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Abstract

We consider a relatively simple model for pool-boiling processes. This model in-
volves only the temperature distribution within the heater and describes the heat
exchange with the boiling medium via a nonlinear boundary condition imposed on
the fluid-heater interface. This results in a standard heat-transfer problem with
a nonlinear Neumann boundary condition on part of the boundary. In a recent
paper [18] we analysed this nonlinear heat-transfer problem for the case of two
space dimensions and in particular studied the qualitative structure of steady-
state solutions. The study revealed that, depending on system parameters, the
model allows both multiple homogeneous and multiple heterogeneous tempera-
ture distributions on the fluid-heater interface. In the present paper we show that
the analysis from Speetjens et al. [18] can be generalised to the physically more
realistic case of three space dimensions. A fundamental shift-invariance property
is derived that implies multiplicity of heterogeneous solutions. We present a nu-
merical bifurcation analysis that demonstrates the multiple solution structure in
this mathematical model by way of a representative case study.

Keywords: pool boiling, nonlinear heat transfer, bifurcations, numerical simulation

1 Introduction

Pool boiling refers to boiling processes that lean on natural convection as means for heat
transfer through the boiling medium and is the key mode of thermal transport in many
practical applications. Local heat-transfer phenomena near heating walls in industrial boiling
equipment (e.g. evaporators and kettle reboilers) for instance are essentially pool-boiling
processes [20]. Furthermore, pool boiling is emerging as novel cooling technique for electronics
components [14]. Despite its importance, many aspects of (pool) boiling remain largely
unexplored to date, mainly due to the immense complexity of the process induced by the
intricate interplay between hydro- and thermodynamics. Studies on boiling known in the
literature are mainly experimental and empirical. Theoretical investigations are scarce. The
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theoretical analysis presented in this paper is intended to contribute to a better understanding
of fundamental phenomena in pool boiling.

In pool boiling there are three fundamental states, namely nucleate, transition and film
boiling, that occur successively with increasing temperature [6]. Nucleate boiling is, as op-
posed to film boiling, an efficient and safe mode of heat transfer and the sought-after state in
typical applications. Nucleate boiling transits into film boiling upon exceeding the so-called
critical heat flux (CHF) through the intermediate state of transition boiling. This transition
results in a dramatic increase in interface temperature due to the substantial drop in the
heat-transfer coefficient when going from nucleate boiling (homogeneous liquid-like mixture)
to film boiling (vapour blanket on the interface). This manifests itself in the essentially non-
linear relation between the mean heat flux and the mean fluid-heater interface temperature
(the so-called boiling curve; see [6]). Improvement of boiling processes involves finding a
good balance between high efficiency (close to CHF) and low risk (safe distance from CHF).
In-depth understanding of transition boiling and its underlying mechanisms is imperative to
this [19].

Transition boiling has been interpreted as a boiling mode with coexisting nucleate boiling
and film boiling regions (“two-mode boiling”) and thus resulting essentially in a heterogeneous
state at the surface (see e.g. [5]). A more intricate and most likely more precise description of
the two-phase structure in transition boiling has been derived in a series of papers by Auracher
and co-workers (see [2] for a survey). Moreover, transition boiling is an inherently unstable
state that naturally evolves towards one of the two stable boiling modes, i.e. nucleate or film
boiling, unless actively stabilised through temperature control [1]. On mesoscopic length and
time scales two-mode boiling states correspond to heterogeneous temperature fields on the
interface: “lower” temperatures correspond to nucleate-boiling regions; “higher” temperatures
are associated with film-boiling regions.1 The propagation of boundaries between adjacent
boiling regions during evolution of the transition mode towards one of the stable modes
is consistent with the propagation of thermal waves at the fluid-heater interface [21]. This
phenomenological connection between a (mesoscopic) boiling mode and interface temperature
admits a heater-only modelling approach that leaves out the boiling medium and describes the
(qualitative) behaviour of the boiling system entirely in terms of the temperature distribution
within the heater. This leads to a nonlinear heat-transfer model in terms of which fundamental
(mesoscopic) boiling phenomena are analysed by means of numerical simulation.

This approach has found widespread application for the analysis of pool boiling on “thin”
heaters (essentially wires and foils), cf. [7, 10, 11, 12, 21, 22]. In such thin configurations,
which correspond to spatially one-dimensional (1D) models, the heat-flux relation leads to
a source term in the governing equation, resulting in a model that is very similar to those
used for describing reaction-diffusion systems [3]. First extensions to finite-thickness heaters,
using a spatially two-dimensional (2D) model, have been presented in [3].

The transition behaviour of the heater-only problem basically involves two issues: (i)
formation and (ii) dynamics of heterogeneous temperature fields [2]. These two issues lead to
questions concerning existence and stability of steady-state solutions. Analysis of thin heaters
has shown the existence of multiple steady-state solutions for given heating conditions. In
[18] an extensive analysis of the steady-state behaviour of a spatially 2D heater problem
is presented. The heat-transfer model used there is taken from [3]. In [18] it is shown

1Here mesoscopic means locally averaged in space and time over intervals larger than bubble dimensions
and bubble lifetimes in order to smooth out microscopic short-term fluctuations [16].
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that multiple steady-state solutions occur for specific heating conditions in this model. A
main topic there is the analysis of the dependence of the multiple solution structure on the
system parameters. To this end a bifurcation analysis of the governing mathematical model is
performed in order to identify solution branches and bifurcations as a function of the system
parameters.

In the present paper we generalise the analysis of the 2D pool-boiling problem in [18] to the
physically more realistic spatially three-dimensional (3D) pool-boiling problem. An outline of
our approach is as follows. The separation-of-variables method admits an analytical reduction
of the 3D steady-state heat-transfer model to a 2D problem for the temperature distribution
on the fluid-heater interface only. We apply a Fourier analysis to characterise the solutions of
the reduced 2D problem. A shift-invariance property is proven, which implies multiplicity of
heterogeneous solutions and reveals a symmetry structure of these multiple solutions. To be
able to compute these multiple solutions we apply a discretisation and continuation technique.
For the discretisation of the 2D reduced problem a standard Fourier collocation method has
been employed. Continuation is performed for an artificial nonlinearity parameter λ in the
Neumann boundary condition at the interface that enables control of the degree of nonlinearity
of the system. This nonlinearity parameter ranges from λ = 0 (linear boundary condition
and thus a linear problem) to λ = 1 (the actual nonlinear model) and enables systematic
isolation of (multiple) solutions for given physical system parameters. Continuation in λ
reveals that pitchfork bifurcations occur on a branch of homogeneous (i.e. constant interface
temperature) solutions. These bifurcations occur for those λ at which the Jacobian of the
governing nonlinear operator becomes singular and lead to multiple heterogeneous (i.e. non-
constant interface temperature) solutions that have the symmetry property predicted by the
theoretical analysis.

Although the topic considered is very similar to the one in the previous study [18], there
are significant differences between the present and the previous paper. We mention the
most important ones. In this paper we analyse the more realistic spatially three-dimensional
heater. Due to this, the analysis becomes much more technical. In [18] the analysis and
numerical methods are based on one-dimensional Fourier expansions, whereas in this paper
we need two-dimensional Fourier series. It turns out that in the three-dimensional boiling
model considered in this paper multi-dimensional kernels of the Jacobian can occur which
cause special bifurcation phenomena. In the 2D case treated before the kernels are always
one-dimensional. In [18] we present an extensive analysis in which many model parameters
are varied and corresponding bifurcation diagrams are derived. In the present paper we
investigate only one model problem in which all model parameters are fixed. A bifurcation
diagram for only one (artificial) nonlinearity parameter is derived and analyzed.

The paper is organised as follows. In Section 2 we present the three-dimensional non-
linear heat-transfer model. In Section 3 we show how this 3D model leads to a reduced
two-dimensional problem for the temperature profile at the interface. We derive important
properties of this reduced problem. The discretisation method and the continuation technique
for the reduced problem are explained in Section 4. In Section 5 we apply these methods to a
representative case study and show results of a bifurcation analysis. A few main conclusions
are summarised in Section 6.
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2 Mathematical model for pool boiling

2.1 Dimensional heater-only model

Our pool boiling analysis is based on the heater-only modelling approach introduced in
Section 1 and following [3]. We consider the three-dimensional rectangular heater D =
[0, L]× [0,W ]× [0,H], with boundary Γ = ∂D = ΓH ∪ ΓA ∪ ΓF . The boundary segments are
ΓH = {(x, y, z) ∈ D | z = 0 } (heat supply), ΓA =

{
(x, y, z) ∈ D | x ∈ {0, L} or y ∈ {0,W}

}

(adiabatic sidewalls) and ΓF = {(x, y, z) ∈ D | z = H } (fluid-heater interface), cf. Figure 1a.
The heat transfer is described in terms of the superheat T = Ta − TS , i.e. the temperature
difference between actual temperature Ta and a boiling point TS , fixed by the pressure of the
boiling fluid. The temperature distribution T (x, t) in D × [0, tend] is governed by the heat
equation

∂T

∂t
= α∆T in D × [0, tend], α =

λ

ρcp
, (1)

−λ
∂T

∂n
|ΓH

= q̄H , −λ
∂T

∂n
|ΓF

= q̄F (TF ),
∂T

∂n
|ΓA

= 0, (2)

T (x, 0) = T0(x) for x ∈ D, (3)

where TF denotes the interface temperature on the boundary segment ΓF . The constants ρ,
cp and λ are density, specific heat and thermal conductivity of the heater, respectively. The
corresponding thermal diffusivity is denoted by α; q̄H and q̄F represent the constant heat
supply and the temperature-dependent heat transfer to the boiling medium, respectively.

