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Abstract

Compressed sensing is a new concept in signal processing where one seeks to
minimize the number of measurements to be taken from signals while still retaining
the information necessary to approximate them well. The ideas have their origins
in certain abstract results from functional analysis and approximation theory by
Kashin [23] but were recently brought into the forefront by the work of Candès,
Romberg and Tao [7, 5, 6] and Donoho [9] who constructed concrete algorithms and
showed their promise in application. There remain several fundamental questions
on both the theoretical and practical side of compressed sensing. This paper is
primarily concerned about one of these theoretical issues revolving around just how
well compressed sensing can approximate a given signal from a given budget of fixed
linear measurements, as compared to adaptive linear measurements. More precisely,
we consider discrete signals x ∈ IRN , allocate n < N linear measurements of x, and
we describe the range of k for which these measurements encode enough information
to recover x in the sense of `p to the accuracy of best k-term approximation. We
also consider the problem of having such accuracy only with high probability.

Key Words: Compressed sensing, best k-term approximation, instance optimality, in-
stance optimality in probability, restricted isometry property, null space property, mixed
norm estimates.
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1 Introduction

The typical paradigm for obtaining a compressed version of a discrete signal represented
by a vector x ∈ IRN is to choose an appropriate basis, compute the coefficients of x in
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this basis, and then retain only the k largest of these with k < N . If we are interested in
a bit stream representation, we also need in addition to quantize these k coefficients.

Assuming, without loss of generality, that x already represents the coefficients of the
signal in the appropriate basis, this means that we pick an approximation to x in the set
Σk of k-sparse vectors

Σk := {x ∈ IRN : # supp(x) ≤ k}, (1.1)

where supp(x) is the support of x, i.e., the set of i for which xi 6= 0, and #A is the
number of elements in the set A. The best performance that we can achieve by such an
approximation process in some given norm ‖·‖X of interest is described by the best k-term
approximation error

σk(x)X := inf
z∈Σk

‖x− z‖X . (1.2)

This approximation process should be considered as adaptive since the indices of those
coefficients which are retained vary from one signal to another. On the other hand,
this procedure is stressed on the front end by the need to first compute all of the basis
coefficients. The view expressed by Candès, Romberg, and Tao [7, 5, 6] and Donoho [9]
is that since we retain only a few of these coefficients in the end, perhaps it is possible to
actually compute only a few non-adaptive linear measurements in the first place and still
retain the necessary information about x in order to build a compressed representation.
Similar ideas have appeared in data sketching (see e.g. [14, 15] and the references therein).

These ideas have given rise to a very lively area of research called compressed sensing
which poses many intriguing questions, of both a theoretical and practical flavor. The
present paper is an excursion into this area, focusing our interest on the question of just
how well compressed sensing can perform in comparison to best k-term approximation.

To formulate the problem, we are given a budget of n questions we can ask about x.
These questions are required to take the form of asking for the values λ1(x), . . . , λn(x)
where the λj are fixed linear functionals. The information we gather about x can therefore
by described by

y = Φx, (1.3)

where Φ is an n×N matrix called the encoder and y ∈ IRn is the information vector. The
rows of Φ are representations of the linear functionals λj, j = 1, . . . , n.

To extract the information that y holds about x, we use a decoder ∆ which is a mapping
from IRn → IRN . We emphasize that ∆ is not required to be linear. Thus, ∆(y) = ∆(Φx)
is our approximation to x from the information we have retained. We shall denote by
An,N the set of all encoder-decoder pairs (Φ, ∆) with Φ an n×N matrix.

There are two common ways to evaluate the performance of an encoding-decoding
pair (Φ, ∆) ∈ An,N . The first is to ask for the largest value of k such that the encoding-
decoding is exact for all k-sparse vectors, i.e.

x ∈ Σk ⇒ ∆(Φx) = x. (1.4)

It is easy to see (see §2) that given n,N , there are (∆, Φ) ∈ An,N such that (1.4) holds
for all k ≤ n/2. Or put in another way, given k, we can achieve exact recovery on Σk

whenever n ≥ 2k. Unfortunately such encoder/decoder pairs are not numerically friendly
as is explained in §2.
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Generally speaking, our signal will not be in Σk with k small but may be approximated
well by the elements in Σk. Therefore, we would like our algorithms to perform well in this
case as well. One way of comparing compressed sensing with best k-term approximation
is to consider their respective performance on a specific class of vectors K ⊂ IRN . For
such a class we can define on the one hand

σk(K)X := sup
x∈K

σk(x)X , (1.5)

and
En(K)X := inf

(Φ,∆)∈An,N

sup
x∈K

‖x−∆(Φx)‖X (1.6)

which describe respectively the performance of the two methods over this class. We are
now interested in the largest value of k such that En(K)X ≤ C0σk(K)X for a constant
C0 independent of the parameters k, n, N . Results of this type were established already
in the 1970’s under the umbrella of what is called n-widths. The deepest results of this
type were given by Kashin [23] with later improvements by Gluskin [17, 18]. We recall
this well-known story briefly in §2.

The results on n-widths referred to above give matching upper and lower estimates
for En(K) in the case that K is a typical sparsity class such as a ball in `N

p where

‖x‖`p := ‖x‖`N
p

:=

{ (∑N
i=1 |xj|p

)1/p

, 0 < p < ∞,

maxj=1,...,N |xj|, p = ∞.
(1.7)

This in turn determines the largest range of k for which we can obtain comparisons of the
form En(K) ≤ C0σk(K). One such result is the following: for K = U(`N

1 ), one has

Ek(U(`N
1 ))`N

2
≤ C0σk(U(`N

1 ))`N
2

(1.8)

whenever
k ≤ c0n/ log(N/k) (1.9)

with absolute constants C0, c0.
The decoders used in proving these theoretical bounds are far from being practical

or numerically implementable. One of the remarkable achievements of the recent work
of Candès, Romberg and Tao [5] and Donoho [9] is to give probabilistic constructions of
matrices Φ which provide these bounds where the decoding can be done by solving the `1

minimization problem
∆(y) := Argmin

Φz=y
‖z‖`1 . (1.10)

The above results on approximation of classes is governed by the worst elements in
the class. It is a more subtle problem to obtain estimates that depend on the individual
characteristics of the target vector x. The main contribution of the present paper is to
study a stronger way to compare the performance of k-term approximation in a com-
pressed sensing algorithm. Namely, we address the following question:
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For a given norm X what is the minimal value of n, for which there exists a pair
(Φ, ∆) ∈ An,N such that

‖x−∆(Φx)‖X ≤ C0σk(x)X , (1.11)

for all x ∈ IRN , with C0 a constant independent of k and N?

If a result of the form (1.11) has been established then one can derive a result for a
class K by simply taking the supremum over all x ∈ K. However, results on classes are
less precise and informative than (1.11).

