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2 Wolfgang Dahmen, Angela Kunoth, and J�urgen Vorloeperdevelopments have meanwhile spilled over to the Finite Element setting whereanalogous results ould be obtained for a muh more restrited problem lass,though, see, e.g., [3, 24℄.However, in many appliations one is only interested in some funtionalof the solution whih, in partiular, might be loal suh as point values orintegrals on some lower dimensional manifold. In suh a ase one might expetto obtain the desired information at a muh lower expense than omputing thewhole solution. This is exatly the objetive of goal-oriented error estimationwhih gives rise to the so alled dual weighted residual method (DWR), see,e.g., [4℄ and the referenes ited therein.Many striking examples indiate that one may indeed reah the goal withthe aid of this paradigm at the expense of muh less omputational work inomparison with shemes driven by norm approximation. On the other hand,a rigorous analysis of the DWR faes a number of severe obstrutions related,in partiular, to the fat that the entral error representation involves the(unknown) solution to the dual problem. Thus, the dual solution has to beestimated along the way. Although this problem arises, in priniple, alreadywhen dealing with linear problems, it beomes more deliate in the nonlinearase sine the dual solution depends then on the primal one. It is fair to saythat the mutual intertwinement of the auraies of dual and primal solutions,espeially with regard to the spatial distribution of degrees of freedom, is farfrom a rigorous understanding. It is not even lear in the linear ase thatadaptive re�nements based on the pratied versions of the DWR paradigmatually onverge in the sense that the searhed value is atually approahedbetter and better by the omputed one as the re�nement goes on. It is thisissue that will be the primary onern of this paper.To appreiate this issue, it is helpful to keep a few prinipal fats in mind.Approximability of a funtion in some norm an always be understood in termsof the regularity of that funtion (with respet to some nonlassial regularitymeasure). In a typial appliation of the DWR, adaptivity is not driven bythe regularity of the searhed for objet, but primarily by the loality of thetargeted information, onveyed by the dual solution whih is often termedgeneralized Green's funtion, see, e.g., [19℄. This generalized Green's funtionindiates the inuene of parts of the primal solution away from the spatialloation of the target funtional. Thus, the experiene gained with adaptivewavelet shemes for energy norm approximation is not immediately seen tobe helpful in the ontext of the DWR.Nevertheless, the primary goal of this paper is to ontribute to the under-standing of the DWR by looking at this paradigm from a wavelet point of view.Here is a rough indiation why this might indeed be a promising perspetive:The key to the above mentioned results from [8, 9℄ is to formulate an iteration(e.g., a gradient or a Newton sheme) for the full in�nite dimensional problemformulated in wavelet oordinates. This idealized iteration is then mimikedby the adaptive evaluation of the involved operators within any desired error



Title Suppressed Due to Exessive Length 3tolerane. Staying in that sense ontrollably lose to the in�nite dimensionalproblem may therefore be expeted to help also in the ontext of the DWR.In this note we wish to explore this aspet for an admittedly simple lass ofmodel problems, namely, linear ellipti boundary value problems. Moreover,we shall onsider only linear evaluation funtionals that belong to the dual ofthe energy spae. Further linearization and/or regularization an be, of ourse,performed as explained in many foregoing investigations. The main point is toidentify the key mehanisms so as to draw also onlusions for more omplexproblems.We shall oasionally use the following onvention for estimates ontaininggeneri onstants. The relation a � b always stands for a <� b and a >� b,i.e., a an be estimated from above and below by a onstant multiple of bindependent of all parameters on whih a or b may depend.2 Goal{Oriented Error Estimation2.1 Problem FormulationLet V denote a Hilbert spae living on some bounded Lipshitz domain 
 �Rd and let V 0 be its topologial dual. Its assoiated dual form will be denotedas h�; �iV�V 0 , or shortly as h�; �i.Moreover, let a(�; �) be a symmetri bilinear form whih will here alwayssupposed to be ontinuous and ellipti on V , i.e., there exist onstants A; CAsuh that pAkvkV � a(v; v)1=2 �pCAkvkV ; v 2 V: (2.1)In this ase the variational problem: given any f 2 V 0, �nd u 2 V suh thata(v; u) = hv; fi; v 2 V; (2.2)is well posed. It will be onvenient to introdue the indued operator A : V !V 0 given by hv;Awi := a(v; w) for all v; w 2 V .Instead of approximating the whole solution u we are interested in evalu-ating only a funtional of the unknown solution. Spei�ally, we onsider thefollowing problem: Given a �xed linear funtional J 2 V 0, omputeJ(u) := hu; Ji; (2.3)where u is the solution of (2.2). J(u) may be a very loal quantity, suh as thepoint evaluation of u at some point x� 2 
, if the Dira funtional is in V 0 (asin the ase of Plateau's equation on an interval), or a loal quantity like themean of u over some small domain 
Æ � 
, i.e., J(u) = j
Æ j�1 R
Æ u(x) dx, ora weighted integral of u over some lower dimensional manifold in 
. We shallexlude �rst more general situations suh as nonlinear funtionals J whihwould require an additional linearization proess as shown in [4℄, as well as