Closure of the heat-transfer model requires specification of the heat-flux function q̄F (TF ).
The boiling curve [6] is not guaranteed to hold locally on the heater surface at any particular
point in time, since it is obtained from experiments, which average over time and space in
a certain experimental situation. However, if we pragmatically assume that either liquid or
vapour is in contact with a certain point on the surface at a certain time, the local heat-
transfer model is supposed to reflect heat-transfer correlations specific to liquid contact below
some threshold of the local heater surface temperature and specific to vapour contact above
this threshold. Since discontinuous heat-transfer correlations will not occur in practice, the
discontinuity between these two heat-transfer modes will be mollified by some smooth transi-
tion. For simplicity, we identify q̄F (TF ) with the global boiling curve. Such boiling curves are
of the functional form sketched in Figure 1b and consist of three distinct regimes that each
correspond to one of the boiling modes: nucleate boiling (0 ≤ T ≤ TC); transition boiling
(TC < T < TM ); film boiling (T ≥ TM ). Temperatures TC and TM coincide with the local
maximum (QC ; CHF) and minimum (QM ; Leidenfrost point) heat fluxes, respectively. TD is
a typical temperature during transition boiling. An explicit expression for the relation q̄F (TF )
is given below.

2.2 Non-dimensional formulation and boiling curve

We formulate the above heat-transfer problem in non-dimensional form through rescaling
the relevant variables as x′ = x/L, T ′ = T/TD, t′ = t/τ , q′H = q̄H/QH and q′F = q̄F /QC .
Substitution into the governing equations and dropping primes yields the non-dimensional
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model

∂T

∂t
= µ∆T in D × [0, tend/τ ] , D := [0, 1] × [0,D1] × [0,D2],

−Λ
∂T

∂z
|ΓH

= 1, −Λ
∂T

∂z
|ΓF

= Π2 qF (TF ),
∂T

∂n
|ΓA

= 0,

T (x, 0) = T0(x) for x ∈ D,

(4)

with

Λ =
λTD

QHL
, µ =

λτ

ρcpL2
, D1 =

W

L
, D2 =

H

L
, Π1 =

QC

QM

, Π2 =
QC

QH

, Π3 =
TC

TM

, (5)

as corresponding non-dimensional parameters. Here QH is a fixed typical value for the heat
supply; in the current case of a constant heat supply we use QH = q̄H . Note that qF = q̄F /QC

is the normalised boiling curve (i.e. rescaled with QC instead of QH); the dimensionless
interfacial heat flux in terms of QH is given by Π2qF (TF ). Figure 2 shows the non-dimensional
heater configuration (panel a) and the corresponding normalised boiling curve qF (TF ) (panel
b). Physical considerations suggest τ = ρcpHTD/|QH−QC |, which leads to ΛD2/µ = |1−Π2|.
Thus the model contains six independent system parameters. Parameters Λ and µ are the
non-dimensional thermal conductivity and thermal diffusivity, respectively, and thus control
the thermal properties of the heater. The parameter Π2 is the non-dimensional CHF and its
reciprocal Π−1

2 = q̄H/QC the normalised heat supply, and controls the heating conditions.
The normalised boiling curve is of the form qF (TF ) = h(TF )TF , with the temperature-

dependent heat-transfer coefficient h(TF ) given by

h(TF ) = CD {F1 − F2H(CDTF − 1)} , H(ζ) =
1

2

[
tanh

(
2ζ

W

)
+ 1

]
, (6)

where H(ζ) is a smoothed version of the Heaviside function. The parameter W controls the
width of the transition region (from H = 0 to H = 1) around ζ = 0 and is specified a-priori.
The coefficient CD rescales the temperature such that the single deflection point of qF (TF )
coincides with TF = 1. Its value is defined implicitly through

2
dH

dT
(CD − 1) +

d2H

dT 2
(CD − 1) = 0,

and thus depends only on W . The coefficients F1 and F2 scale qF (TF ) such that the conditions

q̇F (Tmax) = 0, q̇F (Tmin) = 0, qF (Tmax) = 1, qF (Tmin) = Π−1
1 , (7)

are fulfilled, i.e. that the extrema of the normalised boiling curve are consistent with their
dimensional counterparts. We use the notation q̇F = dqF /dT . These conditions result for
given W and Π1 in four nonlinear equations for the four unknowns (F1, F2, Tmin, Tmax). (It can
be shown that qF according to (6) possesses a local maximum and minimum at Tmax < 1 and
Tmin > 1, respectively.) The temperatures Tmax, 1, Tmin are the non-dimensional counterparts
to TC , TD, TM ; the heat fluxes qF = 1 and qF = Π−1

1 are the normalised counterparts to the
CHF (QC) and the Leidenfrost heat flux (QM ), respectively. Figure 2b shows the boiling
curve thus attained for W = 1 and Π1 = 4. Note that a value for the parameter W implies
a corresponding value for the parameter Π3. The present boiling curve is a generalisation of
that proposed in [3] in that here the transition width W is an additional system parameter.
For W ↓ 0 we obtain the boiling curve used in [3].
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a) Heater configuration. b) Boiling curve.

Figure 1: Heater configuration (panel a) and boiling curve (panel b). Temperatures TC and
TM coincide with the local maximum (QC ; CHF) and minimum (QM ; Leidenfrost point) heat
fluxes, respectively, and TD is a typical temperature during transition boiling.

a) Heater configuration. b) Normalised boiling curve.

Figure 2: Non-dimensional model: heater configuration (panel a) and normalised boiling curve
for Π1 = 4 and W = 1 (panel b). T = 1 is the non-dimensional counterpart to TD; the extrema
(stars) are the normalised CHF (qF = 1) and Leidenfrost point (qF = Π−1

1 ). The dashed line
represents the normalised heat supply q̄H/QC = Π−1

2 .

3 Analysis of the steady-state heat-transfer problem

3.1 Reduced heat-transfer problem

We study the steady-state behaviour of the 3D nonlinear heat-transfer problem introduced
above. Similar to the thin counterparts, the model (4) is expected to admit multiple steady-
state solutions. We consider the corresponding steady-state heat-transfer problem

∆T = 0 in D = [0, 1] × [0,D1] × [0,D2],

−Λ
∂T

∂z
|ΓH

= 1, −Λ
∂T

∂z
|ΓF

= Π2 qF (TF ),
∂T

∂n
|ΓA

= 0,
(8)

with an associated set of parameters (Λ,D1,D2,Π1,Π2,W ). We apply the method of separation-
of-variables (cf., for example, [13]) to derive a (formal) representation of the solution of the
Laplace equation and the linear Neumann boundary conditions on ΓH and ΓA in (8). This
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results in

T (x, y, z) =

∞∑

n,p=0

T̃n,p cos(nπx) cos
(pπy

D1

) cosh(κn,pπz)

cosh(κn,pπD2)
+

D2 − z

Λ
,

κn,p :=

√

n2 +

(
p

D1

)2

,

(9)

which can be checked by substitution. The coefficients T̃n,p form the spectrum of the Fourier
cosine expansion

TF (x, y) := T (x, y,D2) =

∞∑

n,p=0

T̃n,p cos(nπx) cos
(pπy

D1

)
, (10)

of the interface temperature. The coefficients T̃n,p are determined by the nonlinear Neumann
boundary condition on ΓF . Substitution of (9) into the nonlinear condition and using the
relation qF (TF ) = h(TF )TF leads to

∞∑

n,p=0

κn,pπ tanh(κn,pπD2)T̃n,p cos(nπx) cos
(pπy

D1

)
+ α(TF (x, y))TF (x, y) −

1

Λ
= 0, (11)

for all (x, y) ∈ ΓF , with

α(TF ) =
Π2

Λ
h(TF ) =

Π2

Λ

qF (TF )

TF
,

the scaled heat-transfer coefficient. The nonlinear equation (11) is the characteristic equa-
tion that determines the steady-state solutions of (8). The series in (10) and (11) are formal
expressions. Convergence of these series is discussed below.

Thus the 3D steady-state problem (8) simplifies to the 2D problem (11) involving only the
temperature distribution TF (x, y) on the boundary ΓF .

We call the 2D problem (11) the reduced heat-transfer problem.

3.2 Solutions of the reduced heat-transfer problem

Homogeneous solutions

We first consider the special case of homogeneous interface temperatures TF , implying TF (x, y) =
T̃0,0 and T̃n,p = 0 for all (n, p) 6= (0, 0). Then the characteristic equation (11) simplifies to

qF (T̃0,0) = Π−1
2 , (12)

and T̃0,0 coincides with the intersection(s) between boiling curve qF and normalised heat-
supply q̄H/QC = Π−1

2 (dashed line in Figure 2b). From Figure 2b it follows that, depending

on the system parameters Π1 and Π2, we can have one, two or three solutions for T̃0,0. Note
that in this homogeneous case the heat-transfer coefficient h(TF ) is constant and thus the
Neumann boundary condition on ΓF is linear. The corresponding solution in D is given by

T (x, y, z) =
D2

Λ

(
1 −

z

D2

)
+ T̃0,0 , (13)

which is a linear temperature profile with the constant interface temperature T (x, y,D2) =
TF (x, y) = T̃0,0 defined by (12).
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Heterogeneous solutions

We now return to the general case and derive two properties that play an important role in
the remainder of this paper. For this we introduce the following spaces of convergent double
cosine Fourier series for k, ℓ ≥ 1:

Vk,ℓ := { g : R
2 → R | g(x, y) =

∞∑

n,p=0

akn,ℓp cos(knπx) cos
(ℓpπy

D1

)
∀ (x, y) ∈ R

2 }. (14)

For the topic of convergence of bivariate Fourier series we refer to the literature, e.g., [8]. We
also use spaces of Fourier univariate cosine series. For this it is convenient to use the following
notation

Vk,∞ := { g : R
2 → R | g(x, y) =

∞∑

n=0

akn cos(knπx) ∀ (x, y) ∈ R
2 }, k ≥ 1,

V∞,ℓ := { g : R
2 → R | g(x, y) =

∞∑

p=0

aℓp cos
(ℓpπy

D1

)
∀ (x, y) ∈ R

2 }, ℓ ≥ 1.

