root of the quadratic bound based on (2.6).

Theorem 2.4 For all f ∈ H and any h ∈ L1 the error of the RGA using (2.6) satisfies

‖rN‖2 ≤ ‖f − h‖2 + 4(‖h‖2
L1
− ‖h‖2)N−1, N = 1, 2, . . . . (2.39)

and therefore

‖rN‖ ≤ K(f, 2N−1/2,H,L1) ≤ 2K(f,N−1/2,H,L1), N = 1, 2, . . . . (2.40)
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Using the first choice (2.5), the error satisfies

‖rN‖ ≤ ‖f − h‖+ (‖h‖2
L1
− ‖h‖2)1/2N−1/2, N = 1, 2, . . . , (2.41)

and therefore
‖rN‖ ≤ K(f,N−1/2,H,L1), N = 1, 2, . . . . (2.42)

Proof: Fix f ∈ H and let h ∈ L1 be arbitrary. Similar to the proof of Theorem 2.2, for
any ε > 0, we can expand h

h =
∑
g∈D

bgg, (2.43)

where all the bg are non-negative and satisfy∑
g∈D

bg = ‖h‖L1 + δ, (2.44)

with 0 ≤ δ ≤ ε. Using the notation ᾱk = 1− αk, we have for all β ∈ IR and all g ∈ D

‖rk‖2 ≤ ‖f − αkfk−1 − βg‖2

= ‖αkrk−1 + ᾱkf − βg‖2

= α2
k‖rk−1‖2 − 2αk〈rk−1, ᾱkf − βg〉+ ‖ᾱkf − βg‖2

= α2
k‖rk−1‖2 − 2αk〈rk−1, ᾱkf − βg〉+ ‖ᾱk(f − h) + ᾱkh− βg‖2

= α2
k‖rk−1‖2 − 2αk〈rk−1, ᾱkf − βg〉+ ᾱ2

k‖f − h‖2 + 2ᾱk〈f − h, ᾱkh− βg〉
+ᾱ2

k‖h‖2 − 2βᾱk〈h, g〉+ β2.

This inequality holds for all g ∈ D, so it also holds on the average with weights bgP
g∈D bg

,

which gives for the particular value β = ᾱk(‖h‖L1 + δ),

‖rk‖2 ≤ α2
k‖rk−1‖2 − 2αkᾱk〈rk−1, f − h〉+ ᾱ2

k|f − h‖2 − ᾱ2
k‖h‖2 + β2

= ‖αkrk−1 − ᾱk(f − h)‖2 − ᾱ2
k‖h‖2 + β2.

Letting ε tend to 0 and using the notation M := ‖h‖2
L1
− ‖h‖2, we thus obtain

‖rk‖2 ≤ (αk‖rk−1‖+ ᾱk‖(f − h)‖)2 + ᾱ2
kM. (2.45)

Note that this immediately implies the validity of (2.39) and (2.41) at N = 1, using that
α1 = 0 for both choices (2.5) and (2.6). We next proceed by induction, assuming that
these bounds hold at k − 1.

For the proof of (2.41) we derive from (2.45)

‖rk‖2 ≤ (αk(‖f − h‖+ ( M
k−1

)1/2) + ᾱk‖f − h‖)2 + ᾱ2
kM

= (‖f − h‖+ αk(
M

k−1
)1/2)2 + ᾱ2

kM

= ‖f − h‖2 + 2M1/2‖f − h‖ 1− 1
k√

k−1
+M(

(1− 1
k
)2

k−1
+ 1

k2 )

= ‖f − h‖2 + 2M1/2‖f − h‖
√

k−1
k

+ M
k

≤ ‖f − h‖2 + 2(M
k

)1/2‖f − h‖+ M
k

= (‖f − h‖+ (M
k

)1/2)2,
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which is the desired bound at k.
For the proof of (2.39), we derive from (2.45)

‖rk‖2 ≤ α2
k‖rk−1‖2 + 2αkᾱk‖rk−1‖ ‖(f − h)‖+ ᾱ2

k‖(f − h)‖2 + ᾱ2
kM. (2.46)

Remarking that 2αkᾱk‖rk−1‖ ‖(f − h)‖ ≤ αkᾱk(‖rk−1‖2 + ‖f − h‖2), we obtain

‖rk‖2 ≤ αk‖rk−1‖2 + ᾱk‖(f − h)‖2 + ᾱ2
kM, (2.47)

and therefore for

‖rk‖2 − ‖f − h‖2 ≤ αk(‖rk−1‖2 − ‖f − h‖2) + ᾱ2
kM. (2.48)

We now check by induction that a sequence (ak)k>0 of positive numbers such that a1 ≤ 4M
and ak ≤ (1− 2

k
)ak−1 + 4

k2M for all k > 1 has the decay property an ≤ 4M
n

for all n > 0.
Indeed, assuming that an−1 ≤ 4M

n−1
, we obtain

an − 4M
n

≤ (1− 2
n
) 4M

n−1
+ 4

n2M − 4M
n

= M(4(n−2)−4(n−1)
n(n−1)

+ 4
n2 )

= M( 4
n2 − 4

n(n−1)
) ≤ 0.