4 Wolfgang Dahmen, Angela Kunoth, and J�urgen Vorloeperfuntionals that are not ontained in V 0 but require additional regularity ofthe solution.Of ourse, one might approximate the quantity J(u) by determining �rstsome approximation u� to u sitting in some �nite dimensional trial spaeindiated by the subsript �, and take then J(u�) as an approximation to thedesired value J(u). Moreover, in the above framework it is natural to take u�as a Galerkin solution with respet to some subspae V� � V , i.e.,a(v; u�) = hv; fi; v 2 V�: (2.4)Under the irumstanes (2.1), (2.2), u� is uniquely determined for any V� �V . (For oneptual reasons that will beome lear later, we deliberately do noteven insist at this point on V� being �nite dimensional.) We shall frequentlyuse the shorthand notation e� := u� u�:Our goal now is to determine u� suh that for a given target auray" > 0 jJ(u)� J(u�)j = jJ(u� u�)j = jJ(e�)j � "; (2.5)while the omputational ost needed to determine u� is to be kept as low aspossible. Sine, by assumption, J 2 V 0, we havejJ(e�)j � kJkV!R ke�kV ; (2.6)where, as usual, kJkV!R := supv2V;kvkV �1hv; Ji.Remark 1. When J 62 V 0 but J 2 (V +)0 where V + ,! V and u; u� 2 V +, weobtain an analogous estimate of the form jJ(e�)j � kJkV +!R ke�kV + .Staying with the simpler former situation, a prinipal gain is that the targetauray " an be ahieved by solving two problems, namely, the primal (2.2)and the dual one (2.8) with auraies of the order p". Thus, hoosing somesubspae V�, based on some a-priori estimates, suh that the Galerkin errorsatis�es ku� u�kV < "=kJkV!R; (2.7)this, together with (2.6), would yield (2.5). In general, suh an a-priori hoiewould require a too large V�. In any ase, an adaptive hoie of V� withrespet to the energy norm may lead to an overestimation sine suh a normapproximation does not take the loality of J into aount.2.2 The Dual Weighted Residual Method: Error RepresentationIt is the very purpose of the dual weighted residual method (DWR) to take theloality of J into aount when re�ning a given disretization so as to improveon the auray of the approximate value, possibly without approximating



Title Suppressed Due to Exessive Length 5the whole solution everywhere in the domain with a omparable auray.In order to motivate the subsequent development, we briefly review somebasi fats onerning this methodology from [4, 19℄. The key is to obtain anerror representation omprised of loal quantities that reet residual termswhih an be evaluated. The derivation of suh representations relies on dualityarguments to be explained next.Let z 2 V be the solution of the dual problema(z; w) = hw; Ji; w 2 V; (2.8)with J 2 V 0 serving as right hand side. Inserting w = u� u� = e� yields theerror representationJ(e�) = he�; Ji = a(z; e�) = a(z � y�; e�); for any y� 2 V�; (2.9)where we have used Galerkin orthogonality in the last step. This suggestsseveral options for bounding these residuals. First, we obtain the estimatejJ(u� u�)j = ja(z � y�; u� u�)j <� ku� u�kV infy�2V� kz � y�kV : (2.10)Thus, if the omputational work (measured in terms of problem size expressedas the number of degrees of freedom N) needed to ompute suh approxima-tions for the primal and dual solution with auray " sales like N(") = "��for some � > 0, the error in (2.10) an be bounded by "2. So the omputa-tional work needed to determine the value J(u) within a tolerane " sales like2"��=2. This is asymptotially better than just omputing the primal solutionwith tolerane " in the energy norm (2.7).This still does not exploit the loality of the funtional J of interest. Inthe framework of Finite Element disretizations, one usually treats this latterobjetive by bounding the error representation a(z � y�; u � u�) by a sumof loal omputable quantities. To speify this, let � denote then a urrenttriangulation of the domain 
. Suh estimates have then the formja(z � y�; u� u�)j <� XT2�wT (y�) rT (u�); (2.11)where the rT (u�) are loal residuals of the approximate solution u� and thewT (y�) are weights omputed in terms of the dual solution. For the simplease a(v; w) = R
(ry)Trwdx, they look likerT (u�) = kf +�u�kL2(T ) + 12h�1=2T ��u��n �L2(�T ) : (2.12)The weights or stability fators are of the formwT (y�) = kz � y�kL2(T ) + h1=2T kz � y�kL2(�T ); (2.13)