Remark 1 For the analysis below it is helpful to have one notation that describes both the
bivariate and univariate Fourier series. For a function g ∈ Vk,ℓ with k < ∞, ℓ = ∞ we
therefore introduce the notation

g(x, y) =

∞∑

n=0

akn cos(knπx) =:

∞∑

n,p=0

akn,ℓp cos(knπx) cos
(ℓpπy

D1

)
,

with akn,ℓp := 0 for all p ≥ 1, akn,ℓp := akn for p = 0.

Similarly for ℓ < ∞, k = ∞.

Functions from the space Vk,ℓ are 2
k
-periodic in x, 2D1

ℓ
-periodic in y (with c

∞ -periodic:=constant)
and even: g(x, y) = g(−x, y) = g(x,−y). Such functions are uniquely determined by
their values at (x, y) ∈ [0, 1

k
] × [0, D1

ℓ
] (with c

∞ := 0). For 1 ≤ k, ℓ < ∞, the inclusions
V∞,ℓ ⊂ V2k,ℓ ⊂ Vk,ℓ, Vk,∞ ⊂ Vk,2ℓ ⊂ Vk,ℓ and Vk,ℓ ⊂ V1,1 hold. In the bivariate case the Fourier
coefficients have the following representation for kn > 0, ℓp > 0:

akn,ℓp =
4

D1

∫ D1

0

∫ 1

0
g(x, y) cos(knπx) cos

(ℓpπy

D1

)
dxdy,

akn,0 =
2

D1

∫ D1

0

∫ 1

0
g(x, y) cos(knπx) dxdy,

a0,ℓp =
2

D1

∫ D1

0

∫ 1

0
g(x, y) cos

(ℓpπy

D1

)
dxdy,

a0,0 =
1

D1

∫ D1

0

∫ 1

0
g(x, y) dxdy.

The Fourier transform on V1,1 is denoted by F : V1,1 → R
∞×∞:

for g(x, y) =

∞∑

n,p=0

an,p cos(nπx) cos
(pπy

D1

)
, F(g) := (an,p)

∞
n,p=0. (15)
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Here R
∞×∞ denotes the space of infinite matrices with real entries. For b := (bn,p)

∞
n,p=0,

c := (cn,p)
∞
n,p=0 ∈ R

∞×∞ we define the Hadamard product b ∗ c := (bn,pcn,p)
∞
n,p=0, i.e.,

elementwise multiplication of the entries in the matrices. In view of (11) we introduce the
infinite matrix d = (dn,p)

∞
n,p=0 defined by

dn,p := κn,pπ tanh(κn,pπD2) for all n, p ≥ 0. (16)

To guarantee that the expressions on the left handside in (11) are well-defined we only consider
functions from the following subset of V1,1:

S := { g ∈ V1,1 | d ∗ F(g) ∈ range(F) and (α ◦ g)g ∈ V1,1 }.

Remark 2 Functions g ∈ V1,1 that are sufficiently smooth are elements of S. We do not
study this smoothness issue here. In our numerical simulations we always observed that the
discrete solutions show exponential convergence to very smooth continuous functions that lie
in S.

The operator on the left handside in (11) has the following form

G(TF ) := F−1
(
d ∗ F(TF )

)
+ (α ◦ TF )TF −

1

Λ
, for TF ∈ S. (17)

From the definition of S it immediately follows that G : S → V1,1. Thus (11) leads to the
following problem:

Determine TF ∈ S such that G(TF ) = 0 . (18)

The operator G, defined on S, is (strongly) nonlinear. The homogeneous solutions given by
(12) satisfy G(T̃0,0) = 0. We now show that for all k, ℓ ≥ 1 the range of G|Vk,ℓ

is contained
in Vk,ℓ. Below we will see that due to this we have an important conservation-of-symmetry
property in the continuation method.

Theorem 1 The following holds:

G : Vk,ℓ ∩ S → Vk,ℓ for all k, ℓ ≥ 1.

Proof. For k = ℓ = 1 this is trivial due to the definition of S. We consider k < ∞, ℓ <
∞. The case k = ∞ or ℓ = ∞ (i.e., univariate Fourier series) can be treated similarly
and requires only notational modifications. Take TF ∈ Vk,ℓ ∩ S. Then TF can be repre-

sented as TF (x, y) =
∑∞

n,p=0 T̃kn,ℓp cos(knπx) cos
(

ℓpπy
D1

)
and all Fourier coefficients T̃m,r with

m mod k 6= 0 or r mod ℓ 6= 0 are equal to zero. We obtain

G(TF )(x, y) =

∞∑

n,p=0

dn,pT̃n,p cos(nπx) cos
(pπy

D1

)
+ α(TF (x, y))TF (x, y) −

1

Λ

=

∞∑

n,p=0

dkn,ℓpT̃kn,ℓp cos(knπx) cos
(ℓpπy

D1

)
+ α(TF (x, y))TF (x, y) −

1

Λ

=: w1(x, y) + w2(x, y) −
1

Λ
.
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From TF ∈ S it follows that the double series w1(x, y) =
∑∞

n,p=0 dkn,ℓpT̃kn,ℓp cos(knπx) cos
(

ℓpπy
D1

)

converges and thus w1 ∈ Vk,ℓ. From TF ∈ S it also follows that w2 = (α ◦ TF )TF ∈ V1,1 and
thus w2 has a convergent double cosine Fourier series. The function TF is 2

k
-periodic in x

and 2D1
ℓ

-periodic in y and thus w2 = (α ◦ TF )TF has the same properties. Hence, we have
w2 ∈ Vk,ℓ. Thus we have G(TF ) = w1 + w2 −

1
Λ ∈ Vk,ℓ. �

In the next theorem we present a main result, which shows that heterogeneous solutions,
if they exist, are non-unique. For ℓ = ∞ we use the notation as in Remark 1 and we set
1
ℓ

:= 0, similarly for k = ∞.

Theorem 2 Assume that there exist 1 ≤ k, ℓ ≤ ∞ and TF ∈ Vk,ℓ ∩ S such that TF ∈/Vk′,ℓ for
k′ > k, TF ∈/Vk,ℓ′ for ℓ′ > ℓ, and

TF (x, y) =

∞∑

n,p=0

T̃kn,ℓp cos(knπx) cos
(ℓpπy

D1

)
, (19)

satisfies G(TF ) = 0. Define

T ∗,1
F (x, y) := TF (x +

1

k
, y) =

∞∑

n,p=0

T̃
(1)
kn,ℓp cos(knπx) cos

(ℓpπy

D1

)
, (20)

T ∗,2
F (x, y) := TF (x, y +

D1

ℓ
) =

∞∑

n,p=0

T̃
(2)
kn,ℓp cos(knπx) cos

(ℓpπy

D1

)
, (21)

T ∗,3
F (x, y) := TF (x +

1

k
, y +

D1

ℓ
) =

∞∑

n,p=0

T̃
(3)
kn,ℓp cos(knπx) cos

(ℓpπy

D1

)
, (22)

with

T̃
(1)
kn,ℓp = (−1)nT̃kn,ℓp, T̃

(2)
kn,ℓp = (−1)pT̃kn,ℓp, T̃

(3)
kn,ℓp = (−1)n+pT̃kn,ℓp. (23)

Then T ∗,i
F ∈ Vk,ℓ ∩ S satisfies G(T ∗,i

F ) = 0 for i = 1, 2, 3. Furthermore T ∗,i
F 6= TF holds for

i = 1 or 2.

Proof. We consider k < ∞, ℓ < ∞. The case k = ∞ or ℓ = ∞ (i.e., univariate Fourier series)
can be treated similarly and requires only notational modifications. Note that TF ∈ Vk,ℓ ∩ S

is even in both variables, 2
k
-periodic in x and 2D1

ℓ
-periodic in y. The function T ∗,i

F is obtained

from TF by a translation with 1
k

in x-direction and/or a translation with D1
ℓ

in y-direction.

Hence, we have T ∗,i
F ∈ Vk,ℓ ∩ S for i = 1, 2, 3. For i = 3 we have

TF (x +
1

k
, y +

D1

ℓ
) =

∞∑

n,p=0

T̃kn,ℓp cos(knπ(x +
1

k
)) cos

(ℓpπ(y + D1/ℓ)

D1

)

=
∞∑

n,p=0

(−1)n+pT̃kn,ℓp cos(knπx) cos
(ℓpπy

D1

)
,

and thus we obtain the representation in (22). The cases i = 1, 2 can be treated similarly
to derive the representations in (20) and (21). We now show that T ∗,1

F 6= TF holds. The

10



representations of TF and T ∗,1
F yield

TF (x, y) − T ∗,1
F (x, y) =

∞∑

n,p=0

(1 − (−1)n)T̃kn,ℓp cos(knπx) cos
(ℓpπy

D1

)
.

