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Abstract

In this paper we show how cells of different types from an adaptive grid
in two or three spatial dimensions can be addressed by using so-called cell
identifiers instead of memory consuming and error-prone pointer struc-
tures. Here we focus on horizontal and vertical grid navigation – the
backbone of multilevel PDE-solvers based on discretizations that only
need element connectivity across faces. That means, we present very fast
and effective methods to compute cell identifiers of parent, children and
neighbor cells based on a given identifier as well as appropriate refinement
strategies for cells of type triangles, rectangles, tetrahedrons, cubes and
prisms.

1 Introduction

A typical multidimensional grid, suitable for numerical computations, is com-
posed of cells of one or multiple types. Usually, these cells just satisfy prob-
lem specific constraints such as limited side ratios, but using them in adaptive
schemes requires further properties.

First of all, operations based on cells such as integration and function de-
composition or refining and coarsening should be feasible – for both, the cell
management and the numerical scheme. This works best for simple cell types
like triangles or rectangles in two spatial dimensions or tetrahedrons, cubes and
prisms in three dimensions. These cell types have in common that refining by
bisection of edges yields geometrically similar refined cells of same cell type1,
which allows simple multilevel structures.

1For all cell types except the inner cells of a tetrahedron
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Figure 1: An adaptive grid composed of triangles and rectangles.

Moreover, the grid should initially be constructed without specific know-
ledge of the numerical solution to be computed. The adaption strategy itself is
responsible for refining or coarsening cells at run-time in order to obtain a given
accuracy with minimal effort.

From both we conclude the following setting to be valid throughout this
paper:

• The initial grid is composed of few cells, called base cells (number #BC).

• These base cells are triangles, rectangles, tetrahedrons, cubes or prisms.
It is not necessary, that all grid cells are of the same type.

• Each cell is either a base cell or a cell resulting from a refinement process
of a base cell, hence a part of a base cell.

Figure 2: Example showing base cells (left) and various refinement steps.

Typical numerical schemes for differential equations such as finite volume
schemes calculate cell data, explicitly or implicitly, by using information taken
from neighboring cells – this involves horizontal grid navigation, which means
the possibility to access the neighboring cells of a given cell on the same level.
Adaptive strategies, however, always involve parent–child relations of cells,
which is a vertical grid navigation.
One way to implement neighboring as well as parent–child relationships is to
connect cells with so-called pointers, which is, in most cases, the memory ad-
dress of a cell. A brief calculation of the number of pointers required to hold
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these relationships for each cell in three dimensions yields one pointer for the
parent cell, a pointer for each child cell and a neighbor pointer for each cell face.
Using this approach a tetrahedron with only four faces requires 13 pointers, just
for the cell management.

We suggest another idea to realize the cell navigation required. We equip
each possible cell with a unique cell identifier (id) and generally access the corre-
sponding cell data by means of an associative mapping, i.e., this map determines
a pointer to the cell data from a given id. We then perform the horizontal and
vertical navigation by calculating parent, neighboring and children cell identi-
fiers from a given identifier, in contrast to use memory. This is possible as most
cells stem from a refinement process, hence being a child cell of some base cell.
The grid navigation algorithms can be seen as a virtual connectivity amongst
potential cells of the hierarchy.

One price we have to pay is the amount of memory we need for the associative
mapping. But this is much less than the one needed for the number of pointers
from the first approach. Additionally, the mapping is realized by means of hash
functions and thus very fast, as are also the identifier algorithms we provide in
this paper.

Before we introduce the cell identifier id and the navigation algorithms, we
would like to present the supported cell types along with appropriate refinement
strategies. This is done in Section 2. Then we build up a cell identifier in Section
3 and show, how to efficiently calculate cell identifiers for parents, children and
neighbors in Section 4. As we will see, parent and child identifiers are pretty
easy, the most crucial point is the neighboring algorithm, being the heart of this
paper.

