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Abstract. In this paper we compare a classical finite-difference and a high order finite-
volume scheme for barotropic ocean flows. We compare the schemes with respect to their
accuracy, stability, and study various outflow and inflow boundary conditions. We apply the
schemes to the problem of eddy formation in shelf slope jets along the Ormen Lange section
of the Norwegian shelf. Our results strongly confirm the development of mesoscale eddies
caused by instability of the flows.
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1. Introduction

In medium-scale geophysical fluid flow, with length scales of hundreds of kilometres, the
geometry of the earth, its rotation and curvature are of great importance. The modelling
of flow phenomena at these scales involves complex nonlinear equations with extra terms
accounting for the geometry and the rotating frame of reference.
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Many geophysical flow problems are shallow in the sense that the waves length of horizontal
motion greatly exceeds the scale of changes in the vertical direction. In many cases, this
justifies a simplification of the governing equations for the vertical motion. The shallow-
water equations is one such system where the dependent variables are depth-averaged and
only first-order differential terms are retained. In this paper we consider numerical solutions
of the shallow-water system, written as a system of first-order hyperbolic conservation laws
with source terms modelling the effects of variable bottom and a rotating frame of reference,
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Here subscripts denote differentiation, η is the surface elevation, z is the bottom topography
and H = η−z is the total water depth. The components of the volume-flux per unit length in
the x- and y-direction are U and V , respectively. The source terms in (1) model two different
physical effects: the rotation and the variable bottom topography. The rotating frame of
reference introduces a Coriolis force [0, fV,−fU ]T acting transversely and proportionally to
the volume-flux. The other source term [0,−gHzx,−gHzy]T accounts for the variations in
the bottom topography z. In applications, this barotropic model is used to study weather
systems, mean currents and transport and wave phenomena in coastal zones, rivers and lakes,
in cases where the density stratification has negligible influence on the flow.

Classically, i.e. at least since the 1940s, such initial value problems have been solved by
finite-difference methods [17, 20]. To this day, such methods are the working horse of many
models. They are easy to implement, fast, and for smooth flows they give accurate results.
On the other hand, for non-smooth solutions they suffer from dispersive oscillations which
need to be damped by adding artificial viscosity.

These stability problems led (roughly from 1950s into the 1990s) to the development of
more robust finite-difference, finite-volume, ENO and WENO schemes [13, 10, 14, 11, 15,
24]. For geophysical flows it was important to develop schemes which maintain fundamental
equilibrium solutions on the discrete level, the so-called well-balanced schemes (see e.g. [1,
18, 27] and the references therein). Recently, Bouchut et al.[2] have described a technique to
obtain a well-balanced discretisation of the Coriolis terms in the one-dimensional case. The
well-balanced discretisation preserves geostrophically balanced states exactly at the discrete
level. This technique may be generalised to two-dimensional jets which are aligned with
a Cartesian grid. With these extensions, well-balanced finite-volume schemes are a very
stable and – if equipped with high-order reconstructions – highly accurate alternative for the
computation of depth-averaged geophysical flows, which may contain shock-, or bore-waves.
An advantage of these schemes is that the solution is damped only in region where damping
is needed.

The present paper reports on the joint work of a researcher, who has over many years
developed and used a finite-difference ocean models [9], an engineer and two numerical ana-
lysts who have developed a high order well-balanced finite-volume scheme [18]. Our goal is to
study and, if possible, quantify the advantages of either code. We hope that other researchers
will draw some useful conclusions from our results, when they decide which type of code they
should use.

As test-case we study a class of jets along the Norwegian shelf. Such shelf slope jets
have been studied extensively (see [9, 26] and the references therein). A series of numerical
examples indicates that these currents can become unstable, in the sense that an initially
almost laminar flow generates strong eddies and oscillations. Linear stability analysis [9, 26]
confirms the existence of unstable modes. This provides us with a challenging test problem
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within a relatively simple topography. Other test problems are used to study numerical
convergence and accuracy.

It will come as no surprise that the setup of analytical and numerical in- and outflow
boundary conditions was one of the main difficulties in this study.

The outline of the paper is as follows: In Section 2.1 we give an overview of the finite-
difference method used in [9]. We rearrange the temporal update to assure second-order
accuracy. In Sections 2.2 we review the high-order well-balanced finite-volume scheme derived
recently in [18]. In particular, the source term treatment is described in Section 2.3. The
entire Section 3 is devoted to boundary conditions, particularly inflow and absorbing outflow
boundary conditions for the finite-volume scheme. These have a strong impact upon the
accuracy and the flow features computed by our schemes. In Section 4, we evaluate the
accuracy, order of convergence and resolution for various test problems. Then we focus on
the formation of eddies in shelf slope jets. Here we study and thereby rule out several possible
numerical sources of the instability. We conclude the paper in Section 5 by discussing in detail
the advantages of the finite-difference and finite-volume solvers, the boundary conditions and
the eddy formation in the along shelf current.
Acknowledgement: This work was started while the first and the last author were visiting
CMA, “Center of Mathematics for Application” at Oslo University, and they would like to
thank CMA and its members for their generous hospitality. We would like to thank Roland
Schäfer for lively and stimulating discussions. Also we would like to thank Frank Knoben
and Markus Jürgens for there unresting support for the parallelisation of the scheme.

2. Discretisation

In this section we give an overview of the two numerical schemes. The philosophies un-
derlying these schemes are quite different. In the finite-difference scheme, the solution is
approximated by point values on a grid. To advance the solution, the derivative of the flux
terms are computed using central differencing and averaging operators. A special staggering
of variables, called a B-grid, is used, where the volume-flux is approximated on the mesh
(ih, jh, n∆t), and the surface elevation is approximated on a mesh shifted by h/2 in each
spatial direction and ∆t/2 in time. The original scheme of [9] is second-order accurate in
space, but only first-order accurate in time. A simple extension yields a fully second-order
finite-difference scheme. In actual computations, this scheme performs very well for smooth
solutions. However, we do observe spurious oscillations when shocks appear in the solution.
In Section 2.1 we give a complete description of this scheme.

In the finite-volume scheme, the solution is approximated in terms of cell-averages. These
cell averages are advanced in time by computing fluxes across cell interfaces. To evaluate
the fluxes, accurate point-values of each variable must be reconstructed from cell averages.
We use a fifth-order WENO procedure [23, 24] for the reconstruction combined and Roe’s
approximate Riemann solver [21] for the interface flux. A standard fourth-order Runge-
Kutta scheme is used as temporal discretisation. In addition, the scheme is equipped with a
high-order well-balanced discretisation of the geometrical source term [18]. This scheme has
proven to be highly accurate both for smooth and non-smooth solutions. In Section 2.2 we
give an overview of this scheme, and refer to [18] for a full description.