Applying this with ak = ‖rk‖2 − ‖f − h‖2, we thus obtain (2.39) and (2.40) follows by
taking the square root. 2

An immediate consequence of Theorems 2.3 and 2.4 combined with the definition of
the Bp spaces (see (2.26)) is a rate of convergence of the OGA and RGA for the functions
in Bp.

Corollary 2.5 For all f ∈ Bp, the approximation error for both the OGA and RGA
satisfy the decay bound

‖rN‖ <∼ ‖f‖BpN
−s, (2.49)

with s = 1/p− 1/2. Therefore we have Bp ⊂ Gs ⊂ As.

In addition, when D is a complete family in H we know that L1 is dense in H so that

lim
t→0

K(f, t,H,L1) = 0, (2.50)

for any f ∈ H. This implies the following corollary.

Corollary 2.6 For any f ∈ H, the approximation error ‖rN‖ goes to zero as N → +∞
for both the OGA and RGA.
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2.3 Orthogonal greedy algorithm and thresholding

We shall show in this section that the OGA can be monitored by thresholding in a similar
way to an orthonormal basis. We set a threshold t > 0 and iterate the orthonormal
greedy algorithm as long as |〈rk−1, gk〉| > t. We define kt as the smallest k such that
|〈rk, gk+1〉| ≤ t.

In the case where D is an orthonormal basis, we know that whenever the coefficients
of f are in w`p, then

kt ≤ ‖f‖p
wLp

t−p, (2.51)

and
‖rkt‖ <∼ ‖f‖p/2

wLp
t1−p/2. (2.52)

The following result for a general dictionary D shows that when f ∈ L1 or f ∈ Bp with
1 < p < 2, both the complexity kt and the error ‖rkt‖ can be controlled in a similar way
by the threshold t.

Theorem 2.7 Let D be an arbitrary dictionary. If f ∈ Bp, 1 < p < 2, then

kt <∼ ‖f‖p
Bp
t−p, (2.53)

and
‖rkt‖ <∼ ‖f‖p/2

Bp
t1−p/2. (2.54)

If f ∈ L1, the same result holds with p = 1.

Remark 2.8 Notice that the bounds in the theorem show that for kt iterations of the
greedy algorithm we obtain ‖rkt‖ ≤ Ck−s

t with s := 1/p−1/2. Thus, thresholding produces
the same approximation rates as given in Corollary 2.5.

Proof of Theorem: We first prove (2.53). Since

|〈rk−1, gk〉|2 ≤ ‖rk−1‖2 − ‖rk‖2, (2.55)

it follows that ∑
l>k

|〈rl−1, gl〉|2 ≤ ‖rk‖2. (2.56)

Using Corollary 2.5, we have for s = 1/p− 1/2,

kt

2
t2 <

∑
kt
2

<l≤kt

|〈rl−1, gl〉|2 ≤ ‖rkt/2‖2 <∼ ‖f‖2
Bp
k−2s

t . (2.57)

From this, we derive
k1+2s

t
<∼ ‖f‖2

Bp
t−2, (2.58)

which is equivalent to (2.53). The same argument applies in the case p = 1.
We next prove (2.54). In the case p = 1, we already know from (2.15) that

‖rkt‖2 ≤ ‖f‖L1|〈rkt , gkt+1〉|. (2.59)
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Since |〈rkt , gkt+1〉| ≤ t, it follows that

‖rkt‖ ≤ ‖f‖1/2
L1
t1/2. (2.60)

In the case 1 < p < 2, we know f ∈ Bp implies that

K(f, u) ≤ ‖f‖Bpu
θ, u ≥ 0, (2.61)

with θ = 2/p− 1. Therefore, taking u such that ‖f‖Bpu
θ = ‖rkt‖/2, we know that there

exists h ∈ L1 such that ‖h− f‖ ≤ ‖rkt‖/2 and u‖h‖L1 ≤ ‖rkt‖/2. From (2.33), we obtain

‖rkt‖2 ≤ 2‖h‖L1|〈rkt , gkt+1〉| <∼ ‖rkt‖1−1/θ‖f‖1/θ
Bp
|〈rkt , gkt+1〉|, (2.62)

and therefore
‖rkt‖1+1/θ <∼ ‖f‖1/θ

Bp
|〈rkt , gkt+1〉|, (2.63)

from which (2.54) follows since |〈rkt , gkt+1〉| ≤ t. 2

2.4 Greedy algorithms with a truncated dictionary

In concrete applications it is not possible to evaluate the supremum of |〈rk−1, g〉| over the
whole dictionary D, but only over a finite subset of it. For applications in learning theory,
it will also be useful that the size of this subset has at most polynomial growth in the
number of samples n. We therefore introduce a fixed exhaustion of D,

