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Abstract. In this paper we consider a reaction-diffusion boundary value problem in a three-
dimensional thin domain. The very different length scales in the geometry result in an anisotropy
effect. Our study is motivated by a parabolic heat conduction problem in a thin foil leading to such
anisotropic reaction-diffusion problems in each time step of an implicit time integration method [5].
The reaction-diffusion problem contains two important parameters, namely ε > 0 which parame-
terizes the thickness of the domain and µ > 0 denoting the measure for the size of the reaction
term relative to that of the diffusion term. In this paper we analyze the convergence of a multigrid
method with a robust (line) smoother. Both, for the W- and the V-cycle method we derive contrac-
tion number bounds smaller than one uniform with respect to the mesh size and the parameters ε

and µ.

Key words. anisotropic reaction-diffusion problem, robust multigrid method

1. Introduction. In this paper we study a reaction-diffusion boundary value
problem on the domain Ωε := [0, 1]2× [0, ε] with 0 < ε ≤ 1. We use the notation (., .)0
and ‖.‖0 for the standard scalar product and norm in L2(Ωε). The scalar products and
corresponding norms in Hk(Ωε), k = 1, 2 are denoted by (., .)k and ‖.‖k, respectively.
Let the Dirichlet and Neumann boundaries of Ωε be denoted by

ΓD := {(x, y, z) | (x, y) ∈ [0, 1]2, z ∈ {0, ε}},
ΓN := {(x, y, z) | (x, y) ∈ {0, 1}2, z ∈ [0, ε]},

(1.1)

and define Uε := {v ∈ H1(Ωε) | v = 0 on ΓD}. For µ > 0 we introduce the bilinear
form

a(u, v) := (∇u,∇v)0 + µ(u, v)0 for all u, v ∈ Uε.

This bilinear form is continuous and elliptic on Uε. For given f ∈ L2(Ωε) we consider
the following problem: find u ∈ Uε such that

a(u, v) = (f, v)0 for all v ∈ Uε. (1.2)

For the discretization of this problem we use standard linear conforming finite ele-
ments on a nested family of uniform tetrahedral grids. To obtain a bound for the
discretization error we use the Céa-lemma and a suitable interpolation operator. In
a two-dimensional domain one can apply the standard Lagrangian interpolation op-
erator even for such anisotropic problems. For the three-dimensonal case, however,
the latter mentioned operator is not satisfactory. In this paper we use a modified
Scott-Zhang interpolation operator which is introduced in [1]. This operator con-
serves Dirichlet boundary conditions only on the upper and lower faces of the domain
Ωε explaining why we use a combination of Dirichlet and Neumann boundaries as in
(1.1). Based on the modified Scott-Zhang interpolation operator we derive a finite
element discretization error bound in which the dependence on the parameters ε and
µ is explicit. To solve the discrete problem we consider a multigrid method with a
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symmetric z-line Gauss-Seidel smoother. The main topic of our paper is a conver-
gence analysis of this method. For the multigrid W-cycle we analyze the convergence
in the framework of the approximation and smoothing property. We prove robustness
of the multigrid W-cycle method in the sense that (for sufficiently many smoothing
iterations) its contraction number in the Euclidean norm is bounded by a constant
smaller than one independent of all the parameters. On the basis of [9] and [10] we
also prove a robustness result for the V-cycle multigrid method. Finally, we present
numerical experiments that illustrate these robustness properties.

In the literature the convergence of multigrid methods for anisotropic pure diffu-
sion problems, i.e. a problem as in (1.2) with µ = 0, has been studied in [8, 9, 10]
and [11, 12]. In the latter papers the robustness of smoothers is studied, whereas
in the former the convergence of W-cycle and V-cycle algorithms is analyzed. These
convergence analyses of the multigrid methods are based on the standard Lagrangian
interpolation operator and (thus) are restricted to the two-dimensional case. In all
these analyses only the case µ = 0 is considered. In the present paper we treat the
three-dimensional case and consider the additional parameter µ > 0.

2. Finite element discretization. From the Lax-Milgram lemma it follows
that problem (1.2) has a unique solution. Note, that the very different length scales
in the (x, y)- and the z-direction (for ε≪ 1) result in an anisotropy effect.

Remark 1. Instead of (1.2) we could also consider the weak formulation of the
following anisotropic reaction-diffusion problem on the unit cube Ω := [0, 1]3:







−uxx − uyy − λuzz + µu = f in Ω,
u = 0 on ΓD,

∂u
∂n

= 0 on ΓN ,
(2.1)

with a parameter λ = 1/ε2 ≥ 1. The discrete versions of both formulations (1.2) and
(2.1) lead to operators that have very similar anisotropy properties. In this paper
we consider (1.2) because our research is motivated by a parabolic heat conduction
problem in a foil, which is a domain of the form Ωε with ε≪ 1 (cf. [5]). An implicit
time integration method applied to this parabolic problem leads to a problem of the
form (1.2) in each time step.

