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Abstract

A characteristic feature of hyperbolic systems of balance laws is the existence of

non-trivial equilibrium solutions, where the effects of convective fluxes and source terms

cancel each other. Recently a number of so-called well-balanced schemes were developed

which satisfy a discrete analogue of this balance and are therefore able to maintain an

equilibrium state. In most cases, applications treated equilibria at rest, where the

flow velocity vanishes. Here we present a new very high order accurate, exactly well-

balanced finite volume scheme for moving flow equilibria. Numerical experiments show

excellent resolution of unperturbed as well as slightly perturbed equilibria.

Keywords: shallow water equation, moving water equilibria, high order upwind finite

volume scheme, well-balanced scheme
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1 Introduction

A challenge in the numerical analysis of hyperbolic systems of balance laws is to maintain the

fundamental equilibria, and to compute their perturbations accurately. Indeed, if a scheme

cannot balance the effects of convective fluxes and source terms, it may introduce spurious

oscillations near equilibria. In order to reduce these the grid must be refined more than

necessary. On the other hand, well-balanced schemes promise to be efficient near equilibria.

In many cases they are also very accurate away from equilibria.

Many recent papers (see [1, 2, 3, 4, 7, 9, 12, 15, 16, 18, 19, 25, 27, 28, 29, 30] and the
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references therein) treat the lake at rest equilibrium for the shallow water equations

ht + (hu)x = 0 (1.1)

(hu)t + (hu2 +
1

2
gh2)x = −ghbx,

where h denotes the water height, u is the velocity of the fluid, b represents the bottom

topography and g is the gravitational constant.

The lake at rest is given by

u = 0 and H := h + b = constant. (1.2)

The somewhat unusual feature of this state is that it can be expressed by linear relations

in the conservative variables U = (h, hu): if h > 0, then (1.2) is equivalent to hu = 0

and h = H − b. This makes it straightforward to transform the conservative variables into

equilibrium variables V = (hu, gH) and vice versa.

Contrary to that, the general moving water steady state solutions are given by

hu = constant and
1

2
u2 + g(h + b) = constant. (1.3)

It is significantly more difficult to obtain well-balanced schemes for such moving water steady

states. In [10], Jin and Wen designed such a well-balanced scheme, which relies on computing

an integral exactly, where the integrand is only implicitly given by solutions to a cubic

equation. Even though the point values of this integrand can be obtained at any given

point, the integral itself cannot be obtained in closed form and must be approximated by a

numerical quadrature. The exact well-balancedness of the scheme would then be replaced by

the numerical quadrature error. In [11], the same authors designed another scheme which is

computationally less expensive, but the scheme can only maintain the moving water steady

state to second order accuracy, not exactly. Russo [20] developed well-balanced central

schemes on staggered grids which are second order accurate and exactly well-balanced for

subcritical moving equilibria. We make an attempt in this paper to design exactly well

balanced, high order accurate schemes for moving water steady states.
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High-order exactly well-balanced finite volume schemes for still water equilibria have

already been developed in [16, 18, 29, 30]. Here we treat the much more complex situation

of moving water.

The equilibrium variables for the moving steady state water are given by

V = (m, E), (1.4)

where

m = hu and E =
1

2
u2 + g(h + b). (1.5)

The nonlinearity makes it non-trivial to invert the map U → V . Moreover, there is no unique

way to recover an equilibrium function V (x) or even a single equilibrium state V̄ from a set

of conservative cell averages {Ūi}. Our solution to this problem, introduced in Sections 2

and 3.2, is one of the key ingredients in this paper. The crucial idea is to define implicitly a

reference equilibrium state V̄i = V̄i(Ūi) in each cell in such a way, that all V̄i coincide with V̄

once we are in equilibrium.

Having defined the reference states V̄i, we introduce an equilibrium limiter which guar-

antees that a possible equilibrium present in the cell averages {Ūi} is maintained in the

reconstruction U(x). This is the second key building block of our well-balanced scheme, and

together with the definition of the reference equilibrium states it lays the foundation of our

well-balanced algorithm.

From here on our procedure is somewhat more standard and extends techniques from

[1, 16, 29] and others. The main work which remains to be done is to define a well-balanced

quadrature rule of the source term, and to study the singular boundary layer at the cell edges.

We split the edges into two infinitesimal layers, a convective layer where the source term is

not active, and a topographic layer, where the source term is present but the flow remains

in equilibrium. In the interior of the cell, we derive a new well-balanced quadrature rule for

the moving water case, which must be limited carefully in order to satisfy the conditions

of the Lax-Wendroff theorem while maintaining high order accuracy for general solutions
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in smooth regions. All together this leads to a rather transparent formulation of our well-

balanced finite volume scheme, where the role of conservative fluxes and source terms can

be clearly distinguished.

The outline of the paper is as follows: In Section 2 we study the basic transform be-

tween conservative and equilibrium variables. The main part of the paper is contained in

Section 3. In Section 3.1 we lay out the framework of the discretization and formulate suf-

ficient conditions for high order accuracy and convergence to weak solutions. In Section

3.2 we define the reference states V̄i implicitly and introduce our new equilibrium limiter.

In Section 3.3 we introduce the basic well-balanced quadrature rule for the source term in

moving water and introduce the infinitesimal layers at the edges which separate the discon-

tinuities in the conservative variables and the source term. In Section 3.4 we summarize

our new high-order accurate well-balanced finite volume scheme. The proof of well-balanced

property and convergence to weak solutions are presented in Section 3.5. In Section 4 we

present one-dimensional numerical results: several challenging moving water equilibria are

preserved up to machine accuracy for many timesteps, and small perturbations are sharply

resolved. For smooth non-equilibrium flows we obtain the expected high order convergence

rates. In Section 5 we present a two-dimensional numerical example which is a small pertur-

bation of a one-dimensional moving equilibrium. The two-dimensional scheme is a dimension

by dimension generalization of our one-dimensional well-balanced scheme. The results are

compared with those obtained from the traditional high order WENO schemes and the ad-

vantage of using the well-balanced scheme is demonstrated. Finally in Section 6 we draw

some conclusions.

We would like to point out that much of our approach can be carried over directly to

other classes of balance laws. All one needs to rederive is the pointwise mapping between

conservative and equilibrium variables introduced in Section 2 and the estimate at the sonic

point in Lemma 3.9.
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2 Conservative and Equilibrium Variables

In this section we study the sets of conservative variables U and equilibrium variables V upon

which our well-balanced scheme relies. As usual, the conservative variables are denoted by

U = (h, m) = (h, hu). Let

E :=
1

2
u2 + g(h + b) (2.1)

be the total energy. For smooth solutions, the shallow water equations may be rewritten as

ht + mx = 0 (2.2)

ut + Ex = 0. (2.3)

Thus the steady states (1.3) are given by m ≡ constant, E ≡ constant. This motivates the

introduction of the equilibrium variables

V := (m, E). (2.4)

In order to construct our well-balanced scheme, it is essential to transform the conservative

variables U into the equilibrium variables V and vice versa. Due to the nonlinearity of the

energy, it is not straightforward to establish such a transform.

2.1 Variable Transformations

Given conservative variables U and a bottom function b, the energy E (and hence the

equilibrium variables V = V (U)) can be easily computed by (2.4). The difficulty lies in

finding the inverse transform U = U(V ). For this, we introduce the Froude number

Fr := |u|/
√

gh, (2.5)

which plays the same role as the Mach number in gas dynamics: A state is called sonic,

sub- or supersonic if the Froude number equals, falls below or exceeds unity. We label the

different flow regimes by the sign function

σ := sign(Fr − 1), (2.6)
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so

σ =







1 supersonic flow
0 sonic flow

−1 subsonic flow.
(2.7)

Suppose now that V = (m, E) and b are given. Under which conditions can we recover

the conservative variable h from this information, and thus establish the desired transform

U = U(V )? Let us denote the part of the energy depending on h by

ϕ(h) :=
m2

2h2
+ gh. (2.8)

Here m is considered to be a fixed parameter. Our task is to find a unique solution h such

that

ϕ(h) = E − gb. (2.9)

If m = 0, then one can solve (2.9) as long as E − gb > 0. If m 6= 0, then ϕ(h) is positive and

convex. Its unique minimum is (h0, ϕ0) with

gh0 = (g|m|)2/3, ϕ0 =
3

2
(g|m|)2/3. (2.10)

Note that h0 is exactly the sonic point for the prescribed value of m. We also have a lower

bound for the energy, given by

E0 = ϕ0 + gb =
3

2
(g|m|)2/3 + gb. (2.11)

If E < E0, there is no solution to (2.9). If E = E0, there is the unique solution h = h0. If

E > E0, there are two solutions, one supersonic and the other one subsonic.

