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Abstract

This paper is concerned with the construction and analysis of multilevel Schwarz
preconditioners for partition of unity methods applied to elliptic problems. We show
under which conditions on a given multilevel partition of unity hierarchy (MPUM) one
even obtains uniformly bounded condition numbers and how to realize such require-
ments. The main anlytical tools are certain norm equivalences based on two-level splits
providing frames that are stable under taking subsets.
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1 Introduction

The so called meshless methods are drawing increasing attention in many areas of engineering
applications since they avoid notorious difficulties with meshing complicated domains, in
particular, when dealing with three or more spatial variables. Meshless methods have come
under various names such as “moving least squares”, “partition of unity method (PUM)”,
“radial basis functions”, “web splines”, “generalized finite elements” or “ smoothed particle
hydrodynamics”. A recent account of the state of the art can be found in [1], see also the
references cited there. There are close conceptual links with more theoretically motivated
directions of studies in the group of Triebel (see e.g. [11]) centering on atomic decompositions
related to PUM. While most of the numerical work refers to issues like error estimates
and functionality of the method, comparatively less seems to be known about fast solution
methods for the systems of equations arising from meshless discretization concepts. There
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is an impressive body of work on multigrid solvers for certain variants of PUM documented
in [7, 15, 9] which shows very good performance. On the other hand, it seems that rigorous
estimates are still lacking nor is it clear how well these techniques comply with adaptive
strategies.

Here we shall focus on the following model problem. Let a(·, ·) : V × V be a symmetric
bilinear form on a Hilbert space V with norm ‖ · ‖V = 〈·, ·〉1/2 that is V -elliptic, i.e. there
exist positive constants ca, Ca such that

a(v, v) ≥ ca‖v‖2
V , |a(v, w)| ≤ Ca‖v‖V ‖w‖V , v, w ∈ V. (1.1)

For any given f ∈ V ′ find u ∈ V such that a(u, v) = 〈f, v〉, v ∈ V . In what follows V will
always be assumed to be one of the spaces H1(Ω) or H1

0 (Ω) corresponding to Neumann or
Dirichlet boundary conditions. We shall always assume in what follows that Ω is a bounded
extension domain. This means that Ω has a sufficiently regular boundary to permit any
element v of any Sobolev or Besov space X(Ω) over Ω to be extended to ṽ ∈ X(Rd), ṽ|Ω = v,
in such a way that ‖v‖X(Rd) ≤ CX‖v‖X(Ω). This is, for instance, the case when the boundary
of Ω is piecewise smooth and a uniform cone condition holds for Ω.

The objective of this paper is to develop a multilevel Schwarz preconditioner in the
PUM setting that provides even uniformly bounded condition numbers for elliptic boundary
value problems. The primary focus of this investigation is a sound theoretical foundation
of this issue. Our emphasis here is on bringing out some basic principles that seem to be
relevant in such a context and most of the results will be asymptotic in nature. Moreover,
it will be seen to comply well with adaptive refinements. Many quantitative aspects such as
treating inhomogeneous boundary conditions, dealing with jumping diffusion coefficients or
the important issue of quadrature will not be addressed here.

In Section 2 we shall describe the general setting of a multilevel covers of Ω on which
the construction of multilevel systems of atoms and resulting partition of unity hierarchies
(MPUH) in Section 3 will be based upon. The central issues in this section are to es-
tablish certain scalewise stability properties as well as approximation bounds. The latter
estimates as well as certain multilevel representations are based on suitable versions of quasi-
interpolants. In particular, we shall identify several conditions, especially concerning certain
local linear independence properties, that, combined with two-level splits in multilevel ex-
pansions, will later be crucial for proving norm equivalences based on these representations
in many smoothness spaces. In Section 4 we return to the problem (1.1) and formulate a
multilevel Schwarz preconditioner based on the multilevel representations from the previous
section. Moreover, we indicate some possible combination with adaptive solution strategies
as well as the relevance of best N -term approximation in this context. The fact that the
proposed preconditioner gives rise to uniformly bounded condition numbers is a consequence
of the norm equivalences established in Section 5. There some effort is spent on proving
these norm equivalences for the full range of smoothness spaces in Lp(Ω) for 0 < p ≤ ∞.
While the stable splittings needed in Section 4 only require Sobolev spaces in L2(Ω), dealing
with best N -term approximation requires working, in particular, with the case p < 1.

For the sake of convenience we shall sometimes use the notation a <∼ b if a ≤ Cb with
an absolute constant C independent of all parameters on which a, b depend. Similarly, a ∼ b
means that both relations a <∼ b and b <∼ a hold.
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2 Discrete Multilevel Covers of Ω ⊆ Rd

We wish to discretize (1.1) with the aid of a multilevel partition of unity hierarchy (MPUH)
which will be based on certain multilevel covers of the domain Ω. To this end, let Br(x)
denote the (open) ball of radius r > 0 and center x ∈ Rd. We call an open set θ ⊂ Rd a
proper cell if it has the following properties:

(p1) θ is star-shaped, i.e. there exists a “center” xθ such that for any x ∈ ∂θ (the boundary
of θ) the line segment [xθ, x] connecting x and xθ is contained in θ̄.

(p2) One can find r1 ≤ r2 such that for a given R > 0

Br1(xθ) ⊆ θ ⊆ Br2(xθ), where r2/r1 ≤ R.

Clearly, balls as well as hypercubes are proper cells. Note that proper cells can be dilated.
For any positive a let

sa(θ) := {x ∈ Rd : ∃ y ∈ ∂θ s.t. x ∈ [xθ, xθ + a(y − xθ)]}. (2.2)

For a given compact domain Ω ⊂ Rd (with the properties mentioned in the previous
section) or Ω = Rd, we assume that Θ is a discrete multilevel collection of proper cells in Rd

(d ≥ 1) of the form

Θ =
∞⋃

m=0

Θm

with the following properties: For given positive constants a0, a1, a2, . . . and N1 one has:

(C1) For m ∈ N0 we have Ω ⊆
⋃

θ∈Θm
θ and a12

−a0m ≤ |θ| ≤ a22
−a0m for all θ ∈ Θm, where

|θ| denotes the volume of θ.

(C2) At most N1 cells from Θm may have a nonempty intersection.

(C3) If θ ∩ θ′ 6= ∅, θ, θ′ ∈ Θm, then |θ ∩ Ω| ≥ a3|θ| and |(θ \ θ′) ∩ Ω| ≥ a3|θ|.

(C4) For every x ∈ Ω and m ∈ N0 there exists θ ∈ Θm such that x ∈ sa4(θ) for some a4 < 1.

(C5) For all θ ∈ Θm, η ∈ Θm+1 we either have θ ∩ η = ∅ or |θ ∩ η ∩ Ω| > a5|η|.

On account of (C3) and (C5) we shall from now on adopt the convention that θ is always
understood to mean θ ∩ Ω.

With any cover of the above type we can associate a parameter vector p = p(Θ) contain-
ing all the constants appearing in the above requirements. Note that by (C2) the number of
overlaps is controlled, while (C3) says that every two cells from Θm are essentially different.
(C4) means that every point in the domain is “well covered” by at least one proper cell,
while (C5) controls the overlap between cells from two successive levels. Somewhat more
can be said.
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Remark 2.1. From the definition of a proper cell and (C1) it follows that for any θ ∈ Θm

we have diam θ ∼ 2−a0m/d with constants of equivalence depending only on p(Θ). Moreover,
for any θ ∈ Θm and θ′ ∈ Θm+1 there exist balls

Br1(xθ′) ⊆ θ′, θ ⊆ Br2(xθ), s.t. r2/r1 ≤ a6,

with a6 depending only on p(Θ).

Of course, thinking of applications where the centers xθ are given, depending on their
distribution, it might be difficult to construct covers with the above properties. When
thinking of applications to boundary value problems, one is free to choose centers as well as
the shape of cells that accommodate the construction and covers. Note that one typically
does not adapt the covers to domain boundaries. The perhaps simplest construction can be
sketched as follows. For simplicity let Ω = R2 and let the lattice points k = (k1, k2) ∈ Z2 be
the centers at level 0. Let

Θm = {2−m[k1 − b, k1 + b]× [k2 − b, k2 + b] := 2−m(k + [−b, b]2) : k ∈ Z2}, (2.3)

where b ∈ (1/2, 1) is fixed. Thus a0 = 2 = d, |θ| = 2−2m(2b)2 for θ ∈ Θm, and obviously, for
θ, θ′ ∈ Θm, θ ∩ θ′ 6= ∅ one has |θ ∩ θ′| ≥ 2−2m(2b − 1)2. Likewise when θ′ ∈ Θm+1, θ ∈ Θm

have nonempty intersection, one can verify that

|θ ∩ θ′| ≥

 2−2m
(

3b
2
− 1
)2

if 2/3 < b < 1;

2−2m
(

3b
2
− 1

2

)2

if 1/2 < b ≤ 2/3.
(2.4)

Hence, one has a1 = a2 = (2b)2 in (C1), N1 = 4 in (C2). Moreover, note that |θ ∩ θ′| ≥
(2b−1/2b)2|θ|, a4 = 1/2b in (C4), and in (C5) a5 = (3

2
− 1

b
)2 when b > 2/3, while a5 = (3

2
− 1

2b
)2

when 1/2 < b ≤ 2/3. Of course, rescalings may be necessary near domain boundaries.
Note that when b ≤ 2/3 certain intersections of small cells with cells from the previous

level in (C5) become empty which accounts for the two cases in (2.4). It is also clear how to
extend this to general d ≥ 3.