2 Cell Types

Supported cell types are

• triangles (Table 1, Figure 3) and

• rectangles (Table 2, Figure 5),

in two spatial dimensions, and

• tetrahedrons (Table 3, Figure 7),

• cubes (Table 4, Figure 9) and

• prisms (Table 5, Figure 11)

in three dimensions.

For each cell type we have to promote one way

• to enumerate cell nodes, cell faces, and children cells, and

• to refine such a cell.

Subsequently, we need the following definitions:
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#N number of nodes per cell type;
N a cell node with N ∈ {N0, . . . , N#N−1} and Ni ∈ R2 or Ni ∈ R3;
Ni1...in

an intermediate node with Ni1...in
=

∑
j Nij

/n (cf. Figure 3);
#F number of faces per cell type;
F a face with F ∈ {0, . . . ,#F− 1};
#C number of children per cell type;
C a child or child-id with C ∈ {0, . . . ,#C− 1};
T a substitution table with T ∈ {0, . . . ,#F(C)− 1};
N(F) index vector of nodes per face, e.g., N(F=0) = [1, 2] means that

face F=0 is defined by the nodes N1 and N2;
N(C) index vector of nodes per child, e.g., N(C=1) = [0, 01, 02] means

that child C=1 is defined by the nodes N0, N01 and N02;
F(C) inner faces per child, e.g., F(C=2) = [1] means that the only

inner face of child C=2 is its face 1;
T(C) index vector of substitution tables per child, e.g. T(C=2) = [1]

means that the only substitution table for child C=2 is table 1;
S(T) substitution table, e.g., S(T=0) = [1, 0, 3, 2] means that we replace

as follows: 0 → 1, 1 → 0, 2 → 3, 3 → 2.

If we address neighbor i we refer to the cell adjacent to the i’th face. The index
vector of nodes per child N(C) not only states the involved nodes to define the
edges but also their order and orientation. Note also, that we have as many
substitution tables as inner faces per child.

The following tables provide the specific characteristic values defined above
per cell type. The use of tables F(C), T(C) and S(T) become clear in Section 4
in connection with the horizontal and vertical grid navigation.

2.1 Triangles

geometry
#N 3
#F 3
#C 4

F N(F)
0 [1, 2]
1 [0, 2]
2 [0, 1]

C N(C) #F(C) F(C) T(C)
0 [12, 02, 01] 3 [0, 1, 2] [0, 1, 2]
1 [0, 01, 02] 1 [0] [0]
2 [01, 1, 12] 1 [1] [1]
3 [02, 12, 2] 1 [2] [2]

T S(T)
0 [1, 0, 3, 2]
1 [2, 3, 0, 1]
2 [3, 2, 1, 0]

Table 1: Triangle characteristics.
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Figure 3: Triangle nodes and faces.

Figure 4: Triangle refinement.

2.2 Rectangles

geometry
#N 4
#F 4
#C 4

F N(F)
0 [0, 1]
1 [1, 3]
2 [0, 2]
3 [2, 3]

C N(C) #F(C) F(C) T(C)
0 [0, 01, 02, 0123] 2 [1, 3] [0, 1]
1 [01, 1, 0123, 13] 2 [2, 3] [0, 1]
2 [02, 0123, 2, 23] 2 [0, 1] [1, 0]
3 [0123, 13, 23, 3] 2 [0, 2] [1, 0]

T S(T)
0 [1, 0, 3, 2]
1 [2, 3, 0, 1]

Table 2: Rectangle characteristics.
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Figure 5: Rectangle nodes and faces.