It is instructive to normalize the variables via ĥ := h/h0, ϕ̂ := ϕ/ϕ0. Then

ϕ̂(ĥ) =
2

3

(

1

2ĥ2
+ ĥ

)

, (2.12)

and the Froude number may be written as

Fr(ĥ) = ĥ−3/2. (2.13)
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Figure 2.1: The normalized function ϕ̂(ĥ). Supersonic (ĥ < 1), sonic (ĥ = 1) and subsonic
(ĥ > 1) regions.

This shows that ĥ = 1, ĥ > 1 resp. ĥ < 1 correspond to sonic, sub- and supersonic states,

see Figure 2.1. If we introduce Ê := (E − gb)/ϕ0, then (2.9) becomes

ϕ̂(ĥ) = Ê. (2.14)

We summarize our results in the following Definition and Lemma.

Definition 2.1. Let m ∈ R be given. A pair (Ê, σ) ∈ R × {−1, 0, 1} (resp. a triple

(E, b, σ) ∈ R
2 × {−1, 0, 1}) is an admissible state if either

σ = 0 and Ê = 1 (resp. E = E0) (2.15)

or

|σ| = 1 and Ê > 1 (resp. E > E0). (2.16)

Lemma 2.2. Let m be given, and suppose that the pair (Ê, σ) is admissible. Then there

exists a unique solution

ĥ = ĥ(Ê, σ) (2.17)

such that

ĥ < 1 for σ = 1 (supersonic flow)

ĥ = 1 for σ = 0 (sonic flow)

ĥ > 1 for σ = −1 (subsonic flow).

(2.18)

We call ĥ(Ê, σ) the admissible solution of (2.14).
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Written in non-scaled variables (h, m, E, b) we have shown

Corollary 2.3. Let m be given, and suppose that the triple (E, b, σ) is admissible. Then the

unique admissible solution h = h(m, E, b, σ) of (2.9) is given by

h(m, E, b, σ) =
(g|m|)2/3

g
ĥ(Ê, σ). (2.19)

Given admissible values (Ê, σ) it is straightforward to find the corresponding solution ĥ

by Newton’s method: if σ = 0, then ĥ = 1. If σ = 1, make sure that the starting value ĥ0

in Newton’s method satisfies ĥ0 < 1 and ϕ̂(ĥ0) > Ê. Then the sequence ĥn generated by

Newton’s method is monotone and converges quadratically towards ĥ(Ê, σ). Analogously,

if σ = −1, assure that ĥ0 > 1 and ϕ̂(ĥ0) > Ê in order to obtain monotone, quadratic

convergence.

Note that a similar variable transform has also been used in [10, 11, 20].

3 High Order Well-balanced Finite Volume Scheme

In this section, we design a high order finite volume weighted essentially non-oscillatory

(WENO) scheme for the shallow water equation (1.1), with the objective to maintain the

general moving steady state (1.3). We will concentrate on the one-dimensional case. Two

space dimensions are treated in Section 5 with a numerical example. The basic framework of

the well balanced scheme follows the one introduced by Audusse et al. [1], and later used in

the recent papers [16, 30]. However, the approximation of the flux and source terms requires

more attention due to the complexity of the moving steady state.

3.1 Framework of the Discretization

For simplicity we write the shallow water equations in the form

Ut + f(U)x = s(U, b). (3.1)
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We discretize the computational domain with cells Ii = [xi− 1

2

, xi+ 1

2

], i = 1, · · · , N . We denote

the size of the i-th cell by △xi and the center of the cell by xi = 1
2
(xi− 1

2

+xi+ 1

2

). The compu-

tational variables are U i(t), which approximate the cell averages U(xi, t) = 1
△xi

∫

Ii
U(x, t) dx.

We solve an integrated version of (3.1) over the interval Ii. Our conservative finite volume

scheme then takes the classical semidiscrete form

d

dt
U i(t) = − 1

∆xi

(

f̂i+ 1

2

− f̂i− 1

2

)

+
1

△xi

si =:
1

∆xi

ri. (3.2)

where f̂i+ 1

2

is a consistent, Lipschitz continuous numerical flux for the homogeneous shallow

water equations and si is a high order approximation to the integral of the source term
∫

Ii
s(h(x, t), b(x))dx. For later reference, we call the RHS of (3.2) the residual ri/∆xi. Thus

a well-balanced scheme is one for which all residuals vanish at steady state.

As to the formal accuracy of the scheme, we have the following lemma

Lemma 3.1. The numerical scheme (3.2) is formally k-th order accurate if the following

holds in smooth regions:

(i) f̂i+ 1

2

= f(U(xi+ 1

2

, t)) + O((△xi)
k) with a smooth error term O((△xi)

k)

(ii) si =
∫

Ii
s(h, b)dx + O((∆xi)

k+1)

The proofs of this lemma is straightforward.

We choose a TVD Runge-Kutta discretization [24] in time. In order to complete the

definition of the scheme, we need to introduce the spatial reconstruction, the source term

discretization, and the numerical fluxes. These will be described in Sections 3.2 and 3.3.

In Section 3.5 we will also prove that our scheme satisfies a Lax-Wendroff theorem, which

assures that limits are weak solutions.

3.2 Equilibrium-Limited Reconstructions in the Cell Interior

Assume the initial values Ūi and b̄i are given. We apply the high order accurate WENO

reconstruction procedure [23, 21] on b̄i to obtain bi, b
±

i+ 1

2

, and the approximations of b(x)

at the relevant Gaussian points. If b(x) is known at all points, this WENO reconstruction

10



procedure is unnecessary. The WENO reconstruction procedure is based on a nonlinear,

convex combination of lower order reconstructions from sub-stencils, with the combination

coefficients depending on the local smoothness of the function in relevant cells. It can achieve

uniformly high order accuracy in smooth regions and can maintain a sharp, non-oscillatory

discontinuity transition. We refer to [14, 8, 23, 21] for more details.

At each time step tn, we first apply the WENO reconstruction procedure to the variables

Ūi to obtain U±

i+ 1

2

, σ±

i+ 1

2

, and hence V ±

i+ 1

2

. The reconstructed values Ui, σi and Vi at the center

of the cell are also needed for the purpose of source term discretization.

Now we need to address one of the more subtle points of the well-balanced algorithm.

Even if the initial data are in perfect equilibrium, say V (x) ≡ V̄ for some constant equi-

librium state V̄ , the WENO-reconstructed values Ui, U
±

i+ 1

2

and hence Vi, V
±

i+ 1

2

may not be

in equilibrium any more. The problem comes from the total energy E = 1
2
u2 + g(h + b).

First of all, the topography b may be a general function of x. Second, the velocity depends

nonlinearly on height and momentum. For the lake at rest, the second problem disappears

since u = 0. The first problem can be fixed by reconstructing not b, but h+ b and recovering

bi, b
±

i+ 1

2

as (h + b)i − hi, (h + b)±
i+ 1

2

− h±

i+ 1

2

, see [1, 16].

For moving equilibria, this is much less straightforward. Our solution proceeds as follows:

first we define a local reference state V̄i for each cell Ii as the solution of the implicit equation

Ūi =
1

△xi

∫

Ii

U(V̄i, b(x), σ(Ūi)) dx, (3.3)

where the conservative cell average Ūi is considered to be given. By definition, these reference

values satisfy

Lemma 3.2. Suppose the function U(x) is in equilibrium, i.e. there is an equilibrium state

V̄ such that

V (U(x), b(x)) = V̄ for x ∈ D. (3.4)

Suppose furthermore that U(x) is smooth within each cell Ii. Then

V̄i = V̄ for all i (3.5)
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solves (3.3).

Proof. Suppose that (3.4) holds. By Corollary 2.3, this is equivalent to the relation

U(x) = U(V̄ , b(x), σ(U(x))) for x ∈ D.

