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SUMMARY

We consider a generalized Stokes equation with problem parameters ξ ≥ 0 (size of the reaction term)
and ν > 0 (size of the diffusion term). We apply a standard finite element method for discretization.
The main topic of the paper is a study of efficient iterative solvers for the resulting discrete saddle point
problem. We investigate a coupled multigrid method with Braess-Sarazin and Vanka type smoothers,
a preconditioned MINRES method and an inexact Uzawa method. We present a comparative study
of these methods. An important issue is the dependence of the rate of convergence of these methods
on the mesh size parameter and on the problem parameters ξ and ν. We give an overview of the main
theoretical convergence results known for these methods. For a three dimensional problem, discretized
by the Hood-Taylor P2 −P1 pair, we give results of numerical experiments. Copyright c© 2006 John
Wiley & Sons, Ltd.

KEY WORDS generalized Stokes problem, preconditioned MINRES, inexact Uzawa method,
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1. Introduction

Let Ω ⊂ R
3 be a bounded polygonal domain with a Lipschitz boundary Γ = ∂Ω. We consider

the following generalized Stokes problem:

Given ~f , find a velocity ~u and a pressure p such that

ξ~u − ν∆~u + ∇p = ~f in Ω,

∇ · ~u = 0 in Ω,

~u = 0 on Γ.

(1)
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EFFICIENT SOLVERS FOR GENERALIZED STOKES EQUATIONS 1

The parameters ν > 0 (viscosity) and ξ ≥ 0 are given. Often the latter is proportional to the
inverse of the time step in an implicit time integration method applied to a nonstationary
Stokes problem. Note that this general setting includes the classical (stationary) Stokes
problem (ξ = 0). This problem is discretized on a tetrahedral grid with a pair of conforming
finite element spaces that is inf-sup stable. In our experiments we use the P2 − P1 Hood-
Taylor pair. The resulting discrete problem is of saddle-point type with a symmetric indefinite
matrix. In this paper we study efficient iterative solvers for this linear system. In particular the
efficiency (robustness) of the solvers with respect to variation in the mesh size parameter and
in the problem parameters ξ and ν is studied. We consider a multigrid method with Vanka and
Braess-Sarazin smoothers, a preconditioned MINRES method and an inexact Uzawa method.
In the latter two methods multigrid preconditioners are used for the scalar problems for each
velocity component. A comparative study of the preconditioned MINRES and inexact UZAWA
method with other preconditioned Krylov subspace methods for this problem class is given
in [18]. Numerical studies on the performance of coupled multigrid problems for (generalized)
Stokes and Navier-Stokes can be found in, for example, [9, 10, 11, 12, 21]. We do not know
of any literature in which a systematic comparison between coupled multigrid, preconditioned
MINRES and inexact Uzawa type of methods for this class of generalized Stokes equations is
given. In this paper we present such a comparative study. We give an overview of the main
theoretical results that are available for these methods. From this it follows that concerning
theoretical convergence results the state of affairs is much better for the preconditioned
MINRES and the inexact Uzawa method than for the coupled multigrid method. We pay
special attention to the case ξ = 0, ν > 0 variable. In this case variation of the parameter ν
corresponds to a rescaling of the velocity unknowns. We show that for all methods considered
here the rate of convergence is essentially independent of this rescaling.

We also investigate the efficiency of the different methods by means of numerical
experiments. It turns out that all methods show good robustness properties with respect to
variation in the mesh size and in the parameters ξ and ν.

The paper is organized as follows. In section 2 the weak formulation and the finite element
discretization are given. In section 3 the coupled multigrid method with Braess-Sarazin and
Vanka smoothers is desribed. For the method with Braess-Sarazin smoother a convergence
analysis known from the literature is presented in a different form. In section 4 we discuss the
preconditioned MINRES and inexact Uzawa methods. We recall known convergence results for
these methods. A comparison of all these methods from a theoritical point of view is given in
section 5. In the final section 6 a numerical study of these methods is presented and conclusions
are drawn.

2. Weak formulation and finite element discretization

The weak formulation of (1) is as follows:

Given ~f ∈ L2(Ω)3, we seek ~u ∈ H1
0 (Ω)3 and p ∈ L2

0(Ω) such that

ξ(~u,~v) + ν(∇~u,∇~v) − (div ~v, p) = (~f,~v) for all ~v ∈ H1
0 (Ω)3,

(div ~u, q) = 0 for all q ∈ L2
0(Ω).

(2)

Here (·, ·) denotes the L2 scalar product.
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2 M. LARIN AND A. REUSKEN

For descretization of (2) we use a standard finite element approach. Based on a quasi-uniform
family of nested tetrahedral grids T0 ⊂ T1 ⊂ . . . we use a sequence of nested finite element
spaces

(Vl−1, Ql−1) ⊂ (Vl, Ql), l = 1, 2, . . . .

The pair of spaces (Vl, Ql), l ≥ 0, is assumed to be stable. By hl we denote the mesh size
parameter corresponding to Tl. We assume that hl−1/hl is uniformly bounded in l. For the
theoretical analysis we assume that the pair has the following approximation property:

inf
~v∈Vl

‖~u−~v‖1+ inf
q∈Ql

‖p−q‖L2 ≤ c hl

(

‖~u‖2+‖p‖1), ∀ ~u ∈ (H2(Ω)∩H1
0 (Ω))3, p ∈ H1(Ω)∩L2

0(Ω).