Figure 6: Rectangle refinement.
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2.3 Tetrahedrons

geometry
#N 4
#F 4
#C 8

F N(F)
0 [0, 1, 2]
1 [0, 1, 3]
2 [0, 2, 3]
3 [1, 2, 3]

C N(C) #F(C) F(C) T(C)
0 [12, 02, 01, 03] 3 [1, 2, 3] [0, 1, 2]
1 [13, 03, 12, 01] 3 [0, 3, 2] [3, 4, 5]
2 [23, 12, 03, 02] 3 [0, 3, 1] [6, 7, 8]
3 [03, 23, 13, 12] 3 [1, 2, 0] [9, 10, 11]
4 [0, 01, 02, 03] 1 [3] [12]
5 [01, 1, 12, 13] 1 [2] [13]
6 [02, 12, 2, 23] 1 [1] [14]
7 [03, 13, 23, 3] 1 [0] [15]

T S(T) T S(T)
0 [2, 3,−,−, 5, 7,−, 6] 8 [−, 1, 6,−, 7, 5,−, 4]
1 [1,−, 3,−, 6,−, 7, 5] 9 [−, 0,−, 2, 6, 4,−, 5]
2 [4,−,−, 3,−, 6, 5, 7] 10 [−,−, 0, 1, 5,−, 4, 6]
3 [2, 3,−,−, 6, 4, 7,−] 11 [0,−,−, 7, 4, 6, 5,−]
4 [−, 0,−, 2,−, 7, 4, 6] 12 [−,−,−, 3, 0, 6, 5, 7]
5 [−, 5, 2,−, 7,−, 6, 4] 13 [−,−, 2,−, 7, 1, 6, 4]
6 [1,−, 3,−, 5, 7, 4,−] 14 [−, 1,−,−, 7, 5, 2, 4]
7 [−,−, 0, 1,−, 4, 7, 5] 15 [0,−,−,−, 4, 6, 5, 3]

Table 3: Tetrahedrons characteristics.

Figure 7: Tetrahedrons nodes and faces.
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Figure 8: Tetrahedrons refinement.

2.4 Cubes

geometry
#N 8
#F 6
#C 8

F N(F) F N(F)
0 [0, 1, 2, 3] 3 [1, 3, 5, 7]
1 [0, 1, 4, 5] 4 [2, 3, 6, 7]
2 [0, 2, 4, 6] 5 [4, 5, 6, 7]

T S(T)
0 [4, 5, 6, 7, 0, 1, 2, 3]
1 [2, 3, 0, 1, 6, 7, 4, 5]
2 [1, 0, 3, 2, 5, 4, 7, 6]

C N(C) #F(C) F(C) T(C)
0 [0, 01, 02, 0123, 04, 0145, 0246, 0-7] 3 [3, 4, 5] [2, 1, 0]
1 [01, 1, 0123, 13, 0145, 15, 0-7, 1357] 3 [2, 4, 5] [2, 1, 0]
2 [02, 0123, 2, 23, 0246, 0-7, 26, 2367] 3 [1, 3, 5] [1, 2, 0]
3 [0123, 13, 23, 3, 0-7, 1357, 2367, 37] 3 [1, 2, 5] [1, 2, 0]
4 [04, 0145, 0246, 0-7, 4, 45, 46, 4567] 3 [0, 3, 4] [0, 2, 1]
5 [0145, 15, 0-7, 1357, 45, 5, 4567, 57] 3 [0, 2, 4] [0, 2, 1]
6 [0246, 0-7, 26, 2367, 46, 4567, 6, 67] 3 [0, 1, 3] [0, 1, 2]
7 [0-7, 1357, 2367, 37, 4567, 57, 67, 7] 3 [0, 1, 2] [0, 1, 2]

Table 4: Cubes characteristics.
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Figure 9: Cubes nodes and faces.

