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1. Introduction. An attractive feature of discontinuous Galerkin (DG) discretizations is their suit-
ability for a variety of different problem types as well as the flexibility regarding local mesh refinement
and even locally varying the order of the discretization. While initially the main focus has been on trans-
port problems like hyperbolic conservation laws interest has shifted recently towards diffusion problems.
One simple reason is that such problems naturally enter the picture in more complex applications like
the compressible or incompressible Navier-Stokes equations. By now numerous papers have been devoted
to well-posedness and stability issues as well as to the derivation of (a priori and a posteriori) error
estimation [2, 1, 10, 12]. In comparison much less seems to be known about efficient solution methods
for the resulting systems of equations. An important step in this direction has been [8] which proposes a
multigrid scheme (covering actually convection diffusion problems as well) that does give rise to uniformly
bounded condition numbers for diffusive problems provided that (i) the underlying hierarchy of meshes
is quasi-uniform and (ii) the solution exhibits a certain (weak) regularity.

On the other hand, the local nature of the method suggests a particular suitability for problems with
singular behavior calling for inhomogeneous meshes and possibly weak regularity requirements. Therefore
the main objective of this paper is to present a preconditioner that is optimal in the sense of providing
uniformly bounded condition numbers even for meshes that are shape regular but only locally quasi-
uniform and have hanging nodes, arising e.g. from local mesh refinements. Moreover, no extra regularity
assumptions are needed. The approach is quite different from [8] and uses stable splittings and concepts
from the theory of multilevel Schwarz schemes.

As one important by-product of our analysis, we prove that a simple splitting of any discontinuous,
high order piecewise polynomial space Vh := Pk(Th) based on its first degree conforming subspace (the
minimal conforming subspace) is stable with respect to the standard mesh dependent norm ‖| · ‖|h associ-
ated with the DG discretization of an H1-elliptic boundary value problem (see (2.7)). The essential (and
necessary) requirement for this is that the triangulation Th underlying Vh, that may have hanging nodes
due to local refinements, satisfies a certain grading property. A special and somewhat simplified version
of these findings can be formulated as follows.

Theorem 1.1. Let Φh := {φi : i ∈ Ih} be a standard local basis of Vh, i.e. each basis function is a
piecewise polynomial supported in a single triangle, and let V c

h,1 := H1
0 (Ω)∩P1(Th) ⊂ Vh denote the space
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of continuous functions that are piecewise affine on Th. Then

c‖|v‖|2h ≤ inf
vc∈V c

h,1, di∈R
v=vc+

P
i∈Ih

diφi

‖vc‖2
1 +

∑
i∈Ih

‖|diφi‖|2h ≤ C‖|v‖|2h, v ∈ Vh

holds for constants c and C independent of Th, provided that the above mentioned grading property holds.
The layout of the paper is as follows. In Section 2 we set notation, formulate the model problem and

recall some relevant facts about the symmetric interior penalty discontinuous Galerkin method (SIPG). In
Section 3 we briefly review the relevant aspects of additive Schwarz schemes that provide the framework for
our preconditioners. Specifically, in Section 3.1 we point out first that a certain naive attempt motivated
by wavelet-type preconditioners does not work. This is unfortunate since so-called multiwavelets would
offer a simple tool in the present context. The explanation why this fails is instructive in that it highlights
the necessity of working with suitable splits of the trial spaces into a conforming part and a part that
could solely be controlled by the jumps across element edges. Section 4 is devoted to the identification
of suitable stable splittings that give rise to uniformly bounded condition numbers. There are essentially
two crucial issues that are perhaps worth mentioning. First, the required grouping of stable splittings into
conforming and nonconforming parts requires nontrivial conforming subspaces. When working with local
mesh refinements with hanging vertices this will be seen to boil down to certain mild grading conditions on
the meshes that are discussed in Section 4.1. Second, given such graded meshes suitable decompositions
into conforming and nonconforming subspaces can be obtained through certain averaging projectors.
Their essential qualifying property, namely a certain Jackson-type estimate, is developed in Section 4.2.
In fact, the main result of Section 4 is that any split induced by such an admissible projector into a
conforming subspace of the whole trial space gives rise to optimal Schwarz preconditioners by simply
taking the union of two stable splittings for the respective subspaces, see Theorem 1.1. Section 5 is then
devoted to the detailed concrete realization of a specific admissible averaging projector whose image is the
space of continuous piecewise linear finite elements. In this case stable splittings for the conforming part
can be invoked from the literature while the discontinuous piecewise polynomial basis of the whole trial
space turns out to be a stable splitting for the corresponding nonconforming subspace. In this case the
conforming subspace is minimal. We emphasize though that this is only one possible realization among
many other ones. In Section 6 we present some first numerical experiments. We conclude with indicating
alternatives based on projectors onto maximal conforming subspace whose detailed analysis supported
by more extensive numerical quantifications are deferred to a forthcoming paper.