D1 ⊂ D2 ⊂ · · · ⊂ D (2.64)

with #(Dm) = m. The analysis we present in this section is similar to that in [23]. We
are now interested in the functions f which can be approximated at a certain accuracy
by application of the OGA only using the elements of Dm. For this purpose, we first
introduce the space L1(Dm) of those functions in Span(Dm) equipped with the (minimal)
`1 norm of the coefficients. We next define for r > 0 the space L1,r as the set of all
functions f such that for all m, there exists h (depending on m) such that

‖h‖L1(Dm) ≤ C, (2.65)

and
‖f − h‖ ≤ Cm−r. (2.66)

The smallest constant C such that this holds defines a norm for L1,r. In order to under-
stand how these spaces are related to the space L1 for the whole dictionary consider the
example where D is a Schauder basis, and consider the decomposition of f into

f =
∑

g∈Dm

cgg +
∑

g/∈Dm

cgg = h+ f − h. (2.67)

Then it is obvious that ‖h‖L1(Dm) ≤ ‖f‖L1 . Therefore, a sufficient condition for f to be
in L1,r is f ∈ L1 and its tail ‖

∑
g/∈Dm

cgg‖ decays like m−r.
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Application of Theorems 2.3 and 2.4 shows us that if we apply the OGA or RGA with
the restricted dictionary and if the target function f is in L1,r we have

‖rk‖ ≤ C0‖f‖L1,r(k
−1/2 +m−r), (2.68)

where C0 is an absolute constant (C0 = 2 for OGA and C0 = 1 for RGA with choice
(2.5)).

In a similar manner, we can introduce the interpolation space

Bp,r := [H,L1,r]θ,∞, (2.69)

with again 1/p = (1 + θ)/2. From the definition of interpolation spaces, if f ∈ Bp,r, then
for all t > 0 there exists f̃ ∈ L1,r such that

‖f̃‖L1,r ≤ ‖f‖Bp,rt
θ−1, (2.70)

and
‖f − f̃‖ ≤ ‖f‖Bp,rt

θ. (2.71)

We also know that for all m, there exists h (depending on m) such that

‖h‖L1(Dm) ≤ ‖f̃‖L1,r ≤ ‖f‖Bp,rt
θ−1 (2.72)

and
‖f̃ − h‖ ≤ ‖f̃‖L1,rm

−r ≤ ‖f‖Bp,rt
θ−1m−r, (2.73)

so that by the triangle inequality

‖f − h‖ ≤ ‖f‖Bp,r(t
θ + tθ−1m−r). (2.74)

Application of Theorems 2.3 and 2.4 shows us that if we apply the OGA or RGA with
the restricted dictionary and if the target function f is in Bp,r we have for any t > 0,

‖rk‖ ≤ C0‖f‖Bp,r(t
θ−1k−1/2 + tθ + tθ−1m−r). (2.75)

In particular, taking t = k−1/2 and noting that θ = 2s gives

‖rk‖ ≤ C0‖f‖Bp,r(k
−s + k1/2−sm−r). (2.76)

We therefore recover the rate of Corollary 2.5 up to an additive perturbation which tends
to 0 as m→ +∞.

Let us close this section by making some remarks on the spaces Bp,r. These spaces
should be viewed as being slightly smaller than the spaces Bp. The smaller the value of
r > 0 the smaller the distinction between Bp and Bp,r. Also note that the classes Bp,r

depend very much on how we exhaust the dictionary D. For example, if D = B0 ∪ B1 is
the union of two bases B0 and B1, then exhausting the elements of B0 faster than those
of B1 will result in different classes then if we exhaust those of B1 faster than those of
B0. However, in concrete settings there is usually a natural order in which to exhaust the
dictionary.
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2.5 Selecting gk

In each of the two algorithms OGA and RGA, each iteration updates the current approx-
imation by using the function gk which maximizes |〈r̃k−1, gk〉|, with r̃k−1 := rk−1 in the
OGA and r̃k−1 := f − αkfk−1 in the RGA. The choice of gk can be modified by selecting
instead a function g∗k such that

|〈r̃k−1, g〉| ≥ γmax |〈r̃k−1, g〉| (2.77)

for some fixed 0 < γ < 1, and using g∗k in place of gk in defining fk. The results we
have presented thus far would remain valid with this change however the proofs would
require modification, as well as the multiplicative constants in the bounds. For example
in the proof of Theorem 2.3 the key inequality (2.35) would be modified and involve γ. In
practice it might be easier to implement the search for a g∗k rather than gk. For a general
treatment of these ideas see [22] and [24].