Figure 10: Cubes refinement.
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2.5 Prisms

geometry
#N 6
#F 5
#C 8

F N(F)
0 [0, 1, 2]
1 [3, 4, 5]
2 [0, 1, 3, 4]
3 [0, 2, 3, 5]
4 [1, 2, 4, 5]

T S(T)
0 [3, 4, 5, 0, 1, 2, 7, 6]
1 [6, 2, 1, 7, 5, 4, 0, 3]
0 [2, 6, 0, 5, 7, 3, 1, 4]
1 [1, 0, 6, 4, 3, 7, 2, 5]

C N(C) #F(C) F(C) T(C)
0 [0, 01, 02, 03, 0134, 0235] 2 [1, 4] [0, 1]
1 [01, 1, 12, 0134, 14, 1245] 2 [1, 3] [0, 2]
2 [02, 12, 2, 0235, 1245, 25] 2 [1, 2] [0, 3]
3 [03, 0134, 0235, 3, 34, 35] 2 [0, 4] [0, 1]
4 [0134, 14, 1245, 34, 4, 45] 2 [0, 3] [0, 2]
5 [0235, 1245, 25, 35, 45, 5] 2 [0, 2] [0, 3]
6 [12, 02, 01, 1245, 0235, 0134] 4 [1, 2, 3, 4] [0, 3, 2, 1]
7 [1245, 0235, 0134, 45, 35, 34] 4 [0, 2, 3, 4] [0, 3, 2, 1]

Table 5: Prisms characteristics.

Figure 11: Prisms nodes and faces.
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Figure 12: Prisms refinement.

3 Cell Identifier

As said before, we assume the initial grid to be composed of (base) cells of
compatible types; see Figure 1 for instance. The grid changes during run-time
due to the refinement and coarsening operations only. Hence, all cells other
than base cells are children of a specific base cell or children of another child
cell.
We now assemble all information necessary to identify each possible grid cell,
i.e. for all possible refinement levels up to a maximum level L, to a single unique
identifier id.

The key idea is to collect the sequence of the refinement steps, i.e., the
sequence of child numbers C, up to the point when we reach the destination cell.
Consider the following sequence of child numbers:

Figure 13: Refinement steps.

We start with the base cell 0 on level 0, refine this base cell and obtain the
four children cells 00,10,20 and 30 on level 1. Then we focus on cell 20, refine
and identify cell 120 on level 2.
Such a sequence of chosen children on different levels up to a level L is called
path, written as a list of digits P = CL . . . C0. In the example above we stop the
refinement at the maximum level L = Lmax = 2.
Together with the cell type T, the refinement level L and the underlying base
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cell BC the id looks
id = ∗ | T | BC | L | P,

with a separator | (for readability only). The ∗ marks a reserved region for
additional information, e.g., cluster information for multiprocessor applications
or some flags; we exclude this from the discussion here.
As a convention we define the base cell to live on level 0.

3.1 Bit Gymnastics

Consider a two-dimensional initial grid composed of not more than 65536 base
cells of triangular or rectangular type. If we assume a maximum level Lmax not
greater than 15, then the resulting id needs

information bits
cell type T 1,
base cell BC 16,
level L 4,
path P (dimension times Lmax) 32,
reserved ∗ 11,
sum 64.

For a 32-bit computer this means the id needs as much space as two pointers,
for a modern 64-bit one it is only one pointer.
If we look at a three-dimensional grid composed of tetrahedrons, cubes and
prisms, we obtain

information bits
cell type T 2,
base cell BC 16,
level L 4,
path P (dimension times Lmax) 48,
reserved ∗ 26,
sum 96.

Obviously, it is easy to increase the number of supported levels or base cells by
distributing the reserved bits appropriately2.

4 Navigation

Given an id we now show how to calculate the ids of the parent3, the children
and the neighbors. Here the algorithm of the neighbors is the crucial part. At
the end of this section we complete this approach by calculating neighbors living
in different base cells.

In the following we start with a given id of a specific base cell BC of a specific
type T. As the base cell and the type is fixed for now, we skip these information
and any leading zeros of the path and display the ids as a tuple of level and
path: id = L | P or id = L | CL . . . C0. In some cases an operation does not yield
a valid result. Then we indicate this by using INV for an invalid id.

