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h are goal{oriented inthe sense that a fun
tional of the solution of a linear ellipti
 PDE is 
omputedup to arbitrary a

ura
y at possibly low 
omputational 
ost measured in terms ofdegrees of freedom. In parti
ular, we propose a s
heme that 
an be shown to exhibit
onvergen
e to the target value without insisting on energy norm 
onvergen
e ofthe primal solution. The theoreti
al �ndings are 
omplemented by �rst numeri
alexperiments.1 Introdu
tionThe importan
e of adaptive solution 
on
epts for large s
ale 
omputationaltasks arising in Numeri
al Simulation based on PDEs or integral equations isnowadays well a

epted. The eviden
e provided by numeri
al experien
e is,however, nor quite in par with the theoreti
al foundation of su
h s
hemes.A thorough analyti
al understanding, in turn, has re
ently proven to lead tonew algorithmi
 paradigms in 
onne
tion with wavelet based s
hemes. Rigor-ous 
omplexity and 
onvergen
e estimates were obtained for adaptive waveletmethods for a wide 
lass of linear and nonlinear variational problems, see, e.g.,[8, 9, 12, 14℄. These estimates relate for the �rst time the 
omputational workand the adaptively generated number of degrees of freedom to the target a

u-ra
y of the approximate solution. This a

ura
y refers to the approximationin some (energy) norm, i.e., the whole unknown solution is re
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2 Wolfgang Dahmen, Angela Kunoth, and J�urgen Vorloeperdevelopments have meanwhile spilled over to the Finite Element setting whereanalogous results 
ould be obtained for a mu
h more restri
ted problem 
lass,though, see, e.g., [3, 24℄.However, in many appli
ations one is only interested in some fun
tionalof the solution whi
h, in parti
ular, might be lo
al su
h as point values orintegrals on some lower dimensional manifold. In su
h a 
ase one might expe
tto obtain the desired information at a mu
h lower expense than 
omputing thewhole solution. This is exa
tly the obje
tive of goal-oriented error estimationwhi
h gives rise to the so 
alled dual weighted residual method (DWR), see,e.g., [4℄ and the referen
es 
ited therein.Many striking examples indi
ate that one may indeed rea
h the goal withthe aid of this paradigm at the expense of mu
h less 
omputational work in
omparison with s
hemes driven by norm approximation. On the other hand,a rigorous analysis of the DWR fa
es a number of severe obstru
tions related,in parti
ular, to the fa
t that the 
entral error representation involves the(unknown) solution to the dual problem. Thus, the dual solution has to beestimated along the way. Although this problem arises, in prin
iple, alreadywhen dealing with linear problems, it be
omes more deli
ate in the nonlinear
ase sin
e the dual solution depends then on the primal one. It is fair to saythat the mutual intertwinement of the a

ura
ies of dual and primal solutions,espe
ially with regard to the spatial distribution of degrees of freedom, is farfrom a rigorous understanding. It is not even 
lear in the linear 
ase thatadaptive re�nements based on the pra
ti
ed versions of the DWR paradigma
tually 
onverge in the sense that the sear
hed value is a
tually approa
hedbetter and better by the 
omputed one as the re�nement goes on. It is thisissue that will be the primary 
on
ern of this paper.To appre
iate this issue, it is helpful to keep a few prin
ipal fa
ts in mind.Approximability of a fun
tion in some norm 
an always be understood in termsof the regularity of that fun
tion (with respe
t to some non
lassi
al regularitymeasure). In a typi
al appli
ation of the DWR, adaptivity is not driven bythe regularity of the sear
hed for obje
t, but primarily by the lo
ality of thetargeted information, 
onveyed by the dual solution whi
h is often termedgeneralized Green's fun
tion, see, e.g., [19℄. This generalized Green's fun
tionindi
ates the in
uen
e of parts of the primal solution away from the spatiallo
ation of the target fun
tional. Thus, the experien
e gained with adaptivewavelet s
hemes for energy norm approximation is not immediately seen tobe helpful in the 
ontext of the DWR.Nevertheless, the primary goal of this paper is to 
ontribute to the under-standing of the DWR by looking at this paradigm from a wavelet point of view.Here is a rough indi
ation why this might indeed be a promising perspe
tive:The key to the above mentioned results from [8, 9℄ is to formulate an iteration(e.g., a gradient or a Newton s
heme) for the full in�nite dimensional problemformulated in wavelet 
oordinates. This idealized iteration is then mimi
kedby the adaptive evaluation of the involved operators within any desired error



Title Suppressed Due to Ex
essive Length 3toleran
e. Staying in that sense 
ontrollably 
lose to the in�nite dimensionalproblem may therefore be expe
ted to help also in the 
ontext of the DWR.In this note we wish to explore this aspe
t for an admittedly simple 
lass ofmodel problems, namely, linear ellipti
 boundary value problems. Moreover,we shall 
onsider only linear evaluation fun
tionals that belong to the dual ofthe energy spa
e. Further linearization and/or regularization 
an be, of 
ourse,performed as explained in many foregoing investigations. The main point is toidentify the key me
hanisms so as to draw also 
on
lusions for more 
omplexproblems.We shall o