We shall say a pair (Φ, ∆) ∈ An,N satisfying (1.11) is instance optimal of order k
with constant C0 for the norm X. In particular, we want to understand under what
circumstances the minimal value of n is roughly of the same order as k, similar to (1.9).
We shall see that the answer to this question strongly depends on the norm X under
consideration.

The approximation accuracy of a compressed sensing matrix is determined by the null
space

N = N (Φ) := {x ∈ IRN : Φx = 0}. (1.12)

The importance of N is that if we observe y = Φx without any a-priori information on x,
the set of z such that Φz = y is given by the affine space

F(y) := x +N . (1.13)

We bring out the importance of the null space in §3 where we formulate a property of
the null space which is necessary and sufficient for Φ to have a decoder ∆ for which the
instance optimality (1.11) holds.

We apply this property in §4 to the case X = `1. In this case, we show the minimal
number of measurements n which ensures (1.11) is of the same order as k up to a loga-
rithmic factor. In that sense, compressed sensing performs almost as good as best k-term
approximation. We also show that, similar to the work of Candès, Romberg, and Tao this
is achieved with the decoder ∆ defined by `1 minimization. We should mention that our
results in this section are essentially contained in the work of Candès, Romberg, and Tao
[7, 8, 6] and we build on their ideas.

We next treat the case X = `2 in §5. In this case, the situation is much less in favor of
compressed sensing, since the minimal number of measurements n which ensures (1.11)
is now of the same order as N .

In the §6, we consider an important variant of the `2 case where we ask for `2 instance
optimality in the sense of probability. Here, rather than requiring that (1.11) holds for
all x ∈ IRN , we ask only that it holds with high probability. Such results are common
in the theoretical computer science approach to compressed sensing [15, 16]. We shall
see that in the case X = `2 the minimal number of measurements n for such results is
damatically reduced. Moreover, we show that standard constructions of random matrices
such as Gaussian and Bernouli ensembles achieve this performance.

The last sections of the paper are devoted to additional results which complete the
theory. In order to limit the size of the paper we only give a sketch of the proofs. The
case X = `p for 1 < p < 2 is treated in §7, and in §8 we discuss another type of estimate
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that we refer to as mixed-norm instance optimality. Here the estimate (1.11) is replaced
by an estimate of the type

‖x−∆(Φx)‖X ≤ C0k
−sσk(x)Y , (1.14)

where Y differs from X and s > 0 is some relevant exponent. This type of estimate
was introduced in [6] in the particular case X = `2 and Y = `1. We give examples in
the case X = `p and Y = `q in which mixed-norm estimates allow us to recover better
approximation estimates for compressed sensing than (1.11).

An important issue in compressed sensing is the practical implementation of the de-
coder ∆ by a fast algorithm. While being aware of this fact, the main goal of the present
paper is to understand the theoretical limits of compressed sensing in comparison to
nonlinear approximation. Therefore the main question that we address is “how many
measurements do we need so that some decoder recovers x up to some prescribed toler-
ance”, rather than “what is the fastest algorithm which allows to recover x from these
measurements up to the same tolerance”.

2 Performance over classes

We begin by recalling some well-known results concerning best k-term approximation
which we shall use in the course of this paper. Given a sequence norm ‖ · ‖X on IRN and
a positive integer r > 0, we define the approximation class Ar by means of

‖x‖Ar(X) := max
1≤k≤N

krσk(x)X . (2.1)

Notice that since we are in a finite dimensional space IRN , this (quasi-)norm will be finite
for all x ∈ IRN .

A simple, yet fundamental chapter in k-term approximation is to connect the ap-
proximation norm in (2.1) with traditional sequence norms. For this, we define for any
0 < q < ∞, the weak-`q norm as

‖x‖q
w`q

:= sup
ε>0

εq#{i ; |xi| > ε}. (2.2)

Again, for any x ∈ IRN all of these norms are finite.
If we fix the `p norm in which approximation error is to be measured, then for any

x ∈ IRN , we have for q := (r + 1/p)−1,

B0‖x‖w`q ≤ ‖x‖Ar ≤ B1r
−1/p‖x‖w`q , x ∈ IRN , (2.3)

for two absolute constants B0, B1 > 0. Notice that the constants in these inequalities do
not depend on N . Therefore, x ∈ Ar is equivalent to x ∈ w`q with equivalent norms.

Since the `q norm is larger than the weak `q norm, we can replace the weak `q norm
by the `q norm in the right inequality of (2.3). However, the constant can be improved
via a direct argument. Namely, if 1/q = r + 1/p, then for any x ∈ IRN ,

σk(x)`p ≤ ‖x‖`qk
−r, k = 1, 2, . . . , N. (2.4)
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To prove this, take Λ as the set of indices corresponding to the k largest entries in x. If ε
is the size of the smallest entry in Λ, then ε ≤ ‖x‖w`qk

−1/q ≤ ‖x‖`qk
−1/q and therefore

σk(x)p
`p

=
∑
i/∈Λ

|xi|p ≤ εp−q
∑
i/∈Λ

|xi|q ≤ k−
p−q

q ‖x‖p−q
`q
‖x‖q

`q
, (2.5)

so that (2.4) follows.
From this, we see that if we consider the class K = U(`N

q ), we have

σk(K)`p ≤ k−r, (2.6)

with r = 1/q − 1/p. On the other hand, taking x ∈ K such that xi = (2k)−1/q for 2k
indices and 0 otherwise, we find that

σk(x)`p = [k(2k)−p/q]1/p = 2−1/qk−r, (2.7)

so that σk(K)X can be framed by

2−1/qk−r ≤ σk(K)`p ≤ k−r. (2.8)

We next turn to the performance of compressed sensing over classes of vectors, by
studying the quantity En(K)X defined by (1.6). As we have mentioned, the optimal
performance of sensing algorithms is closely connected to the concept of Gelfand width.
If K is a compact set in X, and n is a positive integer, then the Gelfand width of K and
of order n is by definition

dn(K)X := inf
Y

sup{‖x‖ ; x ∈ K ∩ Y } (2.9)

where the infimum is taken over all subspaces Y of X of codimension less or equal to n.
This quantity is equivalent to En(K)X according to the following well known result.