Let V̄i := V̄ and let

Ūi :=
1

△xi

∫

Ii

U(x) dx

be the cell averages of U . Since the solution is smooth within cell Ii,

σ(U(x)) = σ(Ūi) for x ∈ Ii

(a jump in σ(U(x)) can only occur together with a jump in h). Therefore

1

∆xi

∫

Ii

U(V̄i, b(x), σ(Ūi)) dx =
1

∆xi

∫

Ii

U(V̄ , b(x), σ(U(x))) dx

=
1

∆xi

∫

Ii

U(x) dx

= Ūi (3.6)

which proves that (3.3) holds.

In actual implementation, we use a Gauss quadrature of sufficient accuracy to approx-

imate the integral in (3.3). That is, the reference energy Ēi is implicitly defined by the

equation

h̄i =
1

∆xi

∑

α

ωαh(hui, Ēi, bi+α, σ(Ūi)). (3.7)

A Newton iteration is then used to solve (3.7) with the initial guess of Ēi being

Ē
(0)
i :=

hu
2

i

2 h
2

i

+ g(h̄i + b̄i).

The conclusion of Lemma 3.2 still holds for the reference value Ēi defined in (3.7), if the

given conservative cell average Ūi is computed following the same quadrature. The relevance

of Lemma 3.2 (and its discrete analogue) is that it provides an indicator that we have reached

equilibrium, since in this case all the values V̄i coincide.
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Next we show how to use the local reference values V̄i to modify the WENO reconstructed

values V ±

i+ 1

2

and Vi in such a way that they maintain any present global equilibrium state V̄ .

For this we use the total variation bounded (TVB) [22] type limiter function

lim(w; w̄i, w̄i±1) := w̄i + λ(w − w̄i) (3.8)

where

λ := min






1,

∑

j=i±1

|w̄j − w̄i|2

2|w − w̄i|2






. (3.9)

Of course, other limiters should be possible as well.

We apply the limiter separately to momentum m and energy E, and write the result

symbolically as

Ṽ ±

i+ 1

2

= lim(V ±

i+ 1

2

; V̄i, V̄i±1). (3.10)

Similarly, we compute the limited pointwise values Ṽi. Note that non-negative energies E±

i+ 1

2

will remain non-negative. We have the following well-balanced property, which is important

for the following steps:

Lemma 3.3. At steady state, where V (x) ≡ V̄ , the limited values (3.10) satisfy

Ṽ ±

i+ 1

2

= Ṽi = V̄i = V̄ for all i. (3.11)

Therefore we call (3.8)–(3.10) the equilibrium limiter.

Proof. If V (x) ≡ V̄ , then V̄i = V̄ for all i due to (3.5). Therefore, the parameter λ in

(3.8)–(3.9) vanishes, and

lim(V ±

i+ 1

2

; V̄i, V̄i±1) = V̄i = V̄ . (3.12)
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Remark 3.4. The limiter is inactive in smooth region if the solution is far from the steady

state, even near smooth extrema, as can be verified by simple Taylor expansion. This guar-

antees that the limiter does not affect the high order accuracy of the scheme in smooth region

for general solutions of (1.1).

The corresponding conservative variables are given by

Ũ±
i+α := U(Ṽ ±

i+α, b±i+α, σ±
i+α) for α ∈ {0, 1

2
}. (3.13)

As an immediate consequence of Lemma 3.3 we have

Corollary 3.5. If V̄i±1 = V̄i, then the equilibrium-limited values (3.13) satisfy

V (Ũi, bi) = V (Ũ±

i+ 1

2

, b±
i+ 1

2

) = V̄i. (3.14)

3.3 Well-Balanced Quadrature Rules for the Residuum

In the previous section we have introduced the subtleties of the reconstruction in the interior

of the cells, where the solution is smooth. In this section we will resolve the cell-boundary

discontinuities in b and U by two layers, an equilibrium and a convective layer. In each of

these layers as well as in the interior of the cell we will define the numerical residuum in a

suitable way. This will result in a well-balanced residuum.

At the boundary, both the conservative variables Ũ±

i+ 1

2

and the topography b±
i+ 1

2

exhibit

a jump discontinuity. As usual, the jump in the conservative variables is treated by an

approximate Riemann solver. The jump in the topography will give rise to a δ-singularity

in the source term, which has to be taken into account.

To derive our scheme, we separate the boundary into two layers, see Figure 3.1. Take,

for example the right boundary of cell i. To illustrate our approach, we introduce points

xA < xB < xC := xi+ 1

2

which are separated by an infinitesimal distance. Together with
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x_A x_B x_C

topographic layer in b

b

x_A x_B x_C

convective layer in V

V

Figure 3.1: The boundary layer model. Boundary between cells i and i + 1. Top: discontin-
uous topography b (dash-dot). Bottom: shock-discontinuity in V (dashed).

these we introduce the values

(UA, bA) := (Ũ−

i+ 1

2

, b−
i+ 1

2

), (3.15)

(UB, bB) := (Û−

i+ 1

2

, b̂i+ 1

2

), (3.16)

(UC , bC) := (Ûi+ 1

2

, b̂i+ 1

2

). (3.17)

The values at point xA are adjacent to the interior of the cell. The value b−
i+ 1

2

is the WENO

reconstructed bottom topography, and Ũ−

i+ 1

2

is the WENO reconstructed and equilibrium

limited conservative variable (3.13). At the point xB the topography from the right of cell i

and the left of cell i + 1 is merged,

b̂i+ 1

2

= min(b−
i+ 1

2

, b+
i+ 1

2

). (3.18)

The equilibrium variable remains constant, VB = VA, and the conservative variable changes

accordingly to the new value

Û−

i+ 1

2

:= U(Ṽ −

i+ 1

2

, b̂i+ 1

2

, σ−

i+ 1

2

). (3.19)

Between the points xB and xC the topography remains unchanged. The point xC marks the

interface between cells i and i + 1. The interface value Ûi+ 1

2

symbolizes the solution of the

approximate Riemann problem,

f(Ûi+ 1

2

) = f̂i+ 1

2

= F (Û−

i+ 1

2

, Û+
i+ 1

2

). (3.20)
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We can therefore distinguish two boundary layers within each cell. We call [xB, xC ] the

convective and [xA, xB] the topographic, or equilibrium layer. When we consider the complete

residual over cell i, we also introduce the points xC′ = xi− 1

2

< xB′ < xA′ as well as values

UC′ , UB′ , UA′ .

We would like to remark that Castro, Gallardo, Parés and coworkers [4, 18] have devel-

oped high order well-balanced schemes based on the theory of non-conservative products [6].

It would be interesting to understand if the paths by which they connect values across an

interface can be related to our subcell construction.

3.3.1 The Residuum in the Convective Layer

In the convective layer, the topography is constant. Therefore the source term vanishes.

Adding contributions from the left and right boundaries of cell i we obtain

sconv
i = 0 (3.21)

rconv
i = −f(UC) + f(UB) − f(UB′) + f(UC′) (3.22)

= −f(Ûi+ 1

2

) + f(Û−

i+ 1

2

) − f(Û+
i− 1

2

) + f(Ûi− 1

2

). (3.23)

3.3.2 The Residuum in the Equilibrium Layer

In the equilibrium layer the bottom b changes while the equilibrium variables V = (m, E)

remain constant. Let

R(x) := r(x)/∆x and S(x) := s(x)/∆x.

Since for the exact residuum

R(x) = −f(U)x + S(x) = −f(U)x − gh(x)b(x)x = −umx − hEx = 0

the discrete residuum should vanish in the equilibrium layer. Therefore we define

requi
i = 0, (3.24)
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and accordingly

sequi
i = f(UB) − f(UA) + f(UA′) − f(UB′) (3.25)

= f(Û−

i+ 1

2

) − f(Ũ−

i+ 1

2

) + f(Ũ+
i− 1

2

) − f(Û+
i− 1

2

). (3.26)

Thus we can express the source term as the convective flux difference and vice versa.

3.3.3 The Interior Residual

Let us denote the interior of the cell by [xL, xR], with boundary values UL, UR, bL, bR. We

assume that all jumps discontinuities of the topography are located at the cell boundaries,

and that the reconstructions of the topography (denoted again by b(x)) are globally and

uniformly Lipschitz continuous in the interior of the cells:

Assumption 3.6. (i) The exact bottom b(x) is piecewise smooth with at most finitely many

discontinuities.