2.1. The Finite-Difference Scheme and a fully second-order accurate extension.
The original B-grid scheme of [9] is based on a staggering of unknowns, where the volume-
fluxes U and V are approximated in the grid points (ih, jh, n∆t) and the surface elevation η is
approximated in shifted grid points ((i+ 1

2)h, (j+ 1
2)h, (n+ 1

2)∆t) as shown in Figure 1. To ease
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Figure 1. The layout of a B-grid. The surface elevation η is approximated in the
black circles, and the volume-fluxes U and V in the grey squares.

the presentation we introduce the following standard differencing and averaging operators:
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Note that it is implied that the result of these operations is shifted by h
2 relative to the

argument. For simplicity in notation, we omit i and j indices in the following scheme. The
meaning should be clear from the aforementioned shift and the position of the point-wise
approximations. For instance, the approximation of ∂x(U2/H) in the point (ih, jh) is given
by
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With this notation, we can write the finite-difference scheme for (1) as

ηn+ 1
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where ∆t is the time step and Hn+ 1
2 = ηn+ 1

2 − z. The use of a B-grid yields a quite compact
second-order discretisation of the flux and source terms. We would like to point out that,
due to the central differencing, the scheme (2)–(4) is second order accurate in space, but not
in time. This can be seen most easily from left part of Figure 2, which shows that the stencil
of the volume-flux update is not symmetric with respect to time.
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Figure 2. Stencils of volume-flux update for finite-difference schemes. Left: first
order scheme, not symmetric with respect to time. Right: time symmetry recovered.

In order to correct the asymmetry, we introduce the following shorthands:

Φx(η) :=
(
gµxµyH

)
δxµyη,

Φy(η) :=
(
gµxµyH

)
δyµxη,

Ω(U, V, η) := δx
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(
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) (
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Ψ(U, V, η) := δx

(
µxU

) (
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µyH
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)2
µxH

+ fU.

where H = H(η, z). With this notation (3) – (4) read

Un+1 = Un −∆t
[
Ω(Un, V n, ηn+ 1

2 ) + Φx(ηn+ 1
2 )
]
,(5)

V n+1 = V n −∆t
[
Ψ(Un, V n, ηn+ 1

2 ) + Φy(ηn+ 1
2 )
]
.(6)

Let us now introduce the correction which assures second order accuracy in time. For this
we denote the volume-flux update in (5) – (6) by (U, V )n+1

∗ and centre the terms Ω and Ψ,
i.e the flux differences and the coriolis term, with respect to time. This gives

Un+1 = Un+1
∗ +

∆t

2

[
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2 )− Ω(Un+1
∗ , V n+1

∗ , ηn+ 1
2 )
]
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2
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∗ , V n+1

∗ , ηn+ 1
2 )
]
,(8)

which is the symmetric stencil shown in right part of Figure 2. In Tables 1 and 2 one can
clearly observe the gain in accuracy.

An elementary calculation shows that both the first-order version and the second-order
version of this scheme are well-balanced for the stationary state of water at rest U = V = 0
and η− z = Const. For smooth solutions driven by inflow boundary conditions, both scheme
yields quite sharp results with moderate numerical diffusion. For non-smooth solutions, both
versions of the scheme experience instabilities in the form of oscillations.

2.2. The High-Order Finite-Volume Scheme. To simplify the presentation of the finite-
volume scheme somewhat, we rewrite (1) as

Qt + F (Q)x + G(Q)y = B(Q,Qx, Qy) + C(Q),(9)

where subscript denotes differentiation, Q = [η, U, V ]T is the vector of unknown functions
and F and G are vector-valued functions. The source terms B = −gH[0, zx, zy]T and C =
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Figure 3. A finite-volume, with corresponding fluxes and integration points on
cell interfaces and in the interior. The integration points in the interior are needed
for the well-balanced integration rule for the source source term.

f [0, V,−U ]T are the geometrical source accounting for variable bottom and the Coriolis force
term, respectively.

The discretisation of the homogeneous part of (9) is straightforward. As opposed to the
scheme in the previous section, the high order finite-volume scheme is based on computing
cell averages over grid cells Iij =

[(
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of a uniform
Cartesian mesh. In each grid cell we approximate

Q̄n
ij =

∫∫
Iij

Q(x, y, tn)dxdy.

To compute the evolution of the cell averages ηij , Uij and Vij , we must approximate the
flux over the cell interfaces. This is accomplished by reconstructing the solution within
each grid cell using (nonlinear) interpolation. To obtain a stable and accurate solution,
the reconstruction procedure must ensure that no spurious oscillations are introduced, even
when the solution is non-smooth. This may be done, for example, by the WENO technique
(see [24] and the references therein). The reconstruction yields one-sided approximations of
point values at cell interfaces as well as in the interior of the cell, see Figure 3. Thus, at
each cell interface we obtain two one-sided approximations. To compute consistent interface
fluxes we integrate Roe’s approximate flux function F̂ (Q+, Q−, n) [21] over each cell interface.
In computations, these integrals are approximated using Gaussian quadrature. For the x-
direction, Fi+ 1

2
,j is computed as,
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)
,

where yα and ωα are the quadrature points and weights. The fluxes in the y-direction Gi,j+ 1
2

are computed in the same manner. To complete the spatial discretisation we must compute
the averaged source terms Bij and Cij over each grid cell. The final evolution of the cell
averages is computed by solving the semi-discrete equation

d

dt
Q̄ij = −(Fi+ 1

2
,j − Fi− 1

2
, j)/h− (Gi,j+ 1

2
−Gi,j− 1

2
)/h + Bij + Cij ,(10)

using a standard fourth-order Runge-Kutta scheme. The details of the source term discreti-
sation are given in Section 2.3, and the boundary conditions are discussed in Section 3.2.
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2.3. Well-balanced Finite-Volume Treatment of the Source Terms. The shallow wa-
ter system has stationary solutions where source terms and flux terms are in equilibrium.
If we discretise the fluxes and source terms naively, this may lead to spurious oscillations
near equilibria. To accurately resolve small perturbations of such equilibria, we must ensure
that the discrete fluxes and sources exactly balance at equilibrium. Ideally, the truncation
error of the scheme should vanish at equilibrium states. This is often called a well-balanced
treatment of source terms.

Flat, stationary water of variable depth is an equilibrium where it is possible to con-
struct such a discretisation. In [18], an arbitrary-order well-balanced discretisation of the
geometrical source term was constructed. A well-balanced second-order discretisation of the
geometrical source term is extended to arbitrary order of accuracy using an asymptotic ex-
pansion. In a single grid cell in one spatial dimension, the integral of the source term can be
approximated by the fourth-order rule

S =
g

6
[4(ηl + ηc)(zl − zc) + 4(ηc + ηr)(zc − zr)− (ηl + ηr)(zl − zr)](11)

where ηl, ηc and ηr are reconstructed point-values in the left-, centre- and right endpoints
of the cell. The reconstruction of the central point is an additional cost associated with
this source term. This integration rule can be extended to two spatial dimensions using
Gaussian quadrature. In the equation for x-volume-flux, (11) is applied in the x-direction
and the Gaussian rule in the y-direction. For the y-volume-flux, the order is reversed. The
integration points used for the source terms are shown in Figure 3.

The Coriolis term is approximated by Cij = f [0, Vij ,−Uij ]T . As in [2], this is well-balanced
for grid-aligned geostrophic jets.