We shall sometimes write a <∼ b to mean that a can be bounded by some constant multiple of b
where the constant does not depend on any parameters on which a, b may depend. Likewise a ∼ b means
that both a <∼ b and b <∼ a hold.

2. The Symmetric Interior Penalty Method - A model problem. Although the subsequent
developments carry over to higher spatial dimensions we shall confine the discussion for simplicity to the
two-dimensional case. Thus, let Ω be a bounded polygonal domain in R2 and let

a(u, v) :=
∫

Ω

(A∇u) · ∇v +
∫

Ω

buv (2.1)

where A is a uniformly positive definite 2× 2 matrix and b is a nonnegative bounded function on Ω. To
avoid quadrature issues, we shall always assume that both A and b are piecewise constant with respect
to a fixed coarse shape regular conforming triangulation T 0 = T 0(Ω) of Ω. As usual this means that the
ratio of the radii of the circumscribed and inscribed circles of all triangles remains uniformly bounded. It
will be convenient to work with closed triangles, i.e. the triangles K will always be assumed to be closed.

We consider the following model problem: Given f ∈ L2(Ω), find u ∈ H1
0 (Ω) (the usual Sobolev space

of functions in L2(Ω) whose first order weak derivatives belong also to L2(Ω) and whose trace vanishes
on ∂Ω), such that

a(u, v) = (f, v), v ∈ H1
0 (Ω). (2.2)

The Lax-Milgram Theorem ensures the unique solvability of (2.2). In particular, we know there exist
positive constants ca, Ca depending only on Ω, A, b such that for ‖v‖2

1 := ‖v‖2
L2(Ω) + ‖∇v‖2

L2(Ω) one has

ca‖v‖2
1 ≤ a(v, v) and |a(v, w)| ≤ Ca‖v‖1‖w‖1, v, w ∈ H1

0 (Ω). (2.3)
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We shall discretize (2.2) with a discontinuous Galerkin scheme. To describe this it will be convenient
to employ the following localized inner products. For any domain G ⊆ Ω we set

(v, w)G :=
∫

G

vw, a(v, w)G :=
∫

G

(A∇u) · ∇v +
∫

G

buv.

2.1. The Symmetric Interior Penalty Method on locally refined triangulations . The DG
discretization that we shall describe next will be based on triangulations Th = Th(Ω) that are gener-
ated from some initial shape regular conforming triangulation T 0 through possibly local refinements.
The subscript h therefore refers to a piecewise constant mesh size function given by h(K) := diam(K),
K ∈ Th. In principle, any kind of local refinement is permitted that preserves shape regularity such as
partition based on “newest vertex insertion” or the standard partition of a triangle into four congruent
subtriangles. One could think of closing the partitions arising from such local refinements to keep the
triangulation conforming (which means any two distinct closed triangles have an empty intersection or
share a common face (edge or vertex)) while preserving shape regularity. We stress though that non-
conforming triangulations are permitted as well, i.e. hanging vertices (sometimes called hanging nodes)
may occur, see Figure 2.1. Since the occurrence of hanging vertices does complicate the construction of
the preconditioner and its analysis somewhat and since conforming shape regular triangulations may be
viewed as simpler special cases we shall concentrate in the following on situations where hanging vertices
occur. As usual we require the triangulations to be graded meaning that an edge may contain at most
one hanging vertex, see Figure 2.1.