Lemma 2.1 Let K ⊂ IRN be any set for which K = −K and for which there is a C0 > 0
such that K + K ⊂ C0K. If X ⊂ IRN is any normed space, then

dn(K)X ≤ En(K)X ≤ C0d
n(K)X , 1 ≤ n ≤ N. (2.10)

Proof: We give a proof for completeness of this paper. We first remark that the null space
Y = N of Φ is of codimension less or equal to n. Conversely, given any space Y ⊂ IRN

of codimension n, we can associate its orthogonal complement Y ⊥ which is of dimension
n and the n × N matrix Φ whose rows are formed by any basis for Y ⊥. Through this
identification, we see that

dn(K)X = inf
Φ

sup{‖η‖X : η ∈ N ∩K}, (2.11)

where the infimum is taken over all n×N matrices Φ.
Now, if (Φ, ∆) is any encoder-decoder pair and z = ∆(0), then for any η ∈ N , we also

have −η ∈ N . It follows that either ‖η − z‖X ≥ ‖η‖X or ‖ − η − z‖X ≥ ‖η‖X . Since
K = −K we conclude that

dn(K)X ≤ sup
η∈N∩K

‖η −∆(Φη))‖X . (2.12)
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Taking an infimum over all encoder-decoder pairs in An,N , we obtain the left inequality
in (2.10).

To prove the right inequality, we choose an optimal Y for dn(K)X and use the matrix
Φ associated to Y (i.e., the rows of Φ are a basis for Y ⊥). We define a decoder ∆ for
Φ as follows. Given y in the range of Φ, we recall that F(y) is the set of x such that
Φx = y. If F(y) ∩K 6= ∅, we take any x̄(y) ∈ F(y) ∩K and define ∆(y) := x̄(y). When
F(y) ∩K = ∅, we define ∆(y) as any element from F(y). This gives

En(K)X ≤ sup
x,x′∈F(y)∩K

‖x− x′‖X ≤ sup
η∈C0[K∩N ]

‖η‖X ≤ C0d
n(K)X , (2.13)

where we have used the fact that x − x′ ∈ N and x − x′ ∈ C0K by our assumptions on
K. This proves the right inequality in (2.10). 2

The Gelfand widths of `q balls in `p are known. We recall the following results of
Gluskin and Kashin which can be found in [17, 18], see alo [24]. For K = U(`N

q ), we have

C1Ψ(n,N, q, p) ≤ dn(K)`p ≤ C2Ψ(n,N, q, p), (2.14)

where C1, C2 only depend on p and q, and where

Ψ(n,N, q, p) := [min(1, N1−1/qn−1/2)]
1/q−1/p
1/q−1/2 , 1 ≤ n ≤ N, 1 < q < p ≤ 2, (2.15)

and

Ψ(n,N, 1, 2) := min

{
1,

√
log(N/k)

n

}
. (2.16)

Since K = U(`N
q ) obviously satisfies the assumptions of Lemma 2.1 with C0 = 2, we also

have
C1Ψ(n, N, q, p) ≤ En(K)`p ≤ 2C2Ψ(n,N, q, p). (2.17)

3 Instance optimality and the null space of Φ

We now turn to the main question addressed in this paper, namely the study of instance
optimality as expressed by (1.11). In this section, we shall see that (1.11) can be refor-
mulated as a property of the null space N of Φ. As it was already remarked in the proof
of Lemma 2.1, this null space has codimension not larger than n.

We shall also need to consider sections of Φ obtained by keeping some of its columns:
for T ⊂ {1, . . . , N}, we denote by ΦT the n×#T matrix formed from the columns of Φ
with indices in T . Similarly we shall have to deal with restrictions xT of vectors x ∈ IRN

to sets T . However, it will be convenient to view such restrictions still as elements of IRN ,
i.e. xT agrees with x on T and has all components equal to zero whose indices do not
belong to T .

We begin by studying under what circumstances the measurements y = Φx uniquely
determines each k-sparse vector x ∈ Σk. This is expressed by the following trivial lemma.
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Lemma 3.1 If Φ is any n×N matrix and 2k ≤ n, then the following are equivalent:
(i) There is a decoder ∆ such that ∆(Φx) = x, for all x ∈ Σk,
(ii) Σ2k ∩ N = {0},
(iii) For any set T with #T = 2k, the matrix ΦT has rank 2k.
(iv) The symmetric non-negative matrix Φt

T ΦT is invertible, i.e. positive definite.

Proof: The equivalence of (ii), (iii), (iv) is linear algebra.
(i)⇒(ii): Suppose (i) holds and x ∈ Σ2k ∩ N . We can write x = x0 − x1 where both

x0, x1 ∈ Σk. Since Φx0 = Φx1, we have, by (i), that x0 = x1 and hence x = x0 − x1 = 0.
(ii)⇒(i): Given any y ∈ IRn, we define ∆(y) to be any element in F(y) with smallest

support. Now, if x1, x2 ∈ Σk with Φx1 = Φx2, then x1 − x2 ∈ N ∩ Σ2k. From (ii), this
means that x1 = x2. Hence, if x ∈ Σk then ∆(Φx) = x as desired. 2

The properties discussed in Lemma 3.1 are algebraic properties of Φ. If N, k are fixed,
the question arises as to how large do we need to make n so that there is a matrix Φ
having the properties of the Lemma. It is easy to see that we can take n = 2k. Indeed,
for any k and N ≥ 2k, we can find a set ΛN of N vectors in IR2k such that any 2k
of them are linearly independent. For example if 0 < x1 < x2 < · · · < xN then the
matrix whose (i, j) entry is xi−1

j has the properties of Lemma 3.1. Its 2k × 2k minors
are Vandermonde matrices which are well known to be non-singular. Unfortunately, such
matrices are poorly conditioned when N is large and the process of recovering x ∈ Σk

from y = Φx is therefore numerically unstable.
Stable recovery procedures have been proposed by Candès-Romberg-Tao and Donoho

under stronger conditions on Φ. We shall make heavy use in this paper of the following
property introduced by Candès and Tao. We say that Φ satisfies the restricted isometry
property (RIP) of order k if there is a 0 < δk < 1 such that

(1− δk)‖z‖`2 ≤ ‖ΦT z‖`2 ≤ (1 + δk)‖z‖`2 , z ∈ IRk, (3.1)

holds for all T of cardinality k1. The RIP condition is equivalent to saying that the
symmetric matrix Φt

T ΦT is positive definite with eigenvalues in [(1− δ)2, (1 + δ)2]. Note
that RIP of order k always implies RIP of order l ≤ k. Note also that RIP of order 2k
guarantees that the properties of Lemma 3.1 hold.

Candès and Tao have shown that any matrix Φ which satisfies the RIP property for k
and sufficiently small δk will extract enough information about x to approximate it well
and moreover the decoding can be done by `1 minimization. The key question then is
given a fixed n, N , how large can we take k and still have matrices which satisfy RIP for
k. It was shown by Candès and Tao [7], as well as Donoho [9], that certain families of
random matrices will, with high probability, satisfy RIP of order k with δk ≤ δ < 1 for
some prescribed δ independent of N provided k ≤ c0n/ log(N/k). Here c0 is a constant
which when made small will make δk small as well. It should be stressed that all available
constructions of such matrices (so far) involve random variables. For instance, as we shall

1The RIP condition could be replaced by the assumption that C0‖z‖`2 ≤ ‖ΦT z‖`2 ≤ C1‖z‖`2 holds
for all #(T ) = k, with absolute constants C0, C1 in all that follows. However, this latter condition is
equivalent to having a rescaled matrix αΦ satisfy RIP for some α and the rescaled matrix extracts exactly
the same information from a vector x as Φ does.
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recall in more detail in §6, the entries of Φ can be picked as i.i.d. Gaussian or Bernoulli
variables with proper normalization.