2Note, that modern computers align memory. That means, they allocate memory of a
multiple of 32 bit size for data structures anyway.

3Yes, only one ...
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4.1 Parent

The parent of id = L | CL . . . C0 is given by

parent(id) =
{

INV L = 0
L− 1 | 0 CL−1 . . . C0 L > 0.

4.2 Children

The i’th child of id = L | CL . . . C0 is given by

childi(id) =
{

INV L = Lmax
L + 1 | i CL . . . C0 L < Lmax.

4.3 Neighbors

The algorithm for computing the neighbor ids of an id for all neighbor cells
lying in the same base cell is best motivated by an example. To this end we
consider a rectangular base cell with cells on level 1, see left picture in Figure
14. We want to sort the neighbor-ids the same way as we sort the faces, namely
such that the i’th neighbor is on the i’th face.

Figure 14: Neighbors on different levels.

The cell with id = 1|20 has only two neighbors on the same level: 1|00 on
face 0 and 1|30 on face 1; that’s it. In general, all rectangular cells have exactly
two neighbors on the same level with same parent cell, all further neighbors
have a different parent cell, cf. also Table 2.
Now we increase the level and consider the cell id = 2|120 on level 2, see again
Figure 14, right picture. The two neighbors on level 2 with same parent are:
2|020 at face 2 and 2|320 at face 3. Obviously, the missing neighbors live in
neighboring cells of the parent cell 1|20, i.e., in 1|00 at face 0 and in 1|30 at face
1.
We now consider ”the same” child on such a neighbor cell, for instance 2|130,
which is obviously not the neighbor we search. But if we switch side in the
opposite direction we took the neighbor of the parent, it is.
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Doing the same for the parent neighbor at face 0, we first consider the cell 2|100.
Switching side in the opposite direction leads to 2|300, which is the last missing
neighbor of 2|120 at face 0.

What have we done? After calculating the immediate neighbors within the
parent cell, we considered neighbors of the parent cell. Starting from the cell
representing the same child in the neighbor cells we switched side in opposite
direction, or, more general, substitute the child by another child being the
neighbor child at the specific face.
In the example above we replaced digit 1 by 0 for cell 2|130 in order to obtain the
neighbor 2|030, and 1 by 3 for cell 2|100 in order to obtain 2|300, respectively.
Here we found all neighbors after taking the parent neighbors into account. In
general, all this has to be done until we get a neighbor at each face.

Technically speaking, we exchanged Cj on different levels in the path of
the given id, depending on the face. This is what the substitution tables are
for. They depend on the child and face under consideration. This replacement
strategy is formally the same for all cell-types, where specific replacement-rules
are explained below.

We now formulate the steps above for the example id = 2|120 in terms of
the final algorithm. Characteristic values used can be found in Table 2. The
general algorithm, valid for all supported cell types, is given subsequently.

• Start: id = L|CL . . . C0 = 2|120.

• Traverse all children on all levels downwards in level (left to right):
for C in [120]:

1. Child on current level: C = 1, level 2.

2. Determine faces (possible neighbors) and table indices for current
child: F(C) = [2, 3], T(C) = [0, 1].

3. Traverse all faces for which the neighbor id is not known yet:
for F in [2, 3] with T in [0, 1]:

(a) Determine substitution table for F = 2, T = 0: S = [1, 0, 3, 2].
(b) Replace Cj on all levels upwards according to the substitution

table S:
for j ∈ {l = 2, . . . , L = 2} replace Cj with S(Cj):

j = 2: C2 = S(C2 = 1) = 0
(c) Neighbor on F = 2 found: 2|020.

(a) Determine substitution table for F = 3, T = 1: S = [2, 3, 0, 1].
(b) Replace Cj on all levels upwards according to the substitution

table S:
for j ∈ {l = 2, . . . , L = 2} replace Cj with S(Cj):

j = 2: C2 = S(C2 = 1) = 3
(c) Neighbor on F = 3 found: 2|320.