Assume that TF = T ∗,1
F holds. Then T̃kn,ℓp = 0 must hold for all odd n, and thus we obtain

the representation TF (x, y) =
∑∞

n,p=0 T̃2kn,ℓp cos(2knπx) cos
(

ℓpπy
D1

)
. This implies TF ∈ V2k,ℓ,

which contradicts the assumption TF ∈/Vk′,ℓ for k′ > k. Thus T ∗,1
F 6= TF must hold. Similar

arguments can be applied to show T ∗,2
F 6= TF . For k = ∞ (ℓ = ∞) we have T ∗,1

F = TF , T ∗,2
F 6=

TF (T ∗,2
F = TF , T ∗,1

F 6= TF , respectively).
For arbitrary (x, y) ∈ R

2 we have

G(T ∗,1
F )(x, y)

= F−1
(
d · F(T ∗,1

F )
)
(x, y) + α(T ∗,1

F (x, y))T ∗,1
F (x, y) −

1

Λ

=
∞∑

n,p=0

dkn,ℓp(−1)nT̃kn,ℓp cos(knπx) cos
(ℓpπy

D1

)
+ α(T ∗,1

F (x, y))T ∗,1
F (x, y) −

1

Λ

=

∞∑

n,p=0

dkn,ℓpT̃kn,ℓp cos(knπ(x +
1

k
)) cos

(ℓpπy

D1

)
+ α(T ∗,1

F (x, y))T ∗,1
F (x, y) −

1

Λ

= F−1
(
d · F(TF )

)
(x +

1

k
, y) + α(TF (x +

1

k
, y))TF (x +

1

k
, y) −

1

Λ

= G(TF )(x +
1

k
, y) = 0.

Hence, G(T ∗,1
F ) = 0 holds. A very similar reasoning can be applied to prove that G(T ∗,i

F ) = 0
holds for i = 2, 3, too. �

This result shows that heterogeneous solutions in V1,1 ∩ S, if they exist, always induce three
associated solutions, which we call dual shifted solutions. At least one of these three, namely
(20) or (21) (which may be equal), differs from TF . This implies a fundamental non-uniqueness
in the steady states under heterogeneous boiling conditions, consistent with laboratory ex-
periments [2]. Note that the dual shifted solutions T ∗,i

F are obtained from TF by a translation
with half the period of TF . This implies certain symmetry relations between TF and its dual
shifted solutions.

In the proof of Theorem 2 we derived the following fundamental property of the operator
G : Vk,ℓ ∩ S → Vk,ℓ. For i = 1, 2, 3, let si : R

2 → R
2 be the linear shift function s1(x, y) :=

(x + 1
k
, y), s2(x, y) := (x, y + D1

ℓ
), s3(x, y) := (x + 1

k
, y + D1

ℓ
). Note that s3 = s1 ◦ s2 = s2 ◦ s1.

For TF ∈ Vk,ℓ ∩ S the relations

G(TF ◦ si) = si ◦ G(TF ), i = 1, 2, 3, (24)

hold. The relation for i = 3 is a direct consequence of the relations for i = 1, 2. Due to this
commutator property of the nonlinear operator G and the linear shift operators si we obtain
the non-uniqueness result in Theorem 2.
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Remark 3 In the proofs of Theorem 1 and Theorem 2 we did not use any specific information
about the form of the function α(·). Thus these results hold for an arbitrary (smooth) boiling
curve qF .

In case of a square fluid-heater interface (D1 = 1) a further multiplicity property, in addition
to the one presented in Theorem 2, holds:

Lemma 1 Assume D1 = 1 (square fluid-heater interface). Let TF ∈ Vk,ℓ ∩ S be a solution
to the reduced heat-transfer problem: G(TF ) = 0. Then there exists a dual reflected solution
T ′

F (x, y) := TF (y, x) (with T̃ ′
kn,ℓp = T̃ℓp,kn) that also satisfies the reduced heat-transfer problem:

G(T ′
F ) = 0.

Proof. Using arguments as in the second part of the proof of Theorem 2 one can show that
for arbitrary (x, y) ∈ R

2:

G(T ′
F )(x, y) = F−1

(
d · F(T ′

F )
)
(x, y) + α(T ′

F (x, y))T ′
F (x, y) −

1

Λ

= F−1
(
d · F(TF )

)
(y, x) + α(TF (y, x))TF (y, x) −

1

Λ
= G(TF )(y, x) = 0.

�

4 Numerical solution method

A steady-state solution is obtained by solving the characteristic equation (11). For homo-
geneous solutions the latter simplifies to (12), which can easily be solved by a standard
root-finding algorithm. Thus homogeneous solution branches corresponding to the system
parameters are easily identified. Heterogeneous solutions are determined via a discretisation
and continuation approach that is explained in this section. Numerical results obtained with
this method are presented in Section 5.

4.1 Discretisation method

Discretisation of (11) is based on a standard Fourier collocation method [4]. We briefly review
a few basic facts from discrete Fourier analysis. Consider for N ∈ N the equidistant mesh
xj = j/N, j ∈ N. The discrete Fourier cosine transform of an even 2-periodic function
u(x) = u(x + 2) is given by

u(x) =
N∑

n=0

ũn cos(nπx), ũn :=
cn

N

{
u(0) + 2

N−1∑

j=1

u(xj) cos(nπxj) + (−1)nu(1)
}

, (25)

with c0 = cN = 1/2 and cn = 1 otherwise. This function satisfies

u(xi) =

N∑

n=0

ũn cos(nπxi) for all 0 ≤ i ≤ N.

12



Hence, the (physical) values u = (u0, . . . , uN )T , with uj := u(xj), relate to the spectral
coefficients ũ = (ũ0, . . . , ũN )T via

u = V N ũ, VN :=




1 cos(πx0) . . . cos(Nπx0)
...

...
...

1 cos(πxN ) . . . cos(NπxN )


 . (26)

An elementary computation yields

(VND)−1 =
2

N
VND, with D = diag(

1

2
, 1, . . . , 1,

1

2
). (27)

The above 1D Fourier representation of u(x) readily extends to a 2D periodic function
u(x, y) = u(x + 2, y + 2D1). For N,P ∈ N we introduce the equidistant mesh (xi, yj) :=(

i
N

, jD1

P

)
, with i = 0, . . . , N and j = 0, . . . , P . The 2D Fourier finite cosine expansion of u is

given by

u(x, y) =
N∑

n=0

P∑

p=0

ũn,p cos(nπx) cos

(
pπy

D1

)
. (28)

The truncated expansion u(x, y) is an approximation of the infinite Fourier expansion of
functions g(x, y) ∈ V1,1, cf. (14).

The Fourier coefficients ũn,p in (28) are uniquely determined by the equations

u(xi, yj) =
N∑

n=0

P∑

p=0

ũn,p cos(nπxi) cos

(
pπyj

D1

)
, 0 ≤ i ≤ N, 0 ≤ j ≤ P. (29)

For a matrix representation of this we need some further notation. Let U ∈ R
(N+1)×(P+1) be

the matrix with entries ui,j = u(xi, yj) (physical values) and Ũ ∈ R
(N+1)×(P+1) the matrix

with the Fourier coefficients ũn,p. Let VP be the (P + 1) × (P + 1)-matrix as in (26) but
with nπxi replaced by

pπyj

D1
(0 ≤ p, j ≤ P ). A simple computation shows that the system of

equations in (29) can be represented as

U = VN Ũ VT
P . (30)

Thus the Fourier coefficients are given by Ũ = V−1
N U V−T

P . Due to orthogonality the inverses
follow explicitly from (27). This yields the discrete Fourier transform F : R

N×P → R
N×P :

F(U) = V −1
N UV −T

P , F
−1(Ũ) = V N ŨV T

P , (31)

as discrete counterpart of the continuous Fourier transform (15).
The discretisation of the characteristic equation (11) is as follows: determine TF (xi, yj) =

∑N
n=0

∑P
p=0 T̃n,p cos(nπxi) cos

(
pπyj

D1

)
, 0 ≤ i ≤ N, 0 ≤ j ≤ P , such that

N∑

n=0

P∑

p=0

dn,pT̃n,p cos(nπxi) cos

(
pπyj

D1

)
+ α(TF (xi, yj))TF (xi, yj) −

1

Λ
= 0, (32)

13



for all 0 ≤ i ≤ N, 0 ≤ j ≤ P . Using matrix notation we can formulate this discrete nonlinear
problem in a more compact form. We introduce the N × P matrices T F , M(T F ), G, T̃ F

and D defined as follows:

(T F )i,j = TF (xi, yj),
(
M(T F )

)
i,j

= α(TF (xi, yj)), Gi,j =
1

Λ
, 0 ≤ i ≤ N, 0 ≤ j ≤ P,

Dn,p = dn,p, (T̃ F )n,p = T̃n,p, 0 ≤ n ≤ N, 0 ≤ p ≤ P.

For matrices A = (ai,j), B = (bi,j) we define the Hadamard product A ∗ B = (ci,j) with
ci,j := ai,jbi,j. Then the discrete problem (32) can be formulated as follows: determine
T F ∈ R

(N+1)×(P+1) such that

G(T F ) := F
−1

(
D ∗ F(T F )

)
+ M(T F ) ∗ T F − G = 0. (33)

The above defines a nonlinear system in the (physical) unknown T F . Note the similarity to
the continuous problem in (17)–(18). The equivalent representation in the (spectral) unknown
T̃ F is given by

D ∗ T̃ F + F
(
M (F−1(T̃ F )) ∗ F−1(T̃ F )

)
− G̃ = 0, with G̃ := F(G). (34)

The nonlinearity of the problems (33) and (34) is contained in the terms M(T F ) ∗ T F and
F

(
M(F−1(T̃ F )) ∗ F−1(T̃ F )

)
, respectively. The former has a much simpler structure and

admits a more efficient numerical treatment. Therefore we used the physical representation
(33) in our numerical simulations.

Remark 4 We claim that the important properties of the continuous operator G as formu-
lated in Theorem 1 and Theorem 2 are inherited by the discrete operator G. To make this
more precise we assume, for simplicity, D1 = 1, P = N , which implies V P = V N . Let
N, k, ℓ ∈ N be such that N mod k = 0, N mod ℓ = 0 and define mk := N

k
, mℓ := N

ℓ
. Let vr be

the r-th column of V N . We introduce the following discrete analogon of the space Vk,ℓ:

V N
k,ℓ := span

{
vknvT

ℓp | 0 ≤ n ≤ mk, 0 ≤ p ≤ mℓ

}
.