3 Application to statistical learning

3.1 Notations and definition of the estimator

We consider the classical bounded regression problem. We observe n independent real-
izations (zi) = (xi, yi), i = 1, · · · , n, of an unknown distribution ρ on Z = X × Y . We
assume here that the output variable satisfies almost surely

|y| ≤ B, (3.1)

where the bound B is known to us. We denote by

fρ(x) = E(y|x), (3.2)

the regression function which minimizes the quadratic risk

R(f) := E(|f(x)− y|2), (3.3)

over all functions f . For any f we have

R(f)−R(fρ) = ‖f − fρ‖2 (3.4)

where we use the notation

‖u‖2 := E(|u(x)|2) = ‖u‖2
L2(ρX), (3.5)

with ρX the marginal probabilty measure defined on X. We are therefore interested in
constructing from our data an estimator f̂ such that ‖f̂ − fρ‖2 is small. Since f̂ depends
on the realization of the training sample z := (zi) ∈ Zn, we shall measure the estimation
error by the expectation E(‖f̂ − fρ‖2) taken with respect to ρn.

Given our training sample z, we define the empirical norm

‖f‖2
n :=

1

n

n∑
i=1

|f(xi)|2. (3.6)
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Note that ‖ · ‖n is the L2 norm with respect to the discrete measure νx :=
∑N

i=1 δxi
with

δu the Dirac measure at u. As such the norm depends on x := (x1, . . . , xn) and not just n
but we adopt the notation (3.6) to conform with other major works in learning. We view
the vector y := (y1 . . . , yn) as a function y defined on the design x := (x1, . . . , xn) with
y(xi) = yi. Then, for any f defined on x,

‖y − f‖2
n :=

1

n

n∑
i=1

|yi − f(xi)|2, (3.7)

is the empirical risk for f .
In order to bound fρ from the given data z we shall use the greedy algorithms OGA

and RGA described in the previous section. We choose an arbitrary value of a ≥ 1 and
then fix it. We consider a dictionary D and truncations of this dictionary D1,D2, . . . as
described in §2.4. Given our data size n, we choose

m := m(n) := bnac. (3.8)

We will use approximation from the span of the dictionary Dm in our algorithm
Our estimator is defined as follows.

(i) Given a data set z of size n, we apply the OGA, SPA or the RGA for the dictionary
Dm to the function y using the empirical inner product associated to the norm ‖·‖n.
In the case of the RGA, we use the second choice (2.6) for the parameter αk. This
gives a sequence of functions (f̂k)

∞
k=0 defined on x.

(ii) We define the estimator f̂ := T f̂k∗ , where Tu := TB min{B, |u|}sgn(u) is the trunca-
tion operator at level B and k∗ is chosen to minimize (over all k > 0) the penalized
empirical risk

‖y − T f̂k‖2
n + κ

k log n

n
, (3.9)

with κ > 0 a constant to be fixed later.

We make some remarks about this algorithm. First note that for k = 0 the penalized
risk is bounded by B2 since f̂0 = 0 and |y| ≤ B. This means that we need not run the
greedy algorithm for values of k larger than Bn/κ. Second, our notation f̂ suppresses the
dependence of the estimator on z which is again customary notation in statistics. The
application of the k-th step of the greedy algorithms requires the evaluation of O(na)
inner products. In the case of the OGA we also need to compute the projection of y onto
a k dimensional space. This could be done by doing Gramm-Schmidt orthogonalization.
Assuming that we already had computed an orthonormal system for step k−1 this would
require an additional evaluation of k − 1 inner products and then a normalization step.
Finally, the truncation of the dictionary D is not strictly needed in some more specific
cases, such as neural networks (see §4).

In the following, we want to analyze the performance of our algorithm. For this
analysis, we need to assume something about fρ. To impose conditions on fρ, we shall
also view the elements of the dictionary normalized in the L2(ρX) norm ‖ · ‖. With this
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normalization, we denote by L1, Bp, L1,r and Bp,r the space of functions that have been
previously introduced for a general Hilbert space H. Here, we have H = L2(ρX).

Finally, we denote by Ln
1 the space of functions which admit an `1 expansion in the

dictionary when the elements are normalized in the empirical norm ‖ · ‖n. This space
is again equiped with a norm defined as the smallest `1 norm among every admissible
expansion. Similarly to ‖ · ‖n this norm depends on the realization of the design x.

3.2 Error analysis

In this section, we establish our main result which will allow us in the next section to
analyze the performance of the estimator under various smoothness assumptions on fρ.