We turn to the question of whether y contains enough information to approximate x
to accuracy σk(x) as expressed by (1.11). The following theorem shows that this can be
understood through the study of the null space N of Φ.

Theorem 3.2 Given an n×N matrix Φ, a norm ‖·‖X and a value of k, then a sufficient
condition that there exists a decoder ∆ such that (1.11) holds with constant C0 is that

‖η‖X ≤ C0

2
σ2k(η)X , η ∈ N . (3.2)

A necessary condition is that

‖η‖X ≤ C0σ2k(η)X , η ∈ N . (3.3)

Proof: To prove the sufficiency of (3.2), we will define a decoder ∆ for Φ as follows.
Given any y ∈ IRN , we consider the set F(y) and choose

∆(y) := Argmin
z∈F(y)

σk(z)X . (3.4)

We shall prove that for all x ∈ IRN

‖x−∆(Φx)‖X ≤ C0σk(x)X . (3.5)

Indeed, η := x−∆(Φx) is in N and hence by (3.2), we have

‖x−∆(Φx)‖X ≤ (C0/2)σ2k(x−∆(Φx))X

≤ (C0/2)(σk(x)X + σk(∆(Φx)X)
≤ C0σk(x)X ,

where the second inequality uses the fact that σ2k(x + z)X ≤ σk(x)X + σk(z)X and the
last inequality uses the fact that ∆(Φx) minimizes σk(z) over F(y).

To prove the necessity of (3.3), let ∆ be any decoder for which (1.11) holds. Let η be
any element in N = N (Φ) and let η0 be the best 2k-term approximation of η in X. Let
η0 = η1 + η2 be any splitting of η0 into two vectors of support size k, we can write

η = η1 + η2 + η3, (3.6)

with η3 = η − η0. Since −η1 ∈ Σk we have by (1.11) that −η1 = ∆(Φ(−η1)), but since
η ∈ N , we also have −Φη1 = Φ(η2 + η3) so that −η1 = ∆(Φ(η2 + η3)). Using again (1.11)
we derive

‖η‖X = ‖η2 + η3 −∆(Φ(η2 + η3))‖X ≤ C0σk(η2 + η3)

≤ C0‖η3‖X = C0σ2k(η),

which is (3.3). 2
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When X is an `p space, the best k term approximation is obtained by leaving the k
largest components of x unchanged and setting all the others to 0. Therefore the property

‖η‖X ≤ Cσk(η)X , (3.7)

can be reformulated by saying that

‖η‖X ≤ C‖ηT c‖X , (3.8)

holds for all T ∈ {1, · · · , N} such that #T ≤ k, where T c is the complement set of T in
{1, · · · , N}. In going further, we shall say that Φ has the null space property in X of order
k with constant C if (3.8) holds for all η ∈ N and #T ≤ k. Thus, we have

Corollary 3.3 Suppose that X is an `N
p space, k > 0 an integer and Φ an encoding

matrix. If Φ has the null space property (3.8) in X of order 2k with constant C0/2, then
there exists a decoder ∆ so that (Φ, ∆) satisfies (1.11) with constant C0. Conversely, the
validity of (1.11) for some decoder ∆ implies that Φ has the null space property (3.8) in
X of order 2k with constant C0.

In the next two sections, we shall use this corollary in order to study instance opti-
mality in the case where the X norm is `1 and `2 respectively.

4 The case X = `1

In this section, we shall study the null space property (3.8) in the case where X = `1. We
shall make use of the restricted isometry property (3.1) introduced by Candès and Tao.
We begin with the following lemma whose proof is inspired by results in [6].

Lemma 4.1 Let Φ be any matrix which satisfies RIP of order 3k with δ3k ≤ δ < 1. Then
Φ satisfies the null space property in `1 of order 2k with constant C0 =

√
21+δ

1−δ
.

Proof: It is enough to prove (3.8) in the case when T is the set of indices of the largest
2k coefficients of η. Let T0 = T , T1 denote the set of indices of the next k largest entries
of η, T2 the next k largest, and so on. The last set Ts defined this way may have less than
k elements.

We define η0 := ηT0 + ηT1 . Since η ∈ N , we have Φη0 = −Φ(ηT2 + . . . + ηTs), so that

‖ηT‖`2 ≤ ‖η0‖`2 ≤ (1− δ)−1‖Φη0‖`2 = (1− δ)−1‖Φ(ηT2 + . . . + ηTs)‖`2

≤ (1− δ)−1

s∑
j=2

‖ΦηTj
‖`2 ≤ (1 + δ)(1− δ)−1

s∑
j=2

‖ηTj
‖`2 ,

where we have used both bounds in (3.1). Now for any i ∈ Tj+1 and l ∈ Tj, we have
|ηi| ≤ |ηl| so that |ηi| ≤ k−1‖ηTj

‖`1 . It follows that

‖ηTj+1
‖`2 ≤ k−1/2‖ηTj

‖`1 , (4.1)
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so that

‖ηT‖`2 ≤ (1 + δ)(1− δ)−1k−1/2

s∑
j=1

‖ηTj
‖`1 = (1 + δ)(1− δ)−1k−1/2‖ηT c‖`1 . (4.2)

By the Cauchy-Schwartz inequality ‖ηT‖`1 ≤ (2k)1/2‖ηT‖`2 , and we therefore obtain the
null space property in `1 with constant C0 =

√
2(1 + δ)/(1− δ). 2

Combining both lemmas 3.2 and 4.1, we have therefore proved the following.

Theorem 4.2 Let Φ be any matrix which satisfies RIP of order 3k. Define the decoder
∆ for Φ as in (3.4) for X = `1. Then (1.11) holds in X = `1 with constant C0 = 2

√
21+δ

1−δ
.

As it was mentioned in the previous section, one can build matrices Φ which satisfy
RIP of order k under the condition n ≥ ck log(N/k) where c is some fixed constant. We
therefore conclude that instance optimality of order k in the `1 norm can be achieved at
the price of O(k log(N/k)) measurements.

Note that on the other hand, since instance optimality of order k in any norm X
always implies that the reconstruction is exact when x ∈ Σk, it cannot be achieved with
less than 2k measurements according to Lemma 3.1.