Remark 2.2. The above example has an additional property that will be exploited later,
namely,

∀ θ ∈ Θm ∃ Ωθ ⊂ θ s.t. θ′ ∩ Ωθ = ∅, ∀ θ′ ∈ Θm \ {θ} (2.5)

and
|Ωθ| ≥ a6|θ|. (2.6)

We shall refer to a cover with this property as a sparse cover and a6 will be added to the
parameter list p(Θ). In the above example we have a6 = (1− b)2.

An important point about covers of the above type is that the spatial localization offered
by moving to higher levels is isotropic. The setting presented here may be viewed as a
specialization of a more general framework put forward in [3] which aims at capturing also
anisotropic features.
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Finally it will be convenient to confine the subsequent discussion to the slight further
constraint that all proper cells are affine images

θ = Aθ(
◦
θ) (2.7)

of a single reference cell
◦
θ of volume |

◦
θ | ∼ 1. In the above example the Aθ are just

compositions of shifts and dilations.
From now on we shall always assume that Θ satisfies properties (C1) – (C5) for some

parameter vector p(Θ) as well as that (2.7) holds.

3 Construction of Multilevel Systems of Atoms

We shall always assume that φ ∈ Cr(Rd) is a fixed function supported on the reference cell
◦
θ with |

◦
θ | ∼ 1, having some degree of pointwise smoothness r ∈ N (in principle, r = ∞ is

admissible). Moreover, we require that φ(x) > 0 if x ∈
◦
θ.

For any θ ∈ Θ we recall (2.7) and set

φθ := φ ◦ A−1
θ . (3.1)

As in PUM we form partitions of unity by defining for any m ∈ N0, θ ∈ Θm

ϕθ :=
φθ|Ω∑

θ′∈Θm
φθ′

, (3.2)

where Ω is the domain under consideration. By the properties of φ and the cover Θ it follows
that

0 < c1 ≤
∑

θ∈Θm

φθ(x) ≤ c2, x ∈ Ω, (3.3)

where the constants c1, c2 depend only on p(Θ). Consequently,
∑

θ∈Θm
ϕθ(x) = 1.

Suppose further that {Pβ : |β| = β1 + · · · + βd ≤ k − 1} is a basis for Πk the space of
polynomials in d variables of total degree k − 1, normalized by

‖Pβφ‖
L∞(

◦
θ)

= 1. (3.4)

Then for θ ∈ Θ we let
Pθ,β := Pβ ◦ A−1

θ .

Remark 3.1. As a consequence of the fact that |
◦
θ | ∼ 1 we have

‖Pβφ‖
Lp(

◦
θ)
∼ ‖Pβφ‖

Lq(
◦
θ)

, 0 < p, q ≤ ∞, (3.5)

with constants of equivalence depending only on p, q, k, and φ.

We define
Φm := {Pθ,βϕθ : θ ∈ Θm, |β| ≤ k − 1} (3.6)

and set
Sm := span (Φm) on Ω.
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Remark 3.2. It is easy to see that for each m ∈ N0

Πk |Ω⊂ Sm,

i.e. for every P ∈ Πk there exists a g ∈ Sm such that P |Ω = g.

Our goal is to approximate the solution to (1.1) by linear combinations of the atoms
Pθ,βϕθ, θ ∈ Θ, |β| < k. This raises a number of well-known practical issues such as the
notorious problem of quadrature or the treatment of boundary conditions. In contrast to
pure radial basis function approaches the incorporation of essential homogeneous Dirichlet
conditions is actually in principle easy and, above all, local. In fact, whenever the support
of an atom overlaps the boundary one can choose the polynomial factor Pθ,β to belong to an
ideal whose zero set approximates the corresponding boundary segment. This may even offer
better accuracy than common triangular approximations. Since these issues have been ad-
dressed elsewhere we concentrate here only on the stability issues related to preconditioning
the linear systems resulting from corresponding discretizations.

To this end, it will be important that for each m ∈ N0 the collection Φm is independent
and moreover is stable in Lp. There are several possible ways to go about this. A first one
is fomulated as the following property of the atoms:

Property (LLIN): Consider for fixed 0 < ρ1 < ρ2 the collection of all affine maps

A(ρ1, ρ2) := {A : Ax = Mx + b, Bρ1(0) ⊂ M(B1(0)) ⊂ Bρ2(0)}.

For N1 (from (C2)) let A0 ⊂ A be any subset of cardinality #A0 ≤ N1 Then for any given

pair (ρ1, ρ2) as above, any A0 (of pairwise different affine maps) as above and any ball B ⊂
◦
θ

the following local linear independence property holds:∑
A∈A0

∑
|β|<k

cA,β((Pβφ) ◦ A)(x) = 0, x ∈ B, implies cA,β = 0, A ∈ A0, |β| < k. (3.7)

This means that on any subset of
◦
θ overlapping affine compositions of φ are locally linearly

independent.

Scenarios, in which Property (LLIN) can be verified, will be discussed in Section 3.4.
We shall frequently use the obvious fact, that (3.7) is equivalent to the analogous relation

for φ replaced with ϕ. Moreover, as a consequence of (C1), we can find a ball B ⊂
◦
θ such

that Bθ := Aθ(B) satisfies
|Bθ| ≥ a7|θ|, (3.8)

where 0 < a7 < 1 also depends only on p(Θ).

3.1 Scalewise Stability

In the following we shall briefly write

‖g‖p = ‖g‖Lp(Ω),

whenever the domain under consideration is Ω. The first essential building block is the
following levelwise stability of the partitions of unity.

6



Theorem 3.3. Suppose that Property (LLIN) is valid or that the cover Θ is sparse (see
Remark 2.2). Then the collection Φm (m ∈ N0) is linearly independent on Ω and hence
forms a basis for Sm := span (Φm). Moreover, any g ∈ Sm has a unique representation

g =
∑

θ∈Θm, |β|<k

bθ,β(g)Pθ,βϕθ, (3.9)

where the dual functionals bθ,β can be defined as follows. For every θ there exists some Bθ

with |Bθ| ∼ |θ| such that

bθ,β(f) = 〈f, g̃θ,β〉, where supp (g̃θ,β) ⊆ Bθ, ‖g̃θ,β‖∞ ≤ C/|θ|, (3.10)

and C depends only on p(Θ). Thus bθ,β is bounded on Lp(Ω), 1 ≤ p ≤ ∞. As a consequence
we have for any 1 ≤ p ≤ ∞

|bθ,β(g)| ≤ c(k,p(Θ), p)|θ|−1/p‖g‖Lp(Bθ), ∀ g ∈ Sm. (3.11)

Moreover, for g ∈ Sm, we have

‖g‖p ∼
( ∑

θ∈Θm, |β|<k

‖bθ,β(g)Pθ,βϕθ‖p
p

)1/p

, 0 < p ≤ ∞, (3.12)

where the constants of equivalence depend only on k, p,p(Θ) but not on m and g.

Proof: We shall construct suitable dual functionals by biorthogonalizing local restrictions
of interacting atoms. We shall first work under the assumption that property (LLIN) holds.
To control the spectrum of the corresponding Gramians we need some preparatory steps.
The first one concerns the mutual overlap of atoms from one level. To this end, recall from

property (p2) there exists a ball Bρ̄ ⊆
◦
θ such that

|Bρ̄| ≥ b1|
◦
θ | (3.13)

for some uniform positive constant b1 < 1, where ρ̄, b1 depend only on p(Θ). Consider the
shrunk versions B` := B(1− `

2N1
)ρ̄ of from (3.13), i.e. B0 = Bρ̄ and BN1 = Bρ̄/2. Likewise let

Bθ,` := Aθ(B`). Thus, by (p2), we have

|Bθ,`| ≥ b2|θ|, ` = 0, . . . , N1, (3.14)

for some uniform constant b2 > 0 depending only on p(Θ). Furthermore, note that, again
by (p2),

θ′ ∩Bθ,` 6= ∅, θ′ ∈ Θm =⇒ |θ′ ∩Bθ,`−1| ≥ b3|θ|, ` = 1, . . . , N1, (3.15)

where b3 > 0 is another uniform constant depending only on p(Θ).
Next observe that there exists an `∗ ∈ {1, . . . , N1} such that

Bθ,`∗ ∩ θ′ = ∅, ∀ θ′ ∈ Θm \ {θ},
or (3.16)

if θ′ ∈ Θm, θ′ ∩Bθ,`∗−1 6= ∅ =⇒ θ′ ∩Bθ,`∗ 6= ∅.
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In fact, let Ξ` := {θ′ ∈ Θm : θ′ 6= θ, θ′ ∩ Bθ,` 6= ∅}. Clearly #Ξ0 ≤ N1 (see (C2). If
Ξ1 is empty, we set `∗ = 1. If #Ξ1 = #Ξ0 we again set `∗ = 1 and are done. So, it
remains to consider the case #Ξ0 > #Ξ1 > 0. Thus, in general, either (3.16) holds for ` or
#Ξ`+1 < #Ξl, so that (3.16) holds after at most N1 steps. We take now `∗ as the smallest
integer for which (3.16) is valid and set B := B`∗−1 when the second case in (3.16) holds or
B := B`∗ when the first case is true. Thus, in summary Bθ := Aθ(B) for this B satisfies