asionally use the following 
onvention for estimates 
ontaininggeneri
 
onstants. The relation a � b always stands for a <� b and a >� b,i.e., a 
an be estimated from above and below by a 
onstant multiple of bindependent of all parameters on whi
h a or b may depend.2 Goal{Oriented Error Estimation2.1 Problem FormulationLet V denote a Hilbert spa
e living on some bounded Lips
hitz domain 
 �Rd and let V 0 be its topologi
al dual. Its asso
iated dual form will be denotedas h�; �iV�V 0 , or shortly as h�; �i.Moreover, let a(�; �) be a symmetri
 bilinear form whi
h will here alwayssupposed to be 
ontinuous and ellipti
 on V , i.e., there exist 
onstants 
A; CAsu
h that p
AkvkV � a(v; v)1=2 �pCAkvkV ; v 2 V: (2.1)In this 
ase the variational problem: given any f 2 V 0, �nd u 2 V su
h thata(v; u) = hv; fi; v 2 V; (2.2)is well posed. It will be 
onvenient to introdu
e the indu
ed operator A : V !V 0 given by hv;Awi := a(v; w) for all v; w 2 V .Instead of approximating the whole solution u we are interested in evalu-ating only a fun
tional of the unknown solution. Spe
i�
ally, we 
onsider thefollowing problem: Given a �xed linear fun
tional J 2 V 0, 
omputeJ(u) := hu; Ji; (2.3)where u is the solution of (2.2). J(u) may be a very lo
al quantity, su
h as thepoint evaluation of u at some point x� 2 
, if the Dira
 fun
tional is in V 0 (asin the 
ase of Plateau's equation on an interval), or a lo
al quantity like themean of u over some small domain 
Æ � 
, i.e., J(u) = j
Æ j�1 R
Æ u(x) dx, ora weighted integral of u over some lower dimensional manifold in 
. We shallex
lude �rst more general situations su
h as nonlinear fun
tionals J whi
hwould require an additional linearization pro
ess as shown in [4℄, as well as
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tionals that are not 
ontained in V 0 but require additional regularity ofthe solution.Of 
ourse, one might approximate the quantity J(u) by determining �rstsome approximation u� to u sitting in some �nite dimensional trial spa
eindi
ated by the subs
ript �, and take then J(u�) as an approximation to thedesired value J(u). Moreover, in the above framework it is natural to take u�as a Galerkin solution with respe
t to some subspa
e V� � V , i.e.,a(v; u�) = hv; fi; v 2 V�: (2.4)Under the 
ir
umstan
es (2.1), (2.2), u� is uniquely determined for any V� �V . (For 
on
eptual reasons that will be
ome 
lear later, we deliberately do noteven insist at this point on V� being �nite dimensional.) We shall frequentlyuse the shorthand notation e� := u� u�:Our goal now is to determine u� su
h that for a given target a

ura
y" > 0 jJ(u)� J(u�)j = jJ(u� u�)j = jJ(e�)j � "; (2.5)while the 
omputational 
ost needed to determine u� is to be kept as low aspossible. Sin
e, by assumption, J 2 V 0, we havejJ(e�)j � kJkV!R ke�kV ; (2.6)where, as usual, kJkV!R := supv2V;kvkV �1hv; Ji.Remark 1. When J 62 V 0 but J 2 (V +)0 where V + ,! V and u; u� 2 V +, weobtain an analogous estimate of the form jJ(e�)j � kJkV +!R ke�kV + .Staying with the simpler former situation, a prin
ipal gain is that the targeta

ura
y " 
an be a
hieved by solving two problems, namely, the primal (2.2)and the dual one (2.8) with a

ura
ies of the order p". Thus, 
hoosing somesubspa
e V�, based on some a-priori estimates, su
h that the Galerkin errorsatis�es ku� u�kV < "=kJkV!R; (2.7)this, together with (2.6), would yield (2.5). In general, su
h an a-priori 
hoi
ewould require a too large V�. In any 
ase, an adaptive 
hoi
e of V� withrespe
t to the energy norm may lead to an overestimation sin
e su
h a normapproximation does not take the lo
ality of J into a

ount.2.2 The Dual Weighted Residual Method: Error RepresentationIt is the very purpose of the dual weighted residual method (DWR) to take thelo
ality of J into a

ount when re�ning a given dis
retization so as to improveon the a

ura
y of the approximate value, possibly without approximating



Title Suppressed Due to Ex
essive Length 5the whole solution everywhere in the domain with a 
omparable a

ura
y.In order to motivate the subsequent development, we briefly review somebasi
 fa
ts 
on
erning this methodology from [4, 19℄. The key is to obtain anerror representation 
omprised of lo
al quantities that re
e
t residual termswhi
h 
an be evaluated. The derivation of su
h representations relies on dualityarguments to be explained next.Let z 2 V be the solution of the dual problema(z; w) = hw; Ji; w 2 V; (2.8)with J 2 V 0 serving as right hand side. Inserting w = u� u� = e� yields theerror representationJ(e�) = he�; Ji = a(z; e�) = a(z � y�; e�); for any y� 2 V�; (2.9)where we have used Galerkin orthogonality in the last step. This suggestsseveral options for bounding these residuals. First, we obtain the estimatejJ(u� u�)j = ja(z � y�; u� u�)j <� ku� u�kV infy�2V� kz � y�kV : (2.10)Thus, if the 
omputational work (measured in terms of problem size expressedas the number of degrees of freedom N) needed to 
ompute su
h approxima-tions for the primal and dual solution with a

ura
y " s
ales like N(") = "��for some � > 0, the error in (2.10) 
an be bounded by "2. So the 
omputa-tional work needed to determine the value J(u) within a toleran
e " s
ales like2"��=2. This is asymptoti
ally better than just 
omputing the primal solutionwith toleran
e " in the energy norm (2.7).This still does not exploit the lo
ality of the fun
tional J of interest. Inthe framework of Finite Element dis
retizations, one usually treats this latterobje
tive by bounding the error representation a(z � y�; u � u�) by a sumof lo
al 
omputable quantities. To spe
ify this, let � denote then a 
urrenttriangulation of the domain 
. Su
h estimates have then the formja(z � y�; u� u�)j <� XT2�wT (y�) rT (u�); (2.11)where the rT (u�) are lo
al residuals of the approximate solution u� and thewT (y�) are weights 
omputed in terms of the dual solution. For the simple
ase a(v; w) = R
(ry)Trwdx, they look likerT (u�) = kf +�u�kL2(T ) + 12h�1=2T 