Before adressing the `2 case, let us briefly discuss the decoder ∆ which achieves (1.11)
for such a Φ. According to the proof of Lemma 3.2, one can build ∆ as the solution of the
minimization problem (3.4). It is not clear to us whether this minimization problem can
be solved in polynomial time in N . The following result shows that it is possible to define
∆ by `1 minimization if Φ satisfies RIP with some additional control on the constants in
(3.1).

Theorem 4.3 Let Φ be any matrix which satisfies RIP of order 2k with δ2k ≤ δ < 1/3.
Define the decoder ∆ for Φ as in (1.10). Then, (Φ, ∆) satisfies (1.11) in X = `1 with
C0 = 2+2δ

1−3δ
.

Proof: We first remark that if Φ satisfies RIP of order 2k, the same argument as in the
proof of Lemma 4.1 shows that Φ satisfies the null space property in `1 of order k with
constant C = (1 + δ)/(1 − δ) < 2. This means that for any η ∈ N and T such that
#T ≤ k, we have

‖η‖`1 ≤ C‖ηT c‖`1 , (4.3)

and therefore
‖ηT‖`1 ≤ (C − 1)‖ηT c‖`1 . (4.4)

Let x∗ = ∆(Φx) be the solution of (1.10) so that η = x∗ − x ∈ N and

‖x∗‖`1 ≤ ‖x‖`1 . (4.5)

Denoting by T the set of indices of the largest k coefficients of x, we can write

‖x∗T‖`1 + ‖x∗T c‖`1 ≤ ‖xT‖`1 + ‖xT c‖`1 . (4.6)
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It follows that

‖xT‖`1 − ‖ηT‖`1 + ‖ηT c‖`1 − ‖xT c‖`1 ≤ ‖xT‖`1 + ‖xT c‖`1 , (4.7)

and therefore
‖ηT c‖`1 ≤ ‖ηT‖`1 + 2‖xT c‖`1 = ‖ηT‖`1 + 2σk(x)`1 . (4.8)

Using (4.4) and the fact that C < 2 we thus obtain

‖ηT c‖`1 ≤
2

2− C
σk(x)`1 . (4.9)

We finally use again (4.3) to conclude that

‖x− x∗‖`1 ≤
2C

2− C
σk(x)`1 , (4.10)

which is the announced result. 2

5 The case X = `2

In this section, we shall show that instance-optimality is not a very viable concept in
X = `2 in the sense that it will not even hold for k = 1 unless n ≥ cN . We know from
Theorem 3.3 that if Φ is a matrix of size n×N which satisfies

‖x−∆(Φx)‖`2 ≤ C0σk(x)`2 , x ∈ IRN , (5.1)

for some decoder ∆, then its null space N will need to have the property

‖η‖2
`2
≤ C0‖ηT c‖2

`2
, #T ≤ 2k. (5.2)

Theorem 5.1 For any matrix Φ of dimension n×N , property (5.2) with k = 1 implies
that N ≤ C2

0n.

Proof: We start from (5.2) with k = 1 from which we trivially derive

‖η‖2
`2
≤ C2

0‖ηT c‖2
`2

, #T ≤ 1, (5.3)

or equivalently for all j ∈ {1, · · · , N},

N∑
i=1

|ηi|2 ≤ C2
0

∑
i6=j

|ηi|2. (5.4)

From this, we derive that for all j ∈ {1, · · · , N},

|ηj|2 ≤ (C2
0 − 1)

∑
i6=j

|ηi|2 = (C2
0 − 1)(‖η‖2

`2
− |ηj|2), (5.5)

and therefore
|ηj|2 ≤ A‖η‖2

`2
, (5.6)
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with A = 1− 1
C2

0
.

Let (ej)j=1,···,N be the canonical basis of IRN so that ηj = 〈η, ej〉 and let v1, . . . , vN−n

be an orthonormal basis for N . Denoting by P = PN the orthognal projection onto N ,
we apply (5.6) to η := P (ej) ∈ N and find that for any j ∈ {1, . . . , N}

|〈P (ej), ej〉|2 ≤ A. (5.7)

This means
N−n∑
i=1

|〈ej, vi〉|2 ≤ A, j = 1, . . . , N. (5.8)

We sum (5.8) over j ∈ {1, . . . , N} and find

N − n =
N−n∑
i=1

‖vi‖2
`2
≤ AN. (5.9)

It follows that (1− A)N ≤ n. That is, N ≤ nC2
0 as desired. 2

The above result means that when measuring the error in `2, the comparison between
compressed sensing and best k-term approximation on a general vector of IRn is strongly
in favor of best k-term approximation. However, this conclusion should be moderated in
two ways. On the one hand, we shall see in §8 that one can obtain mixed-norm estimates
of the form (1.14) from which one finds that compressed sensing compares favorably with
best k-term approximation over sufficiently concentrated classes of vectors. On the other
hand, we shall prove in the next section that (5.1) can be achieved with n of the same
order as k up to a logarithmic factor, if one accepts that this result holds with high
probability.

6 The case X = `2 in probability

In order to formulate the results of this section, we let Ω be a probability space with
probability measure P and let Φ = Φ(ω), ω ∈ Ω be an n × N random matrix. We seek
results of the following type: for any x ∈ IRN , if we draw Φ at random with respect to P ,
then

‖x−∆(Φx)‖`2 ≤ C0σk(x)`2 (6.1)

holds for this particular x with high probability for some decoder ∆ (dependent on the
draw Φ). We shall even give explicit decoders which will yield this type of inequality. It
should be understood that Φ is drawn independently for each x in contrast to building a
Φ such that (6.1) holds simultaneously for all x ∈ IRN which was our original definition
of instance optimality.

Two simple instances of random matrices which are often considered in compressed
sensing are

(i) Gaussian matrices: Φi,j = N (0, 1
n
) are i.i.d. Gaussian variables of variance 1/n.

13



(ii) Bernoulli matrices: Φi,j = ±1√
n

are i.i.d. Bernoulli variables of variance 1/n.

In order to establish such results, we shall need that the random matrix Φ has two
properties which we now describe. The first of these relates to the restricted isometry
property which we know plays a fundamental role in the performance of the matrix Φ in
compressed sensing.

Definition 6.1 We say that the random matrix Φ satisfies RIP of order k with constant
δ and probability 1−ε if there is a set Ω0 ⊂ Ω with P (Ω0) ≥ 1−ε such that for all ω ∈ Ω0,
the matrix Φ(ω) satisfies (3.1) with constant δk ≤ δ.

This property has been shown for random matrices of the above Gaussian or Bernoulli
type. Namely, given any c > 0 and δ > 0, there is a constant c0 > 0 such that for all
n ≥ c0k log(N/k) this property will hold with ε ≤ e−cn, see [3, 7, 9, 28].