For the discretization we apply a standard finite element method based on a uni-

form family of nested triangulations. The uniform subdivision of the domain is based
on Kuhn’s triangulation, as illustrated in Fig. 2.1. A stable regular (red) refinement
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Figure 2.1. (a) Initial Kuhn triangulation T0 and (b) first refinement T1.

strategy results in a family of consistent, nested triangulations (see [2]), which is de-
noted by {Tk}k≥0. With Tk we associate the mesh size parameter hk = (1

2 )k. Note
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that for all T ∈ Tk we have

hT := diam(T ) =
√

2hk,

ρT := sup{diam(S) |S is a ball contained in T } ∼ εhk.

Thus, this family of triangulations is regular in the sense that

σ := sup
k∈N

sup
T∈Tk

hT

ρT
<∞

holds. However, σ ∼ ε−1 and thus σ → ∞ for ε ↓ 0. In Fig. 2.2 we show one particular
octahedron on level k and a typical tetrahedron T ∈ Tk. Due to the degeneracy of
the given domain Ωε, inside the elements T arbitrarily small angles appear for ε ↓ 0.
On the other hand the maximum angles that occur are right angles meaning that a
maximum angle condition is satisfied uniformly w.r.t. k and ε.
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Figure 2.2. (a) Octahedron on level k and (b) typical tetrahedron T ∈ Tk.

For the discretization of (1.2) we use conforming finite elements and piecewise
linear functions (P1-elements) with respect to the sequence of nested triangulations
{Tk}k≥0. This results in a hierarchy of nested finite element spaces

Uε,0 ⊂ Uε,1 ⊂ . . . ⊂ Uε.

The discrete problem on level k is: find uk ∈ Uε,k such that

a(uk, vk) = (f, vk)0 for all vk ∈ Uε,k. (2.2)

Due to the fact that a maximum angle condition is satisfied the spaces Uε,k are suitable
for the spatial discretization of the parabolic problem from which (after implicit time
integration) problem (1.2) originates.

3. Interpolation bounds. In our convergence analysis of the multigrid method
we need finite element discretization error bounds. If we apply the standard approach
based on the Céa-lemma then a key ingredient for obtaining such bounds is a suitable
(quasi-)interpolation operator

Ik : H2(Ωε) → Uε,k, k = 0, 1, . . .

This operator Ik should be such that for all u ∈ H2(Ωε) the following error bounds
hold

‖u− Iku‖0 ≤ c1h
2
k|u|2, (3.1)

‖u− Iku‖1 ≤ c2hk|u|2, (3.2)
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with constants c1, c2 independent of ε (and, as usual, also of k, u). We refer to [1]
for an extensive treatment of interpolation operators for anisotropic finite element
spaces. Here we briefly discuss a few issues that are relevant for the analysis in this
paper. For the two-dimensional case uniform bounds as in (3.1)-(3.2) hold for the
standard nodal Lagrangian interpolation operator (cf. corollary 2.1 in [1]). For three-
dimensional problems the nodal Lagrangian interpolation operator still satisfies the
uniform bound (3.1), but a result as in (3.2) is not known. However, for this operator
the result in (3.2) “almost” holds, in the following sense. For any p > 2 an estimate
of the form

‖u− Iku‖W 1
p (Ωε) ≤ cphk|u|W 2

p (Ωε) for all u ∈ W 2
p (Ωε),

holds, with cp independent of ε (cf. corollary 2.1 in [1]). Here Wm
p (Ωε) denotes the

usual Sobolev space of functions whose weak derivatives up to order m belong to
Lp(Ωε). For the Clément and Scott-Zhang interpolation operators the uniform bound
(3.1) holds but (3.2) is also not known. Thus, there is a need for other (better) inter-
polation operators for anisotropic finite element spaces. Such operators are presented
in [1]. In particular a modification of the original Scott-Zhang operator is introduced
which can be shown to satisfy, for the three-dimensional case, both uniform bounds
(3.1) and (3.2). This operator is needed in the finite element discretization error
analysis in the next section and therefore we describe how this operator is defined. A
detailed discussion of this operator and its properties can be found in [1] (section 3.4).

For the description of this modified Scott-Zhang operator we need some additional
notation. Let {Xi}1≤i≤ñk

denote the set of vertices of the triangulation Tk includ-
ing those on the entire boundary (i.e. in particular on the Dirichlet boundary) and
{φi}1≤i≤ñk

the corresponding standard nodal basis which generates the finite element
space Vε,k. Note that we consider ñk vertices while nk denotes the dimension of the
original finite element space Uε,k. For an element T ∈ Tk we introduce the patch of
surrounding elements

ST :=
⋃

{T ′ ∈ Tk | T̄ ′ ∩ T̄ 6= ∅}.

To each node Xi we associate a planar subdomain σi ⊂ Ωε with the following prop-
erties:

(P1) σi is parallel to the x, y-plane.
(P2) Xi ∈ σ̄i.
(P3) There exists a face E of some element T ∈ Tk such that the projection of E

on the x, y-plane is identical with the projection of σi.
(P4) If the projections of any two points Xi and Xj on the x, y-plane coincide then

so do the projections of σi and σj .
In the triangulation Tk all the vertices are contained in planes z = l ε(1/2)k, l =
0, . . . , 2k, which are subdivided into faces (triangles). Such a subdivision and the
corresponding degrees of freedom are shown in Fig. 3.1 for the case k = 1, l = 1.