Bθ ∩ θ′ 6= ∅, θ, θ′ ∈ Θm =⇒ |Bθ ∩ θ′| ≥ b4|θ|. (3.17)

Now let Γθ := {θ′ : θ′ ∈ Θm, θ′ ∩Bθ 6= ∅} and

Cθ := {gθ′,β := Pθ′,βϕθ′χBθ
: θ′ ∈ Γθ, |β| < k},

be the collection of all mth level atoms that overlap Bθ (including those corresponding to θ
itself). Note that the gθ′,β are defined on all of Ω but vanish outside Bθ′ . By property (C2),
the cardinality of Cθ is uniformly bounded by a constant multiple of N1k

d.
Now consider the local Gramian

Gθ := (〈gθ′,β, gθ′′,β′′〉Bθ
)(θ′,β),(θ′′,β′′)∈Γθ

,

where 〈v, w〉Bθ
:=
∫

Bθ
vwdx. We shall next show that Gθ is nonsingular and can be used to

construct a suitable collection of dual functionals. To this end, note that straightforward
substitution yields

〈gθ′,β, gθ′′,β′′〉Bθ
= |Aθ|

∫
B

Pβ(A−1
θ′ Aθy)φ(A−1

θ′ Aθy)Pβ′′(A
−1
θ′′ Aθy)φ(A−1

θ′′ Aθy)(∑
θ′∈Γθ

φ(A−1
θ′ Aθy)

)2 dy. (3.18)

Setting Aθy = Mθy + xθ, where xθ is the center of θ and Mθ is the corresponding (d × d)-
matrix, one obviously has

A−1
θ′ Aθy = (M−1

θ′ Mθ)y + M−1
θ′ (xθ − xθ′).

From property (p2) one infers that

|M−1
θ′ (xθ − xθ′)| ≤ C, θ′ ∈ Γθ, (3.19)

where the constant depends only on p(Θ).
Furthermore, considering the singular value decomposition M−1

θ′ Mθ = UΣV , U, V orthog-
onal matrices, the singular values on the diagonal of Σ are contained, on account of property
(p2) in a fixed interval [a10, a11] depending only on p(Θ) and k, where a10 > 0, a11 < ∞.
The orthogonal matrices U, V can also be viewed as elements of a compact finite dimensional
manifold. Hence we can write

〈gθ′,β, gθ′′,β′′〉Bθ
= |Aθ|

∫
B

Pβ(Aθ′,θy)φ(Aθ′,θy)Pβ′′(Aθ′′,θy)φ(Aθ′′,θy)(∑
θ′∈Γθ

φ(Aθ′,θy)
)2 dy,

where Aθ′,θ := A−1
θ′ Aθ, Aθ′′,θ := A−1

θ′′ Aθ are affine mappings belonging to A(ρ1, ρ2). Here ρ1, ρ2

depend only on p(Θ) but not on θ. Moreover the Aθ′,θ are instances of elements in A(ρ1, ρ2)
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that can be parametrized over some fixed bounded set K of finitely many parameters. On
account of (3.15) and (3.17) K is also closed and hence compact. Hence the Gramian can
be viewed as a function of the parameters in K which depends only on p(Θ). By (3.3) this
dependence is continuous. Therefore, each

G̃θ := |Aθ|−1Gθ (3.20)

can be viewed as the value of a continuous matrix valued function at some point in the
compact set K. By the above observations, the set A0 := {Aθ′,θ : θ′ ∈ Γθ} satisfies the
requirements in Property (LLIN) for some pair (ρ1, ρ2) depending only on p(Θ) but not on
θ. The determinant of G̃θ is also the evaluation of a continuous function on K. By Property
(LLIN) the elements of Cθ are linearly independent over Bθ. So the Gramians are always
nonsingular and hence their determinants do not vanish in K. Since K is compact they
attain their minimum in K that is bounded away from zero from below by some positive
constant b4 depending, in view of (3.17), only on p(Θ). Therefore the inverse G̃−1

θ exists and
is the value of a continuous function on K as well. Let us denote the entries of the inverse
G−1

θ = |Aθ|−1G̃−1
θ by R(θ′,β′),(θ′′,β′′), (θ′, β′), (θ′′, β′′) ∈ Γk

θ := Γθ × {β ∈ Zd
+ : |β| < k}. Then

the functions
g̃θ,β :=

∑
(θ′,β′)∈Γk

θ

R(θ,β),(θ′,β′)gθ′,β′ (3.21)

which, by construction, are supported on Bθ, form a dual system to Φm. In fact,

〈g̃θ,β, Pβ∗,θ∗ϕθ∗〉Ω = 〈g̃θ,β, gβ∗,θ∗〉Bθ
=

∑
(θ′,β′)∈Γk

θ

R(θ,β),(θ′,β′)〈gθ′,β′ , gθ∗,β∗〉Bθ

= (GθG
−1
θ )(θ,β),(θ∗,β∗) = δ(θ,β),(θ∗,β∗), (θ, β), (θ∗, β∗) ∈ Γθ. (3.22)

To prove that the functionals bθ,β(g) := 〈g̃θ,β, g〉Bθ
satisfy (3.10) it remains to show that

‖g̃θ,β‖L∞ ≤ C/|θ|, θ ∈ Θm, |β| < k, (3.23)

where the constant C depends only on the parameters in p(Θ). Since by (3.8) the L∞-norms
of the restrictions gθ′,β are uniformly bounded from above and away from zero, depending
on the parameters in p(Θ), (3.23) in turn follows, in view of #Γθ ≤ N1, θ ∈ Θm, m ∈ N0, as
soon as we have shown that

|R(θ,β),(θ′,β′)| ≤ C/|θ| (3.24)

where again C depends only on p(Θ). But this follows, in view of |Aθ| ∼ |θ| and (3.20), from
the fact that G̃−1

θ are values of a continuous function whose norm remains bounded on K.
This confirms (3.10) under the assumption (LLIN).

When the cover Θ is sparse, the argument is much simpler. In this case we can take Bθ

as the largest ball contained in the set Ωθ which is not intersected by any other θ′ ∈ Θm. By
(2.6), we know that |Bθ| ∼ |θ|. Since ϕθ equals one on Ωθ the local Gramians just involve
the polynomials Pθ,β, |β| < k. By similar arguments as above these Gramians can be related
to a reference domain of unit size to arrive at the same conclusions (3.10). The bound (3.11)
follows directly from (3.23). The proof of (3.12) is a standard consequence of (3.22) and
(3.11). �
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3.2 Quasi-Interpolants

The second crucial ingredient are Quasi-interpolants mapping Lp(Ω) onto the spaces Sm.
We shall distinguish the cases 0 < p < 1 and 1 ≤ p ≤ ∞, treating the latter case first.
Specifically, the mappings

Qmf :=
∑

θ∈Θm,|β|<k

bθ,β(f)Pθ,βϕθ, f ∈ Lp, (3.25)

are, in view of Theorem 3.3, especially (3.11), uniformly bounded projectors from Lp(Ω)
onto Sm for 1 ≤ p ≤ ∞.

Lemma 3.4. We have

‖Qmf‖Lp(θ) ≤ cp‖f‖Lp(θ∗), ∀ f ∈ Lp(Ω), 1 ≤ p ≤ ∞, (3.26)

where for θ ∈ Θm

θ∗ :=
⋃
{θ′ ∈ Θm : θ ∩ θ′ 6= ∅}.

Further immediate consequences of Theorem 3.3 concern the approximation properties of
the spaces Sm. To this end, consider the usual forward difference of f in direction h defined
by ∆hf(x) := ∆1

hf(x) := f(x + h)− f(x) when the line segment [x, x + h] is contained in Ω
and by ∆hf(x) = 0 otherwise. Likewise define for k > 1 the kth order forward difference by
∆k

hf(x) := ∆h(∆
k−1
h f(x)), again provided that [x, x+kh] ⊂ Ω, while ∆k

hf(x) := 0 otherwise.
Recall that the two versions of the kth Lp-modulus of continuity are then as usual defined
as

ωk(f, θ)p := sup
t>0

sup
|h|≤t

‖∆k
hf‖Lp(θ), ωk(f, t)p := sup

|h|≤t

‖∆k
hf‖Lp(Ω).

Lemma 3.5. For f ∈ Lp(Ω) and θ ∈ Θm one has

‖f −Qmf‖Lp(θ) ≤ c
∑

θ′∈Θm: θ′∩θ 6=∅

ωk(f, θ′)p. (3.27)

Hence, one has
‖f −Qmf‖Lp(Ω) → 0 as m →∞. (3.28)

Moreover, denoting by |f |p
W k(Lp(Ω))

:=
∑

|β|=k ‖∂βf‖p
Lp(Ω) (p ≥ 1) the classical kth order

Sobolev semi-norm in Lp, an immediate consequence of (3.27) is

‖f −Qmf‖Lp(Ω) ≤ chr
m|f |W r(Lp(Ω)), r ≤ k, (3.29)

where hm = max {diam θ : θ ∈ Θm}. The constants in (3.27)-(3.29) depend only on
k,p(Θ), p but not on f, m, θ.