The RIP controls the behavior of Φ on Σk, or equivalently on all the k dimensional
spaces spanned by any subset of {e1, · · · , eN} of cardinality k. On the other hand, for
a general vector x ∈ IRN , the image vector Φx might have a much larger norm than x.
However, for standard constructions of random matrices the probability that Φx has large
norm is small. We formulate this by the following definition.

Definition 6.2 We say that the random matrix Φ has the boundedness property with
constant C and probability 1 − ε, if for each x ∈ IRN , there is a set Ω0(x) ⊂ Ω with
P (Ω0(x)) ≥ 1− ε such that for all ω ∈ Ω0(x),

‖Φ(ω)x‖`2 ≤ C‖x‖`2 . (6.2)

Note that the property which is required in this definition is clearly weaker than asking
that the spectral norm ‖Φ‖ := sup‖x‖`2

=1 ‖Φx‖`2 is not greater than C with probability
1− ε.

Again, this property has been shown for various random families of matrices and in
particular for the Gaussian or Bernoulli families. Namely, given any C > 1, this property
will hold with constant C and ε ≤ 2e−βn with β = β(C) > 0, see [1] or the discussion
in [3]. Thus, the standard constructions of random matrices will satisfy both of these
properties.

We now describe our process for decoding y = Φx, when Φ = Φ(ω) is our given
realization of the random matrix. Let T ⊂ {1, . . . , N} be any subset of column indices
with #(T ) = k and let XT be the linear subspace of IRN which consists of all vectors
supported on T . For this T , we define

x∗T := Argmin
z∈XT

‖Φz − y‖`2 . (6.3)

In other words, x∗T is chosen as the least squares minimizer of the residual in approximation
by elements of XT . Notice that x∗T is supported on T . If Φ satisfies RIP of order k then
the matrix Φt

T ΦT is nonsingular and the nonzero entries of x∗T are given by

(Φt
T ΦT )−1Φt

T y. (6.4)
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To decode y, we search over all subsets T of cardinality k and choose

T ∗ := Argmin
#(T )=k

‖y − Φx∗T‖`n
2
. (6.5)

Our decoding of y is now given by

x∗ = ∆(y) := x∗T ∗ . (6.6)

The main result of this section is the following.

Theorem 6.3 Assume that Φ is a random matrix which satisfies RIP of order 2k with
constant δ and probability 1− ε and also satisfies the boundedness property with constant
C and probability 1 − ε. Then, for each x ∈ IRN , there exists a set Ω(x) ⊂ Ω with
P (Ω(x)) ≥ 1− 2ε such that for all ω ∈ Ω(x) and Φ = Φ(ω), the estimate (6.1) holds with
C0 = 1 + 2C

1−δ
. Here the decoder ∆ = ∆(ω) is given by (6.6).

Proof: Let x ∈ IRN be arbitrary and let Φ = Φ(ω) be the draw of the matrix Φ from
the random ensemble. We denote by T the set of indices corresponding to the k largest
coefficients of x. Thus

‖x− xT‖`2 = σk(x)`2 . (6.7)

We consider the set Ω′ := Ω0 ∩ Ω(x− xT ) where Ω0 is the set in the definition of RIP in
probability and Ω(x − xT ) is the set in the definition of boundedness in probability for
the vector x− xT . Then P (Ω′) ≥ 1− 2ε. For any ω ∈ Ω′, we have

‖x− x∗‖`2 ≤ ‖x− xT‖`2 + ‖xT − x∗‖`2 ≤ σk(x)`2 + ‖xT − x∗‖`2 . (6.8)

We bound the second term by

‖xT − x∗‖`N
T

≤ (1− δ)−1‖Φ(xT − x∗)‖`2

≤ (1− δ)−1(‖Φ(x− xT )‖`2 + ‖Φ(x− x∗)‖`2)
= (1− δ)−1(‖y − ΦxT‖`2 + ‖y − Φx∗‖`2)
≤ 2(1− δ)−1‖y − ΦxT‖`2 = 2(1− δ)−1‖Φ(x− xT )‖`2

≤ 2C(1− δ)−1‖x− xT‖`2 = 2C(1− δ)−1σk(x)`2 .

where the first inequality uses the RIP property and the fact that xT −x∗ is a vector with
support of size less than 2k, the third inequality uses the minimality of T ∗ and the fourth
inequality uses the boundedness property in probability for x− xT . 2

By virtue of the remarks on the properties of Gaussian and Bernoulli matrices, we derive
the following quantitative result.

Corollary 6.4 If Φ a random matrix of either Gaussian or Bernoulli type, then for any
ε > 0 and C0 > 3, there exists a constant c0 such that if n ≥ c0k log(N/k) the following
holds: for every x ∈ IRN , there exists a set Ω(x) ⊂ Ω with P (Ω(x)) ≥ 1 − 2ε such that
(6.1) holds for all ω ∈ Ω(x) and Φ = Φ(ω).
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A variant of the above results deals with the situation where the vector x itself is
drawn from a probability measure Q on IRN . In this case, the following result shows
that we can first pick the matrix Φ so that (6.1) will hold with high probability on the
choice of x. In other words, only a few pathological signals are not reconstructed up to
the accuracy of best k-term approximation.

Corollary 6.5 If Φ a random matrix of either Gaussian or Bernoulli type, then for any
ε > 0 and C0 > 3, there exists a constant c0 such that if n ≥ c0k log(N/k) the following
holds: there exists a matrix Φ and a set Ω(Φ) ⊂ Ω with Q(Ω(Φ)) ≥ 1− 2ε such that (6.1)
holds for all x ∈ Ω(Φ).

Proof: Consider random matrices of Gaussian or Bernoulli type, and denote by P their
probability law. We consider the law P ⊗Q which means that we draw independently Φ
according to P and x according to Q . We denote by Ωx and ΩΦ the events that (6.1) does
not hold given x, and Φ respectively. The event Ω0 that (6.1) does not holds is therefore
given by

Ω0 = ∪xΩx = ∪ΦΩΦ. (6.9)

According to Corollary 6.4 we know that for all x ∈ IRN ,

P (Ωx) ≤ ε, (6.10)

and therefore
P ⊗Q(Ω0) ≤ ε (6.11)

By Chebyshev’s inequality, we have for all t > 0,

P ({Φ : Q(ΩΦ) ≥ t}) ≤ ε

t
, (6.12)

and in particular

P ({Φ : Q(ΩΦ) ≥ 2ε}) ≤ 1

2
. (6.13)

This shows that there exists a matrix Φ such that Q(ΩΦ) ≤ 2ε, which means that for such
a Φ the estimate (6.1) holds with probability larger than 1− 2ε over x. 2

We close this section with a few remarks comparing the results of this section with other
results in the literature. The decoder defined by (6.3) is not computationally realistic since
it requires a combinatorial search over all subset T of cardinality T . A natural question is
therefore to obtain a decoder with similar approximation properties and more reasonable
computational cost. Let us mention that fast decoding methods have been obtained for
certain random constructions of matrices by Cormode and Muthukrishnan [10] and by
Gilbert and coworkers [16, 31], that yield approximation properties which are similar to
Theorem 6.3. Our results differ from theirs in the following two ways. First, we give
general criteria for instance optimality to hold in probability. In this context we have
not been concerned about the decoder. Our results can hold in particular for standard
random classes of matrices such as the Gaussian and Bernouli constructions. Secondly,
when applying our results to these standard random classes, we obtain the range of n
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given by n ≥ ck log(N/k) which is slightly wider than the range in these other works.
That latter range is also treated in [31] but the corresponding results are confined to k-
sparse signals. It is shown there that orthogonal matching pursuit identifies the support
of such a sparse signal with high probability and that the orthogonal projection will then
recover it precisely. Unfortunately, the reasoning leading to this result does not seem to
carry over to non-sparse signals.