3. Treatment of boundary conditions

For the experiments presented in this paper we need three types of boundary conditions,
reflective, outflow and inflow. These are presented below. While reflective boundaries are
rather straightforward, out- and inflow conditions have to be translated carefully from the
B-grid finite-difference setting to the finite-volume setting. Moreover, for the finite-volume
scheme we discovered a subtle perturbation introduced by a no-slip inflow boundary condition.
In Sections 3.2.3 and 3.2.4, we introduce free-slip, Neumann-type boundary conditions which
give smoother inflow.

3.1. Finite-Difference Boundary Conditions. Reflective boundary condition are treated
with one-sided differences and normal volume-flux equal zero. At outflow boundaries the
normal volume-flux V is defined by η

√
gH and the transverse volume-flux U is set to zero.

This boundary condition is called Flather condition in mechanics, and it coincides e.g. with
the first order absorbing boundary condition given by Engquist and Majda [6]. The normal
velocity v on the inflow boundary is given by a time dependent velocity profile function
vjet(x, y, t) (see (34) and (37)) and the tangential velocity u is set to zero (no-slip). To
compute the volume-flux on the inflow boundary the height is extrapolated from the interior.
These boundary conditions are straightforward to implement in the finite-difference scheme.

3.2. Finite-Volume Boundary Conditions.

3.2.1. Reflective boundary conditions. To treat reflective boundary conditions we are using
ghost-cells and solve the Riemann problem on the reflective boundary, where the ghost cell
contains the same data as the interior cell, but with reflected volume-fluxes.



8 PANKRATZ, NATVIG, GJEVIK, AND NOELLE, DRAFT FEBRUARY 12, 2007

3.2.2. Absorbing Outflow Boundary Condition. Here we adopt a technique developed by Eng-
quist and Majda [6] to derive a so-called first order absorbing boundary conditions for the
outflow boundary. In particular, we follow Kröner’s adaptation [12] of the Engquist-Majda
absorbing boundary condition, who has computed the relevant decomposition into normal
and tangential waves for the linearised Euler equations.

For the shelf flows which we would like to compute, there are two relevant cases. Due
to the very large speed of long gravity waves in the ocean c0 =

√
gH � v we are always

in a subcritical flow and either one or two characteristics are leaving the domain. Carrying
over the results of [6, 12] to the linearised shallow water equations, we obtain the following
analytical boundary conditions:

If two characteristics are leaving the domain, the first order absorbing boundary conditions
specifies the normal volume-flux V = η

√
gH at the open boundary.

In the case of one outgoing characteristic we obtain as before V = η
√

gH for the normal
volume-flux. In addition, we obtain a no-slip condition for the tangential volume-flux, namely
U = 0.

Now we translate these analytical boundary conditions to obtain data for the Riemann
solver at the absorbing boundary. Let ξ be the outward pointing coordinate normal to the
boundary and let QL be the approximation at the interior point ξ = 0−. We want to
determine QR at ξ = 0+ such that an appropriate discretisation of the absorbing boundary
condition is fulfilled at the boundary. We linearise the system around the interior state QL.
In the subcritical case, there are two possibilities (see Figure 4):

(a) v ≥ 0 at ξ = 0 and only λ1 < 0 or,
(b) v < 0 at ξ = 0 and both λ1 < 0 and λ2 < 0.

In case (a) we need to specify QA, since only one characteristic enters the domain, and we
can only specify one condition on the absorbing boundary. For this we choose

VA = Vη := ηL

√
gHL,(12)

corresponding to the absorbing condition. This condition is equivalent to the radiation con-
dition of Flather [7] which is used by Gjevik et. al. [9].

In case (b), we want to prescribe the state QB, since two characteristics enter the domain
and we have to specify two conditions at the boundary. In this case the first order absorbing
boundary conditions are

VB = Vη(13)

UB = 0.(14)

In both cases, this yields a well-posed problem. In case (a), the states QL and QA are
separated by a simple wave,

QA := QL + α1r1.

These are three equations for the unknowns α1,HA and UA. An elementary calculations gives

HA = HL(1 + βL)(15)

UA = UL(1 + βL)(16)

where

βL :=
Vη − VL

VL −HL
√

gHL
.(17)

Dividing (16) by (15) one obtains that

uA = uL,(18)

so there is no jump in tangential velocity!
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In case (b), the states QL and QB are connected by two waves separated by the intermediate
state QA,

QB := QL + α1r1 + α2r2

From (13)–(14), we have VB = Vη := ηL
√

gHL and UB = 0. A straightforward computation
yields

HB = HL(1 + βL).(19)

The numerical flux at the northern boundary is simply

Gi,jmax+ 1
2

:=
{

G(QA) for case (a)
G(QB) for case (b) ,(20)

where (i, jmax) is the index of the northern cells adjacent to the boundary.

3.2.3. Free-slip inflow boundary conditions. For the finite-volume scheme, we have imple-
mented two types of inflow boundary conditions. The first is the no-slip inflow boundary
condition which we have already described for the finite-difference scheme. As is documented
in Table 5 for our finite-volume scheme, this leads to a loss of accuracy even for smooth
incoming jets. Since the water depth is computed from values downstream, small inaccura-
cies in the specification of the boundary condition can lead to large numerical errors or even
instabilities.

This may be explained as follows: fixing the tangential velocity at the boundary to be
zero leads to a jump in tangential velocity when the internal flow develops vortices near
the boundary. This admittedly small discontinuity can cause loss of accuracy, and must be
removed to get the expected rate of convergence.

Therefore we would like to propose a second type of boundary condition, which we call
free-slip. We will show that this leads to smoother solutions. To analyse the possible inflow
boundary conditions, we linearise the system at the inflow boundary around a state Q̂ :=
(Ĥ, Û , V̂ )T , with U = Hu, V = Hv and H = η − z. Assuming zξ = 0, we obtain

Qt + ÂQξ = 0,

where ξ is the coordinate normal to the inflow boundary, Â is the Jacobian of the flux function
in the ξ-direction, V is the volume-flux in the ξ-direction and U is the volume-flux parallel
to the boundary.

The general Riemann solution consists of four states QL, QA, QB and QR as shown in
Figure 4. They are connected by three waves travelling with speeds

λ1 = v̂ −
√

gĤ, λ2 = v̂, λ3 = v̂ +
√

gĤ,

where v̂ is the component of the velocity in the ξ-direction. The corresponding eigenvectors
are denoted by r1, r2, r3.

For our boundary value problem, we have v̂ > 0, since we assume that we are at an inflow
boundary. Typical velocities v̂ will not exceed one meter per second. But the typical speed
of long gravity waves

√
gH will be of the order of 30 meters per second to 140 meters per

second for water depths of 100 to 2000 meters. Thus, the inflow velocity v̂ is much smaller
that the speed of long gravity waves, and we have subcritical flow. Therefore, the eigenvalues
satisfy

λ1 � 0 ≤ λ2 � λ3.
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Figure 4. Solution of linear Riemann problem at inflow boundary, QL exterior,
QR interior domain.