Note that V N
k,ℓ is a (mk +1)× (mℓ +1)-dimensional subspace of R

(N+1)×(N+1). We claim that
the following holds (cf. Theorem 1):

G : V N
k,ℓ → V N

k,ℓ. (35)

Furthermore, assume that T =
∑mk

n=0

∑mℓ
p=0 T̃kn,ℓpvknvT

ℓp ∈ V N
k,ℓ satisfies G(T ) = 0. Define

T ∗,1 =

mk∑

n=0

mℓ∑

p=0

(−1)nT̃kn,ℓpvknvT
ℓp, T ∗,2 =

mk∑

n=0

mℓ∑

p=0

(−1)pT̃kn,ℓpvknvT
ℓp,

T ∗,3 =

mk∑

n=0

mℓ∑

p=0

(−1)n+pT̃kn,ℓpvknvT
ℓp.

We claim that

G(T ∗,i) = 0 for i = 1, 2, 3, (36)

holds (cf. Theorem 2). Results as in (35)-(36) have been proven in [18] for the case of a 2D
heater. In that case the fluid-heater interface is one-dimensional and thus (only) univariate
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discrete Fourier analysis has been necessary to derive results as in (35)-(36) (theorems in [18],
Section 3). Here we need a bivariate discrete Fourier analysis, which requires cumbersome
technicalities that are beyond the present scope. For brevity we have chosen not to include
these technical derivations in this paper and therefore present the results (35) and (36) as
claims.

4.2 Continuation strategy

To determine solutions to the discrete nonlinear system (33) we employ a continuation
method. The nonlinearity in the model is caused by the nonlinear boundary heat flux condi-
tion

qF (TF ) = CD {F1 − F2H(CDTF − 1)}TF

with coefficients CD, F1, F2 and a Heaviside function H(·) as explained in Section 2.2. The
model is linear if qF is a linear function of TF . This motivates our choice of the continuation
parameter, denoted by λ: We define

qF (TF , λ) := CD {F1 − λF2H(CDTF − 1)} TF , for 0 ≤ λ ≤ 1. (37)

For λ = 0 we have a linear boundary condition; for λ = 1 the actual nonlinear condition is
recovered. Figure 3 illustrates the smooth transition of the boiling curve qF (TF , λ) from the
linear state (λ = 0) to the final nonlinear state (λ = 1) in Figure 2b.

The discrete nonlinear problem (33) with the λ-dependent heat-transfer condition accord-
ing to (37) can be represented as

G(TF , λ) := F
−1

(
D ∗ F(T F )

)
+ Mλ(T F ) ∗ T F − G = 0. (38)

Note that Mλ(T F ) depends on λ via
(
Mλ(T F

)
i,j

= αλ(TF (xi, yj)) for 0 ≤ i ≤ N, 0 ≤

j ≤ P with αλ(TF ) = Π2
Λ

qF (TF ,λ)
TF

and qF (TF , λ) as in (37). For each λ ∈ [0, 1] the set of
homogeneous solutions (i.e. T F =constant) of this system can be easily computed. Starting on
a branch of homogeneous solutions we apply a continuation algorithm2 to λ → G(T F , λ) = 0

and determine bifurcations points on the homogeneous branches from which branches of
heterogeneous solutions originate. This strategy is used in the numerical simulations in the
next section.

5 Numerical experiments: a representative case study

In this section we consider the discrete steady-state problem for a fixed parameter set, namely
Λ = 0.2, D1 = 1 (square interface), D2 = 0.2, Π1 = 4, Π2 = 2 and W = 1. The set of
steady-state solutions is determined with the approach introduced in Section 4. Homogeneous
solutions are obtained by means of a standard Newton-type root-finding algorithm applied
to (12); heterogeneous solutions follow from continuation of the nonlinear system (38) in the
nonlinearity parameter λ. Important to note is that for smooth boiling curves (i.e. W > 0)
the truncated Fourier expansion that underlies (38) exhibits exponential convergence. Hence,

2Here an in-house algorithm of the Chair of Process Systems Engineering, RWTH Aachen, has been used
that is based upon techniques described in [9]. Elaboration on this continuation algorithm is beyond the scope
of this paper.
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Figure 3: Controlling the degree of nonlinearity of the boiling curve via the nonlinearity
parameter λ. Shown is the smooth transition from a linear profile (λ = 0) towards the physical
boiling curve (heavy; λ = 1) with increasing λ (arrow). The stars are the local maximum and
minimum that occur for λ beyond some non-zero lower limit.

the continuation algorithm yields highly-accurate approximations to the continuous solution
at any position (x, y) ∈ ΓF for moderate values of N and P . Here (N,P ) = (36, 36) has been
used.

5.1 Homogeneous solutions

The homogeneous steady-state solutions (13) correspond to the constant interface temper-
ature TF = T̃0,0 determined by (12). This interface temperature is given by the (multiple)
intersection(s) of the boiling curve with the normalised heat-supply q̄H/QC = Π−1

2 (Figure 2b).
To determine the physically-meaningful homogeneous solutions it is sufficient to resolve (12)
for λ = 1. However, for the continuation strategy, in which heterogeneous solution branches
originate from homogeneous branches, we need the homogeneous branches in the entire range
0 ≤ λ ≤ 1. These branches readily follow from solving (12) in this λ-range. Two essen-
tially different situations occur, as illustrated in Figure 4, namely: (i) one solution T (1)

F for
0 ≤ λ < λ∗ (Figure 4a); (ii) three solutions (T (1)

F , T (2)

F , T (3)

F ) for λ∗ < λ ≤ 1 (Figure 4c). Both
situations are connected through the degenerate case λ = λ∗, for which the local minimum
of the boiling curve qF is tangent to the normalised heat supply q̄H/QC = Π−1

2 , causing the
second and third solutions to coincide (Figure 4b). Thus the system undergoes a qualitative
change at λ = λ∗ through a so-called tangent bifurcation [15].

The homogeneous solutions as a function of the nonlinearity parameter λ are shown in
the bifurcation diagram in Figure 5. Solutions are represented in terms of the functional
TΣ =

∑
n,p T̃n,p. The lower (nearly-horizontal) branch corresponds to the intersection T (1)

F

that exists for all 0 ≤ λ ≤ 1; the upper branch, with turning point at λ∗ (dot), coincides
with the two intersections T (2,3)

F that exist only in the interval λ∗ ≤ λ ≤ 1 (here λ∗ ≈ 0.926).
The lower and upper legs of this upper branch (connecting at the turning point at λ = λ∗)
correspond with T (2)

F and T (3)

F , respectively.
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Figure 4: Homogeneous solutions of the nonlinear system as a function of the nonlinearity
parameter λ. Transition from the single-solution state (panel a) to the triple-solution state
(panel c) takes place via the tangent bifurcation at λ = λ∗ (panel b).
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Figure 5: Bifurcation diagram for the homogeneous solutions associated with the nonlinearity
parameter λ. The lower branch is the intersection T (1)

F that exists for all 0 ≤ λ ≤ 1; the
upper branch, with turning point at λ∗ (dot), coincides with the two intersections T (2,3)

F that
exist only in the interval λ∗ ≤ λ ≤ 1 (here λ∗ ≈ 0.926). The lower and upper legs of this
upper branch (connecting at the turning point at λ = λ∗; dot) correspond with T (2)

F and T (3)

F ,
respectively.

5.2 Bifurcation points on branches of homogeneous solutions

Multiple (heterogeneous) solutions emerge through bifurcations of the function λ → T F (λ),
where T F (λ) is a homogeneous solution of G(T F , λ) = 0. Bifurcations occur at λ-values for
which the Jacobian of G with respect to T F is singular [9]. This Jacobian is given by

J =
∂G(T F , λ)

∂T F
, J : W → F

−1
(
D ∗ F(W )

)
+ Q(T F , λ) ∗ W , (39)

with

(Q(T F , λ))i,j = γ((TF )i,j, λ) 0 ≤ i ≤ N, 0 ≤ j ≤ P, γ(TF , λ) :=
Π2

Λ

∂qF (TF , λ)

∂TF

.
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On a homogeneous branch we have T F = TF1, with

1 =




1 . . . 1
...

...
1 . . . 1


 ∈ R

(N+1)×(P+1),

and TF the homogeneous interface temperature. This implies Q(T F , λ) = γ(TF , λ)1 and thus
on a homogeneous branch the Jacobian simplifies to

J
(
W

)
= F

−1
(
D ∗ F(W )

)
+ γ(TF , λ)W = F

−1 {(D + γ(TF , λ)1) ∗ F(W )} . (40)

The Jacobian J is singular iff there exists a W 6= 0 such that J(W ) = 0. For the Jacobian
in (40) this is equivalent to

(D + γ(TF , λ)1) ∗ W̃ = 0, (41)

for a W̃ 6= 0, with W̃ = F(W ), which, in turn, is equivalent to

ζn,pW̃n,p = 0 ∀n, p, ζn,p := dn,p + γ(TF , λ), (42)

with W̃n,p the spectrum of W and dn,p as in (16). Non-zero W̃ requires W̃n,p 6= 0 and
ζn,p = 0 for at least one wave-number pair (n, p). This implies that non-trivial solutions W

of J(W ) = 0 are of the form

W =

m∑

i=1

W̃ni,pi
vN,ni

vT
P,pi

, with (ni, pi) such that ζni,pi
= 0, 1 ≤ i ≤ m. (43)

Here vN,r (vP,r) denotes the r-th column of the matrix V N (V P ) and m is the number of
vanishing coefficients ζn,p, 0 ≤ n ≤ N, 0 ≤ p ≤ P . Null solutions (43) are linear combina-
tions of the m Fourier modes vN,nvT

P,p that correspond with vanishing coefficients ζn,p; the
associated bifurcation (point) is called an “m-mode bifurcation”. The expansion coefficients