7 The case X = `p with 1 < p < 2

In this section we shall discuss instance optimality in the case X = `p when 1 < p < 2.
We therefore discuss the validity of

‖x−∆(Φx)‖`p ≤ C0σk(x)`p , x ∈ IRN , (7.1)

depending on the value of n. Our first result is a generalization of Lemma 4.1.

Lemma 7.1 Let Φ be any matrix which satisfies RIP of order 2k + k̃ with δ2k+k̃ ≤ δ < 1
and

k̃ := k
(N

k

)2−2/p

. (7.2)

Then Φ satisfies the null space property in `p of order 2k with constant C0 = 2
1
p
− 1

2 1+δ
1−δ

.

Proof: The proof is very similar to Lemma 4.1 so we sketch it. The idea is to take once
again T0 = T the set of 2k largest coefficients of η and to take the other sets Tj of size k̃.

In the same way, we obtain

‖ηT0‖`2 ≤ (1 + δ)(1− δ)−1

s∑
j=2

‖ηTj
‖`2 . (7.3)

Now if j ≥ 1, for any i ∈ Tj+1 and l ∈ Tj, we have |ηi| ≤ |ηl| so that |ηi|p ≤ k̃−1‖ηTj
‖p

`p
.

It follows that
‖ηTj+1

‖`2 ≤ (k̃)1/2−1/p‖ηTj
‖`p , (7.4)

so that
‖ηT‖`p ≤ (2k)1/p−1/2‖ηT‖`2

≤ (1 + δ)(1− δ)−1(2k)1/p−1/2k̃1/2−1/p
∑s

j=1 ‖ηTj
‖`p

≤ (1 + δ)(1− δ)−1(2k)1/p−1/2k̃1/2−1/ps1−1/p‖ηT c‖`p

≤ (1 + δ)(1− δ)−1(2k)1/p−1/2k̃1/2−1/p(N/k̃)1−1/p‖ηT c‖`p

= 21/p−1/2(1 + δ)(1− δ)−1‖ηT c‖`p ,

(7.5)

where we have used twice Hölder’s inequality and the relation between N , k and k̃. 2

The corresponding generalization of Theorem 4.2 is now the following.

Theorem 7.2 Let Φ be any matrix which satisfies RIP of order 2k+ k̃ with δ2k+k̃ ≤ δ < 1

and k̃ as in (7.2). Define the decoder ∆ for Φ as in (3.4) for X = `p. Then (7.1) holds
with constant C0 = 21/p+1/2(1 + δ)/(1− δ).
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Recall from our earlier remarks that an n × N matrix Φ can have RIP of order k̃
provided that k̃ ≤ c0n/ log(N/n). We therefore conclude from Theorem 7.2 and (7.2)
that instance optimality of order k in the `p norm can be achieved at the price of
O(k(N/k)2−2/p log(N/k)) measurements, which is now significantly higher than k except
in the case where p = 1. In the following, we prove that this price cannot be avoided.

Theorem 7.3 For any s < 2−2/p and any matrix Φ of dimension n×N , property (7.1)
implies that

n ≥ ck
(N

k

)s

, (7.6)

with c =
(

C1

C0

) 2/q−1
1/q−1/p

where C0 is the constant in (7.1) and C1 the lower constant in (2.17)

and q is defined by the relation s = 2− 2/q.

Proof: We shall use the results of §2 concerning the Gelfand width and the rate of best
k-term approximation. If (1.11) holds, we find that for any compact class K ⊂ IRN

En(K)`p ≤ C0σk(K)`p . (7.7)

We now consider the particular classes K := U(`N
q ) with 1 ≤ q < p, so that in view of

(2.6) and (2.17), the inequality (7.7) becomes

C1(N
1−1/qn−1/2)

1/q−1/p
1/q−1/2 ≤ C0k

1/p−1/q, (7.8)

which gives (7.6) with s = 2− 2/q and c =
(

C1

C0

) 2/q−1
1/q−1/p

. 2

Remark 7.4 In the above proof the constant c blows up as q approaches p and therefore
we cannot directly conclude that a condition of the type n ≥ ck(N/k)2−2/p is necessary for
(7.1) to hold although this seems plausible.

8 Mixed-norm instance optimality

In this section, we extend the study of instance optimality to more general estimates of
the type

‖x−∆(Φx)‖X ≤ C0k
−sσk(x)Y , x ∈ IRN , (8.1)

which we refer to as mixed-norm instance optimality. We have in mind the situation
where X = `p and Y = `q with 1 ≤ q ≤ p ≤ 2 and s = 1/q − 1/p. We are thus interested
in estimates of the type

‖x−∆(Φx)‖`p ≤ C0k
1/p−1/qσk(x)`q , x ∈ IRN . (8.2)

The interest in such estimates stems from the following fact. Considering the classes
K = U(`N

r ) for r < q, we know from (2.8) that

k1/p−1/qσk(K)`q ∼ k1/p−1/qk1/q−1/r = k1/p−1/r ∼ σk(K)`p . (8.3)
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Therefore the estimate (8.2) yields the same rate of approximation than (7.1) over such
classes, and on the other hand we shall see that it is valid for smaller values of n.

Our first result is a trivial generalization of Lemma 3.2 and Theorem 3.3 to the case
of mixed norm instance-optimality, so we state it without proof. We say that Φ has the
mixed null space property in (X, Y ) of order k with constant C and exponent s if

‖η‖X ≤ Ck−s‖ηT c‖Y , (8.4)

η ∈ N and #(T ) ≤ k.

Theorem 8.1 Given a norm ‖·‖X , an integer k > 0 and an encoding matrix Φ. If Φ has
the mixed null space property in (X,Y ) of order 2k with constant C0/2 and exponent s,
then there exists a decoder ∆ so that (Φ, ∆) satisfies (8.1) with constant C0. Conversely,
the validity of (8.1) for some decoder ∆ implies that Φ has the null space property in
(X,Y ) of order 2k with constant C0 and exponent s.