6 Wolfgang Dahmen, Angela Kunoth, and J�urgen Vorloepersee, e.g., [4, 19℄.Note that, while the rT (u�) are omputable, the weights wT (y�) dependon the unknown dual solution z. One an argue that, in pratial appliationsit suÆes to know only the \trend" of these weights to see the inuene ofthe loal residual rT (u�) and, onsequently, of the loal error aused by u�.There are several ways of obtaining approximations to these weights:(i) One an ompute an approximate solution �z of z on some �ner mesh thanthe one used for the primal solution and substitute �z for z.(ii) One an ompute a higher order Galerkin approximation as a substitutefor z in (2.13).(iii) Instead of omputing the di�erene z� y�, one determines a higher orderGalerkin approximation �z to z, omputes its seond order derivatives andreplaes wT (y�) by some onstant multiple of h2T k�zkH2(T ).(iv) A lower order Galerkin approximation is postproessed to provide seondorder approximations that an then be used as in (iii).In simple ases, all these strategies are expeted to work �ne. Nevertheless,even in the simple linear model ase, none of them give rigorous bounds forthe atual error resulting from any re�nement strategy and from orrespond-ing deisions on how aurately the dual solution needs to be approximated.The amount of on�dene one an put in either of them may vary onsid-erably: Neither is it lear that any �xed mesh re�nement or a higher orderapproximation is suÆiently loser to the true solution to provide a reliabletrend (in partiular, near singularities), nor is it lear that the seond orderderivatives behave as those of the true dual solution (again, espeially, whensingularities interfere).Thus, already at a rather basi level, one faes the essential question asto how aurately should the dual solution be omputed and how loalizedthe distribution of degrees of freedom an be hosen without loosing essentialinformation.The subsequent disussion attempts to shed some further light on theseissues exploiting some onepts that have been developed in onnetion withadaptive wavelet shemes, see, e.g., [7, 8, 9℄.2.3 Wavelet CoordinatesLet 	 := f � : � 2 IIg � V be a wavelet basis for V . By this we mean thatevery v 2 V has a unique expansion v = P�2II v� � with oeÆient arrayv = (v�)�2II suh that for �xed onstants 	 ; C	 one has	kvk � kvkV � C	kvk; (2.14)where kvk2 := P�2II jv�j2 = vTv denotes the `2-norm. Only when the `2-norm with respet to a spei� subset � � II is meant we write for laritykvk2̀2(�) :=P�2� jv�j2. Reall that, by a simple duality argument (see, e.g.,[13℄), one has



Title Suppressed Due to Exessive Length 7C�1	 kh �; wik � kwkV 0 � �1	 kh �; wik; w 2 V 0: (2.15)For typial onstrutions of wavelet bases that are suitable, e.g., for V =H10 (
), we refer to [5, 6, 15, 16, 11, 17℄. Here it suÆes to add a few remarkson the struture of the index set II . Eah index � omprises information onthe sale, denoted by j�j, and on the spatial loation of the assoiated basisfuntion k(�). There is usually a �nite number of \saling funtion type"basis funtions on some oarsest level of resolution j0. This subset will bedenoted by II�. All remaining indies refer to \true" wavelets gathered in II .These wavelets are always of ompat support whose diameter sale like 2�j�j.Moreover, these true wavelets have anellation properties of some spei�edorder ~m usually derived from a orresponding order of vanishing momentsh �; P i = 0 for all � 2 II and any polynomial P of total order at most ~m.Furthermore, it follows from (2.14) that the wavelets are normalized suh thatk �kV � 1.Testing (2.2) by v =  �, � 2 II , we obtain an equivalent formulation inwavelet oordinates Au = f ; (2.16)where A = �a( �;  �)��;�2II (2.17)is the wavelet representation of the operator A : V ! V 0 indued by a(v; w) =hv;Awi for all v; w 2 V . Likewise the dual problem (2.8) is equivalent toAT z = J; (2.18)where J := �h �; Ei��2II . Combining (2.14), (2.15) with (2.1) yields2	Akvk � kAvk � C2	CAkvk; v 2 `2; (2.19)i.e., the wavelet representation is well onditioned in the Eulidean metri `2,see e.g. [9℄.For any subset � � II we let 	� := f � : � 2 IIg � V be the orrespondingsubset of wavelets and denote by V� the losure in V of the linear span of	�. We ontinue denoting by u� the Galerkin solution, now with respet tothe subspae V�, and by u� the orresponding array of wavelet oeÆientssupported in �.Note that for any w =P�2II w� � =: wT	J(w) = X�2II w�J( �) = JTw: (2.20)Thus, abbreviating e� := u�u�, e� := (u�u�)T	 , the representation (2.9)then takes on the formJ(u)�J(u�) = JTe� = (z�y�)T (f�Au�) = (AT (z�y�))T (u�u�); (2.21)