We use the notation ‖ · ‖k, k = 1, 2, for the norms in Hk(Ω). In our numerical experiments we
use the Hood-Taylor P2−P1 pair. The discrete problem is given by the Galerkin discretization
of (2) with the pair (Vl, Ql). We are interested in the solution of this discrete problem on a
given finest discretization level l = L. To solve this discrete problem we introduce the standard
nodal bases in these finite element spaces. The representation of the discrete problem on level
l in these bases results in a linear saddle point problem of the form:

Alxl = bl with Al =

(

Al BT
l

Bl 0

)

, xl =

(

ul

pl

)

. (3)

The dimensions of the spaces Vl and Ql are denoted by nl and ml, respectively. The matrix
Al ∈ R

nl×nl is the discrete representation of the differential operator ξI−ν∆ and is symmetric
positive definite. Note that Al depends on the parameters ξ and ν. The matrix Al depends on
these parameters, too, and is symmetric and strongly indefinite. In the remainder of the paper
we consider iterative solvers for the system (3) on the finest level L.

Remark 1. The matrix Al is singular. Below we always consider Al on the subspace R
nl ×1⊥,

where 1⊥ is the subspace of R
ml of vectors for which the corresponding finite element functions

ql ∈ Ql satisfy
∫

Ω
ql dx = 0. The mapping Al : R

nl × 1⊥ → R
nl × 1⊥ is invertible.

3. A coupled multigrid method

We consider a multigrid method for the coupled system in (3). Below we discuss the components
of this multigrid solver.

The grid transfer operations. For the prolongation and restriction of vectors (or corresponding
finite element functions) between different level we use the canonical operators. The
prolongation between level l − 1 and l is given by

Pl =

(

PV 0
0 PQ

)

,

where the matrices PV : R
nl−1 → R

nl and PQ : R
ml−1 → R

ml are matrix representations of the
embeddings Vl−1 ⊂ Vl (quadratic interpolation for P2) and Ql−1 ⊂ Ql (linear interpolation
for P1), respectively. For the restriction operator Rl between the levels l and l− 1 we take the
adjoint of Pl (w.r.t. a scaled Euclidean scalar product).

Copyright c© 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 00:0–0
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Coarse grid operators. In the multigrid solver for the problem on the finest level L we need
operators on the coarser levels L − 1, . . . , 0. We use the matrices Al in (3). These result from
the finite element discretization method applied on level l. For these matrices the Galerkin
relation Al−1 = RlAlPl holds.

The smoothers. In this paper we consider two popular smoothers for Stokes type of problems,
namely the Braess-Sarazin smoother and a Vanka-type smoother. These smoothers and their
properties are discussed in the following two subsections.

3.1. Braess-Sarazin smoother

This smoother is introduced in [4]. With Dl = diag(Al) and a given α > 0 the smoothing
iteration has the form

(

u
(j+1)
l

p
(j+1)
l

)

=

(

u
(j)
l

p
(j)
l

)

−

(

αDl BT
l

Bl 0

)−1
{

(

Al BT
l

Bl 0

)

(

u
(j)
l

p
(j)
l

)

−

(

fl
0

)

}

. (4)

Each iteration (4) requires the solution of the auxiliary problem

(

αDl BT
l

Bl 0

)(

ûl

p̂l

)

=

(

r
(j)
l

Blu
(j)
l

)

(5)

with r
(j)
l = Alu

(j)
l + BT

l p
(j)
l − fl. From (5) one obtains

Blûl = Blu
(j)
l ,

and hence,

Blu
(j+1)
l = Bl(u

(j)
l − ûl) = 0 for all j ≥ 0. (6)

Therefore, the Braess-Sarazin method can be considered as a smoother on the subspace of
vectors that satisfy the constraint equation Blul = 0.

The problem (5) can be reduced to a problem for the auxiliary pressure unknown p̂l:

Zlp̂l = BlD
−1
l r

(j)
l − αBu

(j)
l , (7)

where Zl = BlD
−1
l BT

l .

Remark 2. The matrix Zl is a sort of discrete Laplace operator on the pressure space. In
practice the system (7) is solved approximately using an iterative solver.

Once p̂l is known (approximately), an approximation for ûl can easily be determined from

αDlûl = r
(j)
l −BT

l p̂l. The iteration matrix of the smoother (4) is denoted by Sl. For a two-grid
method, with ν1 pre- and ν2 post-smoothing steps, applied to (3) the iteration matrix is given
by

Ml = Sν2

l (I − PlA
−1
l−1RlAl)S

ν1

l (8)

We derive a convergence result for this multigrid method with the Braess-Sarazin smoother.
A multigrid convergence analysis is given in [4], however, only for the case where Dl is replaced

by the identity matrix. In that paper the reduction of the velocity error u
(j)
l −ul in the subspace

of vectors that satisfy the constraint equation Blul = 0 is analyzed. The pressure error does not

Copyright c© 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 00:0–0
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play a role. In the present paper, due to the parameters contained in the left-upper Al-block
we are interested in the dependence of the multigrid convergence behaviour on the scaling of
the Al-block. This dependence can be analysed very easily (Lemma 3 below) if we present
the analysis from [4] in a different form in which both the errors in the velocity and pressure
components are taken into account. In this modified analysis we consider the smoother as in (4)
and not the one (as in [4]) in which Dl is replaced by the identity. The analysis is formulated
in terms of a smoothing- and approximation property. We use the following norms. By ‖ · ‖ we
denote the Euclidean norm on R

k. On R
nl+ml we also use the following norm:

∥

∥

(

ul

pl

)

∥

∥

2

h
:= ‖ul‖

2 + h2
l ‖pl‖

2 = ‖Λl

(

ul

pl

)

‖2 with Λl :=

(

Inl
0

0 hlIml

)

.

Corresponding matrix norms are denoted by ‖ · ‖, ‖ · ‖h, too. For the Braess-Sarazin smoother
we have the following result.

