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Abstract

In this paper we consider a model for pool-boiling systems known from the liter-
ature. This model involves only the temperature distribution within the heater
and models the heat exchange with the boiling medium via a nonlinear bound-
ary condition imposed on the fluid-heater interface. The model allows multiple
homogeneous (i.e. spatially constant) and multiple heterogeneous steady-state
solutions. The structure of this family of steady-state solutions has been studied
by means of a bifurcation analysis in two recent papers (Speetjens et al. (2006a),
Speetjens et al. (2006b)). The present study concentrates on stability properties
of these steady-state solutions. To this end, a generic linear and a case-specific
nonlinear stability analysis are performed which show that only the homogeneous
steady-states of complete nucleate or complete film boiling are linearly stable.
All heterogeneous steady-state solutions appear linearly unstable. These stability
results are consistent with laboratory observations.
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1 Introduction

Pool boiling refers to boiling processes that lean on natural convection as a means for heat
transfer through the boiling medium and is the key mode of thermal transport in many prac-
tical applications. Local heat-transfer phenomena near heating walls in industrial boiling
equipment (e.g. evaporators and kettle reboilers) for instance are essentially pool-boiling pro-
cesses (Thome (2003)). Furthermore, pool boiling is emerging as novel cooling technique for
electronics components (Mudawar (2001)). Despite its importance, many aspects of (pool)
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boiling remain largely unexplored to date, mainly due to the immense complexity of the
process induced by the intricate interplay between hydro- and thermodynamics. Studies on
boiling known in the literature are mainly experimental and empirical. Theoretical investi-
gations of fundamental phenomena in pool boiling, on the other hand, are scarce. This is the
primary motivation for our recent studies, reported in Speetjens et al. (2006a) and Speetjens
et al. (2006b), as well as for the follow-up study presented in this paper.

Central topic of the present study is the stability behaviour of pool-boiling systems. Lab-
oratory experiments indicate that, without active control, pool-boiling systems allow only
two stable steady-state solutions, namely nucleate boiling and film boiling (Adiutori (1964),
Auracher & Marquardt (2004), Kovalev (1968), Stephan (1965)). Other states belong to the
transition-boiling regime and are inherently unstable. Nucleate boiling is, as opposed to film
boiling, an efficient and safe mode of heat transfer and the sought-after boiling mode in most
practical applications (Dhir (1998)). However, for typical operating conditions, the system
admits both nucleate boiling and film boiling as steady states (Speetjens et al. (2006a)) and,
consequently, the stable state eventually attained by the system is a priori unclear. Whether
a given unstable state in the transition-boiling regime evolves towards either the nucleate-
boiling or the film-boiling state is of major practical importance, though. This is intimately
related to the stability properties of boiling states. Stability analyses of pool-boiling systems
are hitherto restricted to highly-idealised models as, for instance, heated wires (Gurevich
& Mints (1987), Kovalev & Rybchinskaya (1978), Kovalev & Usitakov (2003)), heated foils
(Blum et al. (1999)), heated cylinders with homogeneous boiling conditions (Blum et al.
(1996), Blum & Marquardt (1998)) and rectangular ‘thick’ heaters with artificial heteroge-
neous boiling conditions (Blum et al. (1999)). Similar studies for more sophisticated models
including both realistic heater geometries and realistic heterogeneous boiling conditions are
not known in the literature. This is the impetus for the study presented in this paper.

The stability analysis in this paper concerns the stability properties of the multiple het-
erogeneous boiling states that have been found in Speetjens et al. (2006a) for a spatially
two-dimensional (2D) heater. Key to the modelling approach is the phenomenological con-
nection between the local state of aggregation of the boiling medium and the local temperature
at the fluid-heater interface at mesoscopic length- and time scales1: ‘lower’ and ‘higher’ tem-
peratures correspond to the liquid and vapour phases, respectively. This allows a description
of the (qualitative) behaviour of the pool-boiling problem entirely in terms of the temperature
field within the heater. Thus the pool-boiling problem is reduced to a heat-transfer problem
for the heater with a nonlinear heat-flux relation at the interface between the heater and
the boiling medium. This heater-only model is based on the approach used in Blum et al.
(1996), Blum et al. (1999). Section 2 provides a concise description. Further details can be
found in Speetjens et al. (2006a).

The nonlinear heat-transfer model resembles nonlinear evolution equations of parabolic
type (e.g. reaction-diffusion and pattern-formation equations) known from mathematical
physics (Fife (1979), Temam (1997)). The dynamics of such systems are typically dominated
by a global attractor, consisting of the steady-state solutions and their heteroclinic connec-
tions, to which initial conditions converge if time evolves (Temam (1997)). Said resemblance
suggests that the pool-boiling model may exhibit similar dynamical behaviour. However,
in the pool-boiling model the nonlinearity of the problem is due to the nonlinear heat-flux

1Here mesoscopic means locally averaged in space and time over intervals larger than bubble dimensions
and bubble lifetimes in order to smooth out microscopic short-term fluctuations (Ouwekerk (1972)).
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condition at the heater-fluid interface and not due to a nonlinearity in the partial differen-
tial equation itself as in ‘conventional’ nonlinear parabolic evolution equations. Thus the
concepts known for the latter problem class cannot be applied directly to the pool-boiling
problem. We are unaware of rigorous mathematical studies on e.g. existence, smoothness
and asymptotic stability of solutions of problems involving nonlinear boundary conditions
such as our pool-boiling problem. A rigorous mathematical analysis is beyond the present
scope, however. Instead, preliminary results are given that indicate the existence of a global
attractor consisting of steady-state solutions and their heteroclinic connections (Section 3.1).
This strongly suggests dynamical behaviour akin to that of ‘conventional’ nonlinear evolution
equations and justifies a study on the existence of (multiple) steady-state solutions and their
stability properties.

The set of steady-state solutions of the 2D boiling problem has been studied extensively in
Speetjens et al. (2006a); an extension to the 3D case is given in Speetjens et al. (2006b). The
present study investigates the stability properties of these steady states by a linear stability
analysis. This analysis hinges on linearisation of the nonlinear problem at a given steady-state
solution. Treatment of the resulting linearised model with a separation-of-variables technique
results in a linear eigenvalue problem that governs the eigenmodes and corresponding eigen-
values (i.e. temporal growth rates) of steady-state solutions (Section 3.2.1). Analysis of
this eigenvalue problem yields generic stability properties (Section 3.2.2). The eigenmodes
and eigenvalues of a given steady state can be computed (approximately) using a Fourier-
collocation discretisation method (Section 3.2.3). The generic linear-stability analysis and the
eigenmode decomposition are demonstrated for a representative set of steady-state solutions
(Section 4.1). A brief recapitulation of steady-state solutions determined in Speetjens et al.
(2006a) is given in Section 3.3. Numerical simulation of the nonlinear evolution of linearly
unstable steady states is performed by a spectral algorithm. These simulations validate the
linear analysis and yield first insight into the nonlinear (in)stability behaviour (Section 4.2).
Conclusions are drawn in Section 5.

2 Model Problem

The stability of pool-boiling systems is investigated in terms of a model problem considered
in Speetjens et al. (2006a). An extensive discussion and motivation of this model is provided
in the latter. Here we restrict ourselves to a concise description of the non-dimensional
formulation of this model.

We consider the heat transfer within the two-dimensional rectangular heater D := [0, 1]×
[0,D] (Figure 1a). Its boundary is given by Γ = ∂D = ΓH ∪ ΓA ∪ ΓF and comprises the
boundary segments ΓH : y = 0 (constant heat supply), ΓA: x = 0, 1 (adiabatic sidewalls) and
ΓF : y = D (non-constant heat extraction by boiling process). The heat transfer within D is
modelled by

∂T

∂t
= κ∇2T in D × [0, tend],

T (x, 0) = T0(x) for x := (x, y) ∈ D, (1)

∂T

∂ν
= g(x, T ) on Γ,

with ν the outward normal of Γ. The boundary condition on Γ introduces a nonlinearity due
to the dependence of g on T (x,D, t) =: TF (x, t). Note that TF denotes the value of T at the
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fluid-heater interface ΓF . The function g is given by

g(x, Z) =





0 for x = 0 or x = 1,
1/Λ for y = 0,

−Π1 qF (Z; Π2,Π3)/Λ for y = D.
(2)

The function T = T (x, t) is the non-dimensional temperature excess (i.e. the temperature
relative to the boiling point of the medium). System parameters are D (aspect ratio of the
heater), Λ (non-dimensional thermal conductivity), κ (non-dimensional thermal diffusivity),
and Π1 (ratio typical boiling heat flux to constant heat supply), all of which are positive. The
nonlinear heat-flux function qF (·; Π2,Π3) accounts for the heat exchange between the heater
and the boiling medium. This function is specified in the Appendix and introduces two further
control parameters, viz. Π2 and Π3, resulting in six parameters in total. However, physical
considerations suggest ΛD/κ = |1−Π1| and thus the model contains five independent control
parameters.