��u��n �



L2(�T ) : (2.12)The weights or stability fa
tors are of the formwT (y�) = kz � y�kL2(T ) + h1=2T kz � y�kL2(�T ); (2.13)



6 Wolfgang Dahmen, Angela Kunoth, and J�urgen Vorloepersee, e.g., [4, 19℄.Note that, while the rT (u�) are 
omputable, the weights wT (y�) dependon the unknown dual solution z. One 
an argue that, in pra
ti
al appli
ationsit suÆ
es to know only the \trend" of these weights to see the in
uen
e ofthe lo
al residual rT (u�) and, 
onsequently, of the lo
al error 
aused by u�.There are several ways of obtaining approximations to these weights:(i) One 
an 
ompute an approximate solution �z of z on some �ner mesh thanthe one used for the primal solution and substitute �z for z.(ii) One 
an 
ompute a higher order Galerkin approximation as a substitutefor z in (2.13).(iii) Instead of 
omputing the di�eren
e z� y�, one determines a higher orderGalerkin approximation �z to z, 
omputes its se
ond order derivatives andrepla
es wT (y�) by some 
onstant multiple of h2T k�zkH2(T ).(iv) A lower order Galerkin approximation is postpro
essed to provide se
ondorder approximations that 
an then be used as in (iii).In simple 
ases, all these strategies are expe
ted to work �ne. Nevertheless,even in the simple linear model 
ase, none of them give rigorous bounds forthe a
tual error resulting from any re�nement strategy and from 
orrespond-ing de
isions on how a

urately the dual solution needs to be approximated.The amount of 
on�den
e one 
an put in either of them may vary 
onsid-erably: Neither is it 
lear that any �xed mesh re�nement or a higher orderapproximation is suÆ
iently 
loser to the true solution to provide a reliabletrend (in parti
ular, near singularities), nor is it 
lear that the se
ond orderderivatives behave as those of the true dual solution (again, espe
ially, whensingularities interfere).Thus, already at a rather basi
 level, one fa
es the essential question asto how a

urately should the dual solution be 
omputed and how lo
alizedthe distribution of degrees of freedom 
an be 
hosen without loosing essentialinformation.The subsequent dis
ussion attempts to shed some further light on theseissues exploiting some 
on
epts that have been developed in 
onne
tion withadaptive wavelet s
hemes, see, e.g., [7, 8, 9℄.2.3 Wavelet CoordinatesLet 	 := f � : � 2 IIg � V be a wavelet basis for V . By this we mean thatevery v 2 V has a unique expansion v = P�2II v� � with 
oeÆ
ient arrayv = (v�)�2II su
h that for �xed 
onstants 
	 ; C	 one has
	kvk � kvkV � C	kvk; (2.14)where kvk2 := P�2II jv�j2 = vTv denotes the `2-norm. Only when the `2-norm with respe
t to a spe
i�
 subset � � II is meant we write for 
laritykvk2̀2(�) :=P�2� jv�j2. Re
all that, by a simple duality argument (see, e.g.,[13℄), one has



Title Suppressed Due to Ex
essive Length 7C�1	 kh �; wik � kwkV 0 � 
�1	 kh �; wik; w 2 V 0: (2.15)For typi
al 
onstru
tions of wavelet bases that are suitable, e.g., for V =H10 (
), we refer to [5, 6, 15, 16, 11, 17℄. Here it suÆ
es to add a few remarkson the stru
ture of the index set II . Ea
h index � 
omprises information onthe s
ale, denoted by j�j, and on the spatial lo
ation of the asso
iated basisfun
tion k(�). There is usually a �nite number of \s
aling fun
tion type"basis fun
tions on some 
oarsest level of resolution j0. This subset will bedenoted by II�. All remaining indi
es refer to \true" wavelets gathered in II .These wavelets are always of 
ompa
t support whose diameter s
ale like 2�j�j.Moreover, these true wavelets have 
an
ellation properties of some spe
i�edorder ~m usually derived from a 
orresponding order of vanishing momentsh �; P i = 0 for all � 2 II and any polynomial P of total order at most ~m.Furthermore, it follows from (2.14) that the wavelets are normalized su
h thatk �kV � 1.Testing (2.2) by v =  �, � 2 II , we obtain an equivalent formulation inwavelet 
oordinates Au = f ; (2.16)where A = �a( �;  �)��;�2II (2.17)is the wavelet representation of the operator A : V ! V 0 indu
ed by a(v; w) =hv;Awi for all v; w 2 V . Likewise the dual problem (2.8) is equivalent toAT z = J; (2.18)where J := �h �; Ei��2II . Combining (2.14), (2.15) with (2.1) yields
2	
Akvk � kAvk � C2	CAkvk; v 2 `2; (2.19)i.e., the wavelet representation is well 
onditioned in the Eu
lidean metri
 `2,see e.g. [9℄.For any subset � � II we let 	� := f � : � 2 IIg � V be the 
orrespondingsubset of wavelets and denote by V� the 
losure in V of the linear span of	�. We 
ontinue denoting by u� the Galerkin solution, now with respe
t tothe subspa
e V�, and by u� the 
orresponding array of wavelet 
oeÆ
ientssupported in �.Note that for any w =P�2II w� � =: wT	J(w) = X�2II w�J( �) = JTw: (2.20)Thus, abbreviating e� := u�u�, e� := (u�u�)T	 , the representation (2.9)then takes on the formJ(u)�J(u�) = JTe� = (z�y�)T (f�Au�) = (AT (z�y�))T (u�u�); (2.21)
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tor supported in � and the primal residual is given byr�(u) := f �Au� = Ae�: (2.22)It is important to note here that (2.22) is the true residual for the in�nitedimensional operator A.We shall frequently exploit that, by de�nition, one hasr�(u)j� = 0: (2.23)Moreover, it immediately follows from (2.19) that
A
2	ku� u�k � kr�(u)k � CAC2	ku� u�k: (2.24)Hen
e, approximations in V and V 0 on the fun
tion side redu
e to approxi-mation in `2 for the primal and dual wavelet 
oeÆ
ient arrays.Of 
ourse, the problem that the representation (2.21) involves the un-known dual solution remains the same as in 
onventional dis
retization set-tings. However, while the terms in (2.11) re
e
t primarily spatial lo
alization,the summands in (2.21) 
onvey spatial and frequen
y information in terms of(dual) wavelet 
oeÆ
ients (of the residual) and of the error. We shall explorenext whether this 
an be exploited for a reliable error estimation.3 Adaptive Error EstimationOur obje
tive is to develop a-posteriori re�nement strategies that aim at 
om-puting J(u) within some error toleran
e at possibly low 
omputational 
ost.This amounts to a DWR method in wavelet 
oordinates. (2.20) suggests totake (the 
omputable quantity)J(u�) = J(u�) = X�2�JTu� (3.25)as an approximate value of the target fun
tional, where � is a suitable �niteindex set. Con
erning the in
urred error, sin
e, by (2.23), one has r�(u)j� = 0,we infer from (2.21) JT e� = X�2IIn� z�(r�(u))�: (3.26)As a natural heuristi
s this suggests an analog to option (i) in the FiniteElement 
ontext, namely, to sele
t some larger index set �̂ � � and repla
e zin (3.26) by the Galerkin solution z�̂ in V�̂. But again the question remains,how large has �̂ to be 
hosen in order to provide a reliable estimate. Thefollowing simple observations suggest how to deal with this question. By (2.21)we have