Lemma 1. For the method (4), with iteration matrix Sl, the following holds:

AlS
ν1

l =

(

Inl
0

0 0

)

AlS
ν1

l (9)

‖AlS
ν1

l ‖h = ‖AlS
ν1

l ‖ ≤
α

e(ν1 − 2) + 1
‖Dl‖ if α ≥ λmax(D

−1
l Al), ν1 ≥ 2. (10)

Proof: The result in (9) follows from Blul = 0 and (6). Introduce Ãl = D
−1/2
l AlD

−1/2
l ,

B̃l = BlD
−1/2
l . A simple computation shows that for the iteration matrix we have

Sl =

(

D
− 1

2

l 0
0 Iml

)

(

(Inl
− B̃T

l (B̃lB̃
T
l )−1B̃l)(Inl

− α−1Ãl) 0

(B̃lB̃
T
l )−1B̃l(αInl

− Ãl) 0

)

(

D
1

2

l 0
0 0

)

.

The operator
Tl := Inl

− B̃T
l (B̃lB̃

T
l )−1B̃l

is an orthogonal projector on Kern(B̃l), thus B̃lTl = 0. With Ml := Tl(Inl
− α−1Ãl)Tl, we

obtain, for ν1 ≥ 2,

Sν1

l = Sν1−1
l Sl

=

(

D
− 1

2

l 0
0 Iml

)

(

Mν1−1
l 0

α(B̃lB̃
T
l )−1B̃l(Inl

− α−1Ãl)M
ν1−2
l 0

)

(

Tl(Inl
− α−1Ãl)D

1

2

l 0
0 0

)

.

(11)

Note that
(

D
− 1

2

l 0
0 Iml

)

Al

(

D
− 1

2

l 0
0 Iml

)

=

(

Ãl B̃T
l

B̃l 0

)

.

Combined with (11) this yields
(

D
− 1

2

l 0
0 Iml

)

AlS
ν1

l

=

(

ÃlM
ν1−1
l + α(Inl

− Tl)(Inl
− α−1Ãl)TlM

ν1−2
l 0

0 0

)

(

Tl(Inl
− α−1Ãl)D

1

2

l 0
0 0

)

.

(12)

Copyright c© 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 00:0–0
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¿From this and (9) it follows that ΛlAlS
ν1

l Λ−1
l = AlS

ν1

l and thus the identity in (10) holds.

¿¿From (12) we obtain for α ≥ λmax(D
−1
l Al) = λmax(Ãl) and ν1 ≥ 2,

‖AlS
ν1

l ‖ ≤ ‖D
1

2

l ‖
∥

∥

(

D
− 1

2

l 0
0 Iml

)

AlS
ν1

l

∥

∥

≤ ‖D
1

2

l ‖‖ÃlM
ν1−1
l + α(Inl

− Tl)(Inl
− α−1Ãl)TlM

ν1−2
l ‖‖Tl‖‖Inl

− α−1Ãl‖‖D
1

2

l ‖

≤ ‖ÃlM
ν1−1
l + α(Inl

− Tl)(Inl
− α−1Ãl)TlM

ν1−2
l ‖‖Dl‖. (13)

Note that Ml is symmetric positive definite with σ(Ml) ⊂ [0, 1]. Using this and TlÃlTl =
α(Tl − Ml) we obtain

‖ÃlM
ν1−1
l + α(Inl

− Tl)(Inl
− α−1Ãl)TlM

ν1−2
l ‖ =

∥

∥

(

ÃlMl − ÃlTl + α(Tl − Ml)
)

Mν1−2
l

∥

∥

= ‖(Ãl − αInl
)(Ml − Tl)M

ν1−2
l ‖

≤ ‖Ãl − αInl
‖‖(Ml − Tl)M

ν1−2
l ‖

= ‖Ãl − αInl
‖‖(Ml − Inl

)Mν1−2
l ‖

≤
α

e(ν1 − 2) + 1
.

Using this in (13) we get the inequality in (10).

We now consider the approximation property.

Lemma 2. Take ξ = 0 and ν = 1 in (2). Assume that Ω is such that the problem (2) is

H2-regular. Then there exists a constant CA independent of l such that

∥

∥

(

A−1
l − PlA

−1
l−1Rl

)

(

Inl
0

0 0

)

‖h ≤ CA‖Dl‖
−1 (14)

holds.

Proof: Let {φi}1≤i≤nl
, {φ̃i}1≤i≤ml

be the nodal bases in Vl and Ql and

Flu :=

nl
∑

i=1

uiφi and F̃lp :=

ml
∑

i=1

piφ̃i

the finite element isomorphisms R
nl → Vl and R

ml → Ql, respectively. On R
nl we use a

scaled Euclidean inner product 〈v,u〉l = h3
l

∑nl

i=1 viui, and similarly on Ql. The norms ‖u‖l

(‖p‖l) and ‖Flu‖L2 (‖F̃lp‖L2) are uniformly (w.r.t. u, p and l) equivalent. Let Al (and Al−1)
be scaled such that

〈Alu,v〉l = (∇Flu,∇Flv), 〈Blu,p〉l = (divFlu, F̃lp) for all u,v ∈ R
nl , p ∈ R

ml (15)

For fl ∈ Vl let ~u ∈ H1
0 (Ω)3, p ∈ L2

0(Ω) be the solution of

(∇~u,∇~v) − (div ~v, p) = (fl, ~v) for all ~v ∈ H1
0 (Ω)3,

(div ~u, q) = 0 for all q ∈ L2
0(Ω).

(16)

Let (~ul, pl) be the Galerkin solution of this problem in the pair of spaces (Vl, Ql). The matrix
Al is the matrix representation of the finite element discretization of the problem (16), cf.

Copyright c© 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 00:0–0
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6 M. LARIN AND A. REUSKEN

(15). Using this, the approximation property of the spaces (Vl, Ql) and standard finite element
techniques (duality argument) we obtain

∥

∥

(

A−1
l − PlA

−1
l−1Rl

)

(

Inl
0

0 0

)

‖h ≤ c sup
fl∈Vl

‖~u − ~ul‖L2 + hl‖p − pl‖L2

‖fl‖L2

≤ c̃h2
l .