Physical considerations further suggest that the heat-flux function qF , which describes
the local heat exchange between fluid and heater, should be qualitatively similar to the so-
called boiling curve. The latter describes the global heat exchange between fluid and heater
obtained via averaging over the fluid-heater interface ΓF . Therefore, as before (Speetjens
et al. (2006a)) we use a heat-flux function schematically shown in Figure 1b, which has
the typical shape of a boiling curve, cf. Appendix for an explicit expression. The heat-
flux function is parameterised by Π2 (ratio of extremal heat fluxes) and Π3 (ratio of extremal
temperatures) and consists of three distinct regimes that correspond to one of the local boiling
modes and associated mesoscopic states: nucleate boiling (left of local maximum; fluid-rich
state); transition boiling (in between both extrema; transitional state); film boiling (right of
local minimum; vapour-rich state).2

Π2
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a) Heater configuration. b) Heat-flux function.
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Figure 1: Non-dimensional model problem: heater configuration (panel a) and heat-flux func-
tion qF (panel b). The dashed line represents the normalised heat supply Π−1

1 .

3 Unsteady pool-boiling problem: generic analysis

The nonlinear heat-transfer model (1) bears resemblance to nonlinear parabolic problems
known from mathematical physics (Temam (1997)). However, a fundamental difference is that
in the heat-transfer model (1) the nonlinearity resides in the boundary condition rather than

2Further physical background for this heater-only model is given by Speetjens et al. (2006a).
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in the PDE itself. This is a direct consequence of the finite thickness (D > 0) of the present
heater configuration and distinguishes our problem from ‘thin’ (D → 0) configurations. For
vanishing D the model reduces to a PDE with a nonlinear source term (see e.g. Blum et
al. (1999)) and generic concepts for the analysis of parabolic systems – in particular of the
reaction-diffusion type (Fife (1979)) – can be applied. Examples of such approaches to pool-
boiling systems are in Gurevich & Mints (1987), Kovalev & Rybchinskaya (1978), Kovalev &
Usitakov (2003), Blum et al. (1999).

Rather than providing a rigorous mathematical analysis, which is beyond the present
scope, in this section we indicate that concepts similar to those introduced for ‘conventional’
parabolic evolution equations (Temam (1997)) can be applied to the pool-boiling problem,
too. We assume that solutions of the pool-boiling problem fulfill all the regularity conditions
that admit application of such concepts. We note that the results of the generic analysis and
those of the case study in Section 4 are in good agreement.

3.1 Generic dynamical behaviour

The dynamical behaviour of an evolutionary (parabolic) system is commonly investigated
based on its corresponding weak formulation (Temam (1997)). We use the Sobolev space
H1(D) and the notations

(u, v)L2(D) :=

∫

D

uv dxdy, B(T,ϕ) :=

∫

D

∇T · ∇ϕ dxdy.

For the heat-transfer problem (1) the weak formulation is as follows: find u = u(t) = T (·, t) ∈
H1(D) with du(t)

dt
∈ L2(D) such that

(du(t)
dt

, ϕ
)
L2(D)

=

∫

∂D

g(x, u) ϕ dσ − κB(u, ϕ), for all ϕ ∈ H1(D). (3)

If u is sufficiently smooth it follows (by taking test functions ϕ ∈ C∞
0 (D)) that du/dt = κ∇2u

in L2(D). The boundary condition (in L2(∂D)) then follows from testing with ϕ ∈ C∞
0 (R2)|D̄,

and thus solutions of (3) provide L2-solutions of (1). Conversely, regular solutions to (1)
naturally are solutions to (3). The weak formulation describes the evolution of the system
from its initial state u(0) to its current state u(t), i.e. u(t) = Φt(u(0)) defines a flow. Thus the
weak formulation (3) defines a dynamical system for the weak solution u(t). Existence and
uniqueness of a solution of (3) depends on smoothness and growth properties of g. This topic
is not studied in the present paper. We assume that g is such that the following property
holds:

Property 1 System (3) results in a global semi-flow: Φt : H1(D) → H1(D), t ∈ [0,∞).

The dynamical system (3) has a gradient structure, i.e. the functional E : H1(D) → R,

E(u) :=
κ

2
B(u, u) −

∫

∂D

G(x, u)dσ, (4)

with G(x, u) such that DuG(x, u) = g(x, u), defines an energy or Lyapunov function for
the solutions u of (3). Under certain smoothness and growth assumptions on g we have
DE(u) ∈ L

(
H1(D),R

)
and

DE(u)[ϕ] = κB(u, ϕ) −
∫

∂D

g(x, u) ϕ dσ, for all u, ϕ ∈ H1(D). (5)
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Along a solution curve u(t) of (3) the energy E decays monotonically in time:

d

dt
[E(u(t))] = DE(u)

[
du

dt

]
= −

(
du

dt
,
du

dt

)

L2(D)

≤ 0, (6)

with equality (for a range of t-values) only if u(t) = T (·, t) = T∞(·) is a steady-state solution.
This property implies a loss of energy of solutions u(t) = T (·, t) with progressing time. It is
well known that in the presence of a Lyapunov function the omega limit set

ω(u0) =
⋂

t > 0

⋃

r ≥ t

Φr(u0),

of any point u0 ∈ H1(D) is a subset of the set of equilibria

E =
{
u ∈ H1(D) : Φt(u) = u for all t ≥ 0

}
.

The above already provides important information on the long-term dynamical behaviour by
implying that any initial condition u0 always converges on a steady-state solution.

Our case study for the pool-boiling problem further indicates the existence of a global
attractor A for the semiflow Φ·, i.e. a strictly positive invariant subset of H1(D), which is
compact and attracts all bounded subsets of H1(D) (cf. Temam (1997), Definition I. 1.3).
We assume the following property to guarantee this existence:

Property 2 Assume the global semiflow Φ· generated by (3) has some compactness property,
e.g. in the sense of Temam (1997) (I. 1.12) or (I. 1.13), and further assume the existence of
a bounded set M ⊂ H1(D), which attracts all bounded sets in H1(D).

In order to elucidate the consequences of the above properties we introduce the following
notation: let the unstable set of a set M ⊂ H1(D) be defined as

Mu(M) :=
{
w ∈ H1(D) : ∀ t ≤ 0 ∃ u(t) ∈ (Φ−t)

−1 (w) and

d
(
u(t),M

)
→ 0 for t → −∞

}

where (Φs)
−1(w) :=

{
v ∈ H1(D) : Φs(v) = w

}
is the preimage of w under Φs and

d(u,M) = inf
v∈M

‖u − v‖H1(D) is the distance between u and M . Furthermore, we need

the notion of a heteroclinic connection between two steady-state solutions u0 and v0. If
u0, v0 ∈ E are given, the heteroclinic connection between u0 and v0 is defined as

C(u0, v0) :=
{
w ∈ H1(D) : w ∈ Mu(u0) and Φt(w) → v0 as t → ∞

}
,

i.e. all full orbits that approach u0 as t→ −∞ and v0 as t→ ∞. Using these notions we can
formulate the following result:

Theorem 1 We assume property 1 and 2. Then the semiflow Φ· possesses a global compact
attractor A. This global attractor equals the unstable set of E, i.e. A = Mu(E), and consists
of full orbits which approach the set of steady-state solutions for t→ −∞. If furthermore E
is discrete, then the global attractor consists of steady-state solutions u(t) = T (·, t) = T∞(·) ∈
H1(D) of (3), i.e.,

κB(T∞, ϕ) =

∫

∂D

g(x, T∞) ϕ dσ for all ϕ ∈ H1(D),
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and their heteroclinic connections:

A =




⋃

u0 ∈E

{u0}


 ∪

⋃

u0,v0 ∈E

C(u0, v0), (7)

Proof. Temam (1997), Theorem I.1.1 and Theorem VII.4.1. �.

In general unstable steady-state solutions u0 have a stable manifold

Ms(u0) =
{
w ∈ H1(D) : Φt(w) → u0 for t→ ∞

}

with a finite non-zero codimension. Therefore it is most likely for a generic initial condition
u0 to lie in the stable manifold of a stable equilibrium g ∈ E , i.e. ω(u0) = {g}. Therefore
in realistic systems due to physical imperfections as well as numerical simulations due to
rounding errors the evolution process basically always converges towards a stable steady
state.

Isolation of the global attractor of the boiling problem requires identification of its steady-
state solutions and determination of the corresponding stability properties. The steady-state
solutions have been studied extensively in Speetjens et al. (2006a); a brief recapitulation
is given in Section 3.3. The present paper concerns the corresponding stability properties.
Section 3.2 gives a generic linear stability analysis; Section 4 demonstrates and validates
this linear analysis by way of numerical simulation of the nonlinear evolution of unstable
steady-state solutions. This also offer first insight into the nonlinear stability behaviour of
the system. Moreover, it may enable a more detailed investigation of the structure of the
attractor by the approach proposed in Mischaikow (1995) along the lines of the analysis of
the Cahn-Hilliard equation in Maier-Paape & Miller (2002) and Maier-Paape et al. (2005).