1. Child on current level: C = 2, level 1.

2. Determine faces (possible neighbors) and table indices for current
child: F(C) = [0, 1], T(C) = [1, 0].
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3. Traverse all faces for that the neighbor id at that face is not already
known:
for F in [0, 1] with T in [1, 0]:

(a) Determine substitution table for F = 0, T = 1: S = [2, 3, 0, 1].
(b) Replace Cj on all levels upwards according to the substitution

table S:
for j ∈ {l = 1, . . . , L = 2} replace Cj with S(Cj):

j = 1: C1 = S(C1 = 2) = 0
j = 2: C2 = S(C2 = 1) = 3

(c) Neighbor on F = 0 found: 2|300.

(a) Determine substitution table for F = 1, T = 0: S = [1, 0, 3, 2].
(b) Replace Cj on all levels upwards according to the substitution

table S:
for j ∈ {l = 1, . . . , L = 2} replace Cj with S(Cj):

j = 1: C1 = S(C1 = 2) = 3
j = 2: C2 = S(C2 = 1) = 0

(c) Neighbor on F = 1 found: 2|030.

• All neighbors were found.

The algorithm valid for all supported cell types reads:

• Traverse all children on all levels:
for C in CL . . . C0

1. Child on current level l: Cl.

2. Determine faces (possible neighbors) and table indices for current
child: F(C), T(C).

3. Traverse all faces for that the neighbor id at that face is not already
known:
for F in F(C) with T in T(C):

(a) Determine substitution table for F, T: S.
(b) Replace Cj on all levels upwards according to the substitution

table S:
for j ∈ {l, . . . , L} replace Cj with S(Cj).

(c) Neighbor at face F found.
(d) Stop algorithm if all neighbors were found.

4. All neighbors on level l were found.

• All neighbors were found or some neighbors live on adjacent base cells.

We like to emphasize, that even the algorithm may look complicated it is
very fast as it is purely build on bit operations and look-up tables. Moreover,
there exist optimized specific implementations for all cell types, realizing, for
instance, simple substitution tables directly via algebraic operations or short
loops via unrolling.
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4.3.1 Neighbors in adjacent base cells

It may happen that the neighbor algorithm does not deliver neighbor ids at all
faces. This happens, if and only if a cell is adjacent to a base cell’s face. Then
the existence of a neighbor cell depends on the fact whether the base cell has a
neighbor in that direction or not. Figure 15 shows an example.

Figure 15: Example showing base cell neighbors.

In this example we composed four base cells with different orientations and
show all relevant children cells on level 1. Note, the position of label BCi simul-
taneously denotes N0 of the respective base cell.

We consider cell BC0|1|10 and its neighbors. First of all, two neighbor cells
live inside BC0. They are determined by the neighbor algorithm. But then the
algorithm stops and neighbors at face F = 0 and F = 1 are still missing – they
live in BC1 and BC2.
The only information we need in order to know all neighbors at the base cell’s
face on all levels is a number of fixed substitution tables (per base cell pair) if
we choose the refinement such that at each face always live the same children
on every level. In the example above the substitutions read:

base cells faces substitutions
BC0 ↔ BC1 0 ↔ 1 [3, 1, 2, 0]
BC0 ↔ BC2 1 ↔ 3 [0, 2, 1, 3]

Thus, if the neighbor algorithm fails to determine some neighbors we take these
additional substitution tables into account and replace each child Ci in the path
according to the respective table. This immediately yields the missing neighbor
cells.
We like to stress, that this is possible only if the refinement strategy is chosen
appropriately. But then it works even for grids composed of different cell types.
In our case, all refinement strategies work, i.e., one can combine all mentioned
cell types of the same spatial dimension.
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5 Outlook

This paper is the first part of a more global description of multidimensional grids
based on cell identifiers. The sequels basically contain the grid management and
grid libraries as well as applications in two and three dimensions.
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