Using the scaling of Al as in (15) and standard properties of the finite element nodal basis we
obtain ‖Dl‖ ≥ ch−2

l with a constant c > 0. Thus we obtain the bound in (14).

In the approximation property it is important to have the projection factor

(

Inl
0

0 0

)

in (14).

Without this factor one has to consider the Stokes problem in (16) where in the second equation
the right handside 0 is replaced by (gl, q) with a gl ∈ Ql. The regularity properties of such a
problem are in general less favorable as for the case with a 0 right hanside. In particular, for
H2-regularity one has to assume certain compatibility conditions on gl that are not satisfied
for all gl ∈ Ql, cf. [6].

Combination of the smoothing- and approximation property yields a two-grid convergence
result.

Theorem 1. Take ξ = 0 and ν = 1 in (2). Assume that Ω is such that the problem (2) is

H2-regular. For the iteration matrix of the two-grid method with ν2 = 0 the following holds:

‖Ml‖h ≤
CA

e(ν1 − 2) + 1
for ν1 ≥ 2,

with a constant CA independent of l.

Proof: Due to (9) we have

Ml = (A−1
l − PlA

−1
l−1Rl)

(

Inl
0

0 0

)

AlS
ν1

l .

The desired result follows from (10) and Lemma 2.
In [4] such a result is proved for a two-grid method in which an additional projection step

is used in the coarse-grid correction. In [3], however, it is noted that this projection step is
superfluous.

Using this two-grid contraction number bound one can derive a multigrid W -cycle
convergence result using techniques from [7, 8].

The numerical experiments in section 6 clearly show that the multigrid W -cycle method with
Braess-Sarazin smoother is robust with respect to variation in the problem parameters ν and ξ.
We do not know of any analysis in which such a robustness property is proved. An elementary
scaling argument can be used to derive a robustness result for the (less interesting) case ξ = 0,
ν > 0 arbitrary. For this scaling argument we introduce the notation

Il,δ =

(

Inl
0

0 δIml

)

, Ĩl,δ =

(

δInl
0

0 Iml

)

(17)

with Ik the identity matrix in R
k. For δ 6= 0 let Ml,δ be the iteration matrix of the two-grid

method with ν1 pre- and ν2 post-smoothing iterations (4) applied to the matrix

Al,δ :=

(

δAl BT
l

Bl 0

)

. (18)

Copyright c© 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 00:0–0
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Note that Ml,1 = Ml as in (8). The effect of the scaling on the two-grid iteration matrix is
given in the following lemma.

Lemma 3. For δ 6= 0 the relation

Ml,δ = Il,δ Ml,1 I−1
l,δ

holds.

Proof: Let Sl,δ be the iteration matrix of the Braess-Sarazin smoother applied to Al,δ. The
following relations hold

Al,δ = Ĩl,δ Al,1 I−1
l,δ , Sl,δ = Il,δ Sl,1 I−1

l,δ , I−1
l,δ Pl Il−1,δ = Pl, Ĩ−1

l−1,δ Rl Ĩl,δ = Rl. (19)

Using these we get

Ml,δ = Sν2

l,δ(Il − PlA
−1
l−1,δRlAl,δ)S

ν1

l,δ = Il,δ Ml,1 I−1
l,δ

and thus the result is proved.

Corollary 1. Introduce the norm

∥

∥

(

ul

pl

)

∥

∥

2

h,δ
:= ‖ΛlI

−1
l,δ

(

ul

pl

)

‖2 = ‖ul‖
2 +

h2
l

δ2
‖pl‖

2

with a corresponding matrix norm denoted by ‖ · ‖h,δ. Then we have

‖Ml,δ‖h,δ = ‖Ml,1‖h = ‖Ml‖h,

and thus the convergence result in Theorem 1 immediately yields an analogous result for the
multigrid method applied to the scaled system.

3.2. Vanka smoother

The Vanka-type smoothers, originally proposed by Vanka [22] for finite difference schemes,
are block Gauß-Seidel type of methods. If one uses such a method in a finite element setting
then a block of unknowns consists of all degrees of freedom that correspond with one element.
Numerical tests given in [12] show that the use of this element-wise Vanka smoother can
be problematic for continuous pressure approximations. In [12] the pressure-oriented Vanka
smoother for continuous pressure approximations has been suggested as a good alternative. In
this method a local problem corresponds to the block of unknowns consisting of one pressure
unknown and all velocity degrees of freedom that are connected with this pressure unknown.
In the present paper we consider this type of Vanka smoother. We first give a more precise
description of this method.

We consider a fixed level l in the discretization. To simplify the presentation we drop the level

index l from the notation, i.e. we write, for example,

(

u

p

)

∈ R
n+m instead of

(

ul

pl

)

∈ R
nl+ml .

Let r
(j)
P : R

m → R be the pressure projection (injection)

r
(j)
P p = pj , j = 1, . . . , m.

For each j (1 ≤ j ≤ m) let the set of velocity indices that are “connected” to j be given by

Vj = {1 ≤ i ≤ n | (r
(j)
P B)i 6= 0}.

Copyright c© 2006 John Wiley & Sons, Ltd. Numer. Linear Algebra Appl. 2006; 00:0–0
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8 M. LARIN AND A. REUSKEN

Define dj := |Vj | and write Vj = {i1 < i2 < . . . < idj
}. A corresponding velocity projection

operator r
(j)
V : R

n → R
dj is given by

r
(j)
V u = (ui1 , ui2 , . . . , uidj

)T .

The combined pressure and velocity projection is given by

r(j) =

(

r
(j)
V 0

0 r
(j)
P

)

∈ R
(dj+1)×(n+m).