Theorem 3.1 There exists κ0 depending only on B and a such that if κ ≥ κ0, then for
all k > 0 and for all functions h in Span(Dm), the estimator satisfies

E(‖f̂ − fρ‖2) ≤ 8
‖h‖2

L1(Dm)

k
+ 2‖fρ − h‖2 + C

k log n

n
, (3.10)

where the constant C only depends on κ, B and a.

The proof of Theorem 3.1 relies on a few preliminary results that we collect below.
The first one is a direct application of Theorem 3 from [18] or Theorem 11.4 from [13].

Lemma 3.2 Let F be a class of functions which are all bounded by B. For all n and
α, β > 0, we have

Pr{∃f ∈ F : ‖f − fρ‖2 ≥ 2(‖y − f‖2
n − ‖y − fρ‖2

n) + α+ β}

≤ 14 sup
x
N

( β

40B
,F , L1(νx)

)
exp

(
− αn

2568B4

)
, (3.11)

where x = (x1, . . . , xn) ∈ Xn, and N (t,F , L1(νx)) is the covering number for the class F
by balls of radius t in L1(νx) with νx := 1

n

∑n
i=1 δxi

the empirical discrete measure.

Proof: This follows from Theorem 11.4 of [13] by taking ε = 1/2 in that theorem. 2

We shall apply this result in the the following setting. Given any set Λ ⊂ D, we
denote by GΛ := span{g : g ∈ Λ} and we denote by TGΛ := {Tf : f ∈ GΛ} the set of all
truncations of the elements of GΛ where T = TB as before. We then define

Fk :=
⋃

Λ⊂Dm,#(Λ)≤k

TGΛ. (3.12)

The following result gives an upper bound for the entropy numbers N (t,Fk, L1(νx)).

Lemma 3.3 For any probability measure ν, for any t > 0, and for any Λ with cardinality
k we have the bound

N (t, TGΛ, L1(ν)) ≤ 3
(2eB

t
log

3eB

t

)k+1

. (3.13)

Additionally,

N (t,Fk, L1(ν)) ≤ 3nak
(2eB

t
log

3eB

t

)k+1

. (3.14)
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Proof: For each Λ with cardinality k, Theorem 9.4 in [13] gives

N (t, TGΛ, L1(ν)) ≤ 3
(2eB

t
log

3eB

t

)VΛ

(3.15)

with VΛ the V C dimension of the set of all subgraphs of TGΛ. It is easily seen that VΛ is
smaller than the V C dimension of the set of all subgraphs of GΛ, which by Theorem 9.5 in
[13] is less than k + 1. This establishes (3.13). Since there are less than nak possible sets
Λ, the result (3.14) follows by taking the union of the coverings for all TGΛ as a covering
for Fk. 2

Finally, we shall need a result that relates the L1 and Ln
1 norms.

Lemma 3.4 Given any dictionary D, for all functions h in Span(D), we have

E(‖h‖2
Ln

1
) ≤ ‖h‖2

L1
. (3.16)

Proof: We normalize the elements of the dictionary in ‖ · ‖ = ‖ · ‖H. Given any h =∑
g∈D cgg and any z of length n, we write

h =
∑
g∈D

cgg =
∑
g∈D

cng
g

‖g‖n

, (3.17)

with cng := cg‖g‖n. We then observe that

E((
∑

g∈D |cng |)2) =
∑

(g,g′)∈D×D |cgcg′|E(‖g‖n‖g′‖n)

≤
∑

(g,g′)∈D×D |cgcg′|
(
E(‖g‖2

n)E(‖g′‖2
n)

)1/2

=
∑

(g,g′)∈D×D |cgcg′|
(
‖g‖2‖g′‖2

)1/2

=
∑

(g,g′)∈D×D |cgcg′|
= (

∑
g∈D |cg|)2.

The result follows by taking the infimum over all possible admissible (cg) and using the
fact that

E(inf[
∑
g∈D

|cng |]2) ≤ inf E([
∑
g∈D

|cng |]2). (3.18)

2

Proof of Theorem 3.1: We write

‖f̂ − fρ‖2 = T1 + T2, (3.19)

where

T1 := ‖f̂ − fρ‖2 − 2(‖y − f̂‖2
n − ‖y − fρ‖2

n + κ
k∗ log n

n
), (3.20)

and

T2 := 2(‖y − f̂‖2
n − ‖y − fρ‖2

n + κ
k∗ log n

n
). (3.21)
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From the definition of our estimator, we know that for all k > 0, we have

T2 ≤ 2(‖y − f̂k‖2
n − ‖y − fρ‖2

n + κ
k log n

n
). (3.22)