3.2 Linear stability analysis of steady-state solutions

3.2.1 Linearised heat-transfer model

The stability analysis of steady-state solutions that we present is based on the linear theory
of stability, cf. Iooss & Joseph (1990) Section I.6. To determine stability of a steady-state
solution T∞(x) one subjects this steady-state solution to a small initial perturbation v0(x) =
v(x, 0). We assume that for the nonlinear problem (1) the principle of linearized stability
holds (cf. Kielhöfer (2004)), i.e., solutions of the nonlinear problem in a neighbourhood of a
steady-state solution T∞ and of the linearised problem (linearisation at T∞) have the same
qualitative behaviour. This assumption justifies the analysis of stability properties of the
nonlinear problem by means of a stability analysis of the linearised problem. In this paper,
unless stated otherwise explicitly, the notions stable and unstable are always meant in the
sense of this linear theory of stability.

For the stability analysis we introduce the linearisation of (1). Let T∞(x) be a regular
steady-state solution of (1), i.e. T∞ satisfies the following Laplace equation with a nonlinear
Neumann boundary condition

∇2T∞ = 0 in D, ∂T∞
∂ν

= g(x, T∞) on Γ = ∂D. (8)
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(g as in (2)). Properties of the nonlinear steady-state problem (8) are derived in Speetjens et
al. (2006a) and summarised in Section 3.3. The corresponding linearised problem at T∞ for
the perturbation v(x, t) induced by an initial perturbation v0(x) is given by

∂v

∂t
= κ∇2v in D × [0, tend],

v(x, 0) = v0(x) for x ∈ D, (9)

∂v

∂ν
= f(x)v on Γ.

The Neumann boundary condition is given by

f(x) =

{
0 on Γ \ ΓF ,

−γ(x) on ΓF ,
(10)

with

γ(x) =
Π1

Λ

dqF
dZ

(TF,∞(x)) , x ∈ [0, 1], (11)

where TF,∞(x) := T∞(x,D) is the steady-state temperature profile at the fluid-heater interface
ΓF . Thus the original nonlinear condition on ΓF simplifies to a standard linear Neumann
condition with an x-dependent coefficient determined by the interface temperature TF,∞(x)
of the steady-state solution.

As ansatz (based on separation of variables) we seek solutions of (9) of the form

v(x, t) = e−κµtψ(x). (12)

Substitution of (12) into (9) leads to the following linear elliptic eigenvalue problem for ψ:

∇2ψ + µψ = 0 in D, (13)

∂ψ

∂ν
= 0 on Γ \ ΓF , (14)

∂ψ

∂ν
+ γ(x)ψ = 0 on ΓF . (15)

The weak formulation of this eigenvalue problem is as follows: determine µn ∈ R, ψn ∈ H1(D)
such that

−B(ψn, ϕ) −
∫

ΓF

γ ψn ϕ dσ + µn

∫

D

ψn ϕ dxdy = 0 for all ϕ ∈ H1(D). (16)

The eigenpairs that solve this problem are denoted by (µn, ψn), n = 1, 2, . . .. The eigenfunc-
tions are scaled such that ‖ψn‖L2(D) = 1. Note that whether for generic γ (e.g. γ ∈ L∞(ΓF ))
the eigenfunctions (ψn)n≥1 form a complete orthogonal basis of L2(D) is not a priori clear.
We do not study this topic in the present paper. Instead, we assume that these eigenfunc-
tions span a space that is sufficiently large such that it makes sense to restrict the choice of
the initial perturbations v0(x) to this space. We obtain the following representation for the
unique solution v of (9) induced by an initial perturbation v0 ∈ span{ψn | n ≥ 1 }:

Let v0(x) =

∞∑

k=0

ηkψk, with ηk = (v0, ψk)L2(D), (17)

then v(x, t) =

∞∑

k=1

ηke
−κµktψk(x). (18)
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Note that the eigenvalues µk depend (via γ) on T∞ but do not depend on the perturbation
v0. As a consequence of the representation (18) one obtains:

Corollary 1 The steady-state solution T∞ of (1) is linearly stable w.r.t. all perturbations of
the form (17) if

µk ≥ 0 for all k. (19)

Conversely, at least one µk < 0 implies that T∞ is an unstable steady-state solution.

Thus condition (19) characterises the linear stability of steady-state solutions.

Remark 1 From (16) it follows that

µn

∫

D

ψ2
n dxdy = B(ψn, ψn) +

∫

ΓF

γ ψ2
n dσ ≥

∫

ΓF

γ ψ2
n dσ.

Therefore we obtain µn ≥ 0 if γ ≥ 0 holds. It follows that γ ≥ 0 on the fluid-heater interface
ΓF is a sufficient condition for stability of the steady-state solution.

3.2.2 Analysis of the eigenvalue problem

The stability properties of steady-state solutions T∞ of (1) are directly related to the eigen-
values of problem (13)-(15) , cf. Corollary 1. In this section we study this eigenvalue problem.

We use an approach based on Fourier analysis. First, for a fixed µ ∈ R we consider the prob-
lem (13)-(14) and apply separation of variables to construct bivariate Fourier-modes that
satisfy (13)-(14). Let φ(x) = α(x)β(y). An elementary computation shows that c α(x)β(y),
c ∈ R \ {0} solves (13)-(14) iff

α(x) = cos(nπx), β(y) = cosh
(√

(nπ)2 − µ y
)
, n = 0, 1, 2, . . . .

Note that for z < 0 we have cosh(
√
z) = cosh(i

√
|z|) = cos(

√
|z|). We now make the ansatz

that the whole solution space of (13)-(14) is obtained by superposition of these Fourier-modes,
i.e., all solutions of (13)-(14) lie in the space

Sµ :=
{
ψ(x) =

∞∑

n=0

An cos(nπx) cosh(
√
αn,µ y), An ∈ R, αn,µ := (nπ)2 − µ

}
.

If we take the boundary condition (15) into account, then the solutions of (13)-(15) form a
subspace of Sµ. A function φ(x) =

∑∞
n=0An cos(nπx) cosh(

√
αn,µ y) ∈ Sµ solves (15) iff

∞∑

n=0

An
√
αn,µ sinh(

√
αn,µD) cos(nπx) + γ(x)φ(x,D) = 0 for all x ∈ [0, 1]. (20)

Thus the problem of finding the eigenvalues of (13)-(15) is transformed to the problem of
finding µ such that the equation (20) has a nontrivial solution φF (x) := φ(x,D). Note
that the latter problem is spatially one-dimensional. Furthermore, for z < 0 we have√
z sinh(

√
z) = −

√
|z| sin(

√
|z|) and thus for all αn,µ ∈ R equation (20) is real. We will
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solve this equation using a univariate Fourier analysis. To this end some notation is intro-
duced. Let F : L2([0, 1]) → ℓ2 be the Fourier transform :

F
( ∞∑

n=0

cn cos(nπ· )
)

= (cn)n≥0.

For c, d ∈ ℓ2 the elementwise multiplication is denoted by c ∗ d = (cndn)n≥0. Furthermore,
we write for φ ∈ Sµ restricted to fluid-heater interface ΓF :

φF (x) := φ(x,D) =

∞∑

n=0

An cosh(
√
αn,µD) cos(nπx) =

∞∑

n=0

φ̃n cos(nπx),

φ̃n := An cosh(
√
αn,µD).

(21)

Using this, (20) can be rewritten as follows: find φF (x) =
∑∞

n=0 φ̃n cos(nπx) such that

∞∑

n=0

√
αn,µ tanh(

√
αn,µD)φ̃n cos(nπx) + γ(x)φF (x) = 0 for all x ∈ [0, 1]. (22)

For z < 0 we have
√
z tanh(

√
z) = −

√
|z| tan(

√
|z|). Define

dµ ∈ ℓ2, (dµ)n :=
√
αn,µ tanh(

√
αn,µD), n = 0, 1, . . .

Then the problem (22) has the following compact formulation: find φF such that

JµφF := F−1
(
dµ ∗ FφF

)
+ γφF = 0. (23)

In this formulation it is implicitly assumed that a solution φF is sufficiently smooth such that
dµ ∗FφF ∈ range(F). The linear operator Jµ is well-defined on a dense subspace of L2([0, 1]).
We are interested in values for µ for which the equation (23) has a nontrivial solution φF .
Furthermore, we are interested in the sign of these eigenvalues µ, as these determine the
stability of corresponding steady-state solutions. In the analysis below we distinguish two
cases: constant and non-constant γ. For γ(x) = γ =constant the relevant properties of µ can
be determined analytically. For the general case of a smooth but not necessarily constant
function γ(x) certain properties can still be derived analytically. However, for full insight
we must resort to discretisation of (23) and study its properties via numerical computations.
Note that, for brevity, φ hereafter refers to both the full and the boundary solutions; its
meaning readily follows from the context.