Title Suppressed Due to Ex
essive Length 9jJT (u� u�)j � ��� X�2�Æn� z�̂;� r�;�(u)���+ X�2IIn� j(z� � z�̂;�) r�;�(u)j: (3.27)The �rst part is a �nite sum that is 
omputable through the primal residualon a �nite set and the 
omputed z�̂. The se
ond part 
an be estimated asfollows:jJT (u� u�)j � ��� X�2�̂n� z�̂;� r�;�(u)���+ inf1�p;p0�1 1p+ 1p0=1 kz� z�̂k`pkr�(u)k`p0 :(3.28)Spe
i�
ally, p = p0 = 1=2 yieldsjJT (u� u�)j � ��� X�2�̂n� z�̂;� r�;�(u)���+ kz� z�̂k kr�(u)k: (3.29)Thus, due to the norm equivalen
es (2.24), (2.15), (2.14) the se
ond term onthe right hand side is the produ
t of the primal and dual energy norm error.Thus, whenever the dual solution is approximated in the energy norm andthe growth of � depends on the energy norm approximation of z the targetvalue is approximated with in
reasing a

ura
y even though the global primalresidual does not tend to zero at all in `2. It may tend to zero in some weakernorm whi
h, a

ording to (3.28), 
ould give a better estimate.Led by the above 
onsiderations, we formulate now in pre
ise terms analgorithm whi
h, for any given target a

ura
y ", 
omputes J(u�) = JT (u�)su
h that jJ(e�)j = jJT (e�)j � ". A 
entral ingredient is the adaptive wavelets
heme from [9℄ that will be formulated next. The resulting well-posedness in`2 (2.19) allows one to 
ontrive an (idealized) iterationun+1 = un �B(Aun � f ); n = 0; 1; 2; : : : ; (3.30)where B is (a possibly stage dependent) pre
onditioner, su
h that for some� < 1 ku� un+1k � �ku� unk; n 2 N0 ; (3.31)see [8, 9℄ for various examples 
overing also non
oer
ive problems.The idea is now to mimi
 (3.30) numeri
ally by evaluating the weightedresidual B(Aun�f) within a stage dependent dynami
al a

ura
y toleran
e.This, in turn, hinges on the adaptive evaluation of the involved (at this stagestill in�nite dimensional) operators when applied to a �nitely supported array.We refer to [9, 10, 2℄ for the pre
ise des
ription of su
h evaluation s
hemes fora range of (linear and nonlinear) operators. Therefore we may assume at thispoint to have a routine of the following form at hand:Res[�;B;A;f ;v℄! r� 
omputes for any finitely supported input vand any positive toleran
e � an approximate finitely supportedresidual r� su
h that kB(Av � f)� r�k � �: (3.32)