Therefore, for all k > 0 and h ∈ L2(ρX), we have T2 ≤ T3 + T4 with

T3 := 2(‖y − f̂k‖2
n − ‖y − h‖2

n), (3.23)

and

T4 := 2(‖y − h‖2
n − ‖y − fρ‖2

n) + 2κ
k log n

n
. (3.24)

We now bound the expectations of T1, T3 and T4. For the last term, we have

E(T4) = 2E(|y − h(x)|2 − |y − fρ(x)|2) + 2κ
k log n

n
= 2‖fρ − h‖2 + 2κ

k log n

n
. (3.25)

For T3, we know from Theorems 2.3 and 2.4, that we have

‖y − f̂k‖2
n − ‖y − h‖2

n ≤ 4
‖h‖2

Ln
1

k
. (3.26)

Using in addition Lemma 3.4, we thus obtain

E(T3) ≤ 8
‖h‖2

L1

k
. (3.27)

For T1, we introduce Ω, the set of z ∈ Zn for which

‖f̂ − fρ‖2 ≥ 2(‖y − f̂‖2
n − ‖y − fρ‖2

n + κ
k∗ log n

n
). (3.28)

Since T1 ≤ ‖f̂ − fρ‖2 + 2‖y − fρ‖2
n ≤ 6B2, we have

E(T1) ≤ 6B2 Pr(Ω). (3.29)

We thus obtain that for all k > 0 and for all h ∈ L2(ρX), we have

E(‖f̂ − fρ‖2) ≤ 8
‖h‖2

L1

k
+ 2‖fρ − h‖2 + 2κ

k log n

n
+ 6B2 Pr(Ω). (3.30)

It remains to bound Pr(Ω). Since k∗ can take an arbitrary value depending on the sample
realization, we simply control this quantity by the union bound∑

1≤k≤Bn/κ

Pr{∃f ∈ Fk : ‖f − fρ‖2 ≥ 2(‖y − f‖2
n − ‖y − fρ‖2

n) + 2κ
k log n

n
}. (3.31)

Denoting by pk each term of this sum, we obtain by Lemma 3.2

pk ≤ 14 sup
x
N

( β

40B
,Fk, L1(νx)

)
exp

(
− αn

2568B4

)
(3.32)
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provided α + β ≤ 2κk log n
n

. Assuming without loss of generality that κ > 1, we can take

α := κk log n
n

and β = 1/n, from which it follows that

pk ≤ 14 sup
x
N

( 1

40Bn
,Fk, L1(νx)

)
n−

κk
2568B4 . (3.33)

Using Lemma 3.3, we finally obtain

pk ≤ Cnakn2(k+1)n−
κ

2568B4 , (3.34)

so that by choosing κ ≥ κ0 large enough, we always have pk ≤ Cn−2. It follows that

Pr(Ω) ≤
∑

k≤Bn
κ

pk ≤
C

n
. (3.35)

This contribution is therefore absorbed in the term 2κk log n
n

in the main bound and this
concludes our proof. 2

3.3 Rates of convergence and universal consistency

In this section, we apply Theorem 3.1 in several situations which correspond to different
prior assumptions on fρ. We first consider the case where fρ ∈ L1,r. In that case, we know
that for all m there exists h ∈ Span(Dm) such that ‖h‖L1(Dm) ≤M and ‖fρ−h‖ ≤Mm−r

with M := ‖fρ‖L1,r . Therefore Theorem 3.1 yields

E(‖f̂ − fρ‖2) ≤ Cmin
k>0

(M2

k
+M2n−2ar +

k log n

n

)
. (3.36)

In order that the effect of truncating the dictionary does not affect the estimation bound,
we make the assumption that 2ar ≥ 1. This allows us to delete the middle term in (3.36).
Note that this is not a strong additional restriction over fρ ∈ L1 since a can be fixed
arbitrarily large.

Corollary 3.5 If fρ ∈ L1,r with r > 1/2a, then

E(‖f̂ − fρ‖2) ≤ C(1 + ‖f‖L1,r)
( n

log n

)−1/2

. (3.37)

Proof: We take k := d(M + 1)2 n
log n

e1/2 in (3.36) and obtain the desired result. 2

We next consider the case where fρ ∈ Bp,r. In that case, we know that for all m
and for all t > 0, there exists h ∈ Span(Dm) such that ‖h‖L1 ≤ Mtθ−1 (see (2.72)) and
‖fρ − h‖ ≤ M(tθ + tθ−1m−r) (see (2.74)), with 1/p = (1 + θ)/2 and with M = ‖f‖Bp,r .
Taking t = k−1/2 and applying Theorem 3.1, we obtain

E(‖f̂ − fρ‖2) ≤ Cmin
k>0

(
M2k−2s +M2(k−s + k−s+1/2n−ar)2 +

k log n

n

)
, (3.38)

with s = 1/p − 1/2. We now impose that ar ≥ 1/2 which allows us to delete the term
involving n−ar.
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Corollary 3.6 If fρ ∈ Bp,r with r ≥ 1/(2a),

E(‖f̂ − fρ‖2) ≤ C(1 + ‖fρ‖Bp,r)
2

2s+1

( n

log n

)− 2s
1+2s

. (3.39)

with C a constant depending only on κ, B and a,

Proof: We take k := d(M + 1)2 n
log n

e
s

1+2s in (3.36) and obtain the desired result. 2

Let us finally prove that the estimator is universally consistent. For this we need to
assume that the dictionary D is complete in L2(ρX).