As a result, the numerical boundary data we are looking for are given by QA. This state QA

will be connected by waves of the second and the third families to the state QR,HA

UA

VA

−
HR

UR

VR

 = α2

0
1
0

+ α3

 1
Û
Ĥ

V̂
Ĥ

+
√

gĤ

 .(21)

These are three equation for the five unknowns HA, UA, VA, α1 and α2. To obtain a uniquely
solvable system we need to specify two of the unknowns. This corresponds to the fact that
exactly two characteristic are entering the domain. Oliger and Sundstrøm [19] showed that
the initial boundary value problem (9) is well posed under the boundary condition

∂u

∂ξ
= 0 and v = vjet, when ξ = 0.(22)

We translate condition (22) to our inflow Riemann problem by requiring that

uA = uR and vA = vjet.(23)

Now we have only three unknowns left. Plugging uA and vA into (21) gives HA

HA uA

HA vjet

−
HR

UR

VR

 = α2

0
1
0

+ α3

 1
Û
Ĥ

V̂
Ĥ

+
√

gĤ

 ,(24)

which yields

α2 = HA uA −HR uR − α3
Û

Ĥ
, α3 =

VA − VR

V̂
Ĥ

+
√

gĤ

.

Choosing Q̂ = QR, this leads to the following formula for the state QA at the boundary,

HA =
HR
√

gHR

vR +
√

gHR − vjet
, UA = HAuR, VA = HAvjet.(25)

The numerical flux at the boundary is simply

Gi, 1
2

:= G(QA).(26)

3.2.4. Balanced Inflow Boundary Condition. In Section 4.4 we will apply another variant of
the jet inflow boundary condition. In order to motivate it, let us consider once more the free-
slip boundary condition derived in the previous section. As can be seen from Figure 4 and
equation (21), the jet inflow data were assigned to the intermediate state QA via vA = vjet.
Then the state QA was connected to the inner state by two waves. This defined uA = uR and
HA implicitly. We would like to point out that the third wave, a long gravity wave leaving the
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domain, is effectively suppressed, and no wave can leave the domain. Indeed in Section 4.4.2
we show that this may lead to an increase of the overall water height.

Now we modify the boundary condition to include the outgoing wave. For this, we apply
the jet inflow condition to the outer state QL instead of QA. Since we now have three
waves to connect the inner state QR with the jet, there is one more degree of freedom. We
determine this by the following reasoning: at the jet, we already know the normal velocity
v(x, 0−, t) = vL(x, t) = vjet(x, t). By the free/slip condition, we also know the tangential
velocity u(x, 0−, t) = uL(x, t) = uR(x, t). It remains to determine H(x, 0−, t) = HL(x, t).
Now we request that these values (H,u, v)(x, 0−, t) are compatible with the shallow water
equations. To determine HL(x, t) it is sufficient to use the balance of tangential volume-flux.
Taking into account that uy(x, 0, t) = 0 by the the free-slip condition, we obtain

ut + uux = −g(H + z)x + fv,(27)

or

H(x) + z(x) = H(x0) + z(x0)−
1
2g

(u(x)2 − u(x0)2)−
1
g

∫ x

x0

(ut − fv).(28)

Note that the geostrophic balance

η(x)− η(x0) =
f

g

∫ x

x0

v(29)

is a special case of the volume-flux balance Equation (28) when u ≡ 0 (remember that
η = H + z).

For the cells (i, 1) at the southern boundary, the in-flowing flux is given by the Riemann
solver F̂ via

Gi, 1
2

:= F̂ (QL, QR, ny),(30)

where ny = (0, 1) is the inward unit vector normal to the southern boundary. Note that y 1
2

is the position of the boundary edge.
In Section 4.4 we will see that this boundary condition is transparent, i.e. it admits both

in- and outflow.

4. Comparison of the Schemes

In this section we present comparisons of the staggered scheme and the high-order finite-
volume scheme on different challenging test problems.

4.1. Order of Accuracy. To compute the numerical order of accuracy of the finite-volume
scheme we use a slight modification of an experiment of Xing and Shu ([27], see also [16].
On the unit square [0, 1]× [0, 1] the bottom topography, initial surface elevation, and initial
volume-flux are given by the smooth functions

z(x, y) = sin(2πx) + cos(2πy),

η(x, y, 0) = 10 + esin(2πx) cos(2πy),

U(x, y, 0) = sin(cos(2πx)) sin(2πy),

V (x, y, 0) = cos(2πx) cos(sin(2πy)).

We compute the solution up to time T = 0.05 with CFL-number 0.5. The physical parameters
are g = 9.812 and f = 10.0. The reference solution is computed with the finite-volume scheme
on a grid with 1600× 1600 cells.
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N H U V
L1-error rate L1-error rate L1-error rate

25 4.56E-02 1.70E-01 4.37E-01
50 1.69E-02 1.43 7.44E-02 1.19 1.76E-01 1.31
100 7.19E-03 1.23 3.33E-02 1.16 7.58E-02 1.22
200 3.35E-03 1.10 1.58E-02 1.08 3.48E-02 1.12
400 1.63E-03 1.04 7.68E-03 1.04 1.66E-02 1.07
800 8.02E-04 1.02 3.80E-03 1.02 8.12E-03 1.03

Table 1. The L1-errors and convergence rates for each of the components in the
convergence test of Section 4.1, computed with the first-order finite-difference scheme
of Section 2.1. The reference solution is computed with the high-order finite-volume
scheme on a 1600× 1600 grid.

N H U V
L1-error rate L1-error rate L1-error rate

25 3.27E-02 1.19E-01 2.41E-01
50 8.45E-03 1.96 3.30E-02 1.85 6.27E-02 1.94
100 2.10E-03 2.01 8.45E-03 1.96 1.60E-02 1.97
200 5.26E-04 2.00 2.12E-03 2.00 4.01E-03 2.00
400 1.32E-04 2.00 5.31E-04 2.00 1.01E-03 2.00
800 3.29E-05 2.00 1.33E-04 2.00 2.52E-04 2.00

Table 2. The L1-errors and convergence rates for each of the components in
the convergence test of Section 4.1, computed with the improved second-order finite-
difference scheme of Section 2.1. The reference solution is computed with the high-
order finite-volume scheme on a 1600× 1600 grid.

N H U V
L1-error rate L1-error rate L1-error rate

25 6.70E-03 2.06E-02 5.34E-02
50 8.46E-04 2.99 1.60E-03 3.69 7.30E-03 2.87
100 6.84E-05 3.63 9.19E-05 4.13 5.57E-04 3.71
200 3.06E-06 4.48 3.70E-06 4.64 2.48E-05 4.49
400 1.10E-07 4.79 1.32E-07 4.81 9.03E-07 4.78
800 3.66E-09 4.91 4.38E-09 4.91 3.04E-08 4.90

Table 3. The L1-errors and convergence rate for each component in the con-
vergence test of Section 4.1, computed with the high-order finite-volume scheme of
Section 2.2. Each grid is N×N and the reference solution is computed on a 1600×1600
grid.

According to the discussion in Section 2.1, we expect the original finite-difference scheme
(2)–(4) to be first order accurate. This is confirmed by the results in Table 1. The improved
enlag scheme (7) and (8) is indeed second-order accurate, see Table 2.