W̃ni,pi
are free, implying that null solutions span an m-dimensional nullspace with as basis

vectors the Fourier modes in (43). Because dn,p ≥ 0 for all n, p ≥ 0, vanishing coefficients
ζn,p require γ(TF , λ) < 0 and thus a bifurcation on a homogeneous solution branch can only
occur for those TF for which the boiling curve has a negative slope (q̇F ≤ 0). From Fig-
ure 4 it follows that only intersection T (2)

F meets this criterion, which implies that bifurcations
are restricted to the T (2)

F -branch in the bifurcation diagram (Figure 5). This results in the
fundamental property that bifurcations – and thus multiple (heterogeneous) solutions – are
essentially a transition phenomenon. Figure 6a displays γ (heavy curve) as a function of λ
on the T (2)

F -branch together with −dn,p (dashed lines) for p = 0 and various n.
The intersections γ = −dn,p correspond to ζn,p = 0 and thus define the λ-values at which

the system undergoes a bifurcation. Figure 6a reveals that ζn,p = 0 occurs for the case p = 0
only for n = 0, 1, 2, 3. Furthermore, the monotonic decay of γ with increasing λ causes the
intersections – and corresponding bifurcations – to occur in successive order n = 0, 1, 2, 3 from
left to right. With a similar monotonicity argument it follows that the number of intersections
decreases monotonically with increasing p. This implies that vanishing coefficients ζn,p corre-
spond with those wave numbers 0 ≤ n ≤ nmax(p) that satisfy the inequality dn,p + γmin ≤ 0,
with γmin = γ(TF )|λ=1. Figure 6b gives −dn,p (circles) for 0 ≤ n ≤ 3 as a function of the wave
number p; wave number n increases top down (arrow). The crosses mark the values −dn,p
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Figure 6: Occurrence of bifurcations on the homogeneous T (2)

F -branch. Panel a shows function
λ → γ(TF (λ)) = Π2q̇F (TF (λ))/Λ along the T (2)

F -branch (heavy). The dashed horizontal lines
are the values of −dn,p. Intersections of γ with −dn,p correspond to a singular Jacobian J

and thus to a bifurcation. Panel b shows −dn,p (circles) for 0 ≤ n ≤ 3 as a function of the
wave number p. Wave number n increases top down (arrow). The crosses mark the values
−dn,p above γmin = γ(TF )|λ=1 (heavy) and highlight those wave-number pairs (n, p) for which
the system undergoes a bifurcation.

above γmin (heavy) and thus highlight those wave-number pairs (n, p) for which ζn,p = 0 for
some λ ∈ [0, 1] and the system undergoes a bifurcation. It readily follows that here 0 ≤ p ≤ 3
and nmax(p) = 3, 3, 2, 1 for p = 0, 1, 2, 3.

Figure 7a gives the wave-number pairs (k, ℓ) (stars) for which the present configuration
undergoes a bifurcation (Figure 6b). The symmetric arrangement of these wave-number pairs
w.r.t. the diagonal k = ℓ is a manifestation of the square interface (Lemma 1): pairs on the
diagonal k = ℓ correspond with one single vanishing coefficient ζk,ℓ = 0 (1-mode bifurcation);
pairs off the diagonal k = ℓ form couples of wave-number pairs (“wave-number groups”)
[(k, ℓ), (ℓ, k)] that correspond with two vanishing coefficients ζk,ℓ = ζl,k = 0 (2-mode bifurca-
tion). The 1-mode and 2-mode bifurcations are indicated by dots and stars, respectively, in
Figure 7b. The resulting heterogeneous solutions are discussed below.

5.3 Heterogeneous solutions

In this section we study the (multiple) heterogeneous solutions that occur in our case study (re-
call that we consider a square heater). From the analysis above it follows that heterogeneous
solutions emerge from bifurcations on the homogeneous T (2)

F -branch. The first bifurcation
(turning point) on the T (2)

F -branch corresponds with one single vanishing coefficient ζk,ℓ for
k = l = 0 and thus, due to (43), the nontrivial solution W corresponds to a zero-th Fourier-
mode, i.e., a constant. The solution that emerges from this bifurcation point is homogeneous.
Thus the first bifurcation point is of tangent type (Figure 4b) that results in two additional
homogeneous solutions. The remaining bifurcations have at least one non-zero wave number
and thus involve heterogeneous bifurcation solutions. Two types of such bifurcation points
occur in the current configuration: 1-mode and 2-mode bifurcations. The former occur for
k = ℓ (dots in Figure 7b) and the latter for k 6= ℓ (stars in Figure 7b). Below we treat these
two types separately.
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Figure 7: Bifurcation points in the case study: Λ = 0.2, D1 = 1, D2 = 0.2, Π1 = 4, Π2 = 2 and
W = 1. Panel a gives the wave-number pairs (k, ℓ) (stars) for which the present configuration
undergoes a bifurcation (Figure 6b). Bifurcations on the diagonal k = ℓ correspond to one
single vanishing coefficient ζk,k = 0 (1-mode bifurcation); pairs off the diagonal k = ℓ form
wave-number groups [(k, ℓ), (ℓ, k)], k 6= ℓ, that correspond with two vanishing coefficients ζk,ℓ =
ζℓ,k = 0 (2-mode bifurcation). Panel b gives the bifurcations on the homogeneous T (2)

F -branch
with corresponding wave numbers (k, ℓ) as indicated.

1-mode bifurcations

For 1-mode bifurcations the null solutions (43) reduce to individual Fourier modes (m = 1)
and, consequently, heterogeneous solutions of the form

TF (x, y) = T (2)

F + ǫ cos(kπx) cos(kπy), ǫ ↓ 0, (44)

emerge (“1-mode bifurcation solution”). This function is an element of the Fourier space Vk,k.
Based on Theorem 1 we conclude that solution branches emerging from the 1-mode bifurcation
remain in the Fourier space Vk,k (provided no further bifurcation occurs). The bifurcation

solution (44) is of the generic form (19) with T̃kn,kp 6= 0 for n = p = 1 and T̃kn,kp = 0
otherwise. From Theorem 2 it follows that there are corresponding shifted dual solutions
with the self-symmetry properties TF (x, y) = T ∗,3

F (x, y), T ∗
F := T ∗,1

F (x, y) = T ∗,2
F (x, y) and

T ∗
F 6= TF . Moreover, Lemma 1 implies that in the present case of a square heater each

solution has a dual reflected solution. However, one easily verifies that, since (44) implies
TF (x, y) = TF (y, x), these dual reflected solutions coincide with the original ones: TF = T ′

F

and T ∗
F
′ = T ∗

F . Thus we conclude that there is a pitchfork bifurcation with a pair (TF , T ∗
F )

of solutions emerging from the 1-mode bifurcations in Figure 7b (dots). Due to Theorem 1
(cf. also Remark 3) these symmetry properties are preserved along the solution branches.
Figure 8 shows the solutions for k = 2 emerging from the bifurcations (panels a and b) and
the corresponding final states at λ = 1 (panels c and d). Figure 12 (first column) shows
the final states (λ = 1) of the pairs of solutions corresponding with the 1-mode bifurcations,
both for k = 1 and k = 2.
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a) TF : proximity of bifurcation (λ ≈ 0.976). b) T ∗

F : proximity of bifurcation (λ ≈ 0.976).

c) TF : final state (λ = 1). d) T ∗

F : final state (λ = 1).

Figure 8: Pairwise emergence of heterogeneous solutions from 1-mode bifurcations for the case
k = 2. Panels a and b show TF and its dual shifted solution T ∗

F , for a λ−value close to the
bifurcation point (λ = 0.97605); panels c and d show the corresponding final states (λ = 1) of
TF and its dual shifted solution T ∗

F . The final states are the physically-meaningful steady-state
solutions to the boiling problem.

2-mode bifurcations

For 2-mode bifurcations the null solutions (43) are spanned by two Fourier modes (m = 2)
with wave numbers (k, ℓ) and (ℓ, k), ℓ 6= k (due to ζk,ℓ = ζℓ,k = 0) and yield

TF (x, y) = T (2)

F + ǫ
(
c1 cos(kπx) cos(lπy) + c2 cos(lπx) cos(kπy)

)
, ǫ ↓ 0, (45)

as associated 2-mode bifurcation solution. Such 2-mode bifurcation solutions (45) involve a
two-dimensional nullspace spanned by the two associated Fourier modes. This is a funda-
mental difference with the 2D pool-boiling problem, which admitted only simple vanishing
coefficients ζk,ℓ and thus only one-dimensional nullspaces [18]. The occurrence of higher (than
one) dimensional null spaces appears to be an essentially 3D phenomenon.

Multi-dimensional null spaces imply infinite families of bifurcation solutions (45) and thus
in principle an infinite family of corresponding branching solutions might occur. However,
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extensive numerical experiments strongly suggest that (only) the following four classes of
2-mode solutions exist:

c1 6= 0, c2 = 0 (“quasi 1-mode”), (46)

c1 = 0, c2 6= 0 (“quasi 1-mode”), (47)

c1 = c2 6= 0 (“true 2-mode”), (48)

c1 = −c2 6= 0 (“true 2-mode”). (49)

The first two classes correspond to 1-mode simplifications of (45) whereas the other two
classes correspond to truly 2-mode bifurcation solutions. A theoretical explanation for the
fact that (only) these classes of solutions occur is not available yet.
Each of these four classes consists of multiple solutions. To explain the structure of this
multiplicity we treat the first and third classes in more detail. The second and fourth classes
have properties very similar to the first and third classes, respectively.