(ii) The reconstructions b∆(x) are uniformly and globally Lipschitz continuous in the interior

of the cells: There is a constant Lb > 0 such that for all ∆x > 0, for all cells Ii and for all

interior points x, y ∈ Ii,

|b∆(x) − b∆(y)| ≤ Lb |x − y|. (3.27)

(iii) There is a constant CB > 0 such that for all ∆x and for all edges xi− 1

2

where b(x) is

smooth,

|b+
∆(xi− 1

2

) − b−∆(xi− 1

2

)| ≤ Cb∆x2. (3.28)

Given numbers aL and aR, let

Da := aR − aL, ā := (aL + aR)/2 (3.29)

be the difference and mean operators. For later use, we recall the product rule of differencing

D(ab) = ā Db + Da b̄. (3.30)
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We would like to define a residuum rR
L which is a high order accurate discretization of the

exact cell residuum

−
∫

IR
L

(f(U)x + ghbx)dx = −
∫

IR
L

(umx + hEx)dx (3.31)

and vanishes for smooth equilibria, where m and E are constants. A standard discretization,

which is well-balanced for the lake at rest (u = 0 = D(h + b)) is

−Df − gh̄Db.

Now we will refine this discretization in such a way that it also balances moving equilibria.

For this we augment the standard source term quadrature −gh̄Db by a term ŝint
i ,

rint
i = −Df − gh̄Db + ŝint

i . (3.32)

In order to understand what well-balancing of moving equilibria requires we assume that

Dm = DE = 0 and expand the flux difference in that case: Using the product rule (3.30)

we obtain

Df = D(mu + gh2/2)

= m̄Du + ūDm + gh̄Dh

= m̄Du + ūDm + h̄D(E − gb − u2/2)

= −gh̄Db + (m̄ − h̄ū)Du

= −gh̄Db +
1

4
Dh(Du)2 (3.33)

Thus the residuum rint
i in (3.32) vanishes if and only if

ŝint
i = Df + gh̄Db =

1

4
Dh(Du)2 for Dm = DE = 0. (3.34)

In addition to this, the correction should be small enough to admit convergence to weak

solutions, namely

ŝint
i = o(∆x), (3.35)
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see the proof of Theorem 3.15. We also require that it is antisymmetric in the sense that

ŝint
i (Db, Dh, Du) = −ŝint

i (−Db,−Dh,−Du). (3.36)

To summarize, we define the quadrature for the source term in the interior of the ith cell by

sint
i = −gh̄Db + ŝint

i (3.37)

and require that ŝint
i satisfies conditions (3.34) – (3.36). By construction, we have the

following well-balancing result:

Lemma 3.7. For balanced states, i.e. if Dm = DE = 0, then rint
i = 0.

Constructing the correction to the interior source term ŝint
i

The construction of the correction to the interior source term is quite subtle due to the

notorious degeneracy at the sonic point. Fortunately, the final form of ŝint
i is rather simple.

We begin by the following identities which focus on the sonic point in equilibrium.

Lemma 3.8. Let Dm = DE = 0, and let h0 be the water height at the sonic point defined

in (2.10). If hL = h0, then

|Dh| = C1|Db|1/2 with C1 := C1(hL, hR) :=

(

2h2
R

hL + 2hR

)1/2

. (3.38)

Moreover,

1

4
|Dh||Du|2 = C2|Db|3/2 with C2 := C2(hL, hR) :=

ghLhR

21/2(hL + 2hR)3/2
. (3.39)

Analogous identities hold if hR = h0.

Proof. Suppose wlog that hL = h0. Using the identity m2 = gh3
L and the definition of the

energy E we obtain that

Db =
1

g

(

DE − 1

2
m2D

(

1

h2

))

− Dh

=
1

2g
gh3

L

h2
L − h2

R

h2
Lh2

R

− Dh (3.40)

= −hL + 2hR

2h2
R

(Dh)2, (3.41)

19



so

(Dh)2 = − 2h2
R

hL + 2hR
Db, (3.42)

which proves (3.38). Since Dm = DE = 0, we have

Du = − m

hLhR

Dh (3.43)

and therefore

1

4
Dh(Du)2 =

m2

4h2
Lh2

R

Dh3

=
m2

4h2
Lh2

R

(

2h2
R

hL + 2hR

)3/2

|Db|3/2

=
ghLhR

21/2(hL + 2hR)3/2
|Db|3/2, (3.44)

which shows (3.39).

Based on this lemma, we can now estimate the term 1
4
Dh(Du)2 in all equilibrium situa-

tions.

Lemma 3.9. Let [xL, xR] be the interior of the cell, and suppose that Dm = DE = 0.

(i) Suppose that there is no sonic point in [xL, xR]. Then

1

4
|Dh||Du|2 ≤ C3|Db|3/2 (3.45)

where C3 is defined in (3.53) below.

(ii) Suppose that there is a sonic point x0 ∈ [xL, xR]. Let b0 := b(x0). Then

1

4
|Dh||Du|2 ≤ C4(|bR − b0| + |bL − b0|)3/2. (3.46)

Here C4 is defined in (3.55)

Proof. (i) Suppose wlog that we are in the supersonic case, and

hL < hR < 1. (3.47)
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Then a direct computation yields

gDh = −gh0

∫ ÊR

ÊL

1

ϕ̂′(ĥ(Ê))
dÊ =

3

2
gh0

∫ ÊR

ÊL

ĥ(Ê)3

ĥ(Ê)3 − 1
dÊ =

3

2
gh0

∫ ÊL

ÊR

ĥ(Ê)3

1 − ĥ(Ê)3
dÊ.

(3.48)

Now we shift the normalized energy towards the sonic point Ê = 1. Let

Ẽ := 1 + Ê − ÊR. (3.49)

Since the corresponding ĥ(Ẽ) is still to the left of the sonic point, with ĥ(ẼL) < ĥ(ẼR) = 1,

and since the integrand on the RHS of (3.48) is monotonically increasing in that region, we

obtain

0 ≤ ĥ(Ê)3

1 − ĥ(Ê)3
≤ ĥ(Ẽ)3

1 − ĥ(Ẽ)3
. (3.50)

Therefore

gDh ≤ 3

2
gh0

∫ ÊL

ÊR

ĥ(Ẽ)3

1 − ĥ(Ẽ)3
dÊ

=
3

2
gh0

∫ ẼL

1

ĥ(Ẽ)3

1 − ĥ(Ẽ)3
dẼ

= g(h̃R − h̃L)

= gDh̃. (3.51)

Here h̃L/R are the shifted heights. Denoting the shifted bottom by b̃L/R, we observe that Db̃

= Db. Now we can apply Lemma 3.8 and conclude that

|Dh| ≤ |Dh̃| = C̃1|Db|1/2 with C̃1 :=

(

2h̃2
L

h̃R + 2h̃L

)1/2

(3.52)

and

1

4
|Dh|(Du)2 ≤ C3|Db|3/2 with C3 :=

m2

4h2
Lh2

R

C̃3
1 . (3.53)

This proves (3.45).
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(ii) Suppose now that hL < h0 < hR. Then

1

4
Dh(Du)2 =

m2

4h2
Lh2

R

(Dh)3

=
m2

4h2
Lh2

R

(|hL − h0| + |hR − h0|)3

=
m2

4h2
Lh2

R

(C1(hL, h0)|bL − b0|1/2 + C1(h0, hR)|bR − b0|1/2)3

≤ C4(|bL − b0| + |bR − b0|)3/2 (3.54)

with

C4 := (max(C1(hL, h0), C1(h0, hR)))3 23/2m2

4h2
Lh2

R

. (3.55)

This proves (3.46).

We are now ready to define ŝint
i . If we simply would set ŝint

i = 1
4
Dh(Du)2, this would

satisfy (3.34) and (3.36), but it would violate (3.35) in case a shock happens to cross the cell

during that timestep. But we can limit this expression as follows: Let

ŝint
i := β q(α/β) (3.56)

where

α :=
1

4
Dh(Du)2, (3.57)

β :=

{

C4(|bR − b0| + |bL − b0|)3/2 if ∃x0 ∈ [xl, xR]
C3|Db|3/2 otherwise

(3.58)

Here q is an odd, monotonically increasing, function in C1,1(R) satisfying

q(y) = y for |y| ≤ 1 (3.59)

|q(y)| ≤ 2 for all y ∈ R (3.60)

(this degree of smoothness suffices at least for fourth order accuracy). We choose q to be

the piecewise quadratic function

q(z) :=















z for 0 ≤ z ≤ 1
−1

4
(1 − 6z + z2) for 1 ≤ z ≤ 3

2 for z ≥ 3
−q(−z) for z < 0 .
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Clearly the symmetry condition (3.36) is satisfied. Now we check the smallness condition

(3.35). Let us assume, for example, that the cell contains a sonic point. By (3.27) the bottom

is Lipschitz continuous in the interior of each cell. Therefore

|ŝint
i | ≤ 2 β = 2 C4 (|bR − b0| + |bL − b0|)3/2 ≤ 2 C4L

3/2
b ∆x3/2. (3.61)

Treating the case without sonic point analogously, we obtain that

|ŝint
i | ≤ C∆x3/2. (3.62)

Therefore the smallness condition (3.35) is satisfied.