For the finite-volume scheme we expect fourth-order accuracy (indeed the Runge-Kutta
scheme for time integration, the Gaussian rules for integrating the numerical fluxes and
the cell centred source term are all formally fourth-order accurate, and the spatial WENO
reconstruction procedure is even fifth-order accurate).
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Figure 5. The figure shows a cross-section of the initial data of Example 2: (top)
surface elevation, (middle) x-component of the velocity field, and (bottom) potential
vorticity.

Table 3 reports the L1-errors together with convergence rates for the finite-volume scheme.
For this test case, we get the expected fourth-order accuracy (in fact almost fifth-order) in
all components.

4.2. Large Eddies in a Doubly Periodic Domain. To illustrate visually the difference in
performance of the finite-difference and the finite-volume schemes, we compute the evolution
of potential vorticity (PV) in a very hard test-case taken from [4]. The PV is a conserved
quantity that is advected with the flow and is a good test of the effect of the numerical
diffusion on complex smooth solutions of the rotating shallow water equations. Since this
test-case is doubly periodic, which can easily be implemented in both schemes, the comparison
does not involve the complications of boundary conditions.

Consider a doubly periodic domain (−π, π)2 with flat bottom topography. Let u := (u, v)
be the velocity field. The potential vorticity is given by

q :=
∇× u + f

H
.(31)

Assume that the flow is geostrophically balanced initially, i.e., that the gravitational forces
exactly balance the Coriolis force. Using (1), this balance can be written as

g∇H + fu⊥ = 0.(32)

If the potential vorticity is known throughout the domain, the balance condition (32) specifies
the state of the shallow water system completely. At this state, the surface elevation solves
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the following equation,

Hxx + Hyy +
fq

g
H =

f2

g
,(33)

with evanescent boundary conditions.
In this example, we use the initial potential vorticity of [4],

q(x, y, 0) =

{
q̄ + Q sign(ŷ)(a−

∣∣|ŷ| − a
∣∣), |ŷ| < 2a,

q̄, otherwise,
,

ŷ = y + cm sinmx + cn sinnx,

where q̄ is the mean potential vorticity, q̄ ± Qa is the maximum/minimum of the potential
vorticity, and 2a is the width of the jet. As in [4], we use the scalings h̄ = 1, L2

R = gH/f2 =
0.25, a = 0.5, h̄Q/f = 2 and f = 4π, with one unit time corresponding to one day. The
parameters of the perturbation are m = 2, n = 3, c2 = −0.1 and c3 = 0.1.

By solving the balance condition (32), the potential vorticity field yields a balanced double
jet flow. Cross-sections of the initial surface elevation, velocity field and potential vorticity
are shown in Figure 5. The actual solution of the balance condition is computed using a
simple central finite-difference scheme on a 512× 512 grid.

The time evolution of these seemingly simple initial data quickly produces large complex
vortical structures with many smaller vortex filaments tearing off. In Figure 6 we have plotted
the potential vorticity at two times for the finite-volume scheme and the finite-difference
scheme, respectively. Both schemes seem to produce the same coarse scale vortices, but in
addition the high order finite-volume scheme also resolves several small scale vortices. See
[4] for a comparison with a Semi-Lagrangian contour advection algorithm.

4.3. Convergence Test for a Barotropic Jet Problem. In this and the following two
examples we study barotropic jets. Here we show that the no-slip boundary condition de-
scribed in Section 3.2.3 yields the expected loss of convergence rates. We also show that the
free-slip boundary condition gives high-order convergence rates.

As in [9, 26] the water is initially at rest. Then the jet is started smoothly across the
southern boundary (see Figure 7) with velocity

vjet(x, t) = Vmax exp

(
−
(

2(x− LB)
B

)2
)

γ

(
t

2000

)
,(34)

where the growth function γ is given by

γ(τ) :=
{

70 τ9 − 315 τ8 + 540 τ7 − 420 τ6 + 126 τ5, if τ ≤ 1,
1, else. .(35)

The centre of the jet LB = 100km and the width is B = 50km. The maximum velocity
is Vmax = 0.04m

s . The full strength of the jet is reached after 2000s. We compute on the
domain Ω = [0, 300km]× [0, 300km] with smooth bottom topography given by

Q1 = 0.5 (DO −DS),

Q2 = 0.5 (DO + DS),

z(x, y) = −Q1 tanh
(

x−XO

XS

)
−Q2,

where DS = 400m, DO = 1000m, XS = 40km, and XO = 120km. Initially, the water in Ω is
at rest, so η(x, y) ≡ 0. The boundary conditions in the x-direction are reflective (east-west),
while the boundary condition at y = 0 (south) is an inflow condition.
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Finite-difference scheme, day 4 Finite-volume scheme, day 4
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Figure 6. Contour lines of the potential vorticity at day 4 (up) and day 8 (down)
computed with the finite-volume scheme and finite-difference scheme, both on a 512×
512 grid. The vortical pattern closely resembles the results reported in [4], although
clearly with more numerical diffusion.

The northern boundary condition (at y = 300km) is transparent. We use the radia-
tion condition [7] for the finite-differences and the absorbing boundary condition [6] for the
finite-volume scheme. For this particular example, the two conditions are equivalent. The
acceleration of gravity g = 9.81m

s2 and the Coriolis parameter f = 1.2× 10−4s−1.
In Tables 4 and 5 we have computed the rates of convergence of the two schemes at the

final time T = 3000s. At this time the jet has flooded a large part of the domain and the
west-going wave is partially reflected at the boundary. The reference solution was computed
using the finite-volume scheme on a 1600 × 1600 grid. As predicted in Section 3.2.3 both
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N η U V
L1-error rate L1-error rate L1-error rate

50 6.10E07 7.89E09 4.84E09
100 2.90E07 1.07 4.26E09 0.89 2.42E09 1.00
200 1.38E07 1.07 2.30E09 0.95 1.20E09 1.02
400 6.31E06 1.13 1.11E09 0.99 5.85E08 1.04
800 2.76E06 1.20 5.51E08 1.01 2.83E08 1.05

Table 4. The L1-errors and convergence rates for each of the components in the
convergence test of Section 4.3. The solutions were computed with the second-order
finite-difference scheme with no-slip inflow conditions. The reference solution was
computed with the high-order finite-volume scheme on a 1600× 1600 grid.

N η U V
L1-error rate L1-error rate L1-error rate

50 3.19E06 4.57E08 4.47E08
100 2.11E05 3.92 8.21E07 2.48 5.70E07 2.97
200 1.51E04 3.80 6.97E06 3.56 4.36E06 3.71
400 5.10E03 1.57 4.19E06 0.73 1.88E06 1.21
800 2.67E03 0.93 3.72E06 0.17 1.02E06 0.89

Table 5. The L1-errors and convergence rates for each of the components in the
convergence test of Section 4.3. The solutions were computed with the finite-volume
scheme with no-slip boundary conditions.