Theorem 3.7 For an arbitrary regression function, we have

lim
n→+∞

E(‖f̂ − fρ‖2) = 0. (3.40)

Proof For any ε > 0, we can find m0 such that for m ≥ m0 there exists h ∈ Span(Dm)
which satisfies ‖f − h‖ ≤ ε. According to Theorem 3.1, we thus have

E(‖f̂ − fρ‖2) ≤ Cmin
k>0

(‖h‖2
L1

k
+ ε2 +

k log n

n

)
. (3.41)

Taking k = n1/2, this gives

E(‖f̂ − fρ‖2) ≤ C(ε2 + n−1/2 log n
)
, (3.42)

which is smaller than 2Cε2 for n large enough. 2

Remark 3.8 We have seen in §2.4 that the OGA can be monitored by a thresholding
procedure, similar to an orthonormal basis. It is therefore tempting to adopt another
approach for selecting the proper value k∗ in the case where we are using the OGA. take
for k∗ the largest value such that the coefficient |〈r̂k−1, gk〉n| is larger than a threshold tn
of the order ( log n

n
)1/2, which is the universal threshold proposed e.g. in wavelet shrinkage

methods [11, 12]. Although we were not able to prove it so far, we conjecture that this
approach yields the same convergence rates that we have proved for our estimator.

Finally, we remark that although our results for the learning problem are stated and
proved for the OGA and RGA, they hold equally well when the SGA is employed.

4 Neural networks

Neural networks have been one of the main motivations for the use of greedy algorithms
in statistics [2, 4, 14, 18]. They correspond to a particular type of dictionary. One
begins with a univariate positive and increasing function σ that satisfies σ(−∞) = 0 and
σ(+∞) = 1 and defines the dictionary consisting of all functions

x 7→ σ(〈v, x〉+ w) (4.1)
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for all vectors v ∈ IRD and scalar w ∈ IR where D is the dimension of the feature variable
x. Typical choices for σ are the Heaviside function h = χx>0 or more general sigmoidal
functions which are regularized version of h.

In [18], the authors consider neural networks where σ is the Heaviside function and
the vectors v are restricted to have at most d non-zero coordinates (d-bounded fan-in) for
some fixed d ≤ D. We denote this dictionary by D̃. With this choice of dictionary and
using the standard relaxed greedy algorithm, they establish the convergence rate

E(‖f̂k − fρ‖2 − ‖fρ − fa‖2) <∼
1

k
+ kd

log(Dn)

n
, (4.2)

where fa is the projection of fρ onto the convex hull of the dictionary D̃. This can also
be expressed by

E(‖f̂k − fa‖2) <∼
1

k
+ kd

log(Dn)

n
, (4.3)

which shows that with the choice k = n1/2, the estimator converges to fa with rate n−1/2

up to a logarithmic factor. In particular, the algorithm is not universally consistent since
it only converges to the regression function when it belongs to this convex hull.

4.1 Convergence results

Let us apply our results to this particular setting. We want to first note that in this
case it is not necessary to truncate the dictionary D̃ into a finite dictionary in order to
achieve our theoretical results. The truncation of dictionaries was used in the proof of
Theorem 3.1 to bound the covering numbers of the sets Fk through the bound established
in Lemma 3.3. In the specific case of D̃, one can bound these covering numbers without
truncation. Let us note that in this case

Fk :=
⋃

Λ⊂D̃,#(Λ)≤k

TGΛ (4.4)

where we no longer have the restriction that Λ is in D̃m.

Lemma 4.1 For the dictionary D̃ and for any probability measure ν of the type ν =
1
n

∑n
i=1 δxi

, and for any k > 0 and t > 0 we have the bound

N (t,Fk, L1(ν)) ≤ 3(n+ 1)k(D+1)
(2eB

t
log

3eB

t

)k+1

(4.5)

where the sets Fk are defined as in (4.4)

Proof: As in the proof of Lemma 3.3, we first remark that

N (t, TGΛ, L1(ν)) ≤ 3
(2eB

t
log

3eB

t

)k+1

. (4.6)

We next use two facts from Vapnik-Chervonenkis theory (see for example Chapter 9 in
[13]) : (i) if A is a collection of sets with VC dimension λ, there are at most (n+ 1)λ sets
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of A separating the points (x1, · · · , xn) in different ways, and (ii) the VC dimension of the
collection of half-hyperplanes in IRD has VC dimension D + 1. It follows that there are
at most (n + 1)D+1 hyperplanes separating the points (x1, · · · , xn) in different ways, and
therefore there are at most (n+ 1)k(D+1) ways of picking (g1, · · · , gk) in D which will give
different functions on the sample (x1, · · · , xn). The result follows by taking the union of
the coverings on all possible k-dimensional subspaces. 2.