One possibility to select the subdomains σi is to assume a lexicographical num-
bering of the faces (see Fig. 3.1 (b)) which should be the same in all the planes and to
associate to each node Xi the face with maximum number. In this way the properties
(P1)–(P3) are obviously satisfied (cf. shaded face in Fig. 2.2 (b) for (P3)). Due to
the refinement strategy used, on each fixed level k the corresponding subdivisions into
faces are identical for all the planes and thus (P4) is fulfilled, too. Given these subdo-
mains σi the modified Scott-Zhang type interpolation operator Lk : H1(Ωε) → Vε,k

4



τ1

(a)

z

y

x (b)

σiXi

x

y

1

2

3

4

5

6

7

8
z = ε

2

Figure 3.1. (a) T1 with plane z = ε

2
and (b) corresponding subdivision into faces.

from [1] is based on the local L2-orthogonal projections on σi:

‖u− Πσi
u‖L2(σi) = min

v∈P1

‖u− v‖L2(σi), i = 1, . . . , ñk, for u ∈ H1(Ωε).

For u ∈ H1(Ωε) we define

Lku :=

ñk∑

i=1

aiφi, with ai := (Πσi
u)(Xi). (3.3)

In theorem 3.3 from [1] the following local stability and approximation property of
the operator Lk is given.

Theorem 1. The modified Scott-Zhang operator Lk defined in (3.3) satisfies the

following estimates for all T ∈ Tk and all u ∈ W l
p(ST ):

|Lku|W m
q (T ) ≤ c(meas3 T )1/q−1/p|u|W m

p (ST ), (3.4)

|u− Lku|W m
q (T ) ≤ c(meas3 T )1/q−1/p

∑

|α|=l−m

hα
k |Dαu|W m

p (ST ), (3.5)

with 0 ≤ m ≤ l, l = 1, 2. For (3.5) the numbers p, q ∈ [1,∞] must be such that

W l
p(T ) →֒ Wm

q (T ). The constant c is independent of k and ε.

Here |.|W m
p (T ) denotes the seminorm in the Sobolev space Wm

p (T ) and for α :=

(α1, α2, α3), αi ∈ N, we use the notation hα
k := hα1

k hα2

k (εhk)α3 = h
|α|
k εα3 (product

of the length scales of the edges of T in the three coordinate directions). Due to
the different length scales being exploited in (3.5) estimates of this kind are called
anisotropic estimates. Theorem 3.3 in [1] is more general than the result formulated
in theorem 1. The former gives a similar result for more general (for example, higher
order,) polynomial finite elements in d-dimensional spaces, with d = 2, 3.

Corollary 1. The modified Scott-Zhang operator Lk defined in (3.3) satisfies

the following estimates

‖u− Lku‖0 ≤ c1h
2
k|u|2, (3.6)

|u− Lku|1 ≤ c2hk|u|2, (3.7)

for all u ∈ H2(Ωε) ∩ Uε and with constants c1, c2 independent of k and ε. Moreover,

Lk : H2(Ωε) ∩ Uε → Uε,k holds.
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Proof. If in (3.5) we take p = q = 2, l = 2 and m ∈ {0, 1}, and sum over all
T ∈ Tk we obtain (using ε ≤ 1) the results in (3.6) and (3.7). Take u ∈ H2(Ωε) ∩ Uε,
i.e. u|ΓD

= 0. From the construction of the modified Scott-Zhang operator Lk :
H1(Ωε) → Vε,k in (3.3) it follows that ai = (Πσi

u)(Xi) = 0 if Xi is a vertex on the
Dirichlet boundary ΓD. Thus (Lku)|ΓD

= 0 holds. Using Uε,k = {v ∈ Vε,k | v|ΓD
= 0}

we conclude that Lku ∈ Uε,k.

4. Finite element discretization error bound. In this section, using a stan-
dard approach, we derive a finite element discretization error bound that is uniform
w.r.t. the parameters µ and ε.

Remark 2. Due to the special geometry of the considered domain Ωε one can use
the so-called Schwarz reflection principle (see [3] page 143) to show that the solution
u of (1.2) lies in H2(Ωε) taking into account the mixed boundary conditions. The idea
in applying this principle is to get the original problem in a wider domain Ω̃ε ⊃⊃ Ωε

with an extended right-hand side f̃ that still belongs to L2(Ω̃ε). This can be reached
by even extension over the Neumann boundaries and odd extension over the Dirichlet
boundaries, respectively. Using the inner regularity of the extended problem solution
finally leads to the desired result u ∈ H2(Ωε). Similar results but only concerning
pure Neumann or Dirichlet boundary conditions can be found e.g. in [4].

We proceed with an elementary lemma.
Lemma 1. For all u ∈ H2(Ωε) ∩ Uε the identity

|u|2 = ‖∆u‖0 (4.1)

holds.

Proof. It is sufficient to prove (4.1) in the dense subset C∞(Ωε)∩Uε. For u from
this space we have

|u|22 =

∫

Ωε

u2
xx + u2

yy + u2
zz + 2u2

xy + 2u2
xz + 2u2

yz dx dy dz. (4.2)

The unit outward pointing normal on Γε := ∂Ωε is denoted by n = (nx, ny, nz)
T . On

the sides of Ωε with normal n = (0, 0,±1)T , i.e. the Dirichlet boundary, we have the
identities ux = uxx = 0 and uy = uyy = 0. On the sides with normal n = (0,±1, 0)T

we have uy = 0 and thus uxy = 0. Similar relations hold on the remaining Neumann
boundaries. Integration by parts yields

∫

Ωε

u2
xy dx dy dz =

∫

Γε

uxuxyny
︸ ︷︷ ︸

=0

dΓε −
∫

Ωε

uxuxyy dx dy dz

= −
∫

Γε

uxuyynx
︸ ︷︷ ︸

=0

dΓε +

∫

Ωε

uxxuyy dx dy dz.