Case c1 6= 0, c2 = 0

In this case the bifurcation solutions (45) reduce to individual Fourier modes and heteroge-
neous solutions of the form

TF (x, y) = T (2)

F + ǫ cos(kπx) cos(ℓπy), ǫ ↓ 0, k 6= ℓ, (50)

with 0 ≤ k, ℓ ≤ 3, k + ℓ ≤ 4, cf. Fig. 7, emerge (“quasi 1-mode bifurcation solution”). The
function in (50) is an element of the Fourier space Vk,ℓ. Based on Theorem 1 we conclude that
solution branches emerging from such a bifurcation remain in the Fourier space Vk,ℓ (provided
no further bifurcation occurs). We first consider pairs (k, ℓ) with k 6= 0 and ℓ 6= 0. The
bifurcation solution (50) is of the generic form (19) with T̃0,0 = T (2)

F , T̃kn,ℓp = ǫ for n = p = 1

and T̃kn,ℓp = 0 otherwise. From Theorem 2 it follows that there are corresponding shifted

dual solutions with the self-symmetry properties TF (x, y) = T ∗,3
F (x, y), T ∗

F := T ∗,1
F (x, y) =

T ∗,2
F (x, y) and T ∗

F 6= TF . Lemma 1 yields that each of these two solutions has a reflected
solution. One easily checks that, as opposed to the case k = ℓ considered above, these
reflected solutions differ from TF and T ∗

F . Thus we obtain the following cluster of four
different solutions:

TF as in (50), T ∗
F := T ∗,1

F = T ∗,2
F , T ′

F , T ∗
F
′ as in Lemma 1. (51)

The symmetry properties are preserved along the solution branches. Thus we conclude that
for λ = 1 we have a cluster of 4 solutions with the same symmetry properties as in (51). Note
that for TF = TF |(k,ℓ) as in (50) we have TF |(k,ℓ) = T ′

F |(ℓ,k). From this one easily deduces
that the clusters (51) for (k, ℓ) and (ℓ, k) are the same. In Figure 12 these clusters are shown
for (k, ℓ) = (2, 1) (second column) and for (k, ℓ) = (3, 1) (third column). As noted above, for
(k, ℓ) = (1, 2) and (k, ℓ) = (1, 3) the clusters are the same as in column 2 and 3, respectively.

We now consider ℓ = 0, k ∈ {1, 2, 3}. Note that in this case the Fourier mode in (50) is
constant in y-direction (“semi-heterogeneous solution”). From Theorem 2 (with ℓ = ∞) it
follows that there are corresponding shifted dual solutions with the self-symmetry properties
TF (x, y) = T ∗,2

F (x, y), T ∗
F := T ∗,1

F (x, y) = T ∗,3
F (x, y) and T ∗

F 6= TF . Lemma 1 yields that each
of these two solutions has a reflected solution. These reflected solutions differ from TF and
T ∗

F . Thus we again obtain a cluster of four different solutions:

TF as in (50), T ∗
F := T ∗,1

F = T ∗,3
F , T ′

F , T ∗
F
′ as in Lemma 1. (52)
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The same holds (with T ∗,1
F and T ∗,2

F interchanged) for the case k = 0, ℓ ∈ {1, 2, 3}. The
semi-heterogeneous solutions for the case ℓ = 0 are illustrated in Figure 9

a) (TF , T ∗

F ) for (k, ℓ) = (1, 0). b) (TF , T ∗

F ) for (k, ℓ) = (2, 0). c) (TF , T ∗

F ) for (k, ℓ) = (3, 0).

Figure 9: Physically-meaningful (λ = 1) semi-heterogeneous solutions emerging from the quasi
1-mode bifurcation solution. Shown are cross-sections (y fixed) of the temperature profiles TF

(solid) and T ∗
F (dashed) for wave-numbers ℓ = 0, k = 1, 2, 3. The profiles of T ′

F and T ∗
F
′ are

obtained by interchanging x and y.

We conclude that for the case (46) a class of four different heterogeneous solutions as in
(51) or (52) exists. Using symmetry arguments one can show that in case (47), c1 = 0 and
c2 6= 0, the same clusters of four solutions as in (51) (for k 6= 0, ℓ 6= 0), (52) (for k = 0) occur.

Case c1 = c2 6= 0

In this case the bifurcation solutions (45) are of the form

TF (x, y) = T (2)

F + ǫ
(
cos(kπx) cos(ℓπy) + cos(ℓπx) cos(kπy)

)
, ǫ ↓ 0, k 6= ℓ, (53)

(“true 2-mode solution”). Let q ∈ N be the maximal common divisor of k and ℓ, i.e., q ∈ N

is the maximal number such that kq := k
q
∈ N and ℓq := ℓ

q
∈ N. Note that if ℓ = 0 (k = 0)

then we have q = k (q = ℓ) and that if kℓ 6= 0 then not both kq and ℓq can be even. We first
consider the case ℓ = 0, k > 0. Then TF in (53) is of the form

TF (x, y) = T (2)

F + ǫ
(
cos(kπx) + cos(kπy)

)
. (54)

This function is an element of the Fourier space Vk,k and has the generic form (19) with

T̃0,0 = T (2)

F , T̃k,0 = T̃0,k = ǫ and T̃kn,kp = 0 otherwise. (55)

From Theorem 2 it follows that there are shifted dual solutions T ∗,i
F , i = 1, 2, 3. Using (23)

and (55) it follows that these dual solutions are different from each other and from TF . For
the reflected dual solutions we have T ′

F = TF , (T ∗,1
F )′ = T ∗,2

F , (T ∗,2
F )′ = T ∗,1

F , (T ∗,3
F )′ = T ∗,3

F and
thus these reflections do not yield new solutions. Hence, for k > 0, ℓ = 0 we obtain a cluster
of four different solutions:

TF as in (54), T ∗,i
F , i = 1, 2, 3. (56)

Again, these symmetry properties are preserved during the continuation. For λ = 1 the
cluster of four solutions is shown in Figure 13.
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The case k = 0, ℓ > 0 leads to similar results (interchange x and y). The cluster of
solutions for (0, ℓ) is the same as for (ℓ, 0).

For k > 0, ℓ > 0 we have a bifurcating solution of the form

TF (x, y) = T (2)

F + ǫ
(
cos(kqqπx) cos(ℓqqπy) + cos(ℓqqπx) cos(kqqπy)

)
.

This function is an element of the Fourier space Vq,q. Using Theorem 2, Lemma 1 and
symmetry arguments one can show that we have the following multiple solutions:

a cluster of four solutions TF , T ∗,i
F , i = 1, 2, 3, if kq + ℓq is odd, (57)

a cluster of two solutions TF = T ∗,3
F , T ∗

F := T ∗,1
F = T ∗,2

F if kq + ℓq is even. (58)

(Recall that not both kq and ℓq can be even). Thus we conclude that for the case c1 = c2 6= 0
the clusters of solutions that occur are given in (56), (57), (58).

For the case (49), c1 = −c2 6= 0, a similar analysis can be performed. It turns out that for
k > 0, ℓ = 0 the same cluster of four solutions as in (56) occurs. For k > 0, ℓ > 0 and kq + ℓq

odd we get the same cluster of four solutions as in (57). For kq + ℓq even we obtain a cluster
of two solutions that are different from the two solutions in (58).

We summarise the results on heterogeneous solutions derived in this section. First note
that in our case study we have kq + lq even (cf. (58)) only for (k, ℓ) = (ℓ, k) = (1, 3). The
following clusters of solutions occur:

• Wave numbers (k, k), k = 0, 1, 2 ; There is a cluster of two 1-mode bifurcation solutions.

• Wave numbers (k, ℓ), k 6= ℓ ; There is a cluster of four quasi 1-mode bifurcation solutions
(c1 = 0 or c2 = 0). If k = 0 or ℓ = 0 there is a cluster of four true 2-mode bifurcation
solutions. For kℓ > 0 we distinguish kq + ℓq odd and kq + ℓq even. In the former case
there is a cluster of four true 2-mode bifurcation solutions. In the latter case we have
two clusters each consisting of two true 2-mode bifurcation solutions.
The full set of (different) solutions for wave number (k, ℓ) is identical to the set of all
solutions for wave number (ℓ, k).

Thus for (k, ℓ) = (1, 2) we have a cluster of four true 2-mode solutions and for (k, ℓ) = (1, 3)
we have two clusters with each two true 2-mode solutions. Figure 10 shows one solution
(“parent”) TF from each of these clusters.

Figure 11 gives the bifurcation diagram including the full set of solutions found for the
case study. For each cluster we show only the branch for one parent solution (TF ) from that
cluster. Note that only for (k, ℓ) = (1, 3) we have two clusters of true 2-mode solutions and
therefore two dashed branches in figure 11. For λ = 1 there is a total number of 44 different
heterogeneous solutions.

We conclude this section on the case study with the following remark:

Remark 5 A preliminary stability analysis through numerical simulation of the unsteady
problem (4) shows that all heterogeneous solutions as well as the homogeneous solution T (2)

F

are unstable in time. Only the homogeneous solutions in the nucleate (T (1)

F ) and film (T (3)

F )
boiling regimes appear to be stable. Other solutions converge (for t → ∞) to one of the
two stable solutions. However, heterogeneous solutions involving “large” length scales (small
wave numbers) can survive for relatively long times. A stability analysis will be presented in
a forthcoming paper.
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a) (k, ℓ) = (1, 3), cluster 1. b) (k, ℓ) = (1, 3), cluster 2. c) (k, ℓ) = (1, 2).

Figure 10: Physically-meaningful (λ = 1) heterogeneous (parent) solutions from 2-mode bi-
furcation solution clusters. Panels a and b: (parent) solutions of the two true 2-mode clusters
for (k, ℓ) = (1, 3). Panel c: (parent) solution of the cluster for (k, ℓ) = (1, 2).
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Figure 11: Bifurcation diagram. Shown are the homogeneous T (2)

F -branch (heavy) and het-
erogeneous branches (solid; dashed) corresponding with a parent solutions from each clusters
of solutions. (Subscripts indicate associated wave-number groups.) The solid branches cor-
respond with 1-mode and quasi 1-mode bifurcation solutions; the dashed branches correspond
with true 2-mode bifurcation solutions.