Proof: Estimate (3.27) is an immediate consequence of the locality of the dual functionals,
the polynomial reproduction property from Remark 3.2, and a classical Whitney estimate
for local polynomial approximation. As for (3.28), it is easy to see (sf. [10]) that

ωk(f, 2−a0m/d)p ∼
( ∑

θ∈Θm

ωk(f, θ)p
p

)1/p

, (3.30)
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so that (3.28) follows from (3.27) and (3.30). Estimate (3.29) follows from standard esti-
mates for the modulus of continuity given enough smoothness. �

We next introduce a second type of quasi-interpolant, which will be needed when working
in Lp with p < 1. For 0 < p ≤ ∞ and a given cell θ ∈ Θ, we let Tθ,p : Lp(θ) → Πk−1|θ be a
projector such that

‖f − Tθ,pf‖Lp(θ) ≤ cωk(f, θ)p, f ∈ Lp(θ), (3.31)

where c > 0 depends only on k and the parameters of Θ. Note that Tθ,pf can simply be
defined as the best (or near best) approximation to f from Πk−1 in Lp(θ). Then (3.31) is a
consequence of Whitney’s theorem. Note that we use here that Ω is an extension domain
(see Section 1) so that the constant in Whitney’s theorem indeed depends only on the shape
properties of the θ and thus on p(Θ). However, Tθ,p can be realized as a linear projector
if p ≥ 1 by using the Averaged Taylor polynomials, see e.g. [4]. Of course, Tθ,p will be a
nonlinear operator if p < 1.

We now define the operator Tm,p : Lp(Ω) → Sm by

Tm,pf(x) :=
∑

θ∈Θm

ϕθ(x)Tθ,pf(x), x ∈ Ω. (3.32)

Evidently, for 0 < p ≤ ∞ the operator Tm,p : Lp(Ω) → Sm is a projector (linear if p ≥ 1).
We next record the most important properties of Tθ,p.

Lemma 3.6. For f ∈ Lp(Ω) (0 < p ≤ ∞) and θ ∈ Θm (m ≥ 0), we have

‖Tm,pf‖Lp(θ) ≤ c‖f‖Lp(θ∗) (3.33)

and
‖f − Tm,pf‖Lp(θ) ≤ c

∑
θ′∈Θm: θ′∩θ 6=∅

ωk(f, θ′)p. (3.34)

Moreover,

‖f − Tm,pf‖Lp(Ω) ≤ c
( ∑

θ∈Θm

ωk(f, θ)p
p

)1/p

≤ cωk(f, 2−a0m/d)p, (3.35)

and hence
‖f − Tm,pf‖Lp(Ω) → 0 as m →∞. (3.36)

Here c > 0 depends only on p, k, and the parameters of Θ; θ∗ is as in Lemma 3.4.

Proof. Estimate (3.33) is an immediate consequence of the definition and the boundedness
of Tθ,p. Observe that

f(x)− Tm,pf(x) =
∑

θ′∈Θm: θ′∩θ 6=∅

ϕθ(x)(f(x)− Tθ′,pf(x)), x ∈ θ,

and hence (3.34) follows by (3.31). Finally (3.35) follows by (3.34) and (3.30). �

Concerning the approximation bounds it would have been enough to work with the Tm,p

that cover the whole range 0 < p ≤ ∞. However, the concrete form of the linear projectors
Qm will be needed in the subsequent section anyway.
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3.3 Two-Level Splits

For Schwarz type preconditioners to produce uniformly bounded condition numbers one
needs to have stable splittings of the corresponding energy space which, in turn, could be
viewed as constructing suitable frames for this space, see e.g. [8, 14]. For such multilevel
frames to exist one needs to capture in some sense difference information between successive
levels of resolution. In the present framework of MPUHs we cannot expect any nestedness
of the spaces Sm. Nevertheless, we shall see in this section that appropriate two-level splits
can serve to some extent as substitutes.

To describe such two-level splits let

Λm := {λ = (η, θ, β) : η ∈ Θm+1, θ ∈ Θm, |θ ∩ η| 6= 0, |β| < k}, m ≥ 0, (3.37)

and define
Fλ := Pη,βϕηϕθ, λ = (η, θ, β) ∈ Λm. (3.38)

Note that ∑
η∈Θm+1

∑
θ∈Θm:θ∩η 6=∅

ϕηϕθ = 1 on Ω. (3.39)

In order to obtain multilevel decompositions of function spaces based on Θ and the above
atoms we shall employ the following two-scale relations of polynomials combined with the
partition of unity property of the ϕθ’s. To this end, we note that for θ ∈ Θm, η ∈ Θm+1

Pθ,α =
∑
|β|<k

mθ,η
β,αPη,β =

∑
η∈Θm+1:θ∩η 6=∅

∑
|β|<k

mθ,η
β,αPη,βϕη, (3.40)

where we have used that
∑

η∈Θm+1
ϕη = 1.

Theorem 3.7. For any f ∈ Lp(Ω) (1 ≤ p ≤ ∞) we have (with Q−1 ≡ 0)

f =
∞∑

m=−1

(Qm+1f −Qmf) =
∞∑

m=0

∑
λ∈Λm

dλ(f)Fλ, (3.41)

where for mθ,η
β,α from (3.40) and the dual functionals bη,β(·) constructed in Theorem 3.3 one

has
dλ(f) = bη,β(f)−

∑
|α|<k

mθ,η
β,αbθ,α(f). (3.42)

Proof: The representation (3.41), i.e. the strong convergence of the underlying expansion
follows from (3.28). Furthermore, we have

Qm+1f −Qmf =
∑

η∈Θm+1

( ∑
|β|<k

bη,β(f)Pη,βϕη

)
−
∑

θ∈Θm

( ∑
|α|<k

bθ,α(f)Pθ,αϕθ

)
=

∑
θ∈Θm

ϕθ

∑
η∈Θm+1

( ∑
|β|<k

bη,β(f)Pη,β

)
ϕη

−
∑

θ∈Θm

( ∑
|α|<k

bθ,α(f)
∑

θ∩η 6=∅

∑
|β|<k

mθ,η
β,αPη,βϕθϕη

)
=

∑
η∈Θm+1

∑
θ∈Θm: θ∩η 6=∅

∑
|β|<k

{
bη,β(f)−

∑
|α|<k

mθ,η
β,αbθ,α(f)

}
Pη,βϕηϕθ,
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as claimed. �

For λ = (η, θ, β) ∈ Λm we shall often write ηλ = η, θλ = θ and βλ = β.
An important point for later developments is the fact that the representations of the

differences (Qm+1 −Qm)f are under certain conditions unique and stable.

Property (LLIN’): Let A(ρ1, ρ2) be defined as in Property (LLIN). In addition we need
now a second family of affine maps A(ρ3, ρ4) that are allowed to increase the size of the

reference domain by a factor of 2a1 (see (C1)). For subsets B of
◦
θ as in Property (LLIN),

consider any finite subset R ⊂ A(ρ1, ρ2) ×A(ρ3, ρ4) of distinct pairs of cardinality at most
N2

1 . Then, for any R with the above property with respect to any list (ρ1, ρ2, ρ3, ρ4) as above,
the two level atoms have the following local linear independence property:∑
(A,A′)∈R,|β|<k

cA,A′,βPβ(Ay)φ(Ay)φ(A′y) = 0, y ∈ B, =⇒ cA,A′,β = 0, |β| < k, (A,A′) ∈ R.

We shall discuss in Section 3.4 relevant situtions where (LLIN’) can be verified.

Theorem 3.8. Suppose that in addition to the assumptions in Theorem 3.3 Property (LLIN’)
is valid. Then each collection

{Fλ : λ ∈ Λm}, m = 0, 1, . . . ,

is linearly independent on Ω and hence forms a basis for

Wm := span {Fλ : λ ∈ Λm).

Moreover, any g ∈ Wm has a unique representation

g =
∑

λ∈Λm

cλ(g)Fλ, (3.43)

where as in (3.10) the dual functionals cλ, λ = (η, θ, β), have a representation cλ(g) =
〈g, cλ〉Bη , for some Bη ⊂ η which is comparable in size to η. Hence the functionals cλ(·) are
bounded linear functionals on any Lp(Ω) for 1 ≤ p ≤ ∞ and satisfy for any 1 ≤ p ≤ ∞

|cλ(g)| ≤ c(k, p,p(Θ))|η|−1/p‖g‖Lp(η), λ = (η, θ, β), ∀ g ∈ Wm. (3.44)

Proof: Under the given assumptions the construction of the dual functionals is analogous
to the one given in the proof of Theorem 3.3. By an analogous reasoning as in the first part
of this proof one can establich again the fact that for some constant b5 > 0 and a suitable
Bη ⊂ η one has

Bη ∩ η′ ∩ θ 6= ∅ =⇒ |Bη ∩ η′ ∩ θ| ≥ b5|η|. (3.45)

Since the remaining assertions are analogous consequences the proof is complete. �

The requirements in (LLIN’) can be weakened somewhat when dealing with sparse covers.
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Proposition 3.9. Theorem 3.8 remains valid for a sparse cover if the following is true: For
each η ∈ Θm+1 there exists a neighborhood Nη ⊆ Ωη such that∑

θ ∈ Θm, θ ∩ Nη 6= ∅
|β| < k

cβ,θPη,βφθ(x) = 0, x ∈ Nη =⇒ cβ,θ = 0, θ ∈ Θm, θ ∩ Nη 6= ∅, |β| < k,

(3.46)
where φθ := φ ◦ A−1

θ .