N η U V
L1-error rate L1-error rate L1-error rate

50 2.14E07 2.34E09 2.91E09
100 1.07E07 0.99 1.10E09 1.09 1.38E09 1.07
200 5.20E06 1.05 4.91E08 1.16 6.35E08 1.13
400 2.25E06 1.21 2.02E08 1.28 2.67E08 1.25
800 7.25E05 1.64 6.42E07 1.65 8.53E07 1.65

Table 6. The L1-errors and convergence rates for each of the components in the
convergence test of Section 4.3. The solutions were computed with the finite-difference
scheme with free-slip inflow conditions. The reference solution was computed with
the high-order finite-volume scheme on a 1600× 1600 grid.

schemes do not converge with the high rates obtained in Example 4.1. This is in accordance
with the discussion in [19, 3, 5], which predicts that a no-slip inflow boundary condition will
result in a loss of smoothness in the whole domain, for computations on very fine grids.

To obtain a smoother solution we apply the free-slip boundary condition developed in
Section 3.2.3 to the finite-volume scheme. Our boundary condition for the finite-difference
scheme is that the tangential volume-flux should be continuous, which is realised by

Ui,inflow = Ui,inflow+1.(36)

As shown in Tables 6 and 7 these boundary conditions recover the expected higher orders of
convergence, especially for the finite-volume scheme. Once more the reference solution was
computed using the finite-volume scheme on a 1600× 1600 grid.
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N η U V
L1-error rate L1-error rate L1-error rate

50 3.20E06 4.64E08 4.57E08
100 2.20E05 3.86 9.08E07 2.35 6.43E07 2.83
200 1.66E04 3.72 1.37E07 2.73 7.85E06 3.04
400 1.32E03 3.65 1.59E06 3.11 8.23E05 3.25
800 1.02E02 3.69 1.45E05 3.45 7.16E04 3.52

Table 7. The L1-errors and convergence rates for each of the components in the
convergence test of Section 4.3. The solutions were computed with the finite-volume
scheme with free-slip inflow boundary conditions.

4.4. Development of Eddies in Shelf Slope Area due to a Barotropic Jet.

4.4.1. Ormen Lange Shelf Experiment I. In [26], Thiem et al. used a numerical model based
on the first-order finite-difference scheme of Section 2.1 to study the impact of the shelf
geometry upon along-shelf currents. The setup is taken from the Ormen Lange gas field off
the western Norwegian coast. The shelf width in this model is constant with a depth profile
given by

z(x, y) =


−DO, x ≤ Lx − (XL + XS),

−DO + (DO −DS)
(

Lx−(XL+XS)−x
XS

)2
, Lx − (XL + XS) ≤ x ≤ Lx −XL,

−DS , otherwise,

where shelf depth DS = 250m, ocean depth DO = 1600m, shelf width XL = 100km, and
shelf slope width XS = 90km. The domain is [0, Lx] × [0, Ly], where Lx = 300km and
Ly = 600km. Initially, the surface elevation η = 0m and the water is initially at rest. The
boundary conditions in the x-direction (west x = 0 km (norwegian sea), east x = 300 km
(coast)) are reflective. On part of the southern boundary (y = 0 km, |x − LB| ≤ B with
B = 10 km, LB = 185 km) we prescribe an in-flowing jet with velocity

vjet(x, t) = Vmax exp

(
−
(

2(x− LB)
B

)2
)

(1− exp(−σt))(37)

where Vmax = 0.4m/s, the jet growth factor σ = 2.3148 × 10−5, acceleration of gravity
g = 9.81m/s2 and Coriolis parameter f = 1.2× 10−4s−1. For the rest of the southern as well
as for the northern boundary we prescribe an absorbing radiation condition, see Figure 7.

In Subsection 4.3 we have compared the no-slip inflow boundary condition with the more
accurate free-slip inflow boundary condition for a smooth jet. Now we will study these
boundary conditions for the more realistic Ormen Lange setup described above.

The first computation uses the finite-difference scheme with no-slip inflow boundary con-
dition as described in Section 3.1. The second computation is done by the finite-volume
scheme. The no-slip inflow boundary condition is the same as the free-slip boundary condi-
tion (25), except that we set the tangential velocity uA to zero. At the outflow boundary, we
use conditions (13) and (14).

The final computation, again by the finite-volume scheme, uses the free-slip inflow bound-
ary condition (25).

The results of the three computations after 60, 120, and 240 hours are shown in Figures 8
and 9. The plots of the finite-difference and finite-volume solutions with no-slip inflow bound-
ary condition look quite similar. After a short time, the narrow current starts to oscillate
and large eddies are generated. However, we would like to point out that in addition to these
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Figure 7. The computational domain of the example in Section 4.4. The
types of boundary conditions used are indicated.

physical oscillations the finite-difference develops large numerical oscillations, which we damp
by adding artificial diffusion as in [9] Equation (4) by adding eddy viscosity ν, given by

ν = ql2

[(
∂ū

∂x

)2

+
(

∂ū

∂x
+

∂v̄

∂y

)2

+
(

∂v̄

∂y

)2
] 1

2

,(38)

according to Smagorinsky [25]. Where l denotes the grid size and the depth mean current
velocity defined to first order by,

ū =
U

H
, v̄ =

V

H
.(39)

The diffusion parameter q is set to q = 0.1 in all finite-difference computation. The finite-
volume solution with the free-slip inflow boundary condition looks different, eddies are close
to the inflow.

4.4.2. Setup for Ormen Lange Shelf Experiment II. In the setup of Section 4.4.1, the in-
flowing jet was cut off at x = LB ± B/2. After some time, these points become transition
points with a noticeable discontinuous shear layer. For the next experiment we avoid such a
discontinuous shear layer and change the boundary condition by assigning the in-flowing jet
profile vjet defined in equation (37) on the whole southern boundary.

The results are displayed in Figures 10. Eddies are still created and are of similar strength
as in the previous section Figures 8. Note, however, that the maximal water level is now
about 15cm, which is 3.3cm higher than before (11.7cm). This was to be expected because
our new southern boundary condition does not allow any outflow.

From this experiment we can conclude that the non-smooth patching of the boundary
condition at the southern boundary is not the mechanism which creates the instability. In
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Figure 8. Ormen Lange Experiment I. Velocity plots at 60 (top), 120, and 240
(bottom) hours, computed with the Finite-Difference scheme no-slip boundary con-
dition (left), Finite-Volume no-slip boundary condition and Finite-Volume free-slip
boundary condition (right).
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Figure 9. Ormen Lange Experiment I. Contour plots of surface elevation at 60
(top), 120, and 240 (bottom) hours, computed with the Finite-Difference scheme no-
slip boundary condition (left), Finite-Volume no-slip boundary condition and Finite-
Volume free-slip boundary condition (right).
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Figure 10. Ormen Lange Experiment II.. Contour plots of surface elevation (top)
and velocity plots (bottom) at 240 hours, computed with the Finite-Difference scheme
free-slip boundary condition (left), Finite-Volume no-slip boundary condition and
Finite-Volume free-slip boundary condition (right).

the next experiment we will investigate if the instability is effected by the start-up procedure.

4.4.3. Setup for Ormen Lange Shelf Experiment III. We use the same setup as in Subsec-
tion 4.4.2 but here we use the smooth (four times continuously differentiable) growth function
γ(τ) of (35) with τ = t/24h, see Figure 11. Eddies are still being created and are qualitatively
about the same as before. This is also suggested by the linear stability analysis in [9].