Similar expressions can be derived for the mixed derivatives uxz and uyz in (4.2).
This yields

|u|22 =

∫

Ωε

u2
xx + u2

yy + u2
zz + 2uxxuyy + 2uxxuzz + 2uyyuzz dx dy dz

=

∫

Ωε

(uxx + uyy + uzz)
2 dx dy dz =

∫

Ωε

(∆u)2 dx dy dz = ‖∆u‖2
0

6



and thus the lemma is proved.

Lemma 2. Let u be the solution of the continuous problem (1.2). Then the

inequalities

‖u‖0 ≤ 1

µ
‖f‖0, (4.3)

|u|2 ≤ 2‖f‖0, (4.4)

hold.

Proof. Setting v = u in (1.2) gives

µ‖u‖2
0 ≤ a(u, u) = (f, u)0 ≤ ‖f‖0‖u‖0,

and thus (4.3) holds. Since the solution u of (1.2) lies in H2(Ωε) (see remark 2) we
can write −∆u = f − µu. Using lemma 1 we get

|u|2 = ‖∆u‖0 = ‖f − µu‖0 ≤ ‖f‖0 + µ‖u‖0 ≤ 2‖f‖0,

which proves the result in (4.4).

Theorem 2. Let u be the solution of the continuous problem (1.2) and uk the

solution of the discrete problem (2.2). Then

‖u− uk‖0 ≤ c min

{
1

µ
, h2

k

}

‖f‖0 (4.5)

holds, with a constant c independent of f, ε, µ and k.

Proof. We use the notation ek = u − uk. Since a(ek, vk) = 0 for all vk ∈ Uε,k we
get

µ‖ek‖2
0 ≤ a(ek, ek) = a(u, ek) = (f, ek)0 ≤ ‖f‖0‖ek‖0

and thus

‖ek‖0 ≤ 1

µ
‖f‖0. (4.6)

Now we apply Nitsche’s duality argument and use the interpolation results from corol-
lary 1. Let w ∈ Uε be such that a(w, v) = (ek, v)0 for all v ∈ Uε. From lemma 2 we
get

|w|2 ≤ 2‖ek‖0. (4.7)

We also have (due to the Céa-lemma)

|ek|21 ≤ a(ek, ek) ≤ |u− Lku|21 + µ‖u− Lku‖2
0

≤ (c22h
2
k + µc21h

4
k)|u|22

≤ c(1 + µh2
k)h2

k‖f‖2
0. (4.8)
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Thus we get (with a constant c independent of k, ε and µ)

‖ek‖2
0 = a(w, ek) = a(w − Lkw, ek)

≤ |w − Lkw|1|ek|1 + µ‖w − Lkw‖0‖ek‖0

≤ (c2hk|ek|1 + µc1h
2
k‖ek‖0)|w|2

(4.6),(4.7)

≤ c(hk|ek|1 + h2
k‖f‖0)‖ek‖0

(4.8)

≤ c
(

[1 + µh2
k]

1

2h2
k‖f‖0 + h2

k‖f‖0

)

‖ek‖0

= c
(

[1 + µh2
k]

1

2 + 1
)

h2
k‖f‖0‖ek‖0.

Hence, for h2
k ≤ 1

µ we obtain

‖ek‖0 ≤ c h2
k‖f‖0.

Combining this estimate with the one in (4.6) proves the theorem.

5. Multigrid convergence analysis. In this section we investigate the con-
vergence behaviour of a multigrid method applied to the discrete problem (2.2). We
use the approach introduced by Hackbusch (see [6]) based on the approximation and
smoothing property. It is well-known that the anisotropy in the discrete problem
(2.2) causes standard pointwise relaxation methods as the damped Jacobi method or
the (symmetric) Gauss-Seidel method to smooth the error only in the direction cor-
responding to the strong couplings. This causes a (strong) deterioration in the rate
of convergence of a multigrid method with such smoothers for ε ↓ 0. One possibility
to deal with this problem is to keep pointwise relaxation but to adapt the strategy
of grid coarsening e.g. by doubling the mesh size only in the directions in which the
error is smooth. An alternative approach, which is used in this paper, is to modify
the smoothing procedure from pointwise relaxation to linewise relaxation meaning
that the unknowns belonging to a line are updated simultaneously. Hackbusch (cf.
[6]) introduced the notion of a “robust smoother” for anisotropic problems. Such a
smoother should be a fast iterative (or even direct) solver for the discrete problem in
the limit case ε ↓ 0. In the problem that we consider in this paper we do not only
have the anisotropy parameter ε but also the parameter µ in front of the reaction
term.