10 Wolfgang Dahmen, Angela Kunoth, and J�urgen VorloeperWe further need the routineCoarse[�;v℄ ! w� determines for any finitely supported input van output w� with possibly small support su
h that stillkv �w�k � �: (3.33)Following [9℄ the announ
ed adaptive solution s
heme 
an now be de-s
ribed as follows.Solve [";A;f ;u0℄ ! (u"; �") 
omputes for any given target a

u-ra
y " > 0 and any initial guess u0, satisfying ku � u0k � Æ, anapproximation u" to (2.2), supported in some finite (tree like) in-dex set �", su
h that ku� u"k � "; (3.34)a

ording to the following steps:(i) Choose some C� > 1, �� 2 (0; 1). Set "0 := Æ a

ording to theabove initialization, and j = 0;(ii) If "j � " stop and output u" := �uj; else set v0 := �uj and k = 0(ii.1) Set �k := !k ��k"j and 
omputerk = RES [�k;B;A;f ;vk℄; vk+1 = vk � rk:(ii.2) If ���k + krkk� � "j=(2(1 + C�)); (3.35)set ~v := vk and go to (iii). Else set k+1! k and go to (ii.1).(iii)Coarse[ C�"j2(1+C�) ; ~v℄! �uj+1, "j+1 = "j=2, j + 1! j, go to (ii).Step (ii) is a blo
k of perturbed iterations of the form (3.30). As soon asthe approximate residual is small enough, the iteration is interrupted by a
oarsening step. The 
onstant � in step (ii.2) depends on the 
onstants in(2.19). It 
an be shown that the number of perturbed iterations between two
oarsening steps remains uniformly bounded. Things are arranged su
h thatafter an iteration blo
k and a 
oarsening step the error in the energy norm is atleast halved. Thus, under the above 
onditions the s
heme Solve terminatesalways after �nitely many steps. Moreover, its 
omputational 
omplexity is insome sense asymptoti
ally optimal in that the number of adaptively generateddegrees of freedom and the respe
tive 
omputational work grow at the rateof the best N -term approximation, see [9℄. For more general problem 
lasses,the 
oarsening step ensures optimal 
omplexity rates. It has re
ently beenshown in [20℄, however, that 
oarsening 
an be avoided for the 
urrent 
lassof problems.We shall use (variants of) this algorithm as ingredients in the presentweighted dual residual s
heme. The routine Res is based on the followingingredients. Suppose for simpli
ity that f is a �nitely supported array, possiblyas a result of a prepro
essing step. In addition, one needs an approximateappli
ation of A:



Title Suppressed Due to Ex
essive Length 11Apply[�;A;v℄ ! w 
omputes for any finitely supported input vand any toleran
e � > 0 a finitely supported output w su
h thatkAv �wk � �: (3.36)Realizations of su
h a routine satisfying all requirements that renderSolve having optimal 
omplexity 
an be found in [1℄. For the 
urrent type ofellipti
 problems we 
an, in prin
iple, 
hoose the pre
onditioner B = �I as astage independent damped identity whi
h gives rise to a Ri
hardson iteration.In this 
ase the residual approximation s
heme takes the formRes [�;A;f ;v℄ := � (Apply [�=2�;A;v℄�Coarse [�=2�;f ℄) : (3.37)The quantitative performan
e of this 
hoi
e is usually rather poor and we referto [18℄ for more eÆ
ient versions that are a
tually used in our experimentshere as well.Sin
e Solve produ
es energy norm approximants, a few preparatory 
om-ments on its use in the present 
ontext are in order. Let again � � II be any(possibly in�nite) subset of II . For any two su
h subsets �;�0 letA�;�0 := �a( �;  �)��2�;�2�0be the se
tion ofA determined by � and �0. For simpli
ity we setA� := A�;�.Clearly, (2.4) is then equivalent toA�u� = f� := f j�: (3.38)Of 
ourse, (2.19) remains valid when repla
ing `2 by `2(�) and A by A�uniformly in �. Solving the original problem in V� 
an therefore be doneby running the s
heme Solve while restri
ting all arrays to �. An adaptiveappli
ation of the operator A in this 
onstrained setting 
an be thought offor the moment as employing the usual (un
onstrained) s
heme to the 
on-strained input and 
utting the result ba
k to �. (There may be even betterways taking the spe
ial 
ir
umstan
es into a

ount but this satis�es all theproperties needed in [9℄ to establish 
orresponding error and 
omplexity esti-mates for the restri
ted 
ase.) We identify this version of Solve by writingSolve�[�;A;f ;u0℄ (and a

ordingly Res�[�;A;f ;v℄). As before, the sub-s
ript � is omitted when � = II . All arrays generated by this s
heme are thenby de�nition supported in �.It will be important to distinguish between the residual �(A�v � f�) in`2(�) whi
h is approximated by Res�[�;A;f ;v℄ and the full residual Av�fwhi
h appears in (2.21). The latter one re
e
ts the global deviation of v fromthe exa
t solution u. In fa
t, for the exa
t solution u� of the restri
ted problem(3.38) one has Au� = AII;�u� and thereforer�(u) = AII;�u� � f = � A�u� � f�AIIn�;�u� � f IIn�� = � 0AIIn�;�u� � f IIn��;(3.39)
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e
ting the pollution 
aused by the restri
ted wavelet 
oordinate domain.A more 
areful analysis of this aspe
t will be given in a forth
oming paper.We have 
olle
ted now the main ingredients for the following s
heme:Algorithm I[";A;J;f ℄! �J 
omputes for any target a

ura
y " > 0a value �J su
h that j �J � J(u)j � "; (3.40)where u is the solution to (2.2), as follows:(i) Fix parameters 
u; 
z; 
r 2 (0; 1), m0 � 2 and set j = 0, Æu :=
�1A kfk, Æz := 
�1A kJk and 
hoose "0 := min fÆu=2; Æz=2g.Apply Solve ["0;A;f ;0℄! (u0; �̂0);Apply Solve ["0;AT ;J;0℄! (z0; �̂0);Set �0 := �̂0 [ �̂0.(ii) Apply Solve[
z"j ;AT ;J; zj ℄! (ẑj ; �̂j);Apply Solve�j [
u"j ;A;f ;uj ℄! u�j ;Apply Res[
r"j ;A;f ;u�j ℄jIIn�j ! r;Set ~w := ẑj j�̂jn�j and 
omputeej := ��� X�2�̂jn�j ~w�r����: (3.41)If ej + "jn(CA
u + 
r)(k ~wj�̂jn�jk+ 
z"j) + 
zkrko � " (3.42)stop and a