4.4.4. Setup for Ormen Lange Shelf Experiment IV. Here we present another variant of the
southern boundary condition. In Section 4.4.1 we used a discontinuous patch of an in-flowing
jet in the centre and open outflow at the periphery. In Section 4.4.2 we prescribed inflow
everywhere. Now we joined the inflow- and the open outflow boundary conditions smoothly:
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Figure 11. Smooth startup function γ(τ) compared with exponential startup.

Let F infl

i+ 1
2
,j

be the flux determined by the free-slip inflow boundary condition and F absorb
i+ 1

2
,j

the

one given by the absorbing outflow boundary condition. Now we use the following convex
combination to obtain the effective boundary flux

Fi+ 1
2
,j := χ(x)F infl

i+ 1
2
,j

+ (1− χ(x))F absorb
i+ 1

2
,j

.(40)

The function χ(x), which prescribes the transition from the open outer region towards the
jet in the centre of the domain, is given by

χ(x) =



0 , x < TW −R,

Θ
(

x−TW +R)
2R

)
, TW −R ≤ x ≤ TW + R,

1 , TW + R < x < TE −R,

Θ
(

2R−(x−TE+R)
2R

)
, TE −R ≤ x ≤ TE + R,

0 , x > TE + R.

Here Θ(x) := x5 [126 + x(−420 + x(540 + x(−315 + 70x)))] and the smoothing radius is R =
5000. The transition points are TW := LB − 1

2B and TE := LB + 1
2B. The numerical results

are shown in Figure 14. They agree in considerable detail with the previous computations
and hence confirm the development of eddies, without introducing any discontinuity via the
numerical boundary treatment.

4.4.5. Balanced inflow boundary conditions: Ormen Lange Shelf Experiment V. There re-
mains one technical issue concerning the previous boundary condition: the transition points
TE and TW have to be chosen by hand. This is not necessary for the volume-flux balanced
boundary condition derived in Section 3.2.4 . There the decision of outflow/inflow is taken
automatically by the Riemann solver.

The results for the balanced boundary condition are shown in Figure 15. They are in
excellent agreement with the results in Figure 14. This shows that the volume-flux boundary
condition is an interesting alternative to the previous treatments, if we know the far-field val-
ues η(x0, y0) and U(x0, y0). The results for the geostrophically balanced boundary condition
are almost identical, and hence we do not display them here.

4.4.6. Comparison with linear stability analysis. Linear stability analysis described in [8]
and [26] shows that the along shelf jet as defined for the Ormen Lange case, section 4.4.1, is
unstable with respect to along shelf wave perturbations. The maximum predicted exponential
growth rate of 0.44 day−1 occurs for a wave length of 44 km. The corresponding wave period
is 34.2 hours. A second unstable mode has a maximum growth rate of 0.28 day−1, a wave



HIGH-ORDER WELL-BALANCED FINITE-VOLUME SCHEMES. DRAFT February 12, 2007 23

140 160 180 200 220 240
0

20

40

60

80

100

120

140

160

180

200
Finite−Volume free−slip inflow, T = 060 h

x km

y 
km

140 160 180 200 220 240
0

20

40

60

80

100

120

140

160

180

200
Finite−Volume free−slip inflow, T = 120 h

x km

y 
km

140 160 180 200 220 240
0

20

40

60

80

100

120

140

160

180

200
Finite−Volume free−slip inflow, T = 240 h

x km

y 
km

140 160 180 200 220 240
0

20

40

60

80

100

120

140

160

180

200
Finite−Volume free−slip inflow, T = 060 h

x km

y 
km

0.
12

6

0.123

0.12

0.117

0.111

0.105

0.099

0.057

0.06

0.063

0.066

0.069

0.072

0.066
0.069

0.072

140 160 180 200 220 240
0

20

40

60

80

100

120

140

160

180

200
Finite−Volume free−slip inflow, T = 120 h

x km

y 
km

0.
12

6
0.

12
3

0.12

0.117

0.117

0.12

0.12

0.144
0.054

0.072

0.078

0.081

0.078

0.
07

2

0.
06

6

0.
06

140 160 180 200 220 240
0

20

40

60

80

100

120

140

160

180

200
Finite−Volume free−slip inflow, T = 240 h

x km

y 
km

0.084

0.063 0.141

0.15

0.111

0.069

0.06
0.069

0.0840.078

0.069
0.

07
2

0.078

0.12

0.132
0.126

0.12

0.1260.132

Figure 12. Ormen Lange Experiment III. Contour plots of surface elevation (top)
and velocity plots (bottom) at 60 (left), 120, and 240 (right) hours, computed with
the Finite-Volume scheme free-slip boundary condition and smooth growth function
Equation (35).
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Figure 14. Ormen Lange Experiment IV. Contour plots of surface elevation (top)
and velocity plots (bottom) at 60 (left), 120, and 240 (right) hours, computed with the
Finite-Volume scheme free-slip boundary condition and exponential growth function
Equation (35) and transition smoothing.

length of 54 km and a period of 41.1 hours. There are also steady, neutrally stable, shelf wave
oscillations in the band of wave lengths around 1000 − 1200 km with corresponding period
35.6− 40.5 hours.

To compare the results of the linear stability analysis with the solution of the finite volume
scheme in more detail we did the same computation as in section 4.4.1 on an enlarged domain
of 300 × 9600km2, grid-width 2 km and final time 480 hours (see Figure 16). Since several
periods of the long waves (wavelength 1000− 1200 km) fit into this domain, it is possible to
measure the wavelength very accurately. Figure 17 shows the surface elevation for the section
x = 200 km, 0 km ≤ y ≤ 400 km, which is the upper shelf-edge. It is here that we observe
the strongest wave amplitudes. The peaks indicate a wave length of 49 km, which is the
separation distance of the eddies. Figure 18 shows the surface elevation for the section along
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Figure 15. Ormen Lange Experiment VI. Contour plots of surface elevation (top)
and velocity plots (bottom) at 60 (left), 120, and 240 (right) hours, computed with
the Finite-Volume scheme free-slip boundary condition, exponential growth function
and balanced Equation (28) at inflow.

the coast (x = 300 km, 0 km ≤ y ≤ 8400 km). Here we observe the second strongest wave
amplitudes. The peaks indicate a wave length of 1152 km. Both wave, the one in Figure 17
with wave length 49 km, and the one in Figure 18 with 1152 km, have the same wave period
of 39.5 hours. For the second wave, time-plots of surface displacement, and velocity v are
shown in Figure 19. Time plots for the first wave are similar, and not shown here.

The computational results of Figure 17, showing the development of eddies with period
35 − 40 hours and an along shelf separation of 40 − 60 km, are in close, but not complete,
agreement with the predictions of the linear stability analysis.

The oscillation with wave length of about 1200 km and period about 40 hours (see Fig-
ure 18) is most pronounced in the sea level η and its amplitude grows considerably over a time
span of 10 days. Clearly, this oscillation corresponds to the steady long shelf wave oscillations
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Figure 17.
Section of surface displacement at x = 200 km, computed on a domain of 300× 9600 km2.