Homogeneous temperature on fluid-heater interface: constant γ

If γ(x) = γ is constant the following holds:

Theorem 2 There exist sequences (z+
k )k∈N with z+

k ∈ [(k−1)π, (k− 1
2 )π), k ≥ 1, and (z−k )k∈N

with z−1 < 0, z−k+1 ∈ [(k− 1
2)π, kπ), k ≥ 1 such that the following holds. If (µ, φ), with φ 6= 0,

solves (23) then µ ∈ (µk,n)k,n∈N with µk,n defined by:

µk,n = z+
k + (nπ)2 if γ ≥ 0, (24)

µk,n = z−k + (nπ)2 if γ < 0. (25)

For all k, n, the pair µ = µk,n, φ(x) = cos(nπx) is a solution of (23).
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Proof. Note that

F−1
(
dµ ∗ Fφ

)
+ γφ = 0

⇔ dµ ∗ Fφ+ γFφ = 0

⇔ for all n : (dµ)n + γ = 0 or φ̃n = (Fφ)n = 0.

Take an n ∈ N such that φ̃n 6= 0. Then (dµ)n + γ = 0 must hold. We consider the equation

µ→ (dµ)n + γ =
√
αn,µ tanh

(√
αn,µD

)
+ γ = 0, αn,µ = (nπ)2 − µ. (26)

Thus we look for the roots of the function g(z) :=
√
z tanh(

√
z D) + γ. For z > 0 and γ ≥ 0

the equation g(z) = 0 has no solution. For z > 0 and γ < 0 there is a unique root z∗ > 0.
Define z−1 := −z∗. This induces a corresponding µ1 := z−1 + (nπ)2 that solves (26). For z ≤ 0
we have g(z) = −

√
−z tan(

√
−z D) + γ. An elementary analysis shows that for γ ≥ 0 the

equation g(z) = 0 has negative roots z∗ with −z∗ =: z+
k ∈ [(k−1)π, (k− 1

2 )π) for k = 1, 2, . . ..
For γ < 0 the equation g(z) = 0 has negative roots z∗ with −z∗ =: z−k+1 ∈ [(k − 1

2 )π, kπ)
for k = 1, 2, . . .. Due to −z = −αn,µ = µ− (nπ)2 we obtain corresponding solutions of (26):
µk = z+

k + (nπ)2, k = 1, 2, . . ., for the case γ ≥ 0 and µk = z−k + (nπ)2, k = 2, 3, . . ., for the
case γ < 0. Combination of the results for the case z > 0 and z ≤ 0 reveals that all possible
roots of (26) are given by (24)- (25). If we take φ̃n = 1, φ̃m = 0 for all m 6= n then (µk,n, φ)
with φ(x) = cos(nπx) solves (23). �

Remark 2 Relation (24) implies that for the case γ ≥ 0 all eigenvalues µ = µk,n of (13)-(15)
are positive. Relation (25) yields that for the case γ < 0 there always exists some integer
n0 > 0 such that µ1,n < 0 for all 0 ≤ n ≤ n0. Thus Theorem 2 describes the linear stability
properties of the pool-boiling problem in case of constant γ. Steady-state solutions for which
γ ≥ 0 holds are linearly stable (consistent with Remark 1) whereas steady-state solutions for
which γ < 0 holds are unstable.

Remark 3 Using Theorem 2 and the representation (21) we obtain that the eigenfunction
corresponding to µ = µk,n is given by φ(x, y) = cos(nπx) cosh(

√
(nπ)2 − µk,n y). Note that

(nπ)2 − µk,n = −z+
k for γ ≥ 0 and (nπ)2 − µk,n = −z−k for γ < 0. Hence, for γ ≥ 0 an

eigenfunction corresponding to µ = µk,n is given by φ(x, y) = cos(nπx) cos(
√
z+
k y) and for

γ < 0 we obtain φ(x, y) = cos(nπx) cosh(
√

−z−1 y) if k = 1 and φ(x, y) = cos(nπx) cos(
√
z−k y)

if k ≥ 2.

Heterogeneous temperature on fluid-heater interface: non-constant γ

The linear operator Jµ in (23) is symmetric on its domain in L2([0, 1]). This allows a general
analysis using real eigenvalues and energy arguments. We introduce the notation I := [0, 1]
and γmin := minx∈I γ(x). We derive a similar stability condition as in Remark 1:

Theorem 3 Assume that γmin ≥ 0 holds. Then for all solutions (µ, φ) of (23), with φ 6= 0,
we have µ ≥ 0.

Proof. If µ, φ 6= 0 satisfies (23) we attain

(
F−1(dµ ∗ Fφ), φ

)
L2(I)

+ (γφ, φ)L2(I) = 0. (27)
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Suppose µ < 0. Then αn,µ = (nπ)2 − µ > 0 for all n and thus (dµ)n > 0 for all n. This
implies, with cn := ‖ cos(nπx)‖L2(I),

(
F−1(dµ ∗ Fφ), φ

)
L2(I)

=

∞∑

n=0

(dµ)nc
2
nφ̃

2
n > 0.

Combined with (γφ, φ)L2(I) ≥ γmin(φ, φ)L2(I) ≥ 0 this results in contradiction with (27). �

Below we derive properties of eigenvalues µ < 0, i.e. eigenvalues for which corresponding
unstable stationary solutions exist. Due to Theorem 3 these exist only if γmin < 0 holds.

Lemma 1 Let µ < 0 be such that Jµφ = 0 for a φ 6= 0, i.e. (23) holds. Then µ ∈ [µ∗, 0)
holds, where µ∗ < 0 is the unique solution of

λ∗(µ∗) = 0, λ∗(µ) =
√−µ tanh

(√−µD
)

+ γmin. (28)

Proof. Due to γmin < 0 relation (28) has a unique solution. Through Jµφ = 0 we arrive at

(
F−1(dµ ∗ Fφ), φ

)
L2(I)

+ (γφ, φ)L2(I) = 0. (29)

For µ < µ∗ and arbitrary φ 6= 0 we have

(
F−1(dµ ∗ Fφ), φ

)
L2(I)

≥ (dµ)0‖φ‖2
L2(I) =

√−µ tanh
(√−µD

)
‖φ‖2

L2(I)

>
√

−µ∗ tanh
(√

−µ∗D
)
‖φ‖2

L2(I)

= γmin‖φ‖2
L2(I) ≥ −(γφ, φ)L2(I).

Hence (29) can not hold for µ < µ∗. �

Lemma 1 implies that negative eigenvalues must lie in the finite interval µ ∈ [µ∗, 0). The
result in the following theorem characterises the number of negative eigenvalues in this inter-
val.

Theorem 4 Let µ∗ ≤ µ1 < µ2 < . . . < µs < 0 be all µi such that Jµi
φi = 0 for some φi 6= 0.

Assume that for all i the null space of Jµi
is one-dimensional. Let ΣJ be the number of strictly

negative eigenvalues (the “index”) of J0 =: J and assume that for each of these eigenvalues
the corresponding eigenspace is one-dimensional. Then s = ΣJ holds.

Proof. Let λ(µ), v(µ) be an eigenpair of Jµ, i.e., Jµv(µ) = λ(µ)v(µ), with ‖v(µ)‖L2(I) = 1.
This implies

λ(µ) =
(
λ(µ)v(µ), v(µ)

)
L2(I)

=
(
Jµv(µ), v(µ)

)
L2(I)

.

Differentiation w.r.t. µ is denoted by a prime. Using the symmetry of Jµ we obtain

λ′(µ) =
(
J ′

µv(µ), v(µ)
)
L2(I)

+ 2
(
Jµv(µ), v′(µ)

)
L2(I)

=
(
J ′

µv(µ), v(µ)
)
L2(I)

+ 2λ(µ)
(
v(µ), v′(µ)

)
L2(I)

=
(
J ′

µv(µ), v(µ)
)
L2(I)

.
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The last equality follows from differentiation of ‖v(µ)‖2
L2(I) = 1 w.r.t. µ. The linear operator

J ′
µ is given by J ′

µφ = F−1
(
d̂µ ∗ Fφ

)
, with

(d̂µ)n =
d

dµ
(dµ)n =

d

dµ

[√
(nπ)2 − µ tanh(

√
(nπ)2 − µD)

]
.