ept �J = JTu�j := X�2�j �u�j;�J� (3.43)as target value.Otherwise(iii) Set�uj+1 := �u�j ; �zj+1 := ẑj ; �j+1 := �j[�̂j ; "j+1 = "j=m0; j+1! j;(3.44)and go to (ii).A few 
omments on this s
heme are in order. Step (i) should be viewed asan initialization where "0 is a 
rude initial toleran
e whose square is typi
allystill larger than the target a

ura
y ". The initial approximate solutions forthe primal and dual problem are energy norm approximations. Be
ause of the
rude target a

ura
y, one expe
ts that the degrees of freedom generated in�0 are ne
essary anyway.



Title Suppressed Due to Ex
essive Length 13Note that the approximations �u�j are then generated through the re-stri
ted s
heme Solve�j while the 
orresponding residual approximations areunrestri
ted. Moreover, the appli
ation of Solve for the dual problem in step(ii) is un
onstrained. We have explained the rationale of this step above. Itessentially enfor
es the approximation of z in the norm but is expe
ted todraw in only the relevant degrees of freedom 
on
entrated near the supportof J . It presumably requires only a few iterations with the initial guess z�jwhi
h already is a good norm approximation for a somewhat larger toleran
e.In summary, in the above version the primal problem is always solved ina 
onstrained subspa
e determined by the norm approximation of the dualsolution.Theorem 1. For any target a

ura
y " > 0 the above s
heme terminates aftera �nite number of steps and outputs a result J satisfying jJ(u)� J j � ".Proof: First note that at the jth stage we have, a

ording to (3.26),J(e�j ) = zT r�j (u) = X�2�̂jn�j ~w�r� + X�2�̂jn�j ~w�(r�j ;�(u)� r�)+ X�2IIn�j(z� � ~w�)r� + X�2IIn�j(z� � ~w�)(r�j ;�(u)� r�)= � ~wj�̂jn�j�T r+ � ~wj�̂jn�j�T (r�j (u)� r)+ �(z� ~w)jIIn�j�T r+ �(z� ~w)jIIn�j�T (r�j (u)� r);so that jJ(e�j )j � ej + k ~wj�̂jn�jk kr�j (u)� rk+ k�z� ~w�jIIn�jk krk+ k�z� ~w�jIIn�jk kr� r�j (u)k: (3.45)We 
olle
t now several auxiliary estimates for the various terms in (3.45). Byde�nition of ~w we havek�z� ~w�jIIn�jk � kz� ~wk � 
z"j : (3.46)As for the exa
t residual of the exa
t Galerkin solution u�j , we have, ona

ount of (3.38), the very rough estimatekr�(u)k � kfk+ kAu�k = kfk+ kAA�1� f�k: (3.47)Alternatively, be
ause the exa
t Galerkin solution u� is a best approximationto u from `2(�) in the norm kjvkj2 := vTAv, one 
ould argue thatkr�(u)k � C1=2A kA1=2(u� u�)k � C1=2A kA1=2(u� �u0)k � CA"0; (3.48)
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h would allow us to use the initial norm approximation to u in step (i)of Algorithm I to in
uen
e the 
onstant.Moreover, the approximate residual r deviates from the exa
t one for theexa
t Galerkin solution u�j bykr�j (u)� rk � kA(u�j � u�j )k+ kAu�j � f � rk� kA(u�j � u�j )k+ 
r"j � (CA
u + 
r)"j : (3.49)Inserting (3.46) and (3.49) into (3.45), yieldsjJ(e�j )j � ej + k ~wj�̂jn�jk(CA
u+ 
r)"j + 
z"j�krk+(CA
u+ 
r)"j�; (3.50)whi
h is the 
omputable error bound (3.42). Thus the termination 
riterionensures that the asserted target toleran
e is met.In order to prove 
onvergen
e it remains to estimate the terms k ~wj�̂jn�jk,krk and ej . Clearlyk ~wj�̂jn�jk � k�z� ~w�jIIn�jk+ kzj�̂jn�jk� 
z"j + kz� ẑj�1k � 
z("j + "j�1)= 
z(1 +m0)"j : (3.51)Furthermore, by (3.47) and (3.49),krk � kr� r�j (u)k+ kr�j (u)k � (CA
u + 
r)"j + CA"0: (3.52)Finally, by (3.51) and (3.52), we obtainej � k ~wj�̂jn�jk krk � 
z(1 +m0)"j�(CA
u + 
r)"j + CA"0�; (3.53)whi
h also tends to zero as j grows. This �nishes the proof. �To prepare for the numeri
al experiments in the subsequent se
tion, weaddress next several further issues 
on
erning the s
heme Algorithm I.We have not spe
i�ed yet the 
hoi
e of the parameters 
u; 
z; 
r. Of 
ourse,the smaller these parameters are 
hosen, the more will the 
omputed errorterms ej dominate the true error. It is also 
lear that one should take 
z < 
u.The numeri
al experiments in the subsequent se
tion will shed some morelight on the quantitative behavior of Algorithm I regarding this point.Con
erning the progressive improvement of a