Proof: Suppose that, in view of (2.5), (2.6), Bη is again a ball in η ∈ Θm+1 which is not
intersected by any other η′ ∈ Θm+1. Then, since Bη is overlapped only by η itself and since
ϕη ≡ 1 on Bη we have∑

λ′∈Γm,m+1
η

cλ′Fλ′(x) = 0 on Bη ⇐⇒
∑
|β′|,k

∑
θ′∩Bη 6=∅

cη,β′,θ′Pη,β′(x)ϕθ′(x) = 0 on Bη.

Since the ϕθ and φθ differ only by one common factor we see that the Fλ′ that overlap Bη

are linearly independent on Bη. By the same reasoning as in the proof of Theorem 3.3 we
can find a ball B̄η in η whose nonempty intersection with any θ′ from Θm is substantial, so
that the same compactness argument allows us to control the condition of the corresponding
local Gramian. �

An immediate consequence of Theorem 3.8 can be stated as follows (see also (3.12)).

Corollary 3.10. For any g ∈ Wm we have

‖g‖p ∼
( ∑

λ∈Λm

‖cλ(g)Fλ‖p
p

)1/p

, 0 < p ≤ ∞, (3.47)

In the following we shall frequently use the following relation

‖Fλ‖τ ∼ |ηλ|
1
τ
− 1

p‖Fλ‖p, (3.48)

which holds for 0 < p, τ ≤ ∞ with constants depending on p and τ .

3.4 Local Linear Independence

We have already seen in Section 3.1 that property (LLIN) can be weakened somewhat when
the cover Θ satisfies in addition to (C1)–(C5) conditions (2.5) and (2.6), i.e. Θ is sparse.

Sparsity is not necessary, as we shall see below, but since it also reduces the computa-
tional burden regarding quadrature we shall netxt address this case for two scenarios that
might be of practical interest.

Sparsely shifted B-splines: The first scenario is to employ tensor product B-splines of coor-
dinate degree K and maximal smoothness K−1 shifted on a regular grid in such a way that
polynomial regions match for overlapping supports and that the resulting cover is sparse
in the sense of Remark 2.2, see also the example following Remark 2.1. For instance, for
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cardinal B-splines the supports are shifts of [0, K +1]d and we could shift on the lattice LZd

for some L ∈ N, L ≤ K (but close to K to have only a fixed number of overlaps indepen-
dent of K). Now this situation becomes quite easy to deal with when e.g. L = K. To see
this, it suffices to consider the coarsest level. Then Ωθ of each φθ is a cube of side length
L− 1 = K − 1. Therefore, when creating higher levels by dyadic subdivisions of the ground
lattice, each ϕη for η ∈ Θm+1 on the next higher level has the property that Ωη has a nonzero
intersection with an Ωθ for one θ ∈ Θm. Since on Nη := Ωη ∩ Ωθ the bumps ϕθ and ϕη are
constant the validity of (3.46) reduces to the linear independence of the Pη,β which, in view
of Proposition 3.9, settles this case completely.

Remark 3.11. For the above case of sparsely shifted B-splines the assertions of Theorems
3.3 and 3.8 hold.

Radial local polynomial bumps: To describe a second natural scenario (although less favorable

regarding quadrature), suppose that
◦
θ= B1(0) is the unit ball and φ(x) := ((1 − |x|2)+)K ,

where x+ := max {0, x} and K ∈ N is sufficiently large to be specified later. Thus on θ the
function ϕθ is a polynomial of degree 2K.

We shall exploit the fact that the φθ extend to polynomials φ̂θ(x) = (1 − |A−1
θ x|2)K on

all of Rd and that local linear independence of polynomials is equivalent to their (global)
linear independence. Note first that the validity of (3.46) is again immediate if Nη ∩Ωθ 6= ∅
for some θ ∈ Θm. In fact, by the sparseness of Θ, no further θ′ ∈ Θm will then contribute to
the linear combination on Ωθ ∩ Nη. Hence, on Ωθ ∩ Nη only the polynomial basis functions
interact which again allows us to identify a locally regular Gramian.

The remaining case, namely that for some η ∈ Θm+1 there exist θ ∈ Θm such that

Ωη ∩ Ωθ = ∅, Ωη ∩ θ 6= ∅, (3.49)

would require much more elaboration to rule out a possible linear dependence of overlapping
affine compositions of the atoms. At this point it remains an open question whether local
linear independence can be guaranteed in this case and a detailed discussion of these issues
will be given elsewhere.

Here we are content with sketching a simple way of avoiding this latter difficulty by
slightly extending the setting. It will then be relatively easy to ensure the validity of the
properties (LLIN) and (LLIN’) which is the major motivation for presenting the related
arguments in the previous sections. Again we refer to a more detailed exposition in [3]. First
this requires, however, expanding slightly the above setting as follows. Instead of taking
affine compositions of a single φ as above, we employ a fixed finite number

φj(x) := (1− |x|2)Kj

+ , j = 1, . . . , N2,

where the choice of the parameters Kj, N2 will be explained in a moment. This additional
flexibility will allow us though to reduce the requirements (C1) – (C5) significantly and
also the sparse covering property is no longer needed. What remains important is that at
most a controled number N1 of atoms overlap at a given point. Then it is possible to color
the elements of any two successive levels Θm, Θm+1 by at most N2 colors in such a way
that any two θ of the same color are disjoint. Given a fixed numbering of these colors and
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using a fixed polynomial order k of the polynomial factors Pβ, we choose now Kj+1 > k+Kj,
j = 1, . . . , N2−1. Thus whenever the supports of a set of atoms have a nonempty intersection,
these atoms will have highly differeng polynomial degrees on this intersection. From this it
is then easy to see that the atoms are everywhere locally and therefore also globally linearly
independent. In principle, a stable collection of dual functionals can then be constructed
along similar lines as in Theorems 3.3, 3.8, varying if necessary the supports in the same
fashion as in those cases. Since the resulting high polynomial degrees may not favor efficient
and accurate calculations we refrein from a detailed discussion at this point but merely
use this example to indicate various possible ways of ensuring the above scalewise stability
properties.

4 Application to Preconditioning for Elliptic Bound-

ary Value Problems

We now turn to discretizations by means of the above type of partition of unity hierarchies.
Thus, for any given f ∈ V ′, V a Hilbert space and a(·, ·) a symmetric V -elliptic bilinear form
(see (1.1)) we consider the problem: Find u ∈ V such that

a(u, v) = 〈f, v〉, ∀ v ∈ V. (4.1)

For simplicity we confine the discussion to the model case V = H1
0 (Ω). Higher order problems

could be treated in an analogous way. The homogeneous boundary conditions are always
supposed to be realized in the trial spaces by suitable polynomial factors in the atoms.

Since we shall not deal with discretizations for a fixed level m of resolution but wish to
incorporate from the beginning the realization of adaptivity admissible trial functions should
in principle, be atoms from all levels. More precisely, we shall make use of the atoms Fλ,
defined in (3.38) for λ ∈ Λm, m ∈ N0. In order to simplify notation we introduce in addition
Λ−1 := Θ0, set Λ :=

⋃∞
m=−1 Λm, and use the same notation for the coarse single-level atoms

Fλ := Pθ,βϕθ, λ = (θ, β) ∈ Λ−1 so that corresponding multilevel expansions take the form∑
λ∈Λ aλFλ.
We shall place this in the context of stable splittings in the theory of multilevel Schwarz

preconditioners developed by many researchers, see e.g. [14, 12] and the literature cited
there. Here we adhere mainly to the findings in [14, 8]. To this end, let Vλ := span (Fλ) (see
(3.38)) so that H1

0 (Ω) := V =
∑

λ Vλ. The following is the main result of this section whose
proof will be postponed.

Theorem 4.1. The {Vλ}λ∈Λ form a stable splitting for V in the sense that there exist
positive finite constants cV , CV , depending only on p(Θ) such that

cV ‖v‖V ≤ inf
v=

P
λ vλ

(∑
λ∈Λ

|ηλ|−2/d‖vλ‖2
2

)1/2

≤ CV ‖v‖V . (4.2)

This allows us to invoke the theory of Schwarz methods along the following lines. For
V0 := S0 = span Φ0 define PV0 : V → V0 and rV0 ∈ S0 by

a(PV0v, Fλ) = a(v, Fλ), (rV0 , Fλ)L2 = 〈f, Fλ〉, λ ∈ Λ0 = Θ0.
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Moreover, introducing the auxiliary bilinear forms:

bλ(v, w) := |ηλ|−2/d(v, w)L2 , v, w ∈ Vλ, λ ∈ Λ \ Λ0, (4.3)

we endow the spaces Vλ with the norms ‖v‖Vλ
:= (bλ(v, v))1/2 and define the linear operator

PVλ
: V → Vλ and fλ ∈ Vλ by

|ηλ|−2/d(PVλ
v, Fλ)L2 = a(v, Fλ),

|ηλ|−2/d(fλ, Fλ)L2 = 〈f, Fλ〉.
(4.4)

Thus, as usual,
PVλ

v = aλ(v)Fλ, fλ = rλ(f)Fλ, (4.5)

with

aλ(v) =
|ηλ|2/da(v, Fλ)

〈Fλ, Fλ〉
, rλ(f) =

|ηλ|2/d〈f, Fλ〉
〈Fλ, Fλ〉

. (4.6)

The following statements are now an immediate consequence of the results in [8, 14].