Fig. 2.1. Coarse T 0 (left), refinement (middle), and graded, shape regular Th (right)

Later we shall have to impose a slightly stronger grading property.
Denoting by Pk(G) the space of all polynomials of total degree at most k over the domain G, we

associate with any (admissible) triangulation Th the trial space

Vh := Pk(Th) :=
⊕

K∈Th

Pk(K) = {v =
∑

K∈Th

χKPK : PK ∈ Pk(K)}

of all (possibly discontinuous) piecewise polynomials of degree at most k on Th. Here χK is the standard
indicator function, i.e. χK(x) = 1 for x ∈ K and χK(x) = 0 else. The subscript k is thus to be
understood (in the same way as the mesh size function h) as a degree function taking a constant integer
value k = k(K) on each triangle K ∈ Th that may vary for different K. However, we shall always assume
that a fixed upper bound k̄ is never exceeded, i.e. k ≤ k̄ for all K ∈ Th.

For the derivation of the symmetric interior penalty method we refer e.g. to [1, 2]. To formulate it
in the present setting we need the following notation. Let Eh be the set of edges of the triangulation
Th. Since hanging vertices are permitted we shall adopt the convention that whenever an edge has a
hanging node it is replaced in Eh by its two halves. Moreover, Eh,b, Eh,i denote the subsets of boundary
and interior edges, respectively. Since triangles are always assumed to be closed sets, for any e ∈ Eh,i

there exist K,K ′ ∈ Th such that e = K ∩K ′, and at least one of the two triangles has e as an edge. It
will also be convenient to use the abbreviation

vK := χKv.

Thus for any v ∈ Vh and K ∈ Th it makes sense to denote by vK |e the trace of the restriction of v to K
on the subset e of ∂K. As usual the jump of v across e is then defined as

[v]e := nK,e v
K |e + nK′,e v

K′
|e,
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where nK,e = −nK′,e denotes the unit normal vector on e pointing to the exterior of K. When e ∈ Eh,b

is a boundary edge we think of v being extended by zero outside Ω. Likewise averages on e are defined as

{v}e :=
{

1
2 (vK |e + vK′ |e), e ∈ Eh,i,
vK |e, e ∈ Eh,b

(and we shall drop the subscript e when it is obvious from the context). Given Th, consider the bilinear
form

ah(v, w) :=
∑

K∈Th

a(v, w)K −
∑
e∈Eh

∫
e

(
{∇w} · [v] + {∇v} · [w]

)
+
∑
e∈Eh

γ

|e|

∫
e

[w] · [v]. (2.4)

Here γ is a positive (possibly piecewise) constant that has to be chosen appropriately to ensure stability of
the method, see relation (2.7) below. Its existence is usually argued under slightly different assumptions
on the underlying meshes but the argument easily carries over.

In fact, the only points to be addressed are perhaps the occurrence of a hanging vertex and a possible
local variation of γ depending on the coefficients in (2.1). Applying a Cauchy-Schwarz inequality to (2.4),
one gets

ah(v, v) ≥
∑

K∈Th

a(v, v)K − 2

(∑
e∈Eh

|e|
σ
‖{∂nv}‖2

L2(e)

)1/2(∑
e∈Eh

σ

|e|
‖[v]‖2

L2(e)

)1/2

+
∑
e∈Eh

γ

|e|
‖[v]‖2

L2(e)
.