Furthermore, define p(j) =
(

r(j)
)T

. Using these operators we can formulate a standard
multiplicative Schwarz method. Define

A(j) := r(j)Ap(j) =:

(

A(j) B(j)T

B(j) 0

)

∈ R
(dj+1)×(dj+1).

Note that B(j) is a row vector of length dj . In addition, we define

D(j) =

(

diag(A(j)) B(j)T

B(j) 0

)

=







. . . 0
...

0
. . .

...
. . . . . . 0






∈ R

(dj+1)×(dj+1).

The full Vanka smoother is a multiplicative Schwarz method with iteration matrix

Sfull =

m
∏

j=1

(

I − p(j)(A(j))−1r(j)A
)

. (20)

The diagonal Vanka smoother is similar, but with D(j) instead of A(j):

Sdiag =

m
∏

j=1

(

I − p(j)(D(j))−1r(j)A
)

. (21)

Thus, a smoothing step with a Vanka-type smoother consists of a loop over all pressure degrees
of freedom (j = 1, . . . , m), where for each j a linear system of equations with the matrix A(j)

(or D(j)) has to be solved. The degrees of freedom are updated in a Gauss-Seidel manner.
These two methods are well-defined if all matrices A(j) and D(j) are nonsingular.

The linear systems with the diagonal Vanka smoother can be solved very efficiently using
the special structure of the matrix D(j) whereas for the systems with the full Vanka smoother
a direct solver for the systems with the matrices A(j) is required. The computational costs for
solving a local (i.e. for each block) linear system of equations is ∼ dj for the diagonal Vanka
smoother and ∼ d3

j for the full Vanka smoother. Typical values for dj are given in Table 2.
As far as we know there is no convergence analysis of a multigrid method with a Vanka

smoother applied to two- or three-dimensional Stokes problems. In [14] a convergence analysis,
based on Fourier transformations, is given for a model one- or two-dimensional Poisson problem
in the mixed finite element formulation. Note that in this case the finite element spaces are
different from the ones used for Stokes problems. Recently, in [13] convergence for certain
Vanka-type iterative methods applied to Stokes and Navier-Stokes problems has been proved.
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EFFICIENT SOLVERS FOR GENERALIZED STOKES EQUATIONS 9

We discuss the effect of a rescaling of the system as in (18) on the behaviour of the two-grid
method with a full- or diagonal Vanka smoother. Let SV,δ be the iteration matrix of a Vanka
smoother as in (20) or (21) with A = Al replaced by Aδ = Al,δ as in (18). Let MV,δ be the
iteration matrix of the corresponding two-grid method (on level l):

MV,δ = Sν2

V,δ(I − PlA
−1
l−1,δRlAl,δ)S

ν1

V,δ.

For this method the same scaling result as for the two-grid method with Braess-Sarazin
smoother in Lemma 3 holds.

Lemma 4. For δ 6= 0 the relation

MV,δ = Il,δ MV,1 I−1
l,δ (22)

holds.

Proof: We consider the full Vanka smoother. The same analysis, with obvious modifications,

applies to the diagonal Vanka smoother, too. We write Aδ instead of Al,δ. Define A
(j)
δ :=

r(j) Aδ p(j). Using the relations

p(j)Il,δ = Il,δp
(j), p(j)I−1

l,δ = I−1
l,δ p(j), r(j) Ĩl,δ = Ĩl,δr

(j), r(j) Ĩ−1
l,δ = Ĩ−1

l,δ r(j),

we obtain
p(j)(A

(j)
δ )−1 r(j) = Il,δ p(j) (A

(j)
1 )−1 r(j) Ĩ−1

l,δ .

Thus we get

I − p(j)(A
(j)
δ )−1 r(j) Aδ = Il,δ

(

I − p(j)(A
(j)
1 )−1 r(j) A1

)

I−1
l,δ .

This yields SV,δ = Il,δ SV,1 I−1
l,δ . In combination with the properties in (19) we obtain the result

in (22).

4. Other coupled iterative methods

In this section we consider a preconditioned minimal residual (PMINRES) method and an
inexact Uzawa method for solving the discretized Stokes problem. We drop the level index l
in the notation, i.e., the system matrix is denoted by

A =

(

A BT

B 0

)

.

Both methods require preconditioners for the matrix A ∈ R
n×n and for the Schur complement

S = BA−1BT ∈ R
m×m. Note that both A and S are symmetric positive definite (S: on 1⊥).

Let QA and QS be symmetric positive definite preconditioners of A and S, respectively. Let
γA > 0, γS > 0, ΓA and ΓS be spectral bounds such that

γAQA ≤ A ≤ ΓAQA (23)

and
γSQS ≤ S ≤ ΓSQS . (24)

Below we first specify the choice of QA and of QS for the discrete generalized Stokes problem.
Then we discuss the PMINRES and inexact Uzawa method.
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10 M. LARIN AND A. REUSKEN

4.1. Preconditioners for QA and QS

The matrix A has block diagonal form with identical blocks. Such a block corresponds to the
finite element discretization of a scalar reaction-diffusion problem of the form −ν∆u+ ξu = f .
For QA we use one iteration of a symmetric V-cycle multigrid method (for each of the blocks
in A). In [15] it is shown that for this preconditioner the inequalities

γAQA ≤ A ≤ QA (25)

hold with a constant γA > 0 independent of l, ν and ξ. Note that the upper spectral constant
is ΓA = 1. For typical multigrid methods the spectral constant γA is close to one (typically
γA ≥ 0.85).

We now discuss the choice of QS . For this we introduce an auxiliary Neumann problem in
the pressure space, with a given g ∈ L2(Ω):

Find w ∈ H1(Ω) ∩ L2
0(Ω) such that

(∇w,∇φ) = (g, φ) for all φ ∈ H1(Ω) ∩ L2
0(Ω).