An elementary computation yields that −c0 ≤ (d̂µ)n < 0 holds, where c0 is a constant inde-
pendent of n and µ. Thus −c0 ≤

(
J ′

µv(µ), v(µ)
)
L2(I)

= λ′(µ) ≤ 0 holds for all µ ≤ 0. This

means that λ(µ) is a decreasing function with a bounded derivative. For Jµi
φi = 0, φi 6= 0

(with a 1D null space) this implies a unique eigenvalue curve λ(µ) which passes through
µi, i.e. λ(µi) = 0. Due to the monotonicity of λ(µ) this curve must intersect the negative
y-axis, resulting in a corresponding negative eigenvalue of J0. This implies s ≤ ΣJ . Con-
versely, let ξ be a negative eigenvalue of J0. Then there is a unique eigenvalue curve λ(µ)
with λ(0) = ξ. Due to Lemma 1 this curve must intersect the µ-axis in the interval [µ∗, 0).
Hence, a unique corresponding µi ∈ [µ∗, 0) exists such that λ(µi) = 0. This implies ΣJ ≤ s. �

¿¿From theorem 4 it follows that steady-state solutions with γmin < 0 and ΣJ > 0 are
always unstable. The necessary condition for instability γmin < 0 is satisfied only if the
fluid-heater temperature falls (at least locally) within the transition regime; this implies a
fundamental relation between transition boiling and instability.

The results of Theorem 4 induce a method for computing the number of negative eigen-
values µ ∈ [µ∗, 0). This number equals the number of negative eigenvalues of the operator
J = J0. For the general case of a smooth but non-constant γ the eigenvalues of Jµ cannot be
determined analytically. Thus we apply a discretisation method (Section 3.2.3) for numerical
approximation. Using a sufficiently high resolution this allows us to determine the correct
number of negative eigenvalues (i.e. the same number as for the continuous problem). More-
over, an accurate approximation of the negative continuous eigenvalues can be computed.
The resolution needed is not very high due to the fact that the eigenfunctions corresponding
to the negative eigenvalues are dominated by low-frequency modes. This is explained in the
following remark.

Remark 4 Consider φ with ‖φ‖L2(I) = 1 and ξ < 0 such that Jφ = ξφ. Represent φ in the

cosine basis as φ(x) = c0 +
∑∞

n=1 cn
√

2 cos(nπx) (with ‖φ‖2
L2(I) =

∑∞
n=0 c

2
n = 1). Then

(
F−1(d0 ∗ Fφ), φ

)
L2(I)

+ (γφ, φ)L2(I) = ξ(φ, φ)L2(I) < 0

holds, and

∞∑

n=0

c2nnπ tanh(nπ) =
(
F−1(d0∗Fφ), φ

)
L2(I)

= −(γφ, φ)L2(I) ≤ ‖γ‖L∞(I)‖φ‖2
L2(I) = ‖γ‖L∞(I).

Thus cn must become “smaller” for “larger” n, meaning that, in this sense, the eigenfunction
φ is dominated by low-frequency modes.

3.2.3 Discretisation method

As explained above, the problem of finding eigenvalues of (13)-(15) has been transformed to
the problem of finding µ such that the equation (23) has a nontrivial solution. If for some µ
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an eigenvalue λ(µ) of Jµ equals zero, this µ is an eigenvalue of (13)-(15) For a general smooth
function γ the eigenvalue curves λ(µ) of the operator Jµ can not be determined analytically.
We introduce a discretisation method that is used to discretise Jµ and thus determine the
eigenvalue curves approximately. We use a Fourier-collocation method (Canuto et al. (1987)):
determine φF (x) :=

∑N
n=0 φ̃n cos(nπx) such that

N∑

n=0

{√αn,µ tanh(
√
αn,µD) + γ(xk)}φ̃n cos(nπxk) = 0, for all 0 ≤ k ≤ N, (30)

holds, with xk = k/N, k = 0, . . . , N the collocation points. Note that this is a discrete version
of the continuous problem in (22). The N + 1 equations (30) for the N + 1 unknowns φ̃n

can be represented in a compact matrix-vector formulation. To this end we introduce some
notation. Let φ = (φ0, . . . , φN )T be the vector of nodal values φn := φF (xn). The latter
relate to the truncated Fourier spectrum φ̃ = (φ̃0, . . . , φ̃N )T via

φ = V φ̃ φ̃ = V −1φ with V :=




1 cos(πx0) . . . cos(Nπx0)
...

...
...

1 cos(πxN ) . . . cos(NπxN )


 = V T . (31)

The relation

V −1 =
2

N
D V D, D = diag

(
1

2
, 1, . . . , 1,

1

2

)
(32)

holds, i.e. the matrix
√

2
N

V D is orthogonal. Define

Kµ = V KS,µV −1, KS,µ = diag
(√
αn,µD tanh(

√
αn,µD)

)
0≤n≤N

, (33)

Q = diag
(
Dγ(xn)

)
0≤n≤N

. (34)

Note that KS,µ and Q are both diagonal matrices. The discrete problem (30) can be formu-
lated in matrix-vector form as

Jµφ = 0, Jµ := Kµ + Q. (35)

In spectral form this becomes

JS,µφ̃ = 0, JS,µ := V −1JµV = KS,µ + QS , QS := V −1QV . (36)

The eigenvalues µ and eigenfunctions φF are approximated by those µ ∈ R and φ ∈ R
N+1

for which φ is a non-trivial null-vector of Jµ.
Numerical tests for the case study in Section 4 revealed that in these (approximate) eigen-

functions, for sufficiently high N , the Fourier coefficients decay exponentially with increasing
wave number n. This is consistent with Remark 4 in that indeed the low-frequency modes
are dominant. In all our experiments we use a resolution with N = 128. This resolution
allows a correct determination of the number of negative eigenvalues µ as well as an accurate
approximation of their numerical value.
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3.3 Steady-state solutions

A detailed analysis of the steady-state behaviour of the pool-boiling problem is given in Speet-
jens et al. (2006a). The approach is in essence similar to that adopted above. The nonlinear
2D steady-state problem (8) is reduced to a 1D boundary model via the method of separation
of variables. This 1D model is solved (approximately) through numerical approximation with
a Fourier-collocation discretisation method. Below the issues relevant in the present context
are summarised.

Application of separation of variables to (8) yields a (formal) representation of the solution
of the Laplace equation and the linear Neumann boundary conditions on Γ \ΓF . This results
in

T∞(x, y) =

∞∑

n=0

T̃n
cosh(nπy)

cosh(nπD)
cos(nπx) +

D − y

Λ
, (37)

which can easily be checked by substitution. The coefficients T̃n form the spectrum of the
Fourier cosine expansion

TF,∞(x) := T∞(x,D) =

∞∑

n=0

T̃n cos(nπx) (38)

of the temperature profile at the fluid-heater interface ΓF . These coefficients are determined
by the nonlinear Neumann boundary condition on ΓF . Substitution of (37) into the nonlinear
boundary condition on ΓF leads to

∞∑

n=0

nπ tanh(nπD)T̃n cos(nπx) + η(TF,∞(x))TF,∞(x) − 1

Λ
= 0 for all x ∈ [0, 1], (39)

where η(TF ) = Π1

Λ
qF (TF )

TF
is the scaled heat-transfer coefficient. The nonlinear equation (39)

is the characteristic equation that determines the particular properties of the steady-state
solutions of (8). Note the resemblance with relation (22).

The reduced steady-state problem (39) admits trivial and non-trivial solutions. Trivial
solutions are homogeneous interface temperatures, for which TF,∞(x) = T̃0 and T̃n = 0 for
n ≥ 1 holds. Then the nonlinear condition (39) simplifies to

qF (T̃0) = Π−1
1 . (40)

Thus homogeneous solutions coincide with intersection(s) between the heat-flux function qF
and the normalised heat-supply given by Π−1

1 (Figure 1b). Non-trivial, i.e., heterogeneous,
solutions TF,∞(x) that satisfy (39) cannot be determined analytically. However, certain prop-
erties of such solutions (if they exist) can be derived. One important property, proved in
Speetjens et al. (2006a), is that such solutions always occur as conjugate pairs

TF,∞(x) and T ∗
F,∞(x) := TF,∞(x+ 1/k) for a k ∈ N. (41)

This means that if TF,∞(x) is a solution then (for a certain k ∈ N) the shifted function
TF,∞(x + 1/k) is a solution, too. This implies non-uniqueness of heterogeneous solutions.
Homogeneous steady-state solutions can easily be determined by a standard root-finding
method applied to (40). Heterogeneous steady-state solutions are computed (approximately)
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by using a Fourier-collocation discretisation method, as described in section 3.2.3, applied to
(39). This results in a nonlinear system of equations of the form

G(T ) :=
(
K + M(T )

)
T − G = 0, (42)

T = (T0, . . . , TN )T , Tn := TF,∞(xn), K = K0 as in (33) and

M = diag
(
ηn

)
0≤n≤N

, ηn := η(TF,∞(xn)), G = (1/Λ, . . . , 1/Λ)T . (43)

The discrete system (42) defines a nonlinear set of equations that is solved by a continuation
procedure. To this end we introduce a parameterised heat-flux function

qF (TF ;P ) := CD

(
F1 − PF2H(CDTF − 1)

)
TF , 0 ≤ P ≤ 1. (44)

(cf. (48) in the Appendix). In this modified heat-flux function the degree of nonlinearity is
controlled through the nonlinearity parameter P . For P = 0 function (44) reduces to a linear
form; for P = 1 the physical heat-flux qF (TF ) is recovered. This P -dependence of qF induces
a P -dependence of the matrix M via the function η. This is expressed by the notation MP .
The continuation procedure is applied to the function

P → G(T , P ) :=
(
K + MP (T )

)
T − G = 0. (45)

For each P ∈ [0, 1] the set of homogeneous solutions of this system can be easily computed.
Starting on a branch of homogeneous solutions the continuation algorithm determines (pitch-
fork) bifurcations at which the conjugate solution pairs (41) branch off from the homogeneous
branch. An extensive treatment of these bifurcation results is given in Speetjens et al. (2006a).
In section 4.1 a bifurcation diagram for a representative case study is given.