8 Wolfgang Dahmen, Angela Kunoth, and J�urgen Vorloeperwhere y� is any vetor supported in � and the primal residual is given byr�(u) := f �Au� = Ae�: (2.22)It is important to note here that (2.22) is the true residual for the in�nitedimensional operator A.We shall frequently exploit that, by de�nition, one hasr�(u)j� = 0: (2.23)Moreover, it immediately follows from (2.19) thatA2	ku� u�k � kr�(u)k � CAC2	ku� u�k: (2.24)Hene, approximations in V and V 0 on the funtion side redue to approxi-mation in `2 for the primal and dual wavelet oeÆient arrays.Of ourse, the problem that the representation (2.21) involves the un-known dual solution remains the same as in onventional disretization set-tings. However, while the terms in (2.11) reet primarily spatial loalization,the summands in (2.21) onvey spatial and frequeny information in terms of(dual) wavelet oeÆients (of the residual) and of the error. We shall explorenext whether this an be exploited for a reliable error estimation.3 Adaptive Error EstimationOur objetive is to develop a-posteriori re�nement strategies that aim at om-puting J(u) within some error tolerane at possibly low omputational ost.This amounts to a DWR method in wavelet oordinates. (2.20) suggests totake (the omputable quantity)J(u�) = J(u�) = X�2�JTu� (3.25)as an approximate value of the target funtional, where � is a suitable �niteindex set. Conerning the inurred error, sine, by (2.23), one has r�(u)j� = 0,we infer from (2.21) JT e� = X�2IIn� z�(r�(u))�: (3.26)As a natural heuristis this suggests an analog to option (i) in the FiniteElement ontext, namely, to selet some larger index set �̂ � � and replae zin (3.26) by the Galerkin solution z�̂ in V�̂. But again the question remains,how large has �̂ to be hosen in order to provide a reliable estimate. Thefollowing simple observations suggest how to deal with this question. By (2.21)we have



Title Suppressed Due to Exessive Length 9jJT (u� u�)j � ��� X�2�Æn� z�̂;� r�;�(u)���+ X�2IIn� j(z� � z�̂;�) r�;�(u)j: (3.27)The �rst part is a �nite sum that is omputable through the primal residualon a �nite set and the omputed z�̂. The seond part an be estimated asfollows:jJT (u� u�)j � ��� X�2�̂n� z�̂;� r�;�(u)���+ inf1�p;p0�1 1p+ 1p0=1 kz� z�̂k`pkr�(u)k`p0 :(3.28)Spei�ally, p = p0 = 1=2 yieldsjJT (u� u�)j � ��� X�2�̂n� z�̂;� r�;�(u)���+ kz� z�̂k kr�(u)k: (3.29)Thus, due to the norm equivalenes (2.24), (2.15), (2.14) the seond term onthe right hand side is the produt of the primal and dual energy norm error.Thus, whenever the dual solution is approximated in the energy norm andthe growth of � depends on the energy norm approximation of z the targetvalue is approximated with inreasing auray even though the global primalresidual does not tend to zero at all in `2. It may tend to zero in some weakernorm whih, aording to (3.28), ould give a better estimate.Led by the above onsiderations, we formulate now in preise terms analgorithm whih, for any given target auray ", omputes J(u�) = JT (u�)suh that jJ(e�)j = jJT (e�)j � ". A entral ingredient is the adaptive waveletsheme from [9℄ that will be formulated next. The resulting well-posedness in`2 (2.19) allows one to ontrive an (idealized) iterationun+1 = un �B(Aun � f ); n = 0; 1; 2; : : : ; (3.30)where B is (a possibly stage dependent) preonditioner, suh that for some� < 1 ku� un+1k � �ku� unk; n 2 N0 ; (3.31)see [8, 9℄ for various examples overing also nonoerive problems.The idea is now to mimi (3.30) numerially by evaluating the weightedresidual B(Aun�f) within a stage dependent dynamial auray tolerane.This, in turn, hinges on the adaptive evaluation of the involved (at this stagestill in�nite dimensional) operators when applied to a �nitely supported array.We refer to [9, 10, 2℄ for the preise desription of suh evaluation shemes fora range of (linear and nonlinear) operators. Therefore we may assume at thispoint to have a routine of the following form at hand:Res[�;B;A;f ;v℄! r� omputes for any finitely supported input vand any positive tolerane � an approximate finitely supportedresidual r� suh that kB(Av � f)� r�k � �: (3.32)



10 Wolfgang Dahmen, Angela Kunoth, and J�urgen VorloeperWe further need the routineCoarse[�;v℄ ! w� determines for any finitely supported input van output w� with possibly small support suh that stillkv �w�k � �: (3.33)Following [9℄ the announed adaptive solution sheme an now be de-sribed as follows.Solve [";A;f ;u0℄ ! (u"; �") omputes for any given target au-ray " > 0 and any initial guess u0, satisfying ku � u0k � Æ, anapproximation u" to (2.2), supported in some finite (tree like) in-dex set �", suh that ku� u"k � "; (3.34)aording to the following steps:(i) Choose some C� > 1, �� 2 (0; 1). Set "0 := Æ aording to theabove initialization, and j = 0;(ii) If "j � " stop and output u" := �uj; else set v0 := �uj and k = 0(ii.1) Set �k := !k ��k"j and omputerk = RES [�k;B;A;f ;vk℄; vk+1 = vk � rk:(ii.2) If ���k + krkk� � "j=(2(1 + C�)); (3.35)set ~v := vk and go to (iii). Else set k+1! k and go to (ii.1).(iii)Coarse[ C�"j2(1+C�) ; ~v℄! �uj+1, "j+1 = "j=2, j + 1! j, go to (ii).Step (ii) is a blok of perturbed iterations of the form (3.30). As soon asthe approximate residual is small enough, the iteration is interrupted by aoarsening step. The onstant � in step (ii.2) depends on the onstants in(2.19). It an be shown that the number of perturbed iterations between twooarsening steps remains uniformly bounded. Things are arranged suh thatafter an iteration blok and a oarsening step the error in the energy norm is atleast halved. Thus, under the above onditions the sheme Solve terminatesalways after �nitely many steps. Moreover, its omputational omplexity is insome sense asymptotially optimal in that the number of adaptively generateddegrees of freedom and the respetive omputational work grow at the rateof the best N -term approximation, see [9℄. For more general problem lasses,the oarsening step ensures optimal omplexity rates. It has reently beenshown in [20℄, however, that oarsening an be avoided for the urrent lassof problems.We shall use (variants of) this algorithm as ingredients in the presentweighted dual residual sheme. The routine Res is based on the followingingredients. Suppose for simpliity that f is a �nitely supported array, possiblyas a result of a preproessing step. In addition, one needs an approximateappliation of A:



Title Suppressed Due to Exessive Length 11Apply[�;A;v℄ ! w omputes for any finitely supported input vand any tolerane � > 0 a finitely supported output w suh thatkAv �wk � �: (3.36)Realizations of suh a routine satisfying all requirements that renderSolve having optimal omplexity an be found in [1℄. For the urrent type ofellipti problems we an, in priniple, hoose the preonditioner B = �I as astage independent damped identity whih gives rise to a Rihardson iteration.In this ase the residual approximation sheme takes the formRes [�;A;f ;v℄ := � (Apply [�=2�;A;v℄�Coarse [�=2�;f ℄) : (3.37)The quantitative performane of this hoie is usually rather poor and we referto [18℄ for more eÆient versions that are atually used in our experimentshere as well.Sine Solve produes energy norm approximants, a few preparatory om-ments on its use in the present ontext are in order. Let again � � II be any(possibly in�nite) subset of II . For any two suh subsets �;�0 letA�;�0 := �a( �;  �)��2�;�2�0be the setion ofA determined by � and �0. For simpliity we setA� := A�;�.Clearly, (2.4) is then equivalent toA�u� = f� := f j�: (3.38)Of ourse, (2.19) remains valid when replaing `2 by `2(�) and A by A�uniformly in �. Solving the original problem in V� an therefore be doneby running the sheme Solve while restriting all arrays to �. An adaptiveappliation of the operator A in this onstrained setting an be thought offor the moment as employing the usual (unonstrained) sheme to the on-strained input and utting the result bak to �. (There may be even betterways taking the speial irumstanes into aount but this satis�es all theproperties needed in [9℄ to establish orresponding error and omplexity esti-mates for the restrited ase.) We identify this version of Solve by writingSolve�[�;A;f ;u0℄ (and aordingly Res�[�;A;f ;v℄). As before, the sub-sript � is omitted when � = II . All arrays generated by this sheme are thenby de�nition supported in �.It will be important to distinguish between the residual �(A�v � f�) in`2(�) whih is approximated by Res�[�;A;f ;v℄ and the full residual Av�fwhih appears in (2.21). The latter one reets the global deviation of v fromthe exat solution u. In fat, for the exat solution u� of the restrited problem(3.38) one has Au� = AII;�u� and thereforer�(u) = AII;�u� � f = � A�u� � f�AIIn�;�u� � f IIn�� = � 0AIIn�;�u� � f IIn��;(3.39)



12 Wolfgang Dahmen, Angela Kunoth, and J�urgen Vorloeperreeting the pollution aused by the restrited wavelet oordinate domain.A more areful analysis of this aspet will be given in a forthoming paper.We have olleted now the main ingredients for the following sheme:Algorithm I[";A;J;f ℄! �J omputes for any target auray " > 0a value �J suh that j �J � J(u)j � "; (3.40)where u is the solution to (2.2), as follows:(i) Fix parameters u; z; r 2 (0; 1), m0 � 2 and set j = 0, Æu :=�1A kfk, Æz := �1A kJk and hoose "0 := min fÆu=2; Æz=2g.Apply Solve ["0;A;f ;0℄! (u0; �̂0);Apply Solve ["0;AT ;J;0℄! (z0; �̂0);Set �0 := �̂0 [ �̂0.(ii) Apply Solve[z"j ;AT ;J; zj ℄! (ẑj ; �̂j);Apply Solve�j [u"j ;A;f ;uj ℄! u�j ;Apply Res[r"j ;A;f ;u�j ℄jIIn�j ! r;Set ~w := ẑj j�̂jn�j and omputeej := ��� X�2�̂jn�j ~w�r����: (3.41)If ej + "jn(CAu + r)(k ~wj�̂jn�jk+ z"j) + zkrko � " (3.42)stop and aept �J = JTu�j := X�2�j �u�j;�J� (3.43)as target value.Otherwise(iii) Set�uj+1 := �u�j ; �zj+1 := ẑj ; �j+1 := �j[�̂j ; "j+1 = "j=m0; j+1! j;(3.44)and go to (ii).A few omments on this sheme are in order. Step (i) should be viewed asan initialization where "0 is a rude initial tolerane whose square is typiallystill larger than the target auray ". The initial approximate solutions forthe primal and dual problem are energy norm approximations. Beause of therude target auray, one expets that the degrees of freedom generated in�0 are neessary anyway.