Remark 4.2 Under the d-bounded fan-in assumption, the factor (n + 1)k(D+1) can be

reduced to Dkd
(

en
d+1

)k(d+1)

, see the proof of Lemma 3 in [18].

Based on this bound, a brief inspection of the proof of Theorem 3.1 show that its
conclusion still holds, now with κ0 depending on B and D. It follows that the rates of
convergence in Corollaries 3.5 and 3.6 now hold under the sole assumptions that f ∈ L1

and f ∈ Bp respectively. On the other hand, the universal consistency result in Theorem
3.7 requires that the dictionary is complete in L2(ρX), which only holds when d = D, i.e.
all direction vectors are considered.

Theorem 3.1 improves in two ways the bound (4.2) of [18]: on the one hand fa is
replaced by an arbitrary function h which can be optimized, and on the other hand the
value of k can also be optimized.

4.2 Smoothness conditions

Let us finally briefly discuss the meaning of the conditions f ∈ L1 and f ∈ Bp in the case
of a dictionary D consisting of the functions (4.1) for a fixed σ and for all v ∈ IRD and
w ∈ IR. The following can be deduced from a classical result obtained in [4] : assuming
that the marginal distribution ρX is supported in a ball Br := {|x| ≤ r}, for any function
f having a converging Fourier representation

f(x) =

∫
Ff(ω)ei〈ω,x〉dω, (4.7)

the smoothness condition ∫
|ω||Ff(ω)|dω < +∞, (4.8)

ensures that
‖f‖L1 ≤ (2rCf + |f(0)|) ≤ 2rCf + ‖f‖L∞ , (4.9)

with Cf :=
∫
|ω||Ff(ω)|dω. Barron actually proves that condition (4.8) ensures that

f(x) − f(0) lies in the closure of the convex hull of D multiplied by 2rCf , the closure
being taken in L2(ρX) and the elements of the dictionary being normalized in L∞. The
bound (4.9) follows by remarking that the L∞ norm controls the L2(ρX) norm.

We can therefore obtain smoothness conditions which ensure that f ∈ Bp by interpo-
lating between the condition ωFf(ω) ∈ L1 and f ∈ L2(ρX).

In the particular case where ρX is continuous with respect to the Lebesgue measure,
i.e. ρX(A) ≤ c|A|, we know that a sufficient condition to have f ∈ L2(ρX) is given by
Ff ∈ L2.
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We can then rewrite the two conditions that we want to interpolate as |ω|−1|Ff(ω)| ∈
L1(|ω|2dω) and |ω|−1|Ff(ω)| ∈ L2(|ω|2dω). Therefore by standard interpolation argu-
ments, we obtain that a sufficient condition for a bounded function f to be in Bp is given
by

|ω|−1|Ff(ω)| ∈ wLp(|ω|2dω), (4.10)

or in other words

sup
η>0

ηp

∫
χ{|Ff(ω)|≥η|ω|}|ω|2dω < +∞. (4.11)

A slightly stronger, but simpler condition is

|ω|−1|Ff(ω)| ∈ Lp(|ω|2dω), (4.12)

which reads ∫
|ω|2−p|Ff(ω)|pdω < +∞. (4.13)

When ρX is arbitrary, a sufficient condition for f ∈ L2(ρX) is Ff ∈ L1, which actually
also ensures that f ∈ L∞. In that case, we can again apply standard interpolation
arguments and obtain that a sufficient condition for a bounded function f to be in Bp is
given by

sup
A>0

A1−2/p

∫
|ω|≥A

|Ff(ω)|dω < +∞. (4.14)

A slightly stronger, but simpler condition is∫
|ω|2/p−1|Ff(ω)|dω < +∞. (4.15)

Remark 4.3 Note that truncating the dictionary might still be of practical importance
in order to limit the computational complexity of the algorithm. Such a truncation can
be done by restricting to a finite number m of direction vectors v, which typically grows
together with sample size n. In this case, we need to consider the spaces L1,r and Bp,r which
contain an additional smoothness assumption compared to L1 and Bp. This additional
amount of smoothness is meant to control the error resulting from the discretization of
the direction vectors. We refer to [20] for general results on this problem.
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