Let N = Nl be the stiffness matrix resulting from a finite element discretization of this problem
in the pressure finite element space Ql. Let M = Ml be the mass matrix for the pressure space.
Let QN a preconditioner of N induced by one symmetric V-cycle multigrid iteration applied
to the discrete problem with stiffness matrix N . The (Cahouet-Chabard) Schur complement
preconditioner QS is given by

Q−1
S := τM−1 + ξQ−1

N , τ = max{ν, ξh2
l }. (26)

In [5, 16] it is shown that under certain regularity assumptions for the Stokes problem this
preconditioner has corresponding spectral bounds γS > 0, ΓS in (24) that are independent of

the parameters l, ξ and ν.

4.2. The preconditioned minimal residual method

In the preconditioned minimal residual (PMINRES) method used for solving a linear system
with matrix A we use a block diagonal preconditioner defined by

M =

(

QA 0
0 QS

)

. (27)

For a discussion and an efficient implementation of the PMINRES method we refer to the
literature [2, 17]. In an efficient implementation one needs per PMINRES iteration one
evaluation of Q−1

A , one evaluation of Q−1
S and one matrix-vector product with A (and a few

other inexpensive operations).
Let r(k) be the residual in the k-th iteration of this method. The convergence of the

PMINRES can be analyzed based on the well-known residual bound

‖r(k)‖M−1

‖r(0)‖M−1

≤ min
pk∈Πk,pk(0)=1

max
λ∈σ(M−1A)

|pk(λ)|. (28)

For the spectrum of the preconditioned matrix M−1A the following result is given in [19, 20]:

σ(M−1A) ⊂
[

1
2

(

γA −
√

γ2
A + 4ΓSΓA

)

, 1
2

(

γA −
√

γ2
A + 4γSγA

)]

∪
[

γA, 1
2

(

ΓA +
√

γ2
A + 4ΓSΓA

)]

.
(29)
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This general result implies that the rate of convergence of the PMINRES method is robust
with respect to variation of parameters (in our case: l, ν and ξ) if the spectral constants in
(23) and (24) do not depend on these parameters. For our choice of the preconditioners this is
indeed the case and thus the PMINRES method with QA and QS as explained in section 4.1
has a rate of convergence that is robust with respect to variation in the parameters l, ν and ξ.

Remark 3. Consider the special case of only a rescaling of the Al-block in the matrix Al as
in (18) (parameter: ξ = ν = δ). The multigrid preconditioner and the Cahouet-Chabard Schur
complement preconditioner automatically take this scaling into account. Let Mδ be the block
preconditioner as in (27) for Aδ = Al,δ. Then M−1

δ Aδ = IδM
−1
1 A1I

−1
δ (with Iδ = Il,δ as in

(17)) and thus σ(M−1
δ Aδ) = σ(M−1

1 A1) for all δ > 0.

4.3. The inexact Uzawa method

For the derivation of the inexact Uzawa method we consider the exact block factorization of
the matrix A

A =

(

A 0
B −I

)(

I A−1BT

0 S

)

. (30)

An approximate Schur complement is given by

Ŝ = BQ−1
A BT . (31)

Using the block factorization (30) and substituting A−1 ≈ Q−1
A and S−1 ≈ Ŝ−1 we obtain the

approximate inverse of A

A−1 ≈

(

I −Q−1
A BŜ−1

0 Ŝ−1

)(

Q−1
A 0

−BQ−1
A −I

)

. (32)

In general the application of QA is feasible, but Ŝ−1w can not be determined with acceptable
computational costs. Therefore we use Ŝ−1w ≈ Ψ(w) with Ψ(w) the result of a PCG method
with zero starting vector and preconditioner QS applied to Ŝz = w such that

‖Ψ(w) − z‖Ŝ ≤ θ‖z‖Ŝ (33)

holds for some prescribed tolerance θ < 1.
Based on this, the inexact Uzawa method is as follows. Let x(0) = (u(0),p(0))T be an initial

approximation, and r(0) = f −Ax(0) = (r
(0)
u , r

(0)
p ) the initial residual. For k = 0, 1, . . . :

• Compute v = u(k) + Q−1
A r

(k)
u .

• Solve Ŝz = Bv approximately: z = Ψ(Bv) as in (33).
• Update the approximation for the velocity u(k+1) = v − Q−1

A BT z.
• Update the approximation for the pressure p(k+1) = p(k) + z.
• Compute the residual r(k+1) = f −Ax(k+1) with x(k+1) = (u(k+1),p(k+1)).
• Check stopping criterion.

Remark 4. We briefly comment on the computational costs per iteration of this method.
These costs depend on the number of PCG iterations needed to satisfy the tolerance
requirement in (33). Assume that this number is q. In [18] it is shown that per iteration we
then need q + 1 evaluations of Q−1

A , q evaluations of Q−1
S , q + 1 matrix-vector multiplications
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12 M. LARIN AND A. REUSKEN

with B, q matrix-vector multiplications with BT and one matrix-vector multiplication with A.
Moreover, in [18] it is also argued that in general a value for the tolerance parameter θ ≈ 1

2 in
(33) is close to optimal (w.r.t. efficiency) resulting in very low values for q (typically q = 1 or
q = 2).

We give a convergence result for this inexact Uzawa method that is proved in [18].

Theorem 2. Assume that (23), (24) hold with ΓA = 1. Define

µA = 1 − γA, g(µA, θ) = 2µA + θ(1 + µA).

Consider the inexact Uzawa method with Ψ such that (33) holds. For the error we have

max
{

‖e(k+1)
u ‖QA

, ‖e(k+1)
p ‖Ŝ

}

≤ g(µA, θ)max
{

‖e(k)
u ‖QA

, ‖e(k)
p ‖Ŝ

}

and

‖e(k)
u ‖QA

+ ‖e(k)
p ‖Ŝ ≤

7

2

(

g(µA, θ) +
√

g(µA, θ)2 − 4µAθ

2

)k

(‖e(0)
u ‖QA

+ ‖e(0)
p ‖Ŝ).