5.4 Heterogeneous solutions and higher dimensional nullspaces

In the case study above, 2-mode bifurcations occurred for wave-number groups [(k, ℓ), (ℓ, k)],
with k 6= ℓ. This corresponds to a 2-dimensional nullspace of the Jacobian. In this section we
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show, by way of example, that for certain parameter values it may happen that nullspaces
(of the Jacobian) with dimension higher than two can occur. This then leads to m-mode
bifurcation solutions with m > 2, which for increasing m have a stronger heterogenity.

An m-mode bifurcation point occurs if the following two conditions are satisfied. Firstly,
there must be m distinct wave-number pairs (ni, pi), 1 ≤ i ≤ m, that satisfy

√

n2
1 +

(
p1

D1

)2

=

√

n2
2 +

(
p2

D1

)2

= · · · =

√

n2
m +

(
pm

D1

)2

= κ, (59)

and, secondly, this constant κ should satisfy the inequality

κπ tanh(κπD2) + γmin ≤ 0, (60)

with γmin = γ(TF )|λ=1 (cf. Section 5.2). Relation (60) ensures that there exists a λ ∈ (0, 1)

such that (42) holds for ζni,pi
= 0 and W̃ni,pi

6= 0, i = 1, . . . ,m. The corresponding m-mode
bifurcation solution is of the form

TF (x, y) = T (2)

F + ǫ

m∑

i=1

ci cos(niπx) cos

(
piπy

D1

)
, ǫ ↓ 0, (61)

and is a generalisation of (44), (45).
As an example of a higher-degree (m > 2) bifurcation, we reconsider the case study of

the square fluid-heater interface with a more flattened heater (D2 = 0.05) and the remaining
parameters unchanged. The wave-number pairs for which a bifurcation on the homogeneous
T (2)

F -branch occurs are represented schematically in Figure 14a. This shows that the flattening
of the heater (by decreasing D2) enlarges the set of bifurcations considerably (compare with
Figure 7a). This configuration admits one bifurcation with four vanishing coefficients ζk,l (4-
mode bifurcation) which involves the wave-number group {(0, 5), (5, 0), (3, 4), (4, 3)}. For all

(ni, pi) ∈ {(0, 5), (5, 0), (3, 4), (4, 3)} we have κ =
√

n2
i + p2

i = 5, i.e. (59) holds with D1 = 1

(square heater) and m = 4. Moreover, for κ = 5 and D2 = 0.05 one can check that the
inequality (60) holds. This 4-mode case clearly allows greater variation in solutions compared
to lower degrees of multiplicity. However, similar to the 2-mode bifurcation solutions of
the case study (Section 5.3), there are limitations w.r.t. the choice of the coefficients ci

that restrict the 4-mode bifurcation solutions to specific subspaces. We give a few examples
of physically-meaningful solutions originating from admissible 4-mode bifurcation solutions.
In Figure 14b and Figure 14c we show heterogeneous solutions corresponding with the 4-
mode bifurcation solution (61) for (c1, c2, c3, c4) = (0, 0, 1, 1) and (c1, c2, c3, c4) = (0, 1, 0, 1).
These are quasi 2-mode bifurcation solutions. Figure 14d shows the heterogeneous solution
originating from (61) with (c1, c2, c3, c4) = (1, 1, 1, 1). This is a true 4-mode solution, which
has a more complex structure than solutions in the cases involving only two Fourier modes.
The temperature range in Figure 14d is significantly narrower (minimum (blue): T ≈ 1;
maximum (red): T ≈ 1.4) than for the heterogeneous solutions found before (0.5 / T / 2).
This suggests that heterogeneous solutions of the pool-boiling problem attain, in the sense of
both length scales and temperature fluctuations, progressively finer structures with increasing
degree of multiplicity m.

The above discussion on higher dimensional nullspaces is by no means exhaustive and only
gives a first impression of the intricate behaviour that may be encountered in the 3D pool-
boiling problem. Further investigation is required to understand and explain the phenomena
related to higher multiplicities.
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6 Conclusions

In this paper we consider a 3D heat-transfer problem with a nonlinear Neumann boundary
condition on part of the boundary as a simple model for 3D pool boiling processes. This
model is the same as the one in the 2D pool-boiling problem studied in [18]. The heat
flux from the heater to the fluid is modelled by means of a nonlinear functional relation
between the local heat flux and the boundary temperature. A key issue is the existence
of multiple steady-state solutions with heterogeneous temperature distributions on the fluid-
heater interface. The separation-of-variables technique enables analytical reduction of the full
3D problem to a 2D problem for the temperature distribution on the fluid-heater interface
(as in (11)). This reduced problem forms the basis of the analysis and is discretised using
a Fourier collocation method. Both the continuous and discrete interface problems have
symmetry properties (Theorem 2 and Remark 4) that imply multiplicity of heterogeneous
solutions. These symmetries are direct consequences of the shift-invariance property (24).
Multiple (heterogeneous) solutions originate from bifurcations on a branch of homogeneous
solutions. The existence of symmetries (Theorem 2) and the conservation of symmetries
during continuation (Theorem 1) are two fundamental properties of the model. The steady-
state behaviour of the 3D pool-boiling model is studied through a numerical bifurcation
analysis of the reduced problem and demonstrates the multiple solution structure by way of
a representative case study. Below we outline a few main conclusions from this analysis.

Multiple (heterogeneous) steady-state solutions are found in systems that admit transi-
tion boiling modes; systems admitting only nucleate or film boiling allow only one unique
and homogeneous solution. Heterogeneous solutions represent temperature distributions that
correspond to coexisting nucleate and film boiling regions on the interface. Heterogeneous so-
lutions emerge clusterwise from pitchfork bifurcations on the homogeneous solution branch in
the transition regime. The occurrence of (multiple) heterogeneous solutions in the transition
regime is consistent with results known from laboratory experiments. This suggests that the
proposed model provides an (at least qualitatively) adequate description of 3D pool boiling.

The 3D pool-boiling model behaves to a large extent similar to the 2D model. The 2D and
3D problems share two key properties. Firstly, the shift-invariance property that underlies
the fundamental multiplicity in steady-state solutions and secondly, bifurcations undergone by
the homogeneous solution in the transition regime are the origin of multiple (heterogeneous)
steady-state solutions. There is, however, also a fundamental difference. The 3D system
admits bifurcations with multi-dimensional nullspaces; 2D systems, in contrast, admit only
one-dimensional nullspaces. This leads to 3D solution structures that have no 2D counter-
part. Numerical experiments suggest that the freedom within multi-dimensional nullspaces
is restricted in that only specific heterogeneous solutions are allowed to emerge from the
corresponding bifurcations. The underlying mechanism for this phenomenom is not yet un-
derstood.

Related to current and future research we note the following. Studies on the bifurcation
behaviour associated with system parameters other than the artificial nonlinearity parameter
considered here are in progress. Preliminary stability studies reveal that steady-state solutions
are always unstable, except for a homogeneous solution each in the nucleate and film-boiling
regimes. We are currently working on an analysis to explain this stability property. Further
issues to be considered in future work may include the effect of different heating methods and
stabilisation of pool-boiling processes via active control [1].
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a) TF for k = 1. b) TF for (k, ℓ) = (2, 1) c) TF for (k, ℓ) = (3, 1)

d) T ∗

F for k = 1. e) T ∗

F for (k, ℓ) = (2, 1). f) T ∗

F for (k, ℓ) = (3, 1).

g) TF for k = 2. h) T ′

F for (k, ℓ) = (2, 1). i) T ′

F for (k, ℓ) = (3, 1).

j) T ∗

F for k = 2. k) T ∗

F
′ for (k, ℓ) = (2, 1). l) T ∗

F
′ for (k, ℓ) = (3, 1).

Figure 12: Physically-meaningful (λ = 1) solutions corresponding with 1-mode bifurcation
solutions (44) for k = 1 and k = 2. The remaining columns give the cluster of 4 solutions
(51) emerging from quasi 1-mode bifurcation for (k, ℓ) ∈ {(1, 2), (2, 1)} (second column) and
(k, ℓ) ∈ {(1, 3), (3, 1)} (third column).
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a) TF for (k, ℓ) = (1, 0). b) TF for (k, ℓ) = (2, 0). c) TF for (k, ℓ) = (3, 0).

d) T ∗,1

F for (k, ℓ) = (1, 0). e) T ∗,1

F for (k, ℓ) = (2, 0). f) T ∗,1

F for (k, ℓ) = (3, 0).

g) T ∗,2

F for (k, ℓ) = (1, 0). h) T ∗,2

F for (k, ℓ) = (2, 0). i) T ∗,2

F for (k, ℓ) = (3, 0).

j) T ∗,3

F for (k, ℓ) = (1, 0). k) T ∗,3

F for (k, ℓ) = (2, 0). l) T ∗,3

F for (k, ℓ) = (3, 0).

Figure 13: Physically-meaningful (λ = 1) cluster of true 2-mode solutions emerging from the
2-mode bifurcation solutions (56) for ℓ = 0, k = 1, 2, 3.
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a) Bifurcations. b) TF for c1 = c2 = 0, c3 = c4 = 1.

c) TF for c2 = c4 = 1, c1 = c3 = 0. d) TF for c1 = c2 = c3 = c4 = 1.

Figure 14: Heterogeneous solutions for the flattened square heater (D2 = 0.05). Panel a gives
the wave-number pairs for which bifurcations on the homogeneous T (2)

F -branch occur. Panels
b-d give a few physically-meaningful (λ = 1) solutions TF originating from (61) for coefficients
ci as indicated.
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