Next we will verify (3.34) at equilibria. By definition, α/β ≤ 1 if Dm = DE = 0.

Therefore q(α/β) = α/β and

ŝint
i = β(α/β) = α =

1

4
Dh(Du)2, (3.63)

so condition (3.34) is satisfied.

It is straightforward to check that for smooth data, (3.32) is second order accurate as a

quadrature for the source term, since we add a third order difference to the term −Df−gh̄Db.

It is also symmetric. Thus it can be raised to any order of accuracy by extrapolation, as we

will see in the next section. It reduces to the standard well-balanced quadrature for the lake

at rest when uL = uR = 0.

3.3.4 High Order Accuracy via Extrapolation

The interior residual (3.32) is so far only second order accurate. But we can directly adapt

the extrapolation technique used in the paper of Noelle et al. [16], and obtain a high order

discretization.

We first subdivide each cell into N subcells and apply the quadrature (3.37) to all subcells.

Then we can have the following quadratures SN :

SN =

N
∑

j=1

sint
i (U+

j−1, U
−
j , b+

j−1, b
−
j ) (3.64)
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where the subscript j means the value at the point xi− 1

2

+ j∆x/N . In the case of steady

state, we have the following fact:

SN =
N
∑

j=1

sint
i (U+

j−1, U
−
j , b+

j−1, b
−
j )

=
N
∑

j=1

(

f(U−
j ) − f(U+

j−1)
)

= f(U−
N ) − f(U+

0 ) = f(U−

i+ 1

2

) − f(U+
i− 1

2

).

This shows that SN is also a second order well-balanced approximation to the source term.

Hence any linear combination of Si is also a well balanced approximation. Due to (3.36) the

quadrature S1 in (3.37) is second order accurate and symmetric, therefore, there exists an

asymptotic expansion:

SN = S + c1

(

∆x

N

)2

+ c2

(

∆x

N

)4

+ · · · , (3.65)

where S represents the source term. Then the idea of extrapolation can provide an approx-

imation to S with any order of accuracy by the combination of SN . A well-balanced fourth

order approximation is given by:

4S2 − S1

3
. (3.66)

Compared with the second order discretization S1, the fourth order well-balanced scheme

here needs one additional reconstructed point value at the cell center per cell, which is

necessary for the computation of S2. With this high order discretization of the source term,

the numerical scheme is complete, and we will show later that this scheme is in fact well

balanced.

3.4 Summary of the One-Dimensional Scheme

The fourth order well-balanced scheme is given by

d

dt
Ūi :=

1

∆xi

(

−F (Û−

i+ 1

2

, Û+
i+ 1

2

) + F (Û−

i− 1

2

, Û+
i− 1

2

) + si

)

. (3.67)
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Here the function F (·, ·) is a conservative, Lipschitz continuous numerical flux consistent

with the shallow water flux, i.e. F (U, U) = f(U) for all U . The left and right values Û±

i+ 1

2

at the cell interface are defined in (3.19).

The total source term si is given by

si :=
4S2 − S1

3
+ f(Û+

i− 1

2

) − f(Ũ+
i− 1

2

) + f(Ũ−

i+ 1

2

) − f(Û−

i+ 1

2

), (3.68)

where Ũ±

i− 1

2

is defined in (3.13). The extrapolated interior source term (4S2−S1)/3 is defined

by

S1 := sint
i (Ũ+

i− 1

2

, Ũ−

i+ 1

2

, b+
i− 1

2

, b−
i+ 1

2

) (3.69)

S2 :=
(

sint
i (Ũ+

i− 1

2

, Ũi, b
+
i− 1

2

, bi) + sint
i (Ũi, Ũ

−

i+ 1

2

, bi, b
−

i+ 1

2

)
)

(3.70)

and the well-balanced quadrature of the source term sint
i is given by (3.37)

sint
i (UL, UR, bL, bR) := −gh̄Db + ŝint

i (3.71)

where ŝint
i is given by (3.56) – (3.58), and satisfies conditions (3.34) – (3.36). The scheme is

completed by a TVD Runge-Kutta discretization [24] in time.

Algorithm 3.10. An implementation of this algorithm consists of the following steps:

1. Compute the initial cell average of U and bottom b based on the initial data. Apply the

WENO reconstruction to b̄i to obtain point values of b (may be ignored if bottom b is

prescribed as a function of x).

2. At each time step, apply the usual WENO reconstruction procedure to the cell averages

Ūi, and obtain U±

i+ 1

2

, hence V ±

i+ 1

2

. Compute Ui and Vi to obtain fourth order accuracy.

3. Compute the reference value V̄i as the implicit solution of equation (3.3).

4. Apply the equilibrium limiter (3.8) to the cell averages V̄i, V̄i±1, and to the point-values

V ±

i+ 1

2

, Vi, to get the limited values Ṽ ±

i+ 1

2

and Ṽi.
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5. Compute the numerical fluxes on the RHS of (3.67).

6. Compute the high order discretization of the source terms (3.68)–(3.71).

7. Apply a TVD Runge-Kutta scheme [24] to (3.67) to advance Ūi(t) in time.

3.5 Well-Balanced Property and Convergence to Weak Solutions

We begin this section by proving that our scheme is well-balanced for equilibria made of

piecewise smooth regions separated by stationary shocks. Then we show that in the more

general, nonstationary case limits of the scheme are weak solutions.

Collecting the results of the previous section it is straightforward to prove the following

Theorem 3.11. The WENO scheme (3.67)–(3.71) maintains smooth moving steady state

solutions (1.3) exactly and is high order accurate. The same holds for the fully discrete

scheme.

Proof. Suppose that the initial data are a moving steady state, V (x) ≡ V̄ . Then Lemma 3.2

implies that all reference values V̄i coincide with V̄ . Corollary 3.5 implies that V (Ũi, bi) =

V (Ũ±

i+ 1

2

, b±
i+ 1

2

) = V̄i. Now Lemma 3.7 implies that the interior residual vanishes, rint
i = 0.

Since we know from (3.24) that there is no residual in the topographic layer, requi
i = 0, it

remains to show that the residual in the convective layer, rconv
i vanishes as well. For this we

study not only the values Û+
i− 1

2

and Ûi− 1

2

, but also the corresponding value Û−

i− 1

2

from the

neighboring cell Ii−1. Since V̄i−1 = V̄i, it follows that Û−

i− 1

2

= Û+
i− 1

2

and hence f̂i− 1

2

= f(Û+
i− 1

2

).

Therefore

rconv
i = −f̂i+ 1

2

+ f(Û−

i+ 1

2

) + f̂i− 1

2

− f(Û+
i− 1

2

) = 0 (3.72)

and

ri = rint
i + requi

i + rconv
i = 0, (3.73)

so both the semidiscrete and the fully discrete schemes will preserve moving steady states.
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We can easily check the two conditions of Lemma 3.1 are satisfied for our scheme. This

proves the high order accuracy.

We can extend the well-balancedness result of the previous theorem to the case of piece-

wise smooth equilibrium solutions, where the smooth equilibria Dm = DE = 0 are separated

by stationary shocks. Note that each smooth region will have its own constant value Eloc,

and the Rankine-Hugoniot condition determines the jump in energy across the shock.

Theorem 3.12. The WENO scheme (3.67)–(3.71) maintains piecewise smooth moving stea-

dy state solution (1.3) exactly, if the stationary shocks separating the smooth regions are

all located at cell boundaries, and computed by Roe’s numerical flux function. The limiter

procedure (3.8) in this case is replaced by a one-sided limiter for the two cells next to the

shock. The same holds for the fully discrete scheme.