Note that the assumption ΓA = 1 is satisfied for the multigrid preconditioner QA that
we use, cf. (25). For µA → 0 we obtain the contraction factor of the exact Uzawa method:
g(0, θ) = θ. We also have g(µA, θ) ≥ 1

2

(

g(µA, θ) +
√

g(µA, θ)2 − 4µAθ
)

and

g(µA, θ) < 1 iff 0 ≤ θ <
1 − 2µA

1 + µA
, (34)

1

2

(

g(µA, θ) +
√

g(µA, θ)2 − 4µAθ
)

< 1 iff 0 ≤ θ < 1 − 2µA . (35)

Hence, for µA < 1
2 and θ sufficiently small (as quantified in (34), (35)) we have a convergent

method. Moreover, these bounds for the contration number are independent of parameters
(in our case: l, ν and ξ) if µA and θ are independent of these parameters. For the multigrid
preconditioner we have µA ≈ 0.15, independent of l, ν and ξ, cf. section 4.1. We take θ ≈ 1

2 , cf.
remark 4. Due to the fact that the Schur complement preconditioner QS discussed in section 4.1
has spectral constant γS and ΓS independent of l, ν and ξ, an approximate solution that
satisfies (33) can be computed with a low and uniformly (w.r.t. parameters) bounded number
of PCG iterations. This implies that this method is optimal in the sense that the amount of
work per iteration is proportional to that of a few matrix-vector multiplications and the rate
of convergence is robust w.r.t. variation in the parameters l, ν and ξ.

Remark 5. Consider the special case of only a rescaling of the Al-block in the matrix Al

as in remark 3. The multigrid preconditioner and the Cahouet-Chabard Schur complement
preconditioner automatically take this scaling into account. One may check that the result of
the inexact Uzawa method are not influenced by this scaling.

5. Comparison of methods

Before we turn to numerical experiments in the next section, we compare the methods discussed
in the sections 3 and 4 from a theoretical point of view. Three issues are relevant here, namely
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the arithmetic work per iteration, the rate of convergence and the dependence of this rate of
convergence on parameters. We consider the following four methods: multigrid with Braess-
Sarazin smoother (denoted by BS-MGM), multigrid with diagonal Vanka smoother (denoted
by V-MGM), preconditioned MINRES with preconditioner as explained in section 4.1 (denoted
by PMINRES) and the inexact Uzawa method given in section 4.3 with preconditioners as in
section 4.1 (denoted by MGUZAWA).

Arithmetic work per iteration. For the methods V-MGM, PMINRES and MGUZAWA the
arithmetic work per iteration is bounded by c(ml +nl) with a constant c independent of l. For
the BS-MGM such a bound only holds if the linear system in (7) is solved approximately, cf.
remark 2. In that case, however, the convergence analysis does not apply anymore.

Convergence analysis. We consider fixed values for the problem parameters ξ and ν. For the
BS-MGM there is a convergence result as in theorem 1, provided the linear system in (7)
is solved exactly. We do not know any literature in which for a V-MGM two- or multigrid
method a convergence rate independent of the mesh size is proved. For PMINRES a rate of
convergence independent of l follows from (28) and (29). For the MGUZAWA method such a
convergence result follows from theorem 2.

Robustness w.r.t. variation in parameters. First consider the special case of a rescaling of the Al

block of the matrix with a parameter δ as in (18). For all four methods the rate of convergence
can be shown to be essentially independent of δ (cf. corollary 1, lemma 4 and the remarks 3
and 5). For the general case of variable problem parameters ξ ≥ 0 and ν > 0 there are no
robustness results on the convergence of BS-MGM or V-MGM. The rate of convergence of
the PMINRES and MGUZAWA methods is robust w.r.t. variation in these parameters. This
follows from the results presented in section 4.

Summarizing, we conclude that concerning theoretical convergence results the state of affairs
is much better for the PMINRES and MGUZWA methods than for the coupled multigrid
methods.

Parameters in the methods. The V-MGM and the PMINRES methods are parameter free. In
the BS-MGM method one has to choose a value for the parameter α in the smoother, cf. (4).
In the MGUZAWA method the accuracy parameter θ in (33) occurs.

6. Numerical experiments

We consider the generalized Stokes equation as in (1) on the domain Ω = [0, 1]3. The right-hand
side f is taken such that the continuous solution is

u(x, y, z) =
1

3





sin(πx) sin(πy) sin(πz)
− cos(πx) cos(πy) sin(πz)
2 · cos(πx) sin(πy) cos(πz)



 ,

p(x, y, z) = cos(πx) sin(πy) sin(πz) + C

with a constant C such that
∫

Ω p dx = 0. For the discretization we start with a uniform

tetrahedral grid with h0 = 1
2 and we apply regular refinements to this starting discretization.
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14 M. LARIN AND A. REUSKEN

For the finite element discretization we use the Hood-Taylor P2-P1 pair. In Table 1 the
dimension of the system to be solved on each level and the corresponding step size are given.

h0 = 2−1 h1 = 2−2 h2 = 2−3 h3 = 2−4 h4 = 2−5

nl 81 1029 10125 89373 750141
ml 27 125 729 4913 35937

Table 1. Dimensions: nl = number of velocity unknowns, ml = number of pressure unknowns.

In all tests below the iterations were repeated until the condition

‖r(k)‖

‖r(0)‖
< 10−10,

with r(k) = b−Ax(k), was satisfied. The methods are implemented in the DROPS package [1].
All calculations were performed on AMD Athlon XP 1700 (1465 MHz) in double precision.