In this section, using a fairly standard approach, we derive an approximation
property, theorem 3, and a smoothing property for the symmetric z-line Gauss-Seidel
method, theorem 4, in which the dependence of the bounds on ε, µ and k is explicit.
Combination of these results immediately yields a uniform bound (< 1 for sufficiently
many smoothing iterations) for the contraction number of the two-grid method and
of the W-cycle iteration.

We introduce the isomorphism

Pk : Xk := R
nk → Uε,k, Pkx =

nk∑

i=1

xiφi.

In order to establish the norm equivalence

c−1‖x‖ε ≤ ‖Pkx‖0 ≤ c‖x‖ε for all x ∈ Xk, (5.1)
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with a constant c independent of ε and k we use the scaled Euclidean scalar product

〈x, y〉ε := εh3
k

nk∑

i=1

xiyi, ‖ · ‖2
ε := 〈·, ·〉ε.

Standard arguments yield that for this scaled norm indeed the uniform norm equiva-
lence (5.1) holds. Let the corresponding matrix norm (which is independent of ε) be
denoted by ‖ · ‖. Note that the adjoint P ∗

k : Uε,k → Xk satisfies (Pkx, v)0 = 〈x, P ∗
k v〉ε

for all x ∈ Xk, v ∈ Uε,k. The stiffness matrix Ak on level k is defined by

〈Akx, y〉ε = a(Pkx, Pky) for all x, y ∈ Xk. (5.2)

In an interior grid point the discrete problem has the stencil given in Fig. 5.1. For

4 + 2/ε2

−1

−1 −1

−1

−1/ε2

−1/ε2

1/30

1/30

2/5

1/20 1/30

1/20

1/30

1/30

1/20

1/20

1/30

1/20

1/20

1/20

1/20

+µ×1
h2

k

×

Figure 5.1. 3D difference stencil.

the prolongation and restriction in the multigrid method the canonical choice

pk : Xk−1 → Xk, pk = P−1
k Pk−1 (5.3)

rk : Xk → Xk−1, rk = P ∗
k−1(P

∗
k )−1 =

(
hk

hk−1

)3

pT
k , (5.4)

is used. We use stationary linear iterative methods as smoothers and thus these are
of the form

xnew = xold −W−1
k (Akx

old − b).

The corresponding iteration matrix is denoted by Sk = I −W−1
k Ak. We consider

the damped z-line Jacobi method and the symmetric z-line Gauss-Seidel method as
smoothers. For the matrix representation of the discrete operator (see the stencil
notation in Fig. 5.1) we assume a z-line ordering of the grid points, i.e. within each
line of unknowns in z-direction (the z-lines) the vertices are numbered from bottom
to top while the z-lines themselves are ordered lexicographically in the x, y-plane. Let
Nk := 2k − 1. The stiffness matrix can be decomposed as

Ak = Dk − Lk − LT
k ,
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with the block-diagonal matrix Dk = blockdiag(D̂k) ∈ R
nk×nk and diagonal blocks

D̂k =
1

ε2h2
k









2 −1
−1 2 −1

. . .
−1 2 −1

−1 2









+
4

h2
k

Ik +
µ

20
tridiag(1, 8, 1) ∈ R

Nk×Nk .

(5.5)
Note that the upper and lower faces of Ωε are Dirichlet boundaries. The matrix Lk

is strictly lower block-triangular. The choice

Wk := ω−1Dk, ω ∈ (0, 1],

defines a (damped) line Jacobi smoother, and

Wk := (Dk − Lk)D−1
k (Dk − LT

k ) (5.6)

yields the symmetric line Gauss-Seidel method. In the convergence analysis and in
the numerical experiments below we only consider the symmetric line Gauss-Seidel
method. Similar results, however, can be obtained for the damped line Jacobi method
if we use a damping factor ω = ω(ε, µ, k) such that ω−1Dk ≥ Ak holds.

Based on these components a standard multigrid algorithm with ν1 pre- and ν2 post-
smoothing iterations can be formulated (see [7]) with an iteration matrix that satisfies
the recursion

M0(ν1, ν2) = 0,

Mk(ν1, ν2) = Sν2

k (I − pk(I −Mγ
k−1)A

−1
k−1rkAk)Sν1

k , k = 1, 2, . . .
(5.7)

The choices γ = 1 and γ = 2 correspond to the V- and W-cycle, respectively. Results
of numerical experiments with this method are presented in section 6.

We now turn to the convergence analysis of this multigrid method. All constants
(denoted by c or ci) that appear in the analysis are independent of ε, µ and k.

The following lemma gives a result on the scaling of the stiffness matrix.
Lemma 3. Let Ak be the stiffness matrix from (5.2). Then the inequalities

c1

(
1

ε2h2
k

+ µ

)

≤ ‖Ak‖ ≤ c2

(
1

ε2h2
k

+ µ

)

, (5.8)

hold with constants c1 > 0, c2 independent of ε, µ and k.
Proof. Let ei denote the ith basis vector in R

nk and Si := supp(φi) the support
of the nodal basis function φi. Then we have

(Ak)ii =
〈Akei, ei〉ε
〈ei, ei〉ε

= ε−1h−3
k a(φi, φi)

= ε−1h−3
k (|φi|21 + µ‖φi‖2

0)

= ε−1h−3
k

(∫

Ωε

(∇φi)
2dΩε + µ

∫

Ωε

φ2
i dΩε

)

∼ ε−1h−3
k

(
∫

Si

(
1

εhk

)2

dΩε + µ

∫

Si

1 dΩε

)

∼ ε−1h−3
k

(

εh3
k

1

ε2h2
k

+ µεh3
k

)

=
1

ε2h2
k

+ µ.