Title Suppressed Due to Exessive Length 13Note that the approximations �u�j are then generated through the re-strited sheme Solve�j while the orresponding residual approximations areunrestrited. Moreover, the appliation of Solve for the dual problem in step(ii) is unonstrained. We have explained the rationale of this step above. Itessentially enfores the approximation of z in the norm but is expeted todraw in only the relevant degrees of freedom onentrated near the supportof J . It presumably requires only a few iterations with the initial guess z�jwhih already is a good norm approximation for a somewhat larger tolerane.In summary, in the above version the primal problem is always solved ina onstrained subspae determined by the norm approximation of the dualsolution.Theorem 1. For any target auray " > 0 the above sheme terminates aftera �nite number of steps and outputs a result J satisfying jJ(u)� J j � ".Proof: First note that at the jth stage we have, aording to (3.26),J(e�j ) = zT r�j (u) = X�2�̂jn�j ~w�r� + X�2�̂jn�j ~w�(r�j ;�(u)� r�)+ X�2IIn�j(z� � ~w�)r� + X�2IIn�j(z� � ~w�)(r�j ;�(u)� r�)= � ~wj�̂jn�j�T r+ � ~wj�̂jn�j�T (r�j (u)� r)+ �(z� ~w)jIIn�j�T r+ �(z� ~w)jIIn�j�T (r�j (u)� r);so that jJ(e�j )j � ej + k ~wj�̂jn�jk kr�j (u)� rk+ k�z� ~w�jIIn�jk krk+ k�z� ~w�jIIn�jk kr� r�j (u)k: (3.45)We ollet now several auxiliary estimates for the various terms in (3.45). Byde�nition of ~w we havek�z� ~w�jIIn�jk � kz� ~wk � z"j : (3.46)As for the exat residual of the exat Galerkin solution u�j , we have, onaount of (3.38), the very rough estimatekr�(u)k � kfk+ kAu�k = kfk+ kAA�1� f�k: (3.47)Alternatively, beause the exat Galerkin solution u� is a best approximationto u from `2(�) in the norm kjvkj2 := vTAv, one ould argue thatkr�(u)k � C1=2A kA1=2(u� u�)k � C1=2A kA1=2(u� �u0)k � CA"0; (3.48)



14 Wolfgang Dahmen, Angela Kunoth, and J�urgen Vorloeperwhih would allow us to use the initial norm approximation to u in step (i)of Algorithm I to inuene the onstant.Moreover, the approximate residual r deviates from the exat one for theexat Galerkin solution u�j bykr�j (u)� rk � kA(u�j � u�j )k+ kAu�j � f � rk� kA(u�j � u�j )k+ r"j � (CAu + r)"j : (3.49)Inserting (3.46) and (3.49) into (3.45), yieldsjJ(e�j )j � ej + k ~wj�̂jn�jk(CAu+ r)"j + z"j�krk+(CAu+ r)"j�; (3.50)whih is the omputable error bound (3.42). Thus the termination riterionensures that the asserted target tolerane is met.In order to prove onvergene it remains to estimate the terms k ~wj�̂jn�jk,krk and ej . Clearlyk ~wj�̂jn�jk � k�z� ~w�jIIn�jk+ kzj�̂jn�jk� z"j + kz� ẑj�1k � z("j + "j�1)= z(1 +m0)"j : (3.51)Furthermore, by (3.47) and (3.49),krk � kr� r�j (u)k+ kr�j (u)k � (CAu + r)"j + CA"0: (3.52)Finally, by (3.51) and (3.52), we obtainej � k ~wj�̂jn�jk krk � z(1 +m0)"j�(CAu + r)"j + CA"0�; (3.53)whih also tends to zero as j grows. This �nishes the proof. �To prepare for the numerial experiments in the subsequent setion, weaddress next several further issues onerning the sheme Algorithm I.We have not spei�ed yet the hoie of the parameters u; z; r. Of ourse,the smaller these parameters are hosen, the more will the omputed errorterms ej dominate the true error. It is also lear that one should take z < u.The numerial experiments in the subsequent setion will shed some morelight on the quantitative behavior of Algorithm I regarding this point.Conerning the progressive improvement of auray, let�ej( ~w; r) := ej + "jn(CAu + r)(k ~wj�̂jn�jk+ z"j) + zkrko; (3.54)see step (ii) in Algorithm I. An alternative hoie of the toleranes "j mightbe "j+1 := 1m0 min f"j ; �ej( ~w; r)g; (3.55)