We first consider an experiment to show that for this problem class the multigrid method with
full Vanka smoother is very time consuming. In Table 2 we show the maximal and mean values
of dj on the level l. These numbers indicate the dimensions of the local systems that have to
be solved in the Vanka smoother, cf. section 3.2.

h0 = 2−1 h1 = 2−2 h2 = 2−3 h3 = 2−4 h4 = 2−5

mean(dj)/ maxj dj 21.8 / 82 51.7 / 157 88.8 / 157 119.1 / 165 138.1 / 166

Table 2. The maximal and mean values of dj on different grids.

We use a multigrid W-cycle with 2 pre- and 2 post-smoothing iterations. In Table 3 we show
the computing time (in seconds) and the number of iterations needed both for the full Vanka
Sfull and the diagonal Vanka Sdiag smoother.

ξ = 0 Sfull, h3 = 2−4 Sdiag,h3 = 2−4 Sfull, h4 = 2−5 Sdiag,h4 = 2−5

ν = 1 287 (4) 19 (10) 3504 (5) 224 (13)
ν = 10−1 283 (4) 19 (10) 3449 (5) 238 (13)
ν = 10−2 284 (4) 19 (10) 3463 (5) 238 (13)
ν = 10−3 356 (5) 20 (11) 3502 (5) 238 (13)

Table 3. CPU time and number of iterations for multigrid with the full and the diagonal Vanka smoother.

As can be seen from these results, the rather high dimensions of the local systems lead to
high computing times for the multigrid method with the full Vanka smoother compared to the
method with the diagonal Vanka smoother. In numerical experiments we observed that the
multigrid W-cycle with only one pre- and post-smoothing iteration with the diagonal Vanka
method sometimes diverges. Further tests indicate that often for the method with diagonal
Vanka smoothing the choice ν1 = ν2 = 4 is (slightly) better (w.r.t. CPU time) than ν1 = ν2 = 2.

Based on numerical experiments, in the multigrid W-cycle with Braess-Sarazin smoother we
use ν1 = ν2 = 2 and α = 1.25. For other values α ∈ [1.1, 1.5] the efficiency is very similar. The
linear system in (7) is solved approximately using a conjugate gradient method with a fixed
relative tolerance εCG = 10−2.

We compare the following four methods:
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PMINRES – preconditioned minimal residual methods described in section 4.2
with preconditioners as discussed in section 4.1.

MGUZAWA – the inexact Uzawa method described in section 4.3 with preconditioners
as discussed in section 4.1. The accuracy parameter is set to θ = 0.1.

BS-MGM – the multigrid method with the Braess-Sarazin smoother described in
section 3.1 with parameter α = 1.25. We take ν1 = ν2 = 2.

V-MGM – the multigrid method with the diagonal Vanka smoother described in
section 3.2. We take ν1 = ν2 = 4.

Results for these methods are given in Table 4 and Table 5.

ξ = 0 h3 = 2−4

ν MGUZAWA V-MGM BS-MGM PMINRES
ν = 1 39 (13) 19 (5) 20 (11) 49 (74)
ν = 10−1 38 (13) 19 (5) 20 (11) 52 (79)
ν = 10−3 43 (14) 19 (5) 17 (8) 53 (80)

ξ = 10 h3 = 2−4

ν MGUZAWA V-MGM BS-MGM PMINRES
ν = 1 47 (15) 19 (5) 20 (11) 57 (79)
ν = 10−1 34 (11) 17 (4) 20 (11) 61 (89)
ν = 10−3 34 (13) 15 (3) 21 (7) 51 (74)

ξ = 100 h3 = 2−4

ν MGUZAWA V-MGM BS-MGM PMINRES
ν = 1 36 (12) 17 (4) 20 (11) 51 (73)
ν = 10−1 29 (10) 15 (3) 19 (7) 49 (69)
ν = 10−3 38 (15) 15 (3) 19 (6) 58 (85)

Table 4. CPU time and the number of iterations for MGUZAWA, PMINRES, BS- and V-MGM methods.

From these results we conclude the following:

(1) Not only the PMINRES and MGUZAWA methods are robust with respect to variation
in the parameters ξ and ν (as predicted by theory), but also both multigrid methods are.

(2) For ξ = 0 variation of ν is the same as rescaling of the Al block as in (18). The results
show that for all four methods the rate of convergence is essentially independent of this
scaling parameter ν, as predicted by theory.

(3) In most cases V-MGM is the most efficient method and PMINRES has the lowest
efficiency.

(4) The parameter free PMINRES method shows a close to constant behaviour (only
relatively small changes in CPU time and number of iterations) if the parameters ν
and ξ are varied. In this sense this method is the most robust one.
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ξ = 0 h4 = 2−5

ν MGUZAWA V-MGM BS-MGM PMINRES
ν = 1 361 (14) 198 (5) 274 (14) 445 (75)
ν = 10−1 315 (12) 199 (5) 276 (14) 476 (81)
ν = 10−3 319 (12) 198 (5) 241 (11) 441 (74)

ξ = 10 h3 = 2−5

ν MGUZAWA V-MGM BS-MGM PMINRES
ν = 1 419 (15) 190 (5) 244 (13) 538 (82)
ν = 10−1 321 (12) 189 (5) 224 (10) 548 (87)
ν = 10−3 265 (11) 145 (3) 238 (7) 540 (87)

ξ = 100 h3 = 2−5

ν MGUZAWA V-MGM BS-MGM PMINRES
ν = 1 305 (11) 190 (5) 241 (13) 484 (75)
ν = 10−1 261 (10) 167 (4) 243 (13) 488 (77)
ν = 10−3 329 (14) 122 (2) 282 (9) 441 (68)

Table 5. CPU time and the number of iterations for MGUZAWA, PMINRES, BS- and V-MGM methods.
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