10



Thus, we have ‖Ak‖ ≥ (Ak)ii ≥ c1 (1/(ε2h2
k) + µ) with c1 > 0, yielding the left

inequality in (5.8). Using the inverse inequality

|Pkx|21 ≤ c ε−2h−2
k ‖Pkx‖2

0 (5.9)

we get

〈Akx, x〉ε = a(Pkx, Pkx) = |Pkx|21 + µ‖Pkx‖2
0

≤ c

(
1

ε2h2
k

+ µ

)

‖Pkx‖2
0 ≤ c2

(
1

ε2h2
k

+ µ

)

‖x‖2
ε.

Finally, we note that all the constants used in this proof are independent of ε, µ and
k.

Theorem 3 (Approximation property). Let Ak be the stiffness matrix from (5.2)
and pk, rk the prolongation and restriction from (5.3) and (5.4), respectively. Then

the approximation property

‖A−1
k − pkA

−1
k−1rk‖ ≤ c

1 + ε2µh2
k

ε2
min

{
1

µh2
k

, 1

}

‖Ak‖−1 (5.10)

holds with a constant c independent of ε, µ and k.
Proof. We consider an arbitrary yk ∈ Xk. Let w ∈ Uε, wk ∈ Uε,k and wk−1 ∈

Uε,k−1 be such that

a(w, v) = ((P ∗
k )−1yk, v)0 for all v ∈ Uε,

a(wk, v) = ((P ∗
k )−1yk, v)0 for all v ∈ Uε,k, (5.11)

a(wk−1, v) = ((P ∗
k )−1yk, v)0 for all v ∈ Uε,k−1. (5.12)

Setting v = Pkyk ∈ Uε,k in (5.11) we get the identity

〈AkP
−1
k wk, yk〉ε

(5.2)
= a(wk, Pkyk)

= ((P ∗
k )−1yk, Pkyk)0 = 〈yk, yk〉ε.

Thus we obtain wk = PkA
−1
k yk. Using the same line of argumentation it follows that

wk−1 = Pk−1A
−1
k−1rkyk. We use theorem 2 with f := (P ∗

k )−1yk ∈ L2(Ωε) and obtain

‖w − wl‖0 ≤ cmin

{
1

µ
, h2

l

}

‖(P ∗
k )−1yk‖0 for l ∈ {k − 1, k}.

Using a triangle inequality and hk−1 = 2hk we get

‖wk − wk−1‖0 ≤ cmin

{
1

µ
, h2

k

}

‖(P ∗
k )−1yk‖0.

Due to the norm equivalence (5.1) we have

‖(A−1
k − pkA

−1
k−1rk)yk‖ε ≤ c ‖PkA

−1
k yk − PkpkA

−1
k−1rkyk‖0

= c ‖wk − wk−1‖0

≤ cmin

{
1

µ
, h2

k

}

‖(P ∗
k )−1yk‖0

≤ cmin

{
1

µ
, h2

k

}

‖yk‖ε,

11



and thus

‖A−1
k − pkA

−1
k−1rk‖ ≤ c min

{
1

µ
, h2

k

}

(5.13)

holds. Using the scaling property from lemma 3 one easily derives the bound in (5.10).

We now turn to the smoothing property of the symmetric line Gauss-Seidel method
for which the matrix Wk in (5.6) is symmetric positive definite. We start with an
elementary lemma.

Lemma 4. Let Dk = blockdiag(D̂k) be the block-diagonal part of Ak. The smallest

eigenvalue of Dk is bounded from below by

λmin(Dk) ≥ c1

(
1

ε2
+

1

h2
k

+ µ

)

. (5.14)

For the lower block-triangular part Lk of Ak we have

‖Lk‖ ≤ c2

(
1

h2
k

+ µ

)

. (5.15)

The constants c1 > 0 and c2 are independent of ε, µ and k.
Proof. Consider the diagonal blocks D̂k of Dk in (5.5). For the third term in this

representation we have

µ

20
λmin

(
tridiag(1, 8, 1)

)
≥ 3

10
µ.

Furthermore, for the smallest eigenvalue of the first summand in (5.5), denoted by
λmin(S1), we have

λmin(S1) = ε−2h−2
k 4 sin2

(π

2
(Nk + 1)−1

)

= 4ε−2h−2
k sin2(π2−k−1) ≥ c ε−2,

with c > 0 independent of ε and k. Since all three terms in (5.5) are symmetric
positive definite we get the lower bound in (5.14). We now prove (5.15). From
Fig. 5.1 we see that the matrix Lk does not contain any entries depending on ε and
that ‖Lk‖p ≤ c (h−2

k +µ), for p = 1,∞, holds with c indpendent of k and µ. Thus we
obtain

‖Lk‖2 ≤ ‖Lk‖1‖Lk‖∞ ≤ c (h−2
k + µ)2,

which completes the proof.