The maximum exponential growth rate is observed for a wave length of 49 km.

found by the stability analysis. In the numerical simulations the oscillation seems to be ex-
cited by the periodic eddy formation near the inflow boundary and propagates subsequently
downstream with a speed of about 30 km/hours.

A perfect correspondence between the linear stability analysis and the numerical simu-
lations of the inflow jet cannot be expected due to nonlinear effects and the downstream
development of the eddies in the model.

Note that for the situations computed above, the finite difference scheme yields almost
equal results as the finite volume scheme.
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Figure 19. The frequency of the maximum unstable waves is approximately
39.5 hours. The upper plot shows the frequency in the surface displacement and the
lower plot shows the the frequency in long shelf velocity component v̄.

5. Conclusion

In this paper we have presented a comparison of a finite-difference and a high-order finite-
volume scheme for geophysical flow problems. To conclude our report we discuss

1. the efficiency and stability of the FD and FV solvers,
2. the numerical inflow boundary conditions,
3. the geophysical implication of the computational results.

5.1. Efficiency and stability of the FD and FV solvers. The results indicate that
the two schemes compute qualitatively and quantitatively similar solutions. The rates of
convergence are as expected, i.e., first order for the original finite-difference scheme used by
Gjevik et al. in [9], second order for the modified finite-difference scheme, and fourth order
(almost fifth) for the finite-volume scheme.

An exact quantitative comparison of run-times is not possible, since the two codes are
research codes written in different languages and by different programmers. However, it is
fair to say that for the very smooth test problems 4.1 (see Table 2 and Table 3) and 4.2 the
higher order finite volume scheme is asymptotically more efficient. For the more realistic,
and less smooth, test problems Section 4.4, both the FD and the FV code give qualitatively
the same results on the same grid, but the FD scheme is much faster than the FV scheme.
It would be desirable to run the FV scheme on a coarser grid to reduce the runtime. But
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then the inflow data for the jet would be resolved by less then 10 cells, and the flow is not
sufficiently resolved any more. This might be different for broader currents. Note that the FV
scheme could resolve small gravity waves which were completely smeared by the FD scheme.
However, these waves quickly leave the computational domain and do not seem to have a
noticeable impact on the major currents.

But the FV scheme has an important advantage over the FD scheme: it is much more
stable in cases with strong gradient. We can run it with CFL numbers of 0.5 (in all our
computations) and sometimes up to 1, without adding any artificial viscosity. This includes
solutions with shock-like discontinuities, e.g. hydraulic jumps. If we run the FD scheme
without artificial viscosity, and for smooth solutions, it may already produce instabilities
for CFL numbers of 0.5. This happened for example when we implemented the free-slip
boundary condition into the FD scheme. For hydraulic jumps, a lot of artificial viscosity has
to be added to stabilise the FD scheme, and this reduces the accuracy of the scheme.

5.2. Numerical inflow boundary conditions. Using Riemann decompositions, we could
successfully translate the FD boundary conditions to the FV solver. We could also improve
the no-slip inflow boundary conditions by the free-slip condition, which yields smoother
solutions (Tables 4-7). Moreover, we developed a transparent inflow condition, which allows
waves to leave the domain through the inflow boundary.

5.3. Geophysical implication of the computational results. Various numerical exper-
iments for the Ormen Lange cases presented in Section 4.4, with the FD and the FV schemes
and different implementations of the boundary conditions led to almost identical results for
two different startup profile configurations. These results are also in close agreement with
linear stability analysis (see Section 4.4.6). Therefore the computations presented here fully
confirm the results of [26] about instabilities of the shelf slope jet and the formation of eddies.

5.4. Further perspectives. The finite-volume scheme is much more expensive with respect
with computer time than the traditional finite-difference scheme, but one benefit from a lot
higher accuracy. To obtain a similar accuracy with the finite-difference scheme one would
have to refine the grid several times. This may make the finite-volume scheme attractive
for studies of high frequency oscillations associated with strong current shears or small scale
bathymetric features on the shelf edge.
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Zürich. Birkhäuser Verlag, Basel, (1992), ISBN: 3-7643-2723-5.

[16] Lukacova . Well. J. Comput. Phys. 32 (2006), 101–136.
[17] J. von Neumann and R.D. Richtmyer. A method for the numerical calculation of hydrodynamic shocks.

J. Appl. Phys. 21, (1950). 232–237.
[18] S. Noelle, N. Pankratz, G. Puppo and J. R. Natvig. Well-balanced finite-volume schemes of arbitrary

order of accuracy for shallow water flows. J. Comput. Phys. 213 (2006), 474–499.
[19] J. Oliger and A. Sundstrøm. Theoretical and practical aspects of some initial boundary-value problems

in fluid-dynamics. SIAM J.Appl.Math. 35(3) (1978), 419–446.
[20] R.D. Richtmyer and K.W. Morton. Difference methods for initial-value problems. Second edition. Inter-

science Publishers John Wiley & Sons New York (1967).
[21] P.L. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comp. Phys. 43

(1981), 357–372.
[22] J. Shi, C. Hu, and C.-W. Shu. A technique of treating negative weights in WENO schemes. J. Comp.

Phys. 175 (2002), 108–127.
[23] C.-W. Shu. Total-variation-diminishing time discretization. SIAM J.Sci.Statist.Comp. 9 (1988), 1073–

1084.
[24] C.-W. Shu. Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic

conservation laws. in Advanced Numerical Approximation of Nonlinear Hyperbolic Equations, edited by
B. Cockburn, C. Johnson, C.W. Shu and E. Tadmor, Lecture Notes in Mathematics, Springer-Verlag,
Berlin/New York (1998), 325–432.

[25] J. Smagorinsky. General circulation experiments with the primitive equation. Monthly Weather Review
91 (1) (1963), 99–164.

[26] Ø. Thiem, J. Berntsen and B. Gjevik. Development of edddies in an idealized shelf slope area due to an
along slope barostraophic jet. Continental Shelf Research Vol. 26 (2006), 1481–1495.

[27] Y. Xing and C.-W. Shu. High Order Finite Difference WENO Schemes with the Exact Conservation
Property for the Shallow Water Equations. J. Comp. Phys. Vol. 208 (2005), 206–227.

(Normann Pankratz)
Institut für Geometrie und Praktische Mathematik,
RWTH Aachen, 52056 Aachen, Germany

E-mail address: pankratz@igpm.rwth-aachen.de

(Jostein Natvig)
SINTEF ICT, Deptartement of Applied Mathematics,
P.O.Box 124. Blindern, N-0314 Oslo, Norway.

E-mail address: Jostein.R.Natvig@sintef.no

(Bjørn Gjevik)
Institute of Mathematics, University of Oslo,
P.O.Box 1053 Blindern, N-0316 Oslo, Norway.

E-mail address: bjorng@math.uio.no

URL: http://www.math.uio.no/~bjorng/

(Sebastian Noelle)
Institut für Geometrie und Praktische Mathematik,
RWTH Aachen, 52056 Aachen, Germany

E-mail address: noelle@igpm.rwth-aachen.de

URL: http://www.igpm.rwth-aachen.de/~noelle/