ura
y, let�ej( ~w; r) := ej + "jn(CA
u + 
r)(k ~wj�̂jn�jk+ 
z"j) + 
zkrko; (3.54)see step (ii) in Algorithm I. An alternative 
hoi
e of the toleran
es "j mightbe "j+1 := 1m0 min f"j ; �ej( ~w; r)g; (3.55)
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essive Length 15in order to exploit the fa
t that the error de
ay is superlinear. In fa
t, in viewof (3.50) and (3.51), the estimate (3.42) says thatjJ(e�j )j � 
 "j(krk+ "j):Thus, up to the approximate residual krk, the error de
ay is quadrati
 in there�nement toleran
es "j . If instead of using the 
onstraint s
heme Solve�j forthe primal problem in step (ii) of Algorithm I, one applies the un
onstraintSolve also to the primal problem, the term krk would de
ay like "j as well.In this 
ase, an overall quadrati
 error de
ay would result whi
h is the pointof view taken in [22℄. In fa
t, during the �nal stage of this work, we be
ameaware of re
ent results by M. S. Mommer and R.P. Stevenson [22℄ who derive
onvergen
e rates for a goal oriented s
heme in the Finite Element framework.There, however, they 
ombine adaptive energy norm approximations to theprimal and dual solution to arrive at 
on
rete rates. Of 
ourse, this mayin
rease the number of degrees of freedom required for the primal solutioneven in regions where they may only weakly 
ontribute to the a

ura
y ofthe target fun
tional. We shall address this issue in the experiments in thesubsequent se
tion.Even though in the present s
heme the primal problem is solved only ina 
onstrained way, one expe
ts that the third term on the right hand side of(3.45) is too 
rude an estimate. In fa
t, as shown in later experiments, krkmay not tend to zero at all but r may be \lo
ally" small where z has its mostsigni�
ant terms and large 
ontributions may be damped by negligible 
om-ponents of z. Therefore, the Cau
hy S
hwarz inequality produ
es a signi�
antoverestimation. Better estimates would require some a-priori knowledge aboutthe de
ay of the 
oeÆ
ients in the dual solution z whi
h will be dis
ussed ina forth
oming paper.As another pra
ti
al variant, one 
ould tame the in
rease of degrees offreedom by modifying step (ii) in Algorithm I as follows. When (3.42) isnot satis�ed, for g� := j ~w�r�j, � 2 �̂j n�j , let g := (g�)�2�̂jn�j and determinethe smallest subset � � �̂j n �j su
h thatkgj� k`1(� ) � 12kgk`1(�̂jn�j ): (3.56)In the subsequent step (iii), one would then set�uj+1 := �u�j ; �zj+1 := ẑj ; �j+1 := �j [ �; "j+1 = "j=m0; j + 1! j;(3.57)and go to (ii). This may be viewed as a 
oarsening based on the error rep-resentation. To ensure 
onvergen
e, one 
ould add in (3.57), in addition, thesupport of a norm approximation to z with respe
t to the 
oarser toleran
e
0z"j , 
0z > 
z. The reasoning remains then the same while the 
onstants 
hangesomewhat.As for the 
omputational 
omplexity of any of these versions, most of theappli
ations of Solve are a
tually just tightenings of already good initial
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urrent a

ura
y is improved only by a 
onstant fa
tor. Sothe 
orresponding 
omputational work remains, in prin
iple, proportional tothe 
urrent number of degrees of freedom.4 Numeri
al ExperimentsWe 
omplement next the above �ndings by some �rst numeri
al experimentsthat are to shed some light on the quantitative behavior of the various error
omponents.Our test 
ase is the Poisson equation on the L{shaped domain 
 =(�1; 1)2n�(�1; 0℄� [0; 1)� so thata(u; v) = Z
(ru)Trv dx (4.58)and V = H10 (
) in (2.2). This problem is interesting sin
e the solution mayexhibit a singularity 
aused by the shape of the domain even for smooth righthand sides, see, e.g., [21℄. Thus, we 
an monitor the quantitative in
uen
e ofsu
h a singularity on the growth of the sets �j . For the dis
retization, we usea globally 
ontinuous and pie
ewise linear wavelet basis.The linear fun
tional in our experiments is given byJ(u) = 1j
v;Æ j Z
v;Æ u(x)dx (4.59)with 
v;Æ := fx 2 R2 : kv � xk1 � Æg � 
:We 
hoose v = (0:5; 0:5)T and Æ = 0:1. The right hand side is s
aled su
hthat J(u) � 1. Hen
e J(e�) is 
lose to the relative error jJ(e�)j=jJ(u)j. Usingapproximations to u of very high a

ura
y, we use the resulting value of J forthe validation of the results.In the experiments below, ej is de�ned as before by (3.41) while the se
ondsummand on the right hand side of (3.42) is denoted by fj , so that ej + fj isthe 
omputed error bound at the jth stage of Algorithm I.4.1 Example 1: Smooth Right Hand SideIn the �rst example, we 
hoose f := 10 so that the solution u of (2.2) exhibitsonly a singularity at the reentrant 
orner.Table 1 shows that the \true" error J(e�) de
ays at least as fast as theparameter "j . The 
omponent ej is mu
h smaller than the true error and the
omputed error bound ej+fj ex
eeds the true error only by a fa
tor around 2.This is illustrated in Figure 3 whi
h displays the 
omputed dual error and the
omputed primal residual. While the dual energy norm error is halved within