For the symmetric line Gauss-Seidel method we have

Wk = Ak + LkD
−1
k LT

k ≥ Ak. (5.16)

The following result can be found in [7].
Lemma 5. For all symmetric matrices B with 0 ≤ B ≤ I, the inequality

‖B(I −B)ν‖2 ≤ η0(ν) (ν ≥ 0)

12



holds, where the function η0(ν) is defined by

η0(ν) := νν/(ν + 1)ν+1 ≤ 1

eν + 1
.

Theorem 4 (Smoothing property). For the symmetric z-line Gauss-Seidel method

the following property holds

‖AkS
ν
k‖ ≤ c

ε4

ν

(1 + µh2
k)2

(
h2

k + ε2(1 + µh2
k)
)
(1 + ε2µh2

k)
‖Ak‖, ν = 1, 2, . . . (5.17)

with a constant c independent of ε, k, µ and ν.
Proof. The symmetric block Gauss-Seidel method corresponds to the splitting

Ak = Wk − Rk with Rk := LkD
−1
k LT

k . Note that Rk = RT
k , Wk = WT

k > 0 and

Wk > Rk ≥ 0 holds, and thus σ(W−1
k Rk) ⊂ [0, 1). Moreover, R

1

2

k is well-defined and

0 ≤ Ck := R
1

2

kW
−1
k R

1

2

k < I.

Using the identity (for ν ≥ 1)

AkS
ν
k = (Wk −Rk)(W−1

k Rk)ν = R
1

2

kC
ν−1
k (I − Ck)R

1

2

k

and lemma 5 with B = I − Ck we obtain

‖AkS
ν
k‖ ≤ ‖Rk‖η0(ν − 1) ≤ c

ν
‖Rk‖

with c being independent of all the parameters. Using the result in lemma 4 we get

‖Rk‖ ≤ ‖Lk‖‖D−1
k ‖‖LT

k ‖ = ‖Lk‖2λmin(Dk)−1

≤ c

(
1

h2
k

+ µ

)2 (
1

ε2
+

1

h2
k

+ µ

)−1

= c
ε2(1 + µh2

k)2

h2
k(ε2 + h2

k + ε2µh2
k)
. (5.18)

In combination with the scaling property of ‖Ak‖ in lemma 3 we obtain the bound in
(5.17).

As a direct consequence of the approximation and smoothing property we obtain
the following main result.

Theorem 5. For the two-grid iteration matrix with ν1 = ν pre- and ν2 = 0
post-smoothing iterations with the symmetric z-line Gauss-Seidel method we have

‖(I − pkA
−1
k−1rkAk)Sν

k‖ ≤ CT

ν

ε2(1 + µh2
k)

h2
k + ε2(1 + µh2

k)
≤ CT

ν
, ν = 1, 2, . . . (5.19)

with CT independent of ε, µ, k, and ν.
Proof. From theorem 3 and theorem 4 we obtain

‖(I − pkA
−1
k−1rkAk)Sν

k‖
≤ ‖A−1

k − pkA
−1
k−1rk‖‖AkS

ν
k‖

≤ c
1 + ε2µh2

k

ε2
min

{
1

µh2
k

, 1

}
ε4

ν

(1 + µh2
k)2

(
h2

k + ε2(1 + µh2
k)
)
(1 + ε2µh2

k)

=
c

ν

ε2(1 + µh2
k)

h2
k + ε2(1 + µh2

k)
(1 + µh2

k)min

{
1

µh2
k

, 1

}

.
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Finally, note that (1 + x)min{ 1
x , 1} ≤ 2 for all x > 0.

For the multigrid W-cycle we can apply theorem 10.6.25 from [7] and thus obtain
the following result.

Theorem 6. For every fixed ψ ∈ (0, 1) there exists ν0 > 0 independent of ε, µ
and k such that for the iteration matrix Mk of the multigrid W-cycle (γ = 2 in (5.7))
with symmetric z-line Gauss-Seidel smoothing we have

‖Mk(ν, 0)‖ ≤ ψ for all ν ≥ ν0.

From the first bound in (5.19) we see that for fixed k and µ the norm of the two-grid
iteration matrix tends to zero for ε ↓ 0. The same holds for the iteration matrix of
the multigrid W-cycle. Thus we expect very fast convergence of the multigrid method
for ε≪ 1. This is confirmed by numerical experiments in the next section.

We now derive a convergence result for the multigrid V-cycle, based on the anal-

ysis given in [10]. We use the energy norm ‖B‖A := ‖A
1

2

kBA
− 1

2

k ‖ for B ∈ R
nk×nk .

Note that this norm depends on the parameters k, µ and ε.
Theorem 7. Let Mk = Mk(ν, ν) be the iteration matrix of the multigrid V-

cycle (γ = 1 in (5.7)) with symmetric z-line Gauss-Seidel smoothing. There exists a

constant c independent of ε, µ and k such that

‖Mk‖A ≤ c

c+ ν
for all ν ≥ 1.

Proof. From theorem 2.1 in [10], with α = 1, γ = 1, it follows that

‖Mk‖A ≤ δ

1 + δ
with

δ := ρ(A−1
k − pkA

−1
k−1rk) ρ

(
Ak[(I − S2ν

k )−1 − I]
)
.

(5.20)

Theorem 2.3 in [10] yields

ρ
(
Ak[(I − S2ν

k )−1 − I]
)
≤ ρ(Rk)

2ν
.