Title Suppressed Due to Exessive Length 15in order to exploit the fat that the error deay is superlinear. In fat, in viewof (3.50) and (3.51), the estimate (3.42) says thatjJ(e�j )j �  "j(krk+ "j):Thus, up to the approximate residual krk, the error deay is quadrati in there�nement toleranes "j . If instead of using the onstraint sheme Solve�j forthe primal problem in step (ii) of Algorithm I, one applies the unonstraintSolve also to the primal problem, the term krk would deay like "j as well.In this ase, an overall quadrati error deay would result whih is the pointof view taken in [22℄. In fat, during the �nal stage of this work, we beameaware of reent results by M. S. Mommer and R.P. Stevenson [22℄ who deriveonvergene rates for a goal oriented sheme in the Finite Element framework.There, however, they ombine adaptive energy norm approximations to theprimal and dual solution to arrive at onrete rates. Of ourse, this mayinrease the number of degrees of freedom required for the primal solutioneven in regions where they may only weakly ontribute to the auray ofthe target funtional. We shall address this issue in the experiments in thesubsequent setion.Even though in the present sheme the primal problem is solved only ina onstrained way, one expets that the third term on the right hand side of(3.45) is too rude an estimate. In fat, as shown in later experiments, krkmay not tend to zero at all but r may be \loally" small where z has its mostsigni�ant terms and large ontributions may be damped by negligible om-ponents of z. Therefore, the Cauhy Shwarz inequality produes a signi�antoverestimation. Better estimates would require some a-priori knowledge aboutthe deay of the oeÆients in the dual solution z whih will be disussed ina forthoming paper.As another pratial variant, one ould tame the inrease of degrees offreedom by modifying step (ii) in Algorithm I as follows. When (3.42) isnot satis�ed, for g� := j ~w�r�j, � 2 �̂j n�j , let g := (g�)�2�̂jn�j and determinethe smallest subset � � �̂j n �j suh thatkgj� k`1(� ) � 12kgk`1(�̂jn�j ): (3.56)In the subsequent step (iii), one would then set�uj+1 := �u�j ; �zj+1 := ẑj ; �j+1 := �j [ �; "j+1 = "j=m0; j + 1! j;(3.57)and go to (ii). This may be viewed as a oarsening based on the error rep-resentation. To ensure onvergene, one ould add in (3.57), in addition, thesupport of a norm approximation to z with respet to the oarser tolerane0z"j , 0z > z. The reasoning remains then the same while the onstants hangesomewhat.As for the omputational omplexity of any of these versions, most of theappliations of Solve are atually just tightenings of already good initial



16 Wolfgang Dahmen, Angela Kunoth, and J�urgen Vorloeperguesses where the urrent auray is improved only by a onstant fator. Sothe orresponding omputational work remains, in priniple, proportional tothe urrent number of degrees of freedom.4 Numerial ExperimentsWe omplement next the above �ndings by some �rst numerial experimentsthat are to shed some light on the quantitative behavior of the various erroromponents.Our test ase is the Poisson equation on the L{shaped domain 
 =(�1; 1)2n�(�1; 0℄� [0; 1)� so thata(u; v) = Z
(ru)Trv dx (4.58)and V = H10 (
) in (2.2). This problem is interesting sine the solution mayexhibit a singularity aused by the shape of the domain even for smooth righthand sides, see, e.g., [21℄. Thus, we an monitor the quantitative inuene ofsuh a singularity on the growth of the sets �j . For the disretization, we usea globally ontinuous and pieewise linear wavelet basis.The linear funtional in our experiments is given byJ(u) = 1j
v;Æ j Z
v;Æ u(x)dx (4.59)with 
v;Æ := fx 2 R2 : kv � xk1 � Æg � 
:We hoose v = (0:5; 0:5)T and Æ = 0:1. The right hand side is saled suhthat J(u) � 1. Hene J(e�) is lose to the relative error jJ(e�)j=jJ(u)j. Usingapproximations to u of very high auray, we use the resulting value of J forthe validation of the results.In the experiments below, ej is de�ned as before by (3.41) while the seondsummand on the right hand side of (3.42) is denoted by fj , so that ej + fj isthe omputed error bound at the jth stage of Algorithm I.4.1 Example 1: Smooth Right Hand SideIn the �rst example, we hoose f := 10 so that the solution u of (2.2) exhibitsonly a singularity at the reentrant orner.Table 1 shows that the \true" error J(e�) deays at least as fast as theparameter "j . The omponent ej is muh smaller than the true error and theomputed error bound ej+fj exeeds the true error only by a fator around 2.This is illustrated in Figure 3 whih displays the omputed dual error and theomputed primal residual. While the dual energy norm error is halved within