Title Suppressed Due to Ex
essive Length 17j "j ej + fj ej fj J(e�)1 2.07e+00 8.11e-01 3.10e-01 5.00e-01 1.02e+002 1.03e+00 8.91e-01 5.77e-01 3.14e-01 7.47e-013 5.17e-01 3.82e-01 2.20e-01 1.61e-01 2.55e-014 2.58e-01 1.21e-01 3.98e-02 8.08e-02 1.32e-015 1.29e-01 3.45e-02 3.72e-03 3.07e-02 4.21e-026 6.46e-02 2.03e-02 5.05e-03 1.53e-02 2.35e-027 3.23e-02 9.03e-03 1.70e-03 7.34e-03 7.30e-038 1.61e-02 4.24e-03 6.84e-04 3.56e-03 3.63e-039 8.07e-03 1.93e-03 2.24e-04 1.71e-03 8.77e-04Table 1. Convergen
e history of Algorithm I in Example 1.ea
h iteration, the primal residual shows very poor 
onvergen
e in a

ordan
ewith the spirit of the s
heme. As mentioned earlier, the slight overestimationis probably due to the 
rude estimate in the third term of the right hand sideof (3.45). This is substantiated by Figure 1 whi
h depi
ts the 
omputed primaland dual solution u�j and z�j for j = 1; : : : ; 5. The strong 
on
entration ofthe generalized Green's fun
tion around the support of J indi
ates that theprimal residual, being large far away from the support of J , would hardlyin
uen
e a

ura
y.Moreover, the a
tual behavior of the primal approximate solutions is il-lustrated in Figures 2 and 4. With ea
h wavelet  �, we asso
iate a referen
epoint �� 2 R2 whi
h is lo
ated in the `
enter' of its support. Lo
ations wherewavelets on many s
ales overlap therefore appear darker. Therefore, plottingthe referen
e points (��)�2� gives an impression of the distribution of a
tiveindi
es in u = P�2� �u�. Spe
i�
ally, in Figure 2 the distribution of the el-ements of �9 is displayed. As expe
ted, most wavelets are lo
ated near thesupport of J and near the reentrant 
orner.To see where the largest 
oeÆ
ients of the primal residual r are lo
ated,we plot the referen
e points of the largest (in modulus) 5% of the 
oeÆ
ientsr�. The result is displayed in Figure 4. It 
an be seen that, near the support ofJ , the residual is small, re
e
ting a `lo
al' (in the wavelet 
oordinate domain)
onvergen
e behavior of �u�j .
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Fig. 1. Computed primal and dual solution in Example 1.
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Fig. 2. Set of a
tive 
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ients �9 used to evaluate J(u�) in Example 1.
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tor in Example 1.



20 Wolfgang Dahmen, Angela Kunoth, and J�urgen Vorloeperj "j ej + fj ej fj J(e�) #�j1 1.03e+00 1.31e+00 5.77e-01 7.33e-01 7.5092e-01 162 5.17e-01 5.85e-01 2.20e-01 3.65e-01 2.5913e-01 533 2.58e-01 2.27e-01 4.47e-02 1.82e-01 1.3628e-01 1394 1.29e-01 9.21e-02 3.72e-03 8.84e-02 5.7297e-02 2795 6.46e-02 4.90e-02 4.87e-03 4.41e-02 2.7194e-02 5706 3.23e-02 2.37e-02 1.68e-03 2.20e-02 6.8861e-03 17527 1.61e-02 1.17e-02 6.95e-04 1.10e-02 2.7267e-03 5726Table 2. Convergen
e history of Algorithm I in Example 2.4.2 Example 2: Singular Right Hand SideNext we wish to test the in
uen
e of a strong singularity of the primal solutionu lo
ated far away from the support of J . This is realized by 
onstru
ting a
orresponding right hand side as follows. All (dual) wavelet 
oeÆ
ients of f areset equal to zero ex
ept the ones that overlap a �xed given point in the domain.These 
oeÆ
ients are 
hosen as h �; fi := 1=(j�j + 1). Sin
e on ea
h dyadi
level only a uniformly bounded �nite number of indi
es 
ontributes and sin
ethe sequen
e (h �; fi)�2II therefore belongs to `2, the resulting fun
tional fis not 
ontained in L2(
), but 
ertainly in H�1(
). We �nally add to f the
onstant fun
tion from Example 1. We expe
t that the singularity of the righthand side 
auses a strong 
on
entration of relevant 
oeÆ
ients in the solutionu that are spatially 
lose to the singularity of f and 
omprise a wide range ofrelevant s
ales.As we see from Table 2, the overestimation of the true error is slightlystronger than in Example 1. The reason is that, a

ording to Figure 5, theprimal residual is in this 
ase larger (away from the support of J) due to theunresolved singularity 
aused by the right hand side f , so that the third termon the right hand side of (3.45) is overly pessimisti
.Table 3 sheds some more light on the lo
al behavior of the primal residual.It shows that in the lower left pat
h where the singularity of f is lo
ated itdoes not 
onverge to zero at all whi
h, however, does not appear to a�e
t thea

ura
y in a strong way.The 
omplexity of the s
heme is indi
ated in Figure 6 whi
h shows thatthe true error a
tually de
ays like N�1, where N is the size of the index setneeded to 
ompute the approximate target value. Note that the rate for theenergy norm error would be N�1=2 at best.



Title Suppressed Due to Ex
essive Length 21j k~wk krk krjP1k krjP3k1 6.92e-01 5.35e+00 8.60e-01 5.23e+002 2.23e-01 5.37e+00 6.80e-01 5.23e+003 1.02e-01 5.40e+00 3.22e-01 5.29e+004 5.37e-02 5.20e+00 3.23e-01 5.19e+005 3.30e-02 5.20e+00 2.85e-01 5.18e+006 1.63e-02 5.19e+00 1.94e-01 5.18e+007 8.46e-03 5.19e+00 1.13e-01 5.18e+008 4.34e-03 5.18e+00 5.66e-02 5.17e+00Table 3. Convergen
e of dual error, primal residual, primal residual restri
ted toupper right pat
h P1 and lower left pat
h P3 in Example 2.
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ients appearing in the primal residualve
tor and index set �10 generated in Example 2.
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