Theorem 4.2. Problem (4.1) is equivalent to the operator equation

PV u = f̄ , (4.7)

where
PV := PV0 +

∑
λ∈Λ\Λ0

PVλ
, f̄ := rV0 +

∑
λ∈Λ\Λ0

fλ. (4.8)

Moreover, the spectral condition number κ(PV ) of the additive Schwarz operator PV satisfies

κ(PV ) ≤ CaCV

cacV

, (4.9)

where cA, CA, cV , CV are the constants from (1.1) and (4.2).

This latter fact implies that simple iterative schemes, such as Richardson iterations,

un+1 = un + α(f̄ − PV un), n = 0, 1, 2, . . . , (4.10)

converge with a fixed error reduction rate per step. More specifically, suppose that un =∑
λ∈Λ un

λFλ with coefficient array un = (un
λ)λ∈Λ, (4.10) can be rephrased, in view of (4.5),

(4.6) as

un+1 = un + α(r− Aun), Aλ,λ′ = |ηλ|2/d‖Fλ‖−2
2 a(Fλ, Fλ′), λ, λ′ ∈ Λ \ Λ0. (4.11)

A few comments are in order. First of all, the above operator equation (4.7) is formulated
in the full infinite dimensional space. Alternatively, restricting the summation to an a priori
chosen finite subset Λ̄ of Λ e.g. Λ̄ :=

⋃
m≤M Λm we obtain a finite dimensional discrete

problem whose condition obviously fulfills the same bound, uniformly in the size and choice
of Λ̄. In this sense we have an asymptotically optimal preconditioner.

On the other hand, it is conceptually useful to consider the full infinite dimensional
problem (4.7). In this case (4.10) is to be understood as an idealized scheme whose numerical
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implementation requires appropriate approximate applications of the (infinite dimensional)
operator PV quite in the spirit of [2]. This can be done by computing in addition to solving
the coarse scale problem on S0 = V0 only finitely many but properly selected components PVλ

each requiring only the solution of a one-dimensional problem. This hints at the adaptive
potential of such an approach similar to the developments in [2]. Roughly speaking, one
could try to monitor the size of the components of the weighted residual α(f̄ − PV un) so as
to replace it within a suitable tolerance by a vector of possibly small support. Thereby one
would try to keep the supports of the approximations un as small as possible again within a
desired gain of accuracy. This, in turn, raises the question which accuracy can be achieved
at best when using linear combinations of at most N of the atoms, i.e. we are interested in
the error of best N-term approximation

σN,X(v) := inf {‖v −
∑
λ∈Λ̃

aλFλ‖X : aλ ∈ R, #Λ̃ ≤ N}. (4.12)

To see whether any adaptive strategy could offer a gain over simple uniform refinements it
is interesting to understand the corresponding approximation spaces

As
X := {v ∈ V : |v|As

X
:= sup

N∈N
N sσN,X(v) < ∞}. (4.13)

A more thorough discussion of related adaptive solution schemes will be given elsewhere.
The remainder of this note is devoted to the proof of the above stable splittings and to a
short discussion of best N -term approximation in the present context.

5 Smoothness Spaces and Best N -Term Approxima-

tion

5.1 B-spaces and Besov spaces

For variational problems of the type considered in the previous section the energy space
V is typically a Sobolev space. A common strategy for establishing the stability (4.2) of
the splitting {Fλ}λ∈Λ required in Theorem 4.2 in this context is to exploit that the Sobolev
spaces H t(Ω) (or corresponding subspaces with vanishing traces) agree with the Besov spaces
Bt

2(L2(Ω)) with equivalent norms and that the Besov norms are more suitable for analyzing
multilevel splittings. Moreover, Besov spaces on Lp(Ω) for p 6= 2 are relevant for the analysis
of nonlinear approximation such as best N -term approximation. Let us briefly recall that
the Besov space Bα

q (Lp(Ω)), with α > 0 and 0 < p, q ≤ ∞, is usually defined as the set of
all functions f ∈ Lp(Ω) such that

|f |Bα
q (Lp(Ω)) :=

(∫ ∞

0

(t−αωk(f, t)p)
q dt

t

)1/q

< ∞ (5.1)

with the usual modification when q = ∞. As before ωk(f, t)p is the kth modulus of smooth-
ness of f in Lp over Ω. The norm in Bα

q (Lp(Ω)) is defined by

‖f‖Bα
q (Lp(Ω)) := |Ω|−α/d‖f‖Lp + |f |Bα

q (Lp(Ω)).
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It is not hard to see that

|f |Bα
q (Lp(Ω)) ∼

( ∞∑
j=0

(
2αjωk(f, 2−j)p

)q/p)1/q

(5.2)

Moreover, following [10], the moduli of smoothness can be localized which allows us to to
related the Besov norms to the cover Θ from Section 2 by verifying that

|f |Bα
q (Lp(Ω)) ∼

( ∞∑
m=0

( ∑
θ∈Θm

|θ|−αp/dωk(f, θ)p
p

)q/p)1/q

. (5.3)

To see how this, in turn, can be related to norms of the type appearing in (4.2), it will be
convenient to introduce next a scale of “smoothness spaces” (B-spaces) induced by multilevel
covers Θ as described in Section 2. The construction of these spaces is inspired by previous
work referring to a different setting, see [4, 10, 13]. As before we assume that Ω is a bounded
extension domain in Rd as explained in Section 1.

As for Besov spaces we could incorporate a third fine tuning parameter. Since this will
not be needed in the present applications we shall be content with the following technically
simpler version.

The following first version defines the B-space Bs
p(Θ) via atomic decompositions which

will provide our link to the stable splittings in Theorem 4.1. More precisely, the B-space
Bs

p(Θ), s > 0, 0 < p ≤ ∞, is defined as the set of all functions f ∈ Lp(Ω) such that

‖f‖Bs
p(Θ) := inf

f=
P

λ∈Λ aλFλ

(∑
λ∈Λ

|θλ|−sp‖aλFλ‖p
p

)1/p

, (5.4)

where the infimum is taken over all representations f =
∑

λ∈Λ aλFλ in Lp(Ω). Here Λ :=
∪∞m=0Λm, Λ0 = Θ0.

A second approach to the B-spaces Bs
p(Θ), that will help us to interrelate the above

norms, is through quasi-interpolants. For f ∈ Lp(Ω), 1 ≤ p ≤ ∞, we have by Theorem 3.7

f = Q0f +
∞∑

m=0

(Qm+1f −Qmf) =
∞∑

m=0

∑
λ∈Λm

dλ(f)Fλ. (5.5)

Whenever 0 < p < 1, however, we need employ the quasi-interpolats Tm,p from (3.32). It
follows by Lemma 3.6 that for f ∈ Lp(Ω), 0 < p ≤ ∞,

f = T0,pf +
∞∑

m=0

(Tm+1,pf − Tm,pf) =
∞∑

m=0

∑
λ∈Λm

dλ(f)Fλ in Lp. (5.6)

Here we denoted again by {dλ(f)}λ∈Λm the coefficients in the representation of Tm+1,pf −
Tm,pf in Wm. We define

‖f‖Q
Bs

p(Θ) :=
(∑

λ∈Λ

|θλ|−sp‖dλ(f)Fλ‖p
p

)1/p

, (5.7)
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where {dλ(f)}λ∈Λ come from (5.5) if 1 ≤ p ≤ ∞ and from (5.6) if 0 < p < 1. Notice that
the coefficients from (5.6) could be used in both cases.

These B-spaces are conveniently linked to Besov spaces by introducing the third version
through the semi-norm

|f |ωBs
p(Θ) :=

(∑
θ∈Θ

|θ|−psωk(f, θ)p
p

)1/p

< ∞, (5.8)

where ωk(f, θ)p is again the kth modulus of smoothness of f on θ in Lp. We set

‖f‖ω
Bs

p(Θ) := |Ω|−s‖f‖p + |f |ωBs
p(Θ). (5.9)

Evidently, ‖ · ‖ω
Bs

p(Θ) is a norm if p ≥ 1 and quasi-norm otherwise. This norm now depends

on one more parameter k ≥ 1 which we shall not indicate explicitly in the notation before
we clearly exhibit its role. We shall assume at this point, however, that k ≤ r, where r > 0
is the smoothness of our building blocks φ (see the beginning of Section 3).

A glance at (5.3) reveals that the latter norm is just the Besov norm where the smoothness
index is rescaled, i.e. s plays the role of α/d.