Proof. The proof is completely analogous to that of the previous theorem. We only have to

note that for a stationary shock located at xi− 1

2

, Roe’s solver gives

f̂i− 1

2

= f(Û+
i− 1

2

).

This yields

rconv
i = −f̂i+ 1

2

+ f(Û−

i+ 1

2

) + f̂i− 1

2

− f(Û+
i− 1

2

) = 0 (3.74)

The rest of the argument remains unchanged.

Next we verify a Lax-Wendroff Theorem, that limits of our scheme are weak solutions.

Let us first define the class of weak solutions which we have in mind. Let Ω = R × [0, T ] be

the domain and let ϕ ∈ C1(Ω) be a test function. The difficulty is to give meaning to the

source term integral

∫∫

ϕ ghbxdxdt (3.75)

over the set where both b and h are discontinuous. The term hbx has been called non-

conservative product and has been extensively studied in the literature, see e.g. [17] and the
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references therein. We divide Ω into a regular set Ωreg where the measure hbxdxdt is regular

with respect to Lebesgue measure dxdt (i.e. the topography b is Lipschitz continuous) and a

singular set Ωsing = Ω \ Ωreg. We assume that the singular set is a curve parametrized by t,

Ωsing = {(y(t), t) | 0 ≤ t ≤ T} (3.76)

(of course Ωsing might also be a union of finitely many such curves). Then we blow up Ωsing

and shrink the set Ωreg correspondingly using a parameter δ > 0,

Ωδ
sing :=

⋃

0≤t≤T

[y(t) − δ, y(t) + δ] × {t} (3.77)

Ωδ
reg := Ω \ Ωδ

sing. (3.78)

Clearly, we can define the integral over the regular set as

∫∫

Ωreg

ϕghbxdxdt := lim
δ→0

∫∫

Ωδ
reg

ϕghbxdxdt (3.79)

The treatment of the non-conservative product over the singular set is more involved:

∫∫

Ωsing

ϕghbxdxdt := lim
δ→0

∫∫

Ωδ
sing

ϕgh(bδ(x, t), m, E, σ)bδ
x(x, t)dxdt (3.80)

where for each t, bδ(·, t) is the continuous piecewise linear function on Γδ interpolating the

three values

bδ(y(t) − δ, t) = bL(t), bδ(y(t), t) = min(bL(t), bR(t)), bδ(y(t) + δ, t) = bR(t), (3.81)

h(bδ, m, E, σ) is the function defined in (2.19), and the equilibrium values m resp. E are the

one-sided limits of m resp. E at that side where b = min(bL, bR). Wlog assume bL < bR, so

m = mL and E = EL.

Now we introduce the primitive of the function gh in (2.19) via

H(b, m, E, σ) :=

b
∫

b0(m,E)

gh(b̂, m, E, σ)db̂, (3.82)
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where we may choose b0(m, E) := 1
g
(E − max

h
( m2

2h2 + gh)). This allows us to rewrite the

integral over the singular set Ωδ
sing as

∫∫

Ωδ
sing

ϕgh(bδ(x, t), m, E, σ)bδ
x(x, t)dxdt (3.83)

=

∫∫

Ωδ
sing

ϕ
d

dx
H(bδ(x, t), m, E, σ)dxdt. (3.84)

Taking the limit δ → 0, we obtain

∫∫

Ωsing

ϕghbxdxdt =

T
∫

0

ϕ(y)



lim
δ→0

y+δ
∫

y−δ

d

dx
H(bδ(x, t), m, E, σ)dx



 dt =

T
∫

0

ϕ(y) DH dt (3.85)

where as usual DH := H(bR, m, E, σ) − H(bL, m, E, σ). If we introduce the average

gh :=
1

bR − bL

bR
∫

bL

gh(b, m, E, σ)db,

then we have the identity

DH = ghDb. (3.86)

Now we are able to formulate the definition of a weak solution:

Definition 3.13. A function U ∈ L∞(Ω) is a weak solution of (1.1) if for all test functions

ϕ ∈ C1(Ω)

∫∫

Ω

(ϕtU + ϕxf(U))dxdt =

∫

∂Ω

(f(U), U) · nϕdS +

∫∫

Ωreg

ϕghbxdxdt +

∫

Ωsing

ϕ ghDb dt.

(3.87)

Remark 3.14. (i) For a systematic introduction to weak solutions using the theory of non-

conservative products we refer to [6, 17] and the references therein. The reader should note

that definition (3.85) of non-conservative products is not the only one possible. Other defi-

nitions would lead to different classes of weak solutions, and in order to approximate them

one would have to adapt the quadrature rules for the source.
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Figure 3.2: Waterfall: a (finitely or infinitely) steep slide followed by a stationary shock.
Dashed line: bottom topography. Circles: Water surface.

(ii) LeRoux and collaborators [13, 5] have constructed a solution operator to the Riemann-

problem with variable bottom.

(iii) Our definition of a weak solution is motivated by considering the particular steady

solution of a waterfall over steep or discontinuous terrain, see Figures 3.2 and 3.3. super-

critically from the left with (b, m, E, σ) = (bL, mL, EL, 1) and h = h(bL, mL, EL, 1). As the

water flows down the slide, b decreases. As can be seen from the supercritical region in

Figure 2.1, the height h decreases correspondingly to the value hC = h(bR, mL, EL, 1), and

the flow accelerates to u = m/hC . Across the stationary shock momentum remains constant

(mR = mL), the height jumps to the value hR = hC

2
(−1 +

√
1 + k2) with k2 = 8m2

gh3

C

. It is

interesting to observe that the equilibrium energy decreases by a cubic term,

ER = EL − g(Dh)3

4hChR
.

As the slide becomes infinitely steep, the waterfall converges to a weak solution in the sense

of Definition 3.13.

We are now ready to prove the following Lax-Wendroff theorem:

Theorem 3.15. Suppose that according to Assumption 3.6, the bottom is piecewise smooth,

contains at most finitely many jump discontinuities, and the reconstructions b∆(x) are uni-

formly and globally Lipschitz continuous in the interior of the cells. Suppose furthermore
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Figure 3.3: Detail of waterfall. x ∈ [−0.024, 0.022].

that the approximate solutions U∆ defined by Algorithm 3.10 converge uniformly almost ev-

erywhere to a function U ∈ L∞(Ω). Then U is a weak solution of (1.1).

Remark 3.16. Note that we admit discontinuous solution and jumps in the topography which

satisfy (3.27).

Proof. Since the proof of the Lax-Wendroff Theorem is classical, we focus on the terms

which are due to our new well-balanced quadrature. For simplicity we restrict ourselves to

the semidiscrete scheme and the case that the bottom topography is independent of time.

Let ϕ be a test function and ϕi = ϕ(xi). ¿From (3.67) we have to study the term

∑

i

∆xiϕi

(

d

dt
Ūi −

1

∆xi

(

−F (Û−

i+ 1

2

, Û+
i+ 1

2

) + F (Û−

i− 1

2

, Û+
i− 1

2

) + si

)

)

(3.88)

We are particularly interested in the source term. From (3.68) we obtain

∑

i

∆xiϕi
si

∆xi
=
∑

i

ϕi

(

4S2 − S1

3
+ f(Û+

i− 1

2

) − f(Ũ+
i− 1

2

) + f(Ũ−

i+ 1

2

) − f(Û−

i+ 1

2

)

)

. (3.89)

The flux differences on the RHS of (3.89) result from sequi
i as defined in (3.26) and are

differences across the topographic, or equilibrium layer where the bottom may jump. From

(3.33) we have

Df = −gh̄Db +
1

4
Dh(Du)2.
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Since we are in the equilibrium layer, where Dm = DE = Dσ = 0, the height is given by

h = h(b, m, E, σ), see (2.19). This implies the identities

b =
1

g

(

E − m2

2h2

)

− h

db

dh
=

m2

gh3

Db =
m2h̄

gh2
Lh2

R

Dh

DH =
m2

hLhR
Dh. (3.90)

¿From these we obtain that

Df = −DH. (3.91)

Thus the source term in the equilibrium layer converges to the last term on the RHS of

(3.87) if the bottom is discontinuous. If the bottom is smooth, according to (3.28) the

WENO reconstruction bi± 1

2

will contain at most a jump of O(∆x2). Therefore,

Df = −DH

Db
Db = O(∆x2)

as well and the corresponding term in (3.89) will vanish in the limit.