4 Unsteady boiling problem: an illustrative case study

In this section the concepts introduced above are demonstrated by means of a representative
case study. Unless indicated otherwise, the fixed parameter set Λ = 0.2, D = 0.2, Π2 = 4,
Π1 = 2 and Π3 = 0.37 (corresponding with W = 1; see Appendix) is used. The steady-
state solutions and corresponding linear stability properties are treated in Section 4.1. The
nonlinear (long-term) evolution of perturbed unstable steady-state solutions is investigated
in Section 4.2 via numerical simulation of (1). These results give a numerical validation of the
linear stability analysis (Section 4.1) and provide insight into the nonlinear stability behaviour
(Section 4.2).

4.1 Steady-state solutions and their linear stability properties

4.1.1 Homogeneous steady-state solutions

Homogeneous solutions are determined through relation (40) and coincide with the intersec-
tions between the heat-flux function qF (solid) and the normalised heat supply given by Π−1

1

(dashed) in Figure 1b. Three non-degenerate situations can occur:

Regime Π1 > Π2: Relation (40) admits one steady-state solution TF,∞ in the nucleate-
boiling regime (Figure 2a). The local positive slope of the boiling curve (q̇F := dqF/dT >
0) implies γ > 0 and thus by Theorem 2 we have stability of TF,∞.
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Regime 1 < Π1 < Π2: Relation (40) yields three steady-state solutions (Figure 2b):
T (1)

F,∞ (nucleate boiling); T (2)

F,∞ (transition boiling); T (3)

F,∞ (film boiling). For T (1,3)

F,∞ we have
γ > 0 (due to q̇F > 0) and thus by Theorem 2 stability of these steady-state solutions.
For T (2)

F,∞ we have q̇F < 0 and thus γ < 0. From Theorem 2 we conclude that T (2)

F,∞ is
unstable.

Regime Π1 < 1: Relation (40) has one steady-state solution TF,∞ in the film-boiling
regime (Figure 2c). From γ > 0 and Theorem 2 we conclude that this solution is stable.

Cases Π1 = Π2 and Π1 = 1 are the degenerate cases through which the system switches
between one and three homogeneous solutions.
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Figure 2: Homogeneous steady-state solution(s) as a function of the system parameters Π1

and Π2. The solutions (dots) coincide with the intersections between the heat-flux function
qF (solid) and normalised heat supply Π−1

1 (dashed).

4.1.2 Heterogeneous steady-state solutions

Steady-state behaviour The study of Speetjens et al. (2006a) strongly suggests that het-
erogeneous solution pairs (41) emerge only from pitchfork bifurcations that occur on branches
of homogeneous solutions. For homogeneous solutions, T = TF =constant, the Jacobian w.r.t
T of G(T ;P ) is given by

∂G(T ;P )

∂T
=: ĴP (T ) = V ΛP V −1, ΛP = diag

(
nπ tanh(nπD) + γP (TF )

)
0≤n≤N

, (46)

with γP (Z) = Π1

Λ
∂qF (Z;P )

∂Z
. Note that for P = 1 (i.e., qF (Z; 1) = qF (Z)) this Jacobian is equal

to the matrix J0 in (35): Ĵ1 = J0. The origin of this identity lies in the fact that for µ = 0 the
linear eigenvalue problem (13)-(15) (which has a corresponding discrete boundary operator
J0 as in (35)) is the same as the linearisation of the stationary problem in (8) (which has a
corresponding discrete boundary operator Ĵ1 as in (46)).

The eigenvalues and corresponding eigenvectors of ĴP are given by

λn = nπ tanh(nπD) + γP (TF ), vn = (cos(nπx0), . . . , cos(nπxN ))T , 0 ≤ n ≤ N. (47)

The eigenvector vn coincides with the n-th Fourier mode. The Jacobian is singular if one
or more of its eigenvalues λn vanish. Because nπ tanh(nπD) ≥ 0 for all n ≥ 0, this can
only happen if γ(TF ) ≤ 0. Thus a bifurcation on a homogeneous solution branch can only
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occur for those TF for which the boiling curve has a negative slope. Only the intersection
T (2)

F satisfies this criterion. This explains why bifurcations are restricted to the T (2)

F -branch
in the bifurcation diagram (Figure 3). This implies that bifurcations – and thus multiple
(heterogeneous) solutions – can only occur for surface temperature values in the transition
range of the boiling curve. Figure 3 shows the bifurcation diagram as a function of the
nonlinearity parameter P (Speetjens et al. (2006a)). The heavy curves are the solution
branches corresponding to the homogeneous solutions T (1,2,3)

F,∞ . The lower (nearly-horizontal)

branch coincides with the intersection T (1)

F,∞ that exists for all 0 ≤ P ≤ 1; the upper branch,

with turning point at PB (here PB ≈ 0.926), coincides with the two intersections T (2,3)

F,∞ that
exist only in the interval PB ≤ P ≤ 1. The lower and upper legs of this upper branch
(connected at the turning point) correspond to T (2)

F,∞ and T (3)

F,∞, respectively. The solid curves
are the heterogeneous solution branches that originate from pitchfork bifurcations (dots) on
the T (2)

F,∞-branch and from left to right correspond with the single vanishing eigenvalue λn = 0
for n = 1, 2, 3. The corresponding eigenvector vn determines the form of the bifurcating
heterogeneous solution and equals the n-th Fourier mode. These heterogeneous solutions
that originate from the bifurcation point corresponding to λn are called ‘mode-n’ solutions.
The lower and upper legs in a pitchfork bifurcation correspond to TF,∞ and its conjugate
T ∗

F,∞, respectively, cf. (41).
The final states (P = 1) in the bifurcation diagram (Figure 3) correspond with the physi-

cally meaningful steady-state solutions to the boiling problem (1). Figure 4 (top row) shows
the boundary profiles TF,∞ associated with the pairs of steady-state mode-n solutions, where
solid and dashed lines indicate TF,∞ and its conjugate T ∗

F,∞, respectively. Figure 4 (bottom
row) gives the profiles of the function γ(x) from (11) corresponding to TF,∞.

4.1.3 Qualitative linear stability properties

Theorem 3 and Theorem 4 state that the qualitative stability (i.e. stable or unstable) of the
heterogeneous mode-n solutions depends on γmin and the index ΣJ . The boundary profiles
(Figure 4) show that for all cases we have γ < 0 – and hence transition boiling – on one
or more sections of the boundary ΓF (Figures 4d-f). This implies γmin < 0 and thus rules
out unconditional stability (Theorem 3); stability properties depend on the quantity ΣJ as
defined in Theorem 4. We generalise the definition of ΣJ by defining ΣJ as the P -dependent
number of negative eigenvalues of the Jacobian ĴP from (46). The identity Ĵ1 = J0 means
that for P = 1 this generalised ΣJ coincides with the ΣJ as defined Theorem 4 (provided that
the resolution is high enough to determine the correct number of negative eigenvalues, cf.
Remark 4). Thus the linear stability properties of the steady-state solutions follow directly
from the bifurcation analysis visualised in Figure 3. On the homogeneous branches ΣJ can
be easily computed using (47). Computational analysis reveals that on the heterogeneous
solution branches no further bifurcations, apart from the pitchfork bifurcation points at the
intersection with the homogeneous branch, occur. Thus ΣJ remains constant along a hetero-
geneous branch, meaning that ΣJ for P = 1 (the relevant quantity for Theorem 4) equals
ΣJ at the underlying bifurcation. The value for ΣJ at P = 1 is computed numerically. The
values for ΣJ corresponding with each solution branch are indicated in Figure 3. For all
heterogeneous solutions we have ΣJ > 0 at P = 1 and thus, due to Theorem 4, all hetero-
geneous solutions are unstable. Moreover, ΣJ – and thereby the number of unstable modes
(Theorem 4) – increases with each bifurcation. In this sense mode-n solutions become more
unstable for higher n. The change of the value of ΣJ at the bifurcation points and its effect
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tiple homogeneous solutions; the bifurcations from which the heterogeneous branches emerge
are pitchfork bifurcations. Included also is the corresponding index ΣJ (Section 4.1.3).

on the linear stability properties is closely related to the “exchange of stability principle”, cf.
Kielhöfer (2004).