Remark 5.1. For 0 < s < k/d, we have Bs
p(Θ) = Bds

p (Lp(Ω)) and for f in this space one
has

‖f‖Bs
p(Θ) ∼ ‖f‖Bds

p (Lp(Ω)).

Without further mentioning we assume in the following that Property (LLIN’) or the
hypotheses of Proposition 3.9 are valid.

The main result of this section concerns the following interrelation of the above norms.

Theorem 5.2. Let s > 0, 0 < p ≤ ∞, and k ≥ 1.
(a) If f ∈ Bs

p(Θ), then

‖f‖Bs
p(Θ) ≤ ‖f‖Q

Bs
p(Θ)

<∼ ‖f‖ω
Bs

p(Θ) (5.10)

(b) The norms ‖ · ‖Bs
p(Θ), ‖ · ‖Q

Bs
p(Θ), and ‖ · ‖ω

Bs
p(Θ), defined in (5.4),(5.7) and (5.9), are

equivalent for 0 < s < k/d. Here the constants depend only on s, p, k, and the parameters
in p(Θ) of Θ.

Proof: As for (a), in view of the special decomposition f =
∑

m(Qm − Qm−1)f , the first
inequality is trivial. To confirm the second inequality, we recall that, by (3.47)∑

λ∈Λm

‖dλ(f)Fλ‖p
p ∼ ‖(Qm+1 −Qm)f‖p

p ≤
∑

θ∈Θm

‖(Qm+1 −Qm)f‖p
Lp(θ)

<∼
∑

θ∈Θm

ωk(f, θ)p
p,

where we have used in the last step (3.27), (C2), (C3), (C5) as well as standard properties
of the modulus of continuity. The right-hand-side inequality in (5.10) is now an immediate
consequence of definition (5.8).
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To confirm (b) it remains to show that

‖f‖ω
Bs

p(Θ)
<∼ ‖f‖Bs

p(Θ). (5.11)

Consider first the easier case p ≤ 1. For any decomposition f =
∑

λ∈Λ aλFλ in Lp and
θ ∈ Θ, we have

ωk(f, θ)p
p

<∼ ωk

( ∑
|ηλ|>|θ|

aλFλ, θ
)p

p
+
∥∥∥ ∑
|ηλ|≤|θ|

aλFλ

∥∥∥p

Lp(θ∗)

≤
∑

|ηλ|>|θ|, ηλ∩θ 6=∅

|aλ|pωk(Fλ, θ)
p
p +

∑
|ηλ|≤|θ|, ηλ∩θ 6=∅

‖aλFλ‖p
p. (5.12)

Estimating ωk(f, θ)p
p requires the following simple technical observations. Recalling that by

the properties (C1)–(C5) our normalization ensures that ‖Fλ‖∞ ∼ 1, one derives that∥∥∥∂αFλ

∥∥∥
∞

<∼ |ηλ|−|α|/d, |α| ≤ k.

Hence for any h ∈ Rd, |h| ≤ diam θ ∼ |θ|1/d (see p1, p2, (C1))

ωk(Fλ, θ)
p
p

<∼ |h|kp
∥∥∥( ∂

∂h

)k

Fλ

∥∥∥p

∞
|θ| ≤ |θ|kp/d|ηλ|−pk/d|θ|

=
( |θ|
|ηλ|

)kp/d

|θ| <∼
( |θ|
|ηλ|

) kp
d

+1

‖Fλ‖p
p, (5.13)

where we used that ‖Fλ‖p ∼ |ηλ|1/p (see (3.48)) due to the normalization ‖Fλ‖∞ ∼ 1.
Therefore, one has by (5.8) and (5.12)-(5.13),

(|f |ωBs
p(Θ))

p =
∑
θ∈Θ

|θ|−spωk(f, θ)p
p

<∼
∑
θ∈Θ

|θ|−sp
∑

|ηλ|>|θ|, ηλ∩θ 6=∅

(
|θ|
|ηλ|

) kp
d

+1

‖aλFλ‖p
p

+
∑
θ∈Θ

|θ|−sp
∑

|ηλ|≤|θ|, ηλ∩θ 6=∅

‖aλFλ‖p
p

=: Σ1 + Σ2. (5.14)

Furthermore, we have by a geometric series argument and (C2), (C5), that

Σ2 ≤
∑
λ∈Λ

‖aλFλ‖p
p

∑
|θ|≥|ηλ|, θ∩ηλ 6=∅

|θ|−sp <∼
∑
λ∈Λ

‖aλFλ‖p
p|ηλ|−sp. (5.15)

As for the first part, we have

Σ1 ≤
∑
λ∈Λ

‖aλFλ‖p
p

∑
|θ|<|ηλ|, θ∩ηλ 6=∅

|θ|−sp

(
|θ|
|ηλ|

) kp
d

+1

︸ ︷︷ ︸
:=wλ

. (5.16)
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Now we invoke properties (C1) and (C5) of the cover Θ which ensures that for ηλ ∈ Θm and
θ ∈ Θm+l, l ≥ 1, one has |θ|/|ηλ| <∼ 2−la0 . Moreover, the number of cells θ ∈ Θm+l whose

support intersect ηλ is bounded by a constant multiple of 2la0 . Hence, one obtains

wλ = |ηλ|−sp
∑

|θ|<|ηλ|, θ∩ηλ 6=∅

|θ|−sp

(
|θ|
|ηλ|

) kp
d

+1−sp

∼ |ηλ|−sp

∞∑
l=1

2la02−la0( kp
d

+1−sp)

= |ηλ|−sp

∞∑
l=1

2−la0( k
d
−s)p ∼ |ηλ|−sp, (5.17)

using that s < k/d. Inserting this into (5.16) and combining (5.16) with (5.15), implies
|f |ωBs

p(Θ)
<∼ ‖f‖Bs

p(Θ) for s < k/d and p ≤ 1.

The estimate |Ω|−s|f |p <∼ ‖f‖Bs
p(Θ) follows similarly as the estimate of Σ2 above but is

easier and its proof will be omitted. This completes the proof of (5.11) in the case p ≤ 1.

We next prove (5.11) in the case p > 1. Consider any decomposition f =
∑

λ∈Λ aλFλ in
Lp. Noticing that (5.13) holds for 0 < p ≤ ∞, we have for θ ∈ Θ

ωk(f, θ)p <∼ ωk

( ∑
|ηλ|>|θ|

aλFλ, θ
)

p
+
∥∥∥ ∑
|ηλ|≤|θ|

aλFλ

∥∥∥
Lp(θ∗)

≤
∑

|ηλ|>|θ|, ηλ∩θ 6=∅

|aλ|ωk(Fλ, θ)p +
∥∥∥ ∑
|ηλ|≤|θ|, ηλ∩θ 6=∅

aλFλ

∥∥∥ (5.18)

<∼
∑

|ηλ|>|θ|, ηλ∩θ 6=∅

(
|θ|
|ηλ|

) k
d
+ 1

p

‖aλFλ‖p +
∥∥∥ ∑
|ηλ|≤|θ|, ηλ∩θ 6=∅

aλFλ

∥∥∥.
Now by (5.8) and (5.18), we infer

(|f |ωBs
p(Θ))

p =
∑
θ∈Θ

|θ|−spωk(f, θ)p
p

<∼
∑
θ∈Θ

|θ|−sp
[ ∑
|ηλ|>|θ|, ηλ∩θ 6=∅

(
|θ|
|ηλ|

) k
d
+ 1

p

‖aλFλ‖p

]p
+
∑
θ∈Θ

|θ|−sp
∥∥∥ ∑
|ηλ|≤|θ|, ηλ∩θ 6=∅

aλFλ

∥∥∥p

p

=: Σ1 + Σ2. (5.19)

For the first sum, we have

Σ1 =
∑
θ∈Θ

[ ∑
|ηλ|>|θ|, ηλ∩θ 6=∅

(
|θ|
|ηλ|

) k
d
−s+ 1

p

|ηλ|−s‖aλFλ‖p

]p
(5.20)

=
∑
θ∈Θ

[ ∑
|ηλ|>|θ|, ηλ∩θ 6=∅

(
|θ|
|ηλ|

)2δ+ 1
p

Aλ

]p
,
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where 2δ := k/d− s > 0 and Aλ := |ηλ|−s‖aλFλ‖p. Applying Hölder’s inequality, we get

Σ1 ≤
∑
θ∈Θ

[ ∑
|ηλ|>|θ|, ηλ∩θ 6=∅

(
|θ|
|ηλ|

)δp′ ]p/p′ ∑
|ηλ|>|θ|, ηλ∩θ 6=∅

(
|θ|
|ηλ|

)δp+1

Ap
λ, (5.21)

where 1/p+1/p′ = 1. Similarly as above for θ ∈ Θm and ηλ ∈ Θm−ν one has |θ|/|ηλ| <∼ 2−νa0 .
Consequently,

∑
|ηλ|>|θ|, ηλ∩θ 6=∅

(
|θ|
|ηλ|

)δp′

<∼
∞∑

ν=0

2−νa0δp′ <∼ 1. (5.22)

We use this in (5.21) and switch the order of summation to obtain

Σ1 <∼
∑
λ∈Λ

Ap
λ

∑
|θ|<|ηλ|, θ∩ηλ 6=∅

(
|θ|
|ηλ|

)δp+1

. (5.23)

Fix λ ∈ Λ and assume that ηλ ∈ Θj. Exactly as in (5.17) we use that the number of cells
θ ∈ Θj+l whose support intersect ηλ is bounded by c2la0 to obtain

∑
|θ|<|ηλ|, θ∩ηλ 6=∅

(
|θ|
|ηλ|

)δp+1

<∼
∞∑
l=0

∑
θ∈Θj+l, θ∩ηλ 6=∅

2−la0(1+δp) <∼
∞∑
l=0

2−la0δp <∼ 1.