Next we study the terms S1 and S2. We begin with S1 as defined by (3.69) and (3.37):

S1 = sint
i (Ũ+

i− 1

2

, Ũ−

i+ 1

2

, b+
i− 1

2

, b−
i+ 1

2

)

= −gh̄Db + ŝint
i .

Note that we are now in the regular set Ωreg, where the topography is smooth. Therefore

the term

−
∑

i

∆xiϕigh̄
Db

∆xi

will converge to the corresponding source term on the LHS of (3.87). By (3.27) and (3.35)

the remaining term is

−
∑

i

ϕi ŝ
int
i = o(∆x)

∑

i

ϕi = o(1) as ∆x → 0
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and hence vanishes in the limit. The term S2 can be treated by the same argument. This

concludes the proof.

4 One-Dimensional Numerical Results

In this section we present numerical results of our fourth order finite volume WENO scheme

satisfying the well-balanced property for the one-dimensional shallow water equations (1.1).

In all the examples, time discretization is by the classical third order TVD Runge-Kutta

method [24], and the CFL number is taken as 0.6, except for the accuracy tests where

smaller time step is taken to ensure that spatial errors dominate. The gravitation constant

g is taken as 9.812m/s2.

4.1 Well-Balanced Test

The purpose of the first test problems is to verify the well balanced property of our algorithm

towards the moving steady state solution. These steady state problems are classical test cases

for transcritical and subcritical flows, and they are widely used to test numerical schemes

for shallow water equations. For example, they have been used as a test case in [25]. Here,

our purpose is to maintain these steady state solutions exactly.

The bottom function is given by:

b(x) =

{

0.2 − 0.05(x − 10)2 if 8 ≤ x ≤ 12
0 otherwise

(4.1)

for a channel of length 25m. Three steady states, subcritical or transcritical flow with or

without a steady shock will be investigated.

a): Transcritical flow without a shock. The initial condition is given by:

E =
1.532

2 × 0.662
+ 9.812 × 0.66, m = 1.53, (4.2)

together with the boundary condition

• upstream: The discharge hu=1.53 m2/s is imposed.
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• downstream: The water height h=0.66 m is imposed when the flow is subcritical.

This steady state should be exactly preserved. We compute the solution until t = 20 using

N = 200 uniform mesh points. The computed surface level h + b and the bottom b are

plotted in Figure 4.1. In order to demonstrate that the steady state is indeed maintained up

to round-off error, we use single precision and double precision to perform the computation,

and show the L1 and L∞ errors for the water height h and the discharge hu (note: neither h

nor hu in this case is a constant or polynomial function!) in Tables 4.1 for different precisions.

We can clearly see that the L1 and L∞ errors are at the level of round-off errors for different

precisions, verifying the well-balanced property.
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Figure 4.1: The surface level h + b and the bottom b for the transcritical flow without a
shock.
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Table 4.1: L1 and L∞ errors for different precisions for the transcritical flow without a shock.

L1 error L∞ error
precision h hu h hu

single 3.43E-05 5.61E-05 9.35E-04 6.56E-05
double 5.63E-16 1.51E-15 2.05E-15 6.66E-15

b): Transcritical flow with a shock. The initial condition is given by:

E =







0.182

2 × 0.41372 + 9.812 × 0.41372 if x ≤ 11.665511784112317

0.182

2 × 0.332 + 9.812 × 0.33 otherwise
m = 0.18, (4.3)

together with the boundary condition

• upstream: The discharge hu=0.18 m2/s is imposed.

• downstream: The water height h=0.33 m is imposed.

This steady state should be exactly preserved. As we mentioned in Section 3.5, we only

discuss the case when the shock is exactly located at the cell boundary. Hence we shift the

computational domain to put the shock at the cell boundary. As we mentioned in Theorem

3.12, for this case when stationary shock exists, we need to use the Roe’s flux to compute the

approximate Riemann problem (3.20), and replace the limiter procedure (3.8) by a one-sided

limiter for the two cells next to the shock, i.e., the following formula is used instead of (3.8)

and (3.9):

lim(w; w̄i, w̄i±1) := w̄i + λ(w − w̄i) (4.4)

where

λ := min

(

1,
|w̄i−1 − w̄i|2
|w − w̄i|2

)

, or min

(

1,
|w̄i+1 − w̄i|2
|w − w̄i|2

)

, (4.5)

depending on whether the cell is on the left or right side of the shock. Also, we mentioned

that the left and right approximated values of bottom at the shock must be exact, so that

the Roe’s flux can capture this shock exactly. Here we compute the solution until t = 20

35



using N = 400 uniform mesh points. The computed surface level h+ b and the bottom b are

plotted in Figure 4.2. In order to demonstrate that the steady state is indeed maintained up

to round-off error, we use single precision and double precision to perform the computation,

and show the L1 and L∞ errors for the water height h and the discharge hu in Tables 4.2

for different precisions. We can clearly see that the L1 and L∞ errors are at the level of

round-off errors for different precisions, verifying the well-balanced property.
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Figure 4.2: The surface level h + b and the bottom b for the transcritical flow with a shock.

Table 4.2: L1 and L∞ errors for different precisions for the transcritical flow with a shock.

L1 error L∞ error
precision h hu h hu

single 7.20E-06 1.38E-06 2.03E-03 1.42E-05
double 4.26E-18 4.01E-18 2.22E-16 2.22E-16
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c): Subcritical flow. The initial condition is given by:

E = 22.06605, m = 4.42, (4.6)

together with the boundary condition

• upstream: The discharge hu=4.42 m2/s is imposed.

• downstream: The water height h=2 m is imposed. when the flow is subcritical.

This steady state should be exactly preserved. We compute the solution until t = 20 using

N = 200 uniform mesh points. The computed surface level h + b and the bottom b are

plotted in Figure 4.3. In order to demonstrate that the steady state is indeed maintained up

to round-off error, we use single precision and double precision to perform the computation,

and show the L1 and L∞ errors for the water height h and the discharge hu in Tables 4.3

for different precisions. We can clearly see that the L1 and L∞ errors are at the level of

round-off errors for different precisions, verifying the well-balanced property.

Table 4.3: L1 and L∞ errors for different precisions for the subcritical flow.

L1 error L∞ error
precision h hu h hu

single 2.39E-05 8.51E-05 3.97E-05 1.86E-04
double 2.66E-16 3.03E-15 1.11E-15 9.77E-15

4.2 Testing the Orders of Accuracy

In this example we will test the high order accuracy of our schemes for a smooth solution.

Following the examples presented in [27], we have the bottom function and initial conditions

b(x) = sin2(πx), h(x, 0) = 5 + ecos(2πx), (hu)(x, 0) = sin(cos(2πx)), x ∈ [0, 1]

with periodic boundary conditions. Since the exact solution is not known explicitly for this

case, we use the fifth order finite volume non well-balanced WENO scheme with N = 12, 800
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Figure 4.3: The surface level h + b and the bottom b for the subcritical flow.

cells to compute a reference solution, and treat this reference solution as the exact solution

in computing the numerical errors. We compute up to t = 0.1 when the solution is still

smooth (shocks develop later in time for this problem). Table 4.4 contains the L1 errors for

the cell averages and numerical orders of accuracy for the finite volume schemes, respectively.

Notice that the CFL number we have used decreases with the mesh size and is recorded in

Table 4.4. We can easily observe the fifth-order accuracy for the WENO schemes. Note

that the fifth-order WENO reconstruction has been used in space, but the source term is

approximated by a fourth order accurate extrapolation. Hence the approximation of the

source term in the algorithm contributes less to the overall error. This phenomena has been

investigated in [16].
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Table 4.4: L1 errors and numerical orders of accuracy for the example in Section 4.2.

No. of CFL h hu
cells L1 error order L1 error order
25 0.6 1.48E-02 9.78E-02
50 0.6 2.41E-03 2.68 1.97E-02 2.31
100 0.4 2.97E-04 3.02 2.58E-03 2.93
200 0.3 2.44E-05 3.61 2.13E-04 3.60
400 0.2 1.03E-06 4.56 8.97E-06 4.57
800 0.1 3.49E-08 4.89 2.95E-07 4.93

4.3 A Small Perturbation of a Moving Steady-State Water

The following test case is chosen to demonstrate the capability of the proposed scheme for

computations on the perturbation of a steady state solution, which cannot be captured well

by a non well-balanced scheme.