The linear stability analysis shows that the pool-boiling problem is linearly bi-stable.
The homogeneous nucleate-boiling (T (1)

F ) and film-boiling (T (3)

F ) states are the only stable
states; other steady states are always unstable. The bi-stability implies that the system has
two basins of attraction, associated with the two stable states T (1)

F and T (3)

F , divided by a
separatrix formed by the stable manifolds of the unstable solutions (Mischaikow (1995)).

4.1.4 Quantitative linear stability properties

The unstable heterogeneous solutions develop into essentially unsteady states in case of some
non-zero initial perturbation v0(x). In practice, such perturbations are always present. Hence,
the heterogeneous steady-state solutions cannot be sustained by the system and must undergo
some evolution in time. This evolution depends largely on the unstable eigenmode(s) ψk(x),
i.e. for which the corresponding eigenvalue µk is negative, according to (18).

Figure 5 gives the sequence of eigenvalues µ1 < µ2 < . . . corresponding with the mode-n
solutions (n = 1, 2, 3). The number of negative eigenvalues equals n = ΣJ , consistent with the
values of the index ΣJ in Figure 3. Furthermore, the magnitude |µk| of the negative eigen-
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Figure 4: Heterogeneous steady-state (mode-n) solutions of the boiling problem. The top row
gives the boundary profiles TF,∞ (solid) and T ∗

F,∞ (dashed) of the pairs of mode-n solutions.
The bottom row gives coefficient γ corresponding with TF,∞; γ < 0 indicates regions of tran-
sition boiling.

values grows – implying higher growth rates of perturbations – with increasing n. Figure 6
shows the boundary profiles of the unstable eigenmodes ψk(x), with corresponding µk-values
as indicated, associated with the mode-n solutions. Figure 7 gives the three unstable modes
of the mode-3 solution in the whole domain D. Note that due to the maximum principle
the extrema of ψk occur at the boundary of D. The mode-1 solution has only one unstable
eigenmode. This mode dominates the evolution of the instability, largely independent of the
initial perturbation. The mode-2 and mode-3 solutions have multiple unstable eigenmodes
with associated eigenvalues of comparable magnitude and, consequently, the space spanned
by these modes has dimension larger than one. Thus the evolution of the instability becomes
essentially dependent upon the initial perturbation and allows a much richer spatial structure
compared to the mode-1 case.

4.1.5 The role of heater properties in the stability behaviour

The inherent instability of transition boiling greatly hampers reliable and reproducible labo-
ratory experiments on boiling heat transfer under transition conditions. The heater properties
are important design parameters for such transition experiments (Blum et al. (1996)). Our
pool-boiling model enables examination of the role of the heater properties in the stability
behaviour of pool-boiling systems under representative conditions (i.e. heterogeneous boiling
states on realistic heaters) and may thus be beneficial for the design of laboratory experiments.
To this end a short exploratory study, as a prelude to future work, is given below.

In the present model the heater properties are described by the parameters Λ (thermal
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Figure 6: Unstable modes (eigenfunctions ψk(x) with µk < 0) restricted to the boundary ΓF ,
corresponding with each of the mode-n solutions.

conductivity) and D (heater thickness). In the case study we investigate the changes in stabil-
ity properties of the heterogeneous solutions induced by variation of Λ or D. The instability
is quantified in terms of the eigenvalue µ1 < 0 of the most unstable eigenmode. Figure 8 gives
µ1 as a function of Λ (panel a) and D (panel b) for the mode-n heterogeneous steady-state

solutions (symbols), the homogeneous transition solution T
(2)
F (with µ1 = z−1 as in Theorem 2)

and the lower bound µ∗ according to (28). The dashed vertical line indicates the parameter
value used in the case study. (The plots actually show −µ so as to facilitate the logarithmic
scale.) Both graphs reveal that the number of mode-n solutions decreases both with increas-
ing Λ and increasing D. Beyond Λ ≈ 1.2 mode-n solutions have vanished altogether; beyond
D ≈ 0.1 the system settles for three mode-n solutions and effectively becomes independent
of the heater thickness for D ' 0.5. Thus increasing thermal conductivity and/or the heater
thickness promotes homogeneity and uniqueness of boiling states. This is consistent with
results in Speetjens et al. (2006a).

In Figure 8a one can observe the bifurcation of mode-n profiles from the T
(2)
F -profile with

decreasing thermal conductivity Λ. (For D essentially the same happens. This is less apparent
in Figure 8b, though.) The instability of the mode-n solutions is stronger (in the sense that

|µ1| increases) for larger n and T
(2)
F appears to be the most unstable solution. Physically, this

may be explained by the fact that the portion of the interface on which the temperature is in
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Figure 7: The three unstable modes of the mode-3 solution in the domain D.

the transition regime (i.e. where γ < 0) grows with n and is maximal for the homogeneous

state T
(2)
F .

The mode-n solutions for n > 1 become more unstable (larger |µ1|) for increasing Λ

and/or D. For the homogeneous solution T
(2)
F , on the other hand, this lessens the instability.

For the mode-1 solution |µ1| exhibits a non-monotonic dependence on Λ and on D. These
observations reveal that the dependence of the stability behaviour on changes in the heater
properties is related to the kind of steady-state solution. For the mode-n (n > 1) solutions,
increasing heater thickness D and/or thermal conductivity Λ amplifies instability, whereas

for the homogeneous solution T
(2)
F this dampens instability.

The above results strongly suggest that, despite significant quantitative variations in µ1,
the instability itself remains under all conditions and that, in consequence, the existence of
stable heterogeneous solutions for specific heater properties is therefore highly unlikely. Lab-
oratory experiments support this assertion (consult Blum et al. (1996) for a survey). This
consolidates the widely-accepted observation that active stabilisation, via e.g. the method-
ology by Auracher & Marquardt (2004), is essential for detailed experimental studies on
homogeneous boiling states in the transition region and on any heterogeneous boiling state.
Moreover, this confirms that the stability analysis of Haramura (1991) is erroneous, as already
pointed out by Blum & Marquardt (1998). Haramura (1991) studied the stability of homoge-
nous boiling states on the fluid-heater interface of a three-dimensional heater with constant
heating in the transition boiling regime (i.e. γ < 0) and derived critical conditions for which
the homogeneous boiling state supposedly becomes unstable. These critical conditions are in
contradiction with findings in previous studies (e.g. Blum et al. (1996), Stephan (1965)) as
well as with those in the present study.

WM: Verweis auf Arbeit von Haramuru aufnehmen ?

4.2 Evolution of perturbed unstable steady-state solutions

The nonlinear long-term evolution of perturbed unstable steady-state solutions, i.e. the
nonlinear (in)stability behaviour, can be determined via numerical simulation of (1). We
used a spectral tau method based on Fourier (x) and Chebyshev (y) expansion of T (x, t)
for spatial discretisation in combination with a second-order Crank-Nicholson time-marching
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scheme (Canuto et al. (1987)). The nonlinearity on the interface ΓF has been dealt with by
Picard iteration (Kreyszig (1999)).

Numerical studies of (1) serve two purposes, namely validation of the linear stability
analysis (Section 3.2) and gaining first insight into the nonlinear stability behaviour of the
pool-boiling system. These two topics are addressed in Section 4.2.1 and Section 4.2.2, re-
spectively.

4.2.1 Validation of the linear stability analysis

The spectral scheme proposed above is used for the numerical simulation of the linearised
heat-transfer model (9). Tests with various identical initial conditions v0(x) for each of the
steady-state solutions T∞ reveal that solutions v(x, t) obtained through the linear model
(9) and the expansion (18) coincide within machine accuracy. This validates the eigenmode
decomposition (18).

A second issue is a comparison of the evolution of the perturbation v(x, t) in the nonlinear
model (1) and in the eigenmode decomposition (18). Tests reveal that in both cases the sta-
bility properties are qualitatively the same: heterogeneous steady-state solutions are unstable
and the homogeneous nucleate-boiling and film-boiling states are stable. This provides strong
evidence that the pool-boiling system is nonlinearly bi-stable as well.

Quantitative validation of the linear stability analysis and establishment of a range of
validity of the linear approximation follows from investigation of two representative heteroge-
neous cases, namely the steady-state mode-1 and mode-2 solutions. As initial perturbation we
take v0(x) = ǫψ1(x), with ǫ = 0.01 and ψ1 the first eigenfunction (normalised) of (13)-(15).
Figure 9 shows the profiles at the interface ΓF at several time instances t corresponding with
the solutions to the nonlinear model and the linearised problem. (For the nonlinear model we
give the departure v(x, t) = T (x, t) − T∞(x) from the initial state.) The more pronounced
peaks correspond with more advanced time levels. The results show a good agreement be-
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tween linear approximation and nonlinear evolutions for a significant time interval.
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Figure 9: Solutions v(x, t) of the linear approximation( (12)) (heavy) and of the nonlinear
model (solid) for the mode-1 (panel a) and mode-2 (panel b) steady-state solutions. Initial
perturbation is v0(x) = 0.01ψ1(x). The curves correspond to time steps ∆t = 5 (mode-1) and
∆t = 0.5 (mode-2).