We next give a straightforward generalization of Lemma 7.1.

Lemma 8.2 Let Φ be any matrix which satisfies RIP of order 2k + k̃ with δ2k+k̃ ≤ δ < 1
and

k̃ := k
(N

k

)2−2/q

. (8.5)

Then Φ satisfies the mixed null space property in (`p, `q) of order 2k with constant C0 =

2
1
p
+ 1

2 1+δ
1−δ

+ 2
1
p
− 1

q and exponent s = 1/q − 1/p.

Proof: As in the proof of Lemma 7.1, we take T0 = T the set of 2k largest coefficients of
η and to take the other sets Tj of size k̃. By similar arguments, we arrive to the chain of
inequalities

‖ηT‖`p ≤ (2k)1/p−1/2‖ηT‖`2

≤ (1 + δ)(1− δ)−1(2k)1/p−1/2k̃1/2−1/q

s∑
j=1

‖ηTj
‖`q

≤ (1 + δ)(1− δ)−1(2k)1/q−1/2k̃1/2−1/qs1−1/q‖ηT c‖`q

≤ (1 + δ)(1− δ)−1(2k)1/q−1/2k̃1/2−1/q(N/k̃)1−1/q‖ηT c‖`q

= 21/p−1/2(1 + δ)(1− δ)−1k−s‖ηT c‖`q , (8.6)

where we have used Hölder’s inequality both with `q and `p as well as the relation between
N , k and k̃.

It remains to bound the tail ‖ηT c‖`p . To this end, we infer from (2.4) that

‖ηT c‖`p ≤ ‖η‖`q(2k)
1
p
− 1

q ≤ (‖ηT‖`q + ‖ηT c‖`q)(2k)
1
p
− 1

q .

Invoking (7.5) for p = q yields now

‖ηT‖`q ≤ 21/q−1/2(1 + δ)(1− δ)−1‖ηT c‖`q
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so that
‖ηT c‖`p ≤

(
2

1
p
− 1

2 (1 + δ)(1− δ)−1 + 2
1
p
− 1

q

)
‖ηT c‖`qk

1
p
− 1

q . (8.7)

Combining (8.7) and (8.6), finishes the proof. 2

We see that considering mixed-norm instance optimality in (`p, `q) in contrast to in-
stance optimality in `q is beneficial since the value of k̃ is smaller in (8.5) than in (7.2).
The corresponding generalization of Theorem 7.2 is now the following.

Theorem 8.3 Let Φ be any matrix which satisfies RIP of order 2k+k̃. Define the decoder

∆ for Φ as in (3.4) for X = `p. Then (8.2) holds with constant C0 = 2
1
p
+ 3

2 1+δ
1−δ

+ 21+ 1
p
− 1

q .

By the same reasoning that followed Theorem 7.2 concerning the construction of ma-
trices which satisfy RIP, we conclude that mixed instance optimality of order k in the `p

and `q norm can be achieved at the price of O(k(N/k)2−2/q log(N/k)) measurements. In
particular, we see that when q = 1, this type of mixed norm estimate can be obtained
with n larger than k only by a logarithmic factor. Such a result was already observed in
[6] in the case p = 2 and q = 1. In view of (8.3) this implies in particular that compressed
sensing behaves as good as best k-term approximation on classes such as K = U(`N

r ) for
r < 1.

One can prove that the above number of measurements is also necessary. This is
expressed by a straightforward generalization of Theorem 7.3 that we state without proof.

Theorem 8.4 For any matrix Φ of dimension n×N , property (8.2) implies that

n ≥ ck
(N

k

)2−2/q

, (8.8)

with c =
(

C1

C0

) 2/q−1
1/q−1/p

where C0 is the constant in (7.1) and C1 the lower constant in (2.17).

Remark 8.5 In general, there is no direct relationship between (7.1) and (8.2). We give
an example to bring out this fact. Let us consider a fixed value of 1 < p ≤ 2 and values of
N and k < N/2. We define x so that its first k coordinates are 1 and its remaining N −k
coordinates are in (0, 1). Then σk(x)`r = ‖z‖`r where z is obtained from x by setting the
first k coordinates of x equal to zero. We can choose z so that 1/2 ≤ ‖z‖`r ≤ 2, for
r = p, q. In this case, the right side in (8.2) is smaller than the right side of (7.1) by
the factor k1/p−1/q so an estimate in the mixed-norm instance-optimality sense is much
better for this x. On the other hand, if we take all nonzero coordinates of z to be a with
a ∈ (0, 1), then the right side of (7.1) will be smaller than the right side of (8.2) by the
factor (N/k)1/p−1/q which show that for this x the instance-optimality estimate is much
better.
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[20] O. Gudéon, A.E. Litvak, Euclidean projections on a p-convex body, Lecture Notes
in Mathematics, # 1745, Geometric Aspects of Functional Analysis, Israel Seminar
(GAFA) 1996-2000, V.D. Milman, G. Schechtman, eds., Springer-Verlag, Heidelberg,
2000.

[21] M. Henzinger, P. Raghavan and S. Rajagopalan, Computing on data stream, Tech-
nical Note 1998-011, Digital systems research center, Palo Alto, May 1998.

[22] W. Johnson and J. Lindenstrauss, Extensions of Lipschitz maps into Hilbert space,
Contemp. Math. 26(1984), 189–206.

[23] B. Kashin, The widths of certain finite dimensional sets and classes of smooth func-
tions, Izvestia 41(1977), 334–351.

[24] G.G. Lorentz, M. von Golitschek and Yu. Makovoz, Constructive Approxima-
tion:Advanced Problems, Springer Grundlehren, vol. 304, Springer Berlin Heidelberg,
1996.

[25] C. Micchelli and T. Rivlin, A survey of optimal recovery, Optimal Estimation in
Approximation Theory (C. A. Micchelli and T. J. Rivlin, eds.), Plenum Press, New
York, 1977, 1–54.

[26] A. Pinkus, n-Widths in Approximation Theory, Ergebnisse, Springer Verlag, Berlin,
1985.

[27] J. Romberg, M. Wakin, R. Baraniuk, Approximation and Compression of Piecewise
Smooth Images Using a Wavelet/Wedgelet Geometric Model, IEEE International Con-
ference on Image Processing, Barcelona, Spain, September 2003.

[28] A. Pajor and N. Tomczak-Jaegermann, Subspaces of small codimension of finite di-
mensional Banach spaces, Proc. Amer. Math. Soc., vol. 97, 1986, pp. 637–642.

[29] J. Traub and H. Wozniakowski, A General Theory of Optimal Algorithms, Academic
Press, N. Y., 1980.

[30] J. F. Traub, G. W. Wasilkowski, and H. Woźniakowski, Information-Based Com-
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