In the subsection 4.1, we presented three steady state solutions and showed that our

numerical schemes did maintain them exactly. In this test case, we impose to them a small

perturbation 0.01 on the height in the interval [5.75,6.25].

Theoretically, this disturbance should split into two waves, propagating to the left and

right respectively. Many numerical methods have difficulty with the calculations involving

such small perturbations of the water surface. The solution obtained on a 200 cell uniform

grid with simple transmissive boundary conditions, compared with the results using 2000

uniform cells, is shown in Figure 4.4 for the transcritical flow without a shock, in Figure

4.5 for the transcritical flow with a shock and in Figure 4.6 for the subcritical flow. The

stopping time T is set as 1.5 for the first and third flow, 3 for the second flow. At this

time, the downstream-traveling water pulse has already passed the bump. We can clearly

see that there are no spurious numerical oscillations and the resolution for the propagated

small perturbation is very good.
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Figure 4.4: Small perturbation of the transcritical flow without a shock.

4.4 The Dam-Break-Problem over a Rectangular Bump

In this traditional test case we simulate the dam breaking problem over a rectangular bump,

which produces a rapidly varying flow over a discontinuous bottom topography. This example

was used in [26, 27, 16].

The bottom topography takes the form:

b(x) =

{

8 if |x − 750| ≤ 1500/8
0 otherwise

(4.7)

for x ∈ [0, 1500]. The initial conditions are

(hu)(x, 0) = 0 and h(x, 0) =

{

20 − b(x) if x ≤ 750
15 − b(x) otherwise

(4.8)

We use open boundary conditions on both sides. In the beginning, we observe the

standard rarefaction and shock waves which form the solution of the Riemann problem of
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Figure 4.5: Small perturbation of the transcritical flow with a shock.

the homogeneous shallow water equations. The numerical results with 400 uniform cells

(and a comparison with the results using 4000 uniform cells) are shown in Figures 4.7 at

ending time t=15s. At time T≈17, the waves reach the discontinuous edges of the bottom.

After that, a part of the wave is transmitted, another part reflected, and a remaining part

becomes a standing wave. Later on, this wave system keeps interacting. When the time T

reaches 60, six waves appear in our solution. The numerical results with 400 uniform cells

(and a comparison with the results using 4000 uniform cells) are shown in Figures 4.8 at the

ending time t=60s.

In this example, the water height h(x) is discontinuous at the points x = 562.5 and

x = 937.5. Our scheme works well for this example, giving well resolved, non-oscillatory

solutions using 400 cells which agree with the converged results using 4000 cells.
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5 A Two-Dimensional Example

The shallow water system in two space dimensions takes the form:






















ht + (hu)x + (hv)y = 0

(hu)t +

(

hu2 +
1

2
gh2

)

x

+ (huv)y = −ghbx

(hv)t + (huv)x +

(

hv2 +
1

2
gh2

)

y

= −ghby

(5.1)

where again h is the water height, (u, v) is the velocity of the fluid, b represents the bottom

topography and g is the gravitational constant.

Our focus of this paper is on one dimensional problems. In two spatial dimensions there

is an abundance of steady states, and it is much more difficult to identify the interesting

ones. It is in principle possible to extend the techniques in this paper to obtain well balanced

schemes for some of the truly two dimensional moving water steady states, but the procedure
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Figure 4.7: The surface level h + b for the dam breaking problem at time t=15s. Left: the
numerical solution using 400 grid cells, plotted with the initial condition and the bottom
topography; Right: the numerical solution using 400 and 4000 grid cells.

is significantly more complicated and we will not discuss such extensions in this paper. In

this section we only consider our one dimensional well balanced scheme designed in previous

sections, trivially generalized to two dimensions by using our well balanced WENO algo-

rithm in both directions. In the x direction, we first apply the usual WENO reconstruction

procedure to obtain U±

i+ 1

2
,j
, where U = (h, hu, hv)T . Then based on h±

i+ 1

2
,j

and hu±

i+ 1

2
,j
, we

repeat steps 2-4 of Algorithm 3.10 to obtain h̃±

i+ 1

2
,j

and h̃u±

i+ 1

2
,j
. By keeping hv unchanged,

we define Ũ±

i+ 1

2
,j

as (h̃±

i+ 1

2
,j
, h̃u±

i+ 1

2
,j
, hv±

i+ 1

2
,j
)T and then follow steps 5-6 of Algorithm 3.10.

Notice that this procedure should be carried out for more than one quadrature points along

the edge x = xi+ 1

2

rather than just for the middle point y = yj as described above, in order

to ensure higher than second order accuracy. We are using U±

i+ 1

2
,j

at the middle point y = yj

above simply to demonstrate the ideas. The same procedure is applied to the y direction,

where hu remains unchanged. We take a numerical example which is a two dimensional

perturbation of a one dimensional moving steady water, and compare our scheme with the

regular, non well-balanced WENO scheme.

Similar to the one dimensional case, we use the classical third order TVD Runge-Kutta

time discretization with CFL number 0.6.
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Figure 4.8: The surface level h + b for the dam breaking problem at time t=60s. Left: the
numerical solution using 400 grid cells, plotted with the initial condition and the bottom
topography; Right: the numerical solution using 400 and 4000 grid cells.

We solve the system in the rectangular domain [0, 25] × [0, 25]. The bottom topography

is given by:

b(x, y) =

{

0.2 − 0.05(x − 10)2 if 8 ≤ x ≤ 12
0 otherwise

(5.2)

Notice that the bottom is a function of x only. A steady state solution can be computed

from:

1

2
u2 + g(h + b) = 22.06605, hu(x, y, 0) = 4.42, hv(x, y, 0) = 0 (5.3)

These data correspond precisely to the one-dimensional subcritical steady state of (4.6), and

the cross section of the unperturbed solution can be seen in Figure 4.3. Our initial condition

is given by a two dimensional small perturbation of that steady state, where h is perturbed

upward by 0.05 in the box 6.5 ≤ x ≤ 7.5, 12 ≤ y ≤ 13. Figures 5.1 and 5.2 display the

disturbance as it interacts with the hump, on two different uniform meshes with 100 × 100

cells and 200× 200 cells for comparison. The difference between the height h and the initial

steady state (5.2) is presented at different times t = 0.5 and t = 1. We also run the same

numerical test with the well balanced fifth order finite volume WENO scheme for the lake

at rest. Note that this scheme is not well balanced for moving equilibria. The comparison

of the numerical results are presented in Figures 5.3 and 5.4. The results indicate that our
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Figure 5.1: The contours of the difference between the height h and the initial steady state
(5.2) for the problem in Section 5 at time t = 0.5. 30 uniformly spaced contour lines from
-0.009 to 0.012. Left: results with a 100×100 uniform mesh. Right: results with a 200×200
uniform mesh.

well balanced scheme can resolve the complex small features of the flow very well, without

spurious features which do appear in the results obtained with the regular non well-balanced

WENO scheme.

6 Concluding Remarks

In this paper we have constructed well-balanced schemes of arbitrary order of accuracy for

the moving steady state solutions of the shallow water equations. The new schemes extend

the techniques used in our previous work for still steady water [16, 30]. Special reconstruc-

tion procedure and source term discretization are introduced such that the resulting WENO

schemes balance the moving steady state solution to machine accuracy. Numerical exam-

ples are given to demonstrate the well balanced property, accuracy, good capturing of the

small perturbation to the steady state solutions, and non-oscillatory shock resolution of the

proposed numerical method. Although the new schemes are designed for the shallow water

equation, the idea can be generalized to many other balance laws.
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Figure 5.3: The 3D figure of the difference between the height h and the initial steady state
(5.2) for the problem in Section 5 at time t = 0.5 with a 200 × 200 uniform mesh. Left:
results based on well balanced scheme. Right: results based on non well-balanced scheme.

46



X

0

5

10

15

20

25

Y

0

5

10

15

20

25

H
eig

hth

-0.01

0

0.01

0.02

Y

X

Z

X

0

5

10

15

20

25

Y

0

5

10

15

20

25

H
eig

hth

-0.01

0

0.01

0.02

Y

X

Z

Figure 5.4: The 3D figure of the difference between the height h and the initial steady state
(5.2) for the problem in Section 5 at time t = 1 with a 200×200 uniform mesh. Left: results
based on well balanced scheme. Right: results based on non well-balanced scheme.
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