Title Suppressed Due to Exessive Length 17j "j ej + fj ej fj J(e�)1 2.07e+00 8.11e-01 3.10e-01 5.00e-01 1.02e+002 1.03e+00 8.91e-01 5.77e-01 3.14e-01 7.47e-013 5.17e-01 3.82e-01 2.20e-01 1.61e-01 2.55e-014 2.58e-01 1.21e-01 3.98e-02 8.08e-02 1.32e-015 1.29e-01 3.45e-02 3.72e-03 3.07e-02 4.21e-026 6.46e-02 2.03e-02 5.05e-03 1.53e-02 2.35e-027 3.23e-02 9.03e-03 1.70e-03 7.34e-03 7.30e-038 1.61e-02 4.24e-03 6.84e-04 3.56e-03 3.63e-039 8.07e-03 1.93e-03 2.24e-04 1.71e-03 8.77e-04Table 1. Convergene history of Algorithm I in Example 1.eah iteration, the primal residual shows very poor onvergene in aordanewith the spirit of the sheme. As mentioned earlier, the slight overestimationis probably due to the rude estimate in the third term of the right hand sideof (3.45). This is substantiated by Figure 1 whih depits the omputed primaland dual solution u�j and z�j for j = 1; : : : ; 5. The strong onentration ofthe generalized Green's funtion around the support of J indiates that theprimal residual, being large far away from the support of J , would hardlyinuene auray.Moreover, the atual behavior of the primal approximate solutions is il-lustrated in Figures 2 and 4. With eah wavelet  �, we assoiate a referenepoint �� 2 R2 whih is loated in the `enter' of its support. Loations wherewavelets on many sales overlap therefore appear darker. Therefore, plottingthe referene points (��)�2� gives an impression of the distribution of ativeindies in u = P�2� �u�. Spei�ally, in Figure 2 the distribution of the el-ements of �9 is displayed. As expeted, most wavelets are loated near thesupport of J and near the reentrant orner.To see where the largest oeÆients of the primal residual r are loated,we plot the referene points of the largest (in modulus) 5% of the oeÆientsr�. The result is displayed in Figure 4. It an be seen that, near the support ofJ , the residual is small, reeting a `loal' (in the wavelet oordinate domain)onvergene behavior of �u�j .
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Fig. 1. Computed primal and dual solution in Example 1.
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Fig. 2. Set of ative oeÆients �9 used to evaluate J(u�) in Example 1.
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Fig. 3. Convergene of primal residual and dual solution in Example 1.
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Fig. 4. Largest (in modulus) 5% of oeÆients appearing in the primal residualvetor in Example 1.



20 Wolfgang Dahmen, Angela Kunoth, and J�urgen Vorloeperj "j ej + fj ej fj J(e�) #�j1 1.03e+00 1.31e+00 5.77e-01 7.33e-01 7.5092e-01 162 5.17e-01 5.85e-01 2.20e-01 3.65e-01 2.5913e-01 533 2.58e-01 2.27e-01 4.47e-02 1.82e-01 1.3628e-01 1394 1.29e-01 9.21e-02 3.72e-03 8.84e-02 5.7297e-02 2795 6.46e-02 4.90e-02 4.87e-03 4.41e-02 2.7194e-02 5706 3.23e-02 2.37e-02 1.68e-03 2.20e-02 6.8861e-03 17527 1.61e-02 1.17e-02 6.95e-04 1.10e-02 2.7267e-03 5726Table 2. Convergene history of Algorithm I in Example 2.4.2 Example 2: Singular Right Hand SideNext we wish to test the inuene of a strong singularity of the primal solutionu loated far away from the support of J . This is realized by onstruting aorresponding right hand side as follows. All (dual) wavelet oeÆients of f areset equal to zero exept the ones that overlap a �xed given point in the domain.These oeÆients are hosen as h �; fi := 1=(j�j + 1). Sine on eah dyadilevel only a uniformly bounded �nite number of indies ontributes and sinethe sequene (h �; fi)�2II therefore belongs to `2, the resulting funtional fis not ontained in L2(
), but ertainly in H�1(
). We �nally add to f theonstant funtion from Example 1. We expet that the singularity of the righthand side auses a strong onentration of relevant oeÆients in the solutionu that are spatially lose to the singularity of f and omprise a wide range ofrelevant sales.As we see from Table 2, the overestimation of the true error is slightlystronger than in Example 1. The reason is that, aording to Figure 5, theprimal residual is in this ase larger (away from the support of J) due to theunresolved singularity aused by the right hand side f , so that the third termon the right hand side of (3.45) is overly pessimisti.Table 3 sheds some more light on the loal behavior of the primal residual.It shows that in the lower left path where the singularity of f is loated itdoes not onverge to zero at all whih, however, does not appear to a�et theauray in a strong way.The omplexity of the sheme is indiated in Figure 6 whih shows thatthe true error atually deays like N�1, where N is the size of the index setneeded to ompute the approximate target value. Note that the rate for theenergy norm error would be N�1=2 at best.



Title Suppressed Due to Exessive Length 21j k~wk krk krjP1k krjP3k1 6.92e-01 5.35e+00 8.60e-01 5.23e+002 2.23e-01 5.37e+00 6.80e-01 5.23e+003 1.02e-01 5.40e+00 3.22e-01 5.29e+004 5.37e-02 5.20e+00 3.23e-01 5.19e+005 3.30e-02 5.20e+00 2.85e-01 5.18e+006 1.63e-02 5.19e+00 1.94e-01 5.18e+007 8.46e-03 5.19e+00 1.13e-01 5.18e+008 4.34e-03 5.18e+00 5.66e-02 5.17e+00Table 3. Convergene of dual error, primal residual, primal residual restrited toupper right path P1 and lower left path P3 in Example 2.
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Fig. 5. Largest (in modulus) 5% of oeÆients appearing in the primal residualvetor and index set �10 generated in Example 2.
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