Using the bounds in (5.13) and (5.18) we obtain

δ ≤ 1

2ν
‖A−1

k − pkA
−1
k−1rk‖ ‖Rk‖

≤ c

2ν
min

{
1

µ
, h2

k

}
ε2(1 + µh2

k)2

h2
k(ε2 + h2

k + ε2µh2
k)

≤ c

2ν
min

{
1

µh2
k

, 1

}
(
1 + µh2

k

)
≤ c

2ν
max
x>0

[

min

{
1

x
, 1

}

(1 + x)

]

=
c

ν
.

Substitution of this result in (5.20) yields

‖Mk‖A ≤ c/ν

1 + c/ν
=

c

c+ ν
,

and thus the theorem is proved.
A very similar result holds for the V-cycle method with ν1 pre- and ν2 post-smoothing
iterations (with the symmetric z-line Gauss-Seidel method), if ν1 + ν2 > 0 but not
necessarily ν1 = ν2 (cf. [10]).
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6. Numerical experiments. In this section we present results of some numer-
ical experiments using the multigrid method with a symmetric z-line Gauss-Seidel
smoother. The results confirm the robustness of the W- and the V-cycle multigrid
algorithms w.r.t. variation in the discretization parameter hk and the problem pa-
rameters ε and µ.

We consider a linear system with stiffness matrix Ak as in (5.2) and a random
right-hand side vector. The zero vector is used as starting vector. For the stop-
ping criterion we take a reduction of the relative residual by a factor 106. The block
problems arising within the smoother are solved with a tridiagonal LU decomposition.

First we study the smoother without coarse grid correction. In the tables 6.1 and
6.2 we observe expected properties of the symmetric z-line Gauss-Seidel method. In
these and all other tables the numbers between the brackets give the average residual
reduction per iteration. For fixed parameters ε and µ (not too large) the rate of con-
vergence decreases with increasing refinement level. For fixed values of µ and k the
rate of convergence increases if ε decreases.

hk

ε 1/8 1/16 1/32 1/64
1 82(0.85) 279(0.95) 988(0.99) -
1e-1 3(0.11e-1) 6(0.1) 14(0.43) 42(0.77)
1e-3 1(0.5e-10) 1(0.27e-9) 1(0.15e-8) 1(0.85e-8)

Table 6.1
Number of Gauss-Seidel iterations and average reduction factor for µ = 1.

hk

µ 1/8 1/16 1/32 1/64
1e-3 3(0.11e-1) 6(0.1) 14(0.43) 42(0.77)
1e+3 3(0.52e-2) 3(0.11e-1) 8(0.2) 23(0.61)
1e+6 8(0.18) 8(0.16) 7(0.14) 7(0.12)

Table 6.2
Number of Gauss-Seidel iterations and average reduction factor for ε = 0.1.

We now turn to the W-cycle multigrid algorithm with ν1 = 2 pre- and ν2 = 0 post-
smoothing iterations. Table 6.3 shows very fast convergence for ε ≪ 1 which is
consistent with the first bound in (5.19). Furthermore, we clearly observe a uniform
upper bound < 1 for the reduction number w.r.t. variation in all three parameters.

hk

ε 1/8 1/16 1/32 1/64
1 7(0.13) 7(0.11) 6(0.11) 6(0.98e-1)
1e-1 2(0.54e-4) 3(0.21e-2) 4(0.17e-1) 4(0.27e-1)
1e-3 1(0.36e-15) 1(0.52e-15) 1(0.86e-15) 1(0.11e-13)

Table 6.3
Number of W-cycle iterations and average reduction factor for µ = 1.
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hk

µ 1/8 1/16 1/32 1/64
1e-3 2(0.55e-4) 3(0.21e-2) 4(0.17e-1) 4(0.27e-1)
1e+3 2(0.22e-4) 2(0.72e-4) 3(0.45e-2) 4(0.21e-1)
1e+6 4(0.21e-1) 4(0.19e-1) 3(0.12e-1) 3(0.86e-2)

Table 6.4
Number of W-cycle iterations and average reduction factor for ε = 0.1.

Finally, in the tables 6.5 and 6.6 we show results for the V-cycle multigrid algo-
rithm with ν1 = 2 pre- and ν2 = 0 post-smoothing iterations. These results show no
significant differences compared to those for the W-cycle algorithm.

hk

ε 1/8 1/16 1/32 1/64
1 8(0.15) 8(0.15) 8(0.15) 8(0.15)
1e-1 2(0.54e-4) 3(0.21e-2) 4(0.17e-1) 4(0.3e-1)
1e-3 1(0.36e-15) 1(0.52e-15) 1(0.86e-15) 1(0.11e-13)

Table 6.5
Number of V-cycle iterations and average reduction factor for µ = 1.

hk

µ 1/8 1/16 1/32 1/64
1e-3 2(0.55e-4) 3(0.21e-2) 4(0.17e-1) 4(0.3e-1)
1e+3 2(0.22e-4) 2(0.72e-4) 3(0.45e-2) 4(0.2e-1)
1e+6 4(0.22e-1) 4(0.19e-1) 3(0.12e-1) 3(0.86e-2)

Table 6.6
Number of V-cycle iterations and average reduction factor for ε = 0.1.
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