Inserting this in (5.23) we get

Σ
1/p
1

<∼ ‖f‖Bs
p(Θ). (5.24)

We now estimate Σ2. Note first that by (C2) it follows that∥∥∥ ∑
ηλ∈Θm+ν , ηλ∩θ 6=∅

aλFλ

∥∥∥p

p
<∼

∑
ηλ∈Θm+ν , ηλ∩θ 6=∅

‖aλFλ‖p
p, if θ ∈ Θm, ν ≥ 0.

Hence

Σ2 <∼
∞∑

m=0

∑
θ∈Θm

|θ|−sp
[ ∞∑

ν=0

( ∑
ηλ∈Θm+ν , ηλ∩θ 6=∅

‖aλFλ‖p
p

)1/p]p
=

∞∑
m=0

∑
θ∈Θm

[ ∞∑
ν=0

( ∑
ηλ∈Θm+ν , ηλ∩θ 6=∅

( |ηλ|
|θ|

)sp

|ηλ|−sp‖aλFλ‖p
p

)1/p]p
.

As above we denote Aλ := |ηλ|−s‖aλFλ‖p and use that |ηλ|/|θ| <∼ 2−νa0 if θ ∈ Θm, ηλ ∈ Θm+ν

to obtain

Σ2 <∼
∞∑

m=0

∑
θ∈Θm

[ ∞∑
ν=0

2−νa0s/2
( ∑

ηλ∈Θm+ν , ηλ∩θ 6=∅

( |ηλ|
|θ|

)sp/2

Ap
λ

)1/p]p
=:

∞∑
m=0

∑
θ∈Θm

σθ. (5.25)
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Now applying Hölder’s inequality we have

σθ ≤
( ∞∑

ν=0

2−νa0sp′/2
)p/p′

∞∑
ν=0

∑
ηλ∈Θm+ν , ηλ∩θ 6=∅

( |ηλ|
|θ|

)sp/2

Ap
λ

<∼
∞∑

ν=0

∑
ηλ∈Θm+ν , ηλ∩θ 6=∅

( |ηλ|
|θ|

)sp/2

Ap
λ.

Substituting this in (5.25) and switching the order of summation, we obtain

Σ2 <∼
∑
λ∈Λ

Ap
λ

∑
|θ|≥|ηλ|, θ∩ηλ 6=∅

( |ηλ|
|θ|

)sp/2

.

Exactly as in (5.22) the second sum above can be bounded from above by a constant, which

implies Σ
1/p
2 ≤ ‖f‖Bs

p(Θ). This coupled with (5.24) yields |f |ωBs
p(Θ)

<∼ ‖f‖Bs
p(Θ).

The estimate |Ω|−s|f |p <∼ ‖f‖Bs
p(Θ) is similar to the estimate of Σ2 above but is easier

and its proof will be omitted. The proof of (5.11) is complete. �

An immediate further consequence of (5.3) is the following fact which, in particular,
completes the proof of Theorem 4.1.

Corollary 5.3. Under the above assumptions the norms ‖ · ‖Bsd
p (Lp(Ω)), ‖ · ‖ω

Bs
p(Θ), ‖ · ‖Bs

p(Θ),

and ‖ · ‖Q
Bs

p(Θ), defined in (5.1), (5.9), (5.4) and (5.7), are equivalent for 0 < s < k/d and

admissible s, p. Since the norms a(·, ·)1/2 and ‖ · ‖H1(Ω) are equivalent, employing the well
known fact that

‖ · ‖H1(Ω) ∼ ‖ · ‖B1
2(L2(Ω)),

Theorem 4.1 follows.

5.2 Best N -Term Approximation

In this section we collect some consequences of the above findings regarding best N-term
approximation based on the system {Fλ : λ ∈ Λ}, cf. (4.12). In particular, this would clarify
what could be achieved at best by an adaptive strategy based on (4.10). For approximation
in X = Lp(Ω), 0 < p < ∞, we can resort to the general results in [10]. In fact, conditions
(i), (ii) in [10, Theorem 3.3] are readily seen to be satisfied by the terms dλFλ. Then, setting

α :=
1

τ
− 1

p
, (5.26)

we have for f =
∑

λ∈Λ dλ(f)Fλ

‖f‖Q
Bα

τ (Θ) =
(∑

λ∈Λ

|ηλ|−ατ‖dλ(f)Fλ‖τ
τ

)1/τ

∼
(∑

λ∈Λ

|ηλ|−ατ |ηλ|1−τ/p‖dλ(f)Fλ‖τ
p

)1/τ

=
(∑

λ∈Λ

‖dλ(f)Fλ‖τ
p

)1/τ

, (5.27)
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where we have used (5.26) and (3.48). Thus, whenever f ∈ Bα
τ (Θ) for any α > 0 and α, τ

related through (5.26), assumption (3.6) in [10, Theorem 3.3] is satisfied. Therefore, [10,
Theorem 3.4] ensures that for the N largest terms ‖dλ1Fλ1‖p ≥ ‖dλ2Fλ2‖p ≥ · · · ≥ ‖dλN

FλN
‖p

and SN :=
∑N

j=1 dλj
Fλj

we have

‖f − SN‖p <∼ N−α‖f‖Bα
τ (Θ).

Denoting by σN,Lp(f) the best N-term nonlinear approximation from {Fλ}λ∈Λ in Lp(Ω), we
obtained the Jackson estimate

σN,Lp(f) <∼ N−α‖f‖Bα
τ (Θ), N ∈ N, f ∈ Bα

τ (Θ). (5.28)

In particular, when α < k/d, the regularity assumption f ∈ Bαd
τ (Lτ (Ω)) ensures the rate

σN,Lp(f) <∼ N−α. Note that (5.26) means that Bαd
τ (Lτ (Ω)) is in some sense the largest

space of smoothness αd that is still embedded in Lp. We do not address here corresponding
inverse estimates which are much more involved.

In the context of Section 4 it is perhaps more interesting to understand best N -term
approximation in X = H1

0 (Ω), the energy space of second order elliptic problems, which is
in some sense an easier problem.

Theorem 5.4. Suppose that for some α > 0 (under the assumptions in Section 4) v ∈
Bα+1/d

τ (Θ) with
1

τ
= α +

1

2
. (5.29)

Then
σN,H1

0 (Ω)(v) <∼ ‖v‖Bα+1/d
τ (Θ)

N−α, (5.30)

with a constant depending only on d,p(Θ), k. Thus, whenever α + 1/d < k/d, the Besov
regularity v ∈ B1+αd

τ (Lτ (Ω)) ensures a best N-term error decay rate of N−α.

Proof: Rearrange the terms {‖|ηλ|−1/ddλ(v)Fλ‖2} in decreasing order according to their size

‖|ηλ1|−1/ddλ1(v)Fλ1‖2 ≥ ‖|ηλ2|−1/ddλ2(v)Fλ2‖2 ≥ · · ·

and set SN :=
∑N

j=1 dλj
(v)Fλj

. Then by Theorem 5.2 and Corollary 5.3 we obtain, on

account of the well-known characterization Aα
`2

= `w
τ , 1

τ
= α + 1

2
,

‖v − SN‖H1 ∼
∥∥∥ ∞∑

j=N+1

dλj
(v)Fλj

∥∥∥
H1

<∼

(
∞∑

j=N+1

|ηλj
|−2/d‖dλj

(v)Fλj
‖2

2

)1/2

<∼ N−α
∥∥∥{|ηλ|−1/d‖dλ(v)Fλ‖2}

∥∥∥
`w
τ

,

where for the decreasing rearrangement (a∗j)j∈N of the sequence a = (aλ)λ∈Λ

‖a‖`w
τ

:= sup
n∈N

n1/τ |a∗n|.
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Since ‖a‖`w
τ

<∼ ‖a‖`τ we conclude that

‖v − SN‖H1 <∼ N−α

(∑
λ∈Λ

|ηλ|−τ/d‖dλ(v)Fλ‖τ
2

)1/τ

∼ N−α

(∑
λ∈Λ

|ηλ|−
τ
d |ηλ|

τ
2
−1‖dλ(v)Fλ‖τ

τ

)1/τ

∼ N−α

(∑
λ∈Λ

|ηλ|−
τ
d
−ατ‖dλ(v)Fλ‖τ

τ

)1/τ

= N−α‖v‖Bα+1/d
τ (Θ)

,

where we have used (3.48) and (5.29). In view of Corollary 5.1, this completes the proof. �

The above assertion means that a proper placement of degrees of freedom preserves a
best approximation rate in H1 under the weakest excess smoothness of order dα that still
ensures embedding in H1(Ω).
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