4.2.2 Nonlinear stability analysis

The present case study involves the following unstable steady-state solutions: the homoge-
neous solution T (2)

F,∞ in the transition-boiling regime and the three pairs of mode-n solutions.
Perturbations are not imposed explicitly but due to rounding errors in the machine representa-
tion of the initial condition. This implies a machine-dependent yet reproducible perturbation.
These small perturbations are sufficient to trigger evolution of the unstable states. We use
the functionals TΣ =

∑
n T̃n and K(k∆t) = ‖Tk − T

k−1‖/‖Tk‖, where T
k is the matrix con-

sisting of all coefficients in the discrete Fourier-Chebyshev series of the solution at t = k∆, as
measures for quantifying the evolution. The mode-n solutions always occur as pairs (41). We
only consider one solution of this pair (lower legs of the heterogeneous branches in Figure 3).

Figure 10a demonstrates the dynamical behaviour of the system during transition from
unstable to stable steady states via the measure of unsteadiness K(t) for the unstable homo-
geneous solution T (2)

F,∞. The progression clearly reveals that the evolution of the temperature
field accelerates (i.e. K(t) grows continuously) up to a turning point at t ≈ 6, where the situ-
ation reverses and a deceleration sets in that continues until a stable steady state is reached
at t ≈ 25. (The erratic evolution beyond t ≈ 25 is due to fluctuations around the steady
state at machine-accuracy level.) The mode-n solutions exhibit essentially similar behaviour
as that shown in Figure 10a; differences are entirely quantitative in that turning points and
attainment of stable steady-states occur at different instances in time. Figure 10b gives the
evolution from unstable to stable steady-states in terms of the functional TΣ(t) (split up into
two frames.) The unstable homogeneous solution T (2)

F,∞ and the mode-3 solutions progress

towards the stable steady-state solution T (1)

F,∞ in the nucleate-boiling regime (lower dashed

line); the mode-1 and mode-2 solutions progress towards the stable steady-state solution T (3)

F,∞

in the film-boiling regime (upper dashed line). The sharp transition of the evolutions occur
around the beforementioned turning points and reflect the fact that the changeover from
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unstable to stable states happens rather abruptly within a relatively narrow time window.
Moreover, this changeover takes place earlier, suggesting stronger instability, with decreasing
length scales of the heterogeneous features (higher n) of the mode-n solutions. This is in
qualitative agreement with experimental observations (Dhir (1998)).

Figure 11 gives the evolutions of the profiles of the interface temperature TF for each of the
unstable steady-state solutions in Figure 10b at equidistant time intervals, where the arrows
indicate progression in time. (Time intervals are different for each case and set proportional
to the duration of the entire evolution.) The heavy dashed profiles correspond with the
intermediate state at the respective turning points; the lower and upper dashed lines indicate
the stable nucleate-boiling and film-boiling states, respectively. The evolution of the profiles
nicely illustrate the progression towards either the nucleate-boiling state (panels a and d)
or the film-boiling state (panels b and c). Note that for the unstable homogeneous case
T (2)

F,∞ (panel a) the profile remains homogeneous throughout the evolution. Moreover, the
expansion and subsequent condensation of the profiles before and after the turning point
(heavy dashed) demonstrates the initial acceleration and the subsequent deceleration of the
evolution. The acceleration phase of the mode-n solutions is characterised by rapid smoothing
of the heterogeneous features (panels b-d); during the subsequent deceleration phase the
(approximately) homogeneous intermediate state gradually tends to the ultimate stable state.
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Figure 10: Evolution of perturbed unstable steady-state solutions towards a stable state. Panel
a shows the initial acceleration and subsequent deceleration of the evolution with the measure
of unsteadiness K(t) for the unstable homogeneous solution T (2)

F,∞. Panel b gives the progression
of the unstable states (as indicated) towards one of the two stable steady states (dashed) in
terms of the functional TΣ(t). (Split-up into two frames; the right frame concerns only the
mode-1 solution.) Only the parent solution TF of each conjugate pair (41) is included.

5 Conclusions

In this paper we consider a 2D nonlinear heat-transfer problem as a model for pool-boiling
systems. The model problem involves only the temperature distribution within the heater
and models the heat exchange with the boiling medium via a nonlinear boundary condition
imposed at the fluid-heater interface. This results in a linear parabolic partial differential
equation (heat equation) with a nonlinear Neumann boundary condition at the fluid-heater
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interface. Important information about the (qualitative) behaviour of this dynamical system
can be obtained from its steady-state solutions and the corresponding stability properties.
The steady-state behaviour has been studied in Speetjens et al. (2006a). The main topic of
the present study is the corresponding stability behaviour. To this end a linear (short-term)
and nonlinear (long-term) stability analysis are performed.

In the linear stability analysis the linearised heat-transfer model is, by separation of space
and time, reduced to a nonlinear eigenvalue problem that depends only on the two spatial
variables. Separation of the two spatial variables subsequently leads to a nonlinear spatially
one-dimensional problem for the eigenvalues. Analysis of the latter problem yields generic
stability properties for steady-state solutions. These are demonstrated and validated by nu-
merical simulations in a representative case study. One of the main conclusions is that the
(linearised as well as nonlinear) system is bi-stable: all steady-state solutions, except the
homogeneous nucleate-boiling and film-boiling states, are inherently unstable. Perturbed un-
stable states always progress towards one of these two stable states. Our study furthermore
strongly suggests that these stability properties are qualitatively independent of heater prop-
erties (thermal conductivity Λ and thickness D). Changes in heater properties affect the
stability properties of the system only in a quantitative manner. Thus the present study
rigorously demonstrates the bi-stability of pool-boiling systems, which is consistent with lab-
oratory experiments (Auracher & Marquardt (2004)) and other theoretical studies (Blum et
al. (1996), Blum et al. (1999), Gurevich & Mints (1987), Kovalev & Usitakov (2003).

The numerical simulations for the case study provide evidence that there is a strong
analogy between the nonlinear heat-transfer problem and generic nonlinear parabolic evolu-
tion equations, which typically have a nonlinearity in the partial differential equation. This
analogy suggest the fundamental property that the dynamical behaviour of the system is dom-
inated by a global attractor made up of steady-state solutions and corresponding heteroclinic
connections (Section 3.1). Both the linear and nonlinear stability behaviour that we observe
in the pool-boiling system indicate that this property holds. Although many stability results,
based on both theoretical analysis and numerical experiments, are derived in this paper, a
complete rigorous mathematical analysis of the dynamics of the pool-boiling model is not yet
available.

Recent studies revealed that the steady-state behaviour and the mathematical structure
of three-dimensional pool-boiling problems is essentially similar to that of the simplified 2D
case considered here (Speetjens et al. (2006b)). This means that the stability behaviour
found in the present work in principle extends to the three-dimensional case. Moreover, the
present analysis may form the basis for future research on active stabilisation of unstable
heterogeneous boiling states by extending the model with a temperature-control loop similar
to that proposed in Blum et al. (1996).
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Appendix: heat-flux function

The heat-flux function qF (Z; Π2,Π3) is given by

qF (Z) = h(Z)Z, with

h(Z) = CD {F1 − F2H(CDZ − 1)} , H(ζ) =
1

2

[
tanh

(
2ζ

W

)
+ 1

]
.

(48)

The function H(ζ) is a smoothed Heaviside function. The parameter W > 0 controls the
width of the transient (from H = 0 to H = 1) around ζ = 0 and is specified a priori.
The value of W indirectly sets the physical parameter Π3. The coefficient CD rescales the
argument Z such that the single deflection point of qF coincides with Z = 1, i.e., q′′F (1) = 0.
Its value is defined implicitly through

2
dH

dζ
(CD − 1) + CD

d2H

dζ2
(CD − 1) = 0,

and thus depends only on W . It can be shown that qF as in (48) possesses a local maximum
and minimum at Zmax < 1 and Zmin > 1, respectively. Introduction of the scaling factors F1

and F2, which scale qF such that the conditions

q′F (Zmax) = 0, q′F (Zmin) = 0, qF (Zmax) = 1, qF (Zmin) = Π−1
2 , (49)

are fulfilled, then results in a heat-flux function that is consistent with the physical boiling
curve. For given Π2 and W the conditions (49) result in four nonlinear equations that can be
solved for the four unknowns (F1, F2, Zmin, Zmax).
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a) unstable homogeneous solution. b) Mode-1 solution.
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c) Mode-2 solution. d) Mode-3 solution.
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Figure 11: Evolution of the perturbed unstable steady-state solutions (heavy) on the interface.
Shown are the progressions of the boundary profiles (equidistant time intervals) towards one
of the two stable steady states. The arrow indicates progression in time. The heavy dashed
profiles indicate the intermediate state at the turning points; the lower and upper dashed lines
indicate the stable nucleate-boiling and film-boiling states, respectively. Only one solution TF

of each conjugate pair (41) is included.
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