When e = K∩K ′ is an edge of K ′ but only half of an edge of K, as in Figure 4.1, we can write for v ∈ Vh

the restriction vK as
∑

J∈C(K) v
J . Hence, denoting by λmax / min(A) the maximal/minimal eigenvalue of

A, and defining for ω ⊆ Ω

λω := inf
x∈ω

λmin(A(x)), λω := sup
x∈ω

λmax(A(x)), (2.5)

the usual combination of a trace inequality with an inverse inequality yields

|e|‖{∂nv}‖2
L2(e)

≤ C(‖∇v‖2
L2(K′) + ‖∇v‖2

L2(J)) ≤ C max
J′=K′,J

λ−1
J′ a(v, v)K′∪J , (2.6)

where J ⊂ K is the child of K adjacent to K ′ and the constant C depends on the shape properties of
T 0 and k̄. Note that writing for any θ ∈ (0, 1) ‖∇v‖2

L2(K′) ≤ θ‖∇v‖2
L2(K′) + (1 − θ)C22j(K′)‖v‖2

L2(K′),

we could have replaced the constant λ−1
J′ by minθ∈[0,1] max

{
θλ−1

J′ ,
C(1−θ)22j(J′)

minx∈J′ |b(x)|

}
. This would allow us

to get better estimates when the diffusion coefficient degenerates and the zero order term is large. We
shall dispense though with making these distinctions in what follows. At any rate, employing Young’s
inequality in combination with (2.6) and a suitable choice of σ > 0 shows that there is indeed a positive
γ such that

ah(v, v) ≥ 1
2

( ∑
K∈Th

a(v, v)K +
∑
e∈Eh

|e|−1‖[v]‖2
L2(e)

)
=:

1
2
‖|v‖|2h, v ∈ Vh, (2.7)

which yields the desired stability.
Remark 2.1. If we allow γ to vary, we should take γ − σ ≥ 1/2 where for any edge of K, the σ and

hence γ should be of the order of λ−1
K up to constants depending on the shape properties of T 0 and the

degree k of the piecewise polynomials, but not on h.
The same type of estimates establishes continuity

|ah(v, w)| ≤ C̄‖|v‖|h‖|w‖|h, v, w ∈ Vh, (2.8)

for some uniform constant C̄ that could actually be made C̄ = 2 when taking γ sufficiently large but again
of the order of λ−1

K locally. (In fact, continuity could be established even in a larger infinite dimensional
space, see e.g. [10].) Hence, the problem

find uh ∈ Vh such that ah(uh, v) = (f, v), ∀v ∈ Vh, (2.9)

has a unique solution, where ah is the symmetric bilinear form defined on Vh by (2.4).
Unfortunately, as in the case of conforming discretizations the corresponding linear systems of equa-

tions grow increasingly ill-conditioned when the mesh size decreases. For instance, for quasi-uniform Th

the spectral condition numbers of stiffness matrices are known to grow like h−2, see e.g. [8].
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3. Additive Schwarz schemes. In this section we explain why a classical multi-wavelet approach
fails to yield optimal preconditioners, and formulate the more general framework for additive Schwarz
schemes in the DG context that give rise to uniformly bounded condition numbers for the above type of
discretizations under no additional regularity requirements on the solution u of (2.2).

3.1. A way that does not work. Schwarz type preconditioners for conforming discretizations are
closely related to change of basis preconditioners when energy space stable multiscale bases are available
[5, 6]. To explain this, suppose that Ψ = {ψi : i ∈ I} is a basis of Vh and recall that the spectral condition
number κ(AΨ

h ) of the stiffness matrix AΨ
h :=

(
ah(ψi, ψj)

)
i,j∈I is given by

κ(AΨ
h ) =

(
sup
v

vT AΨ
h v

vT v

)(
inf
v

vT AΨ
h v

vT v

)−1

.

Now according to (2.7), (2.8), writing v = (vi)i∈I we have for v =
∑

i∈I viψi,

vT AΨ
h v

vT v
=
ah(v, v)
‖v‖2

`2
∼
‖|v‖|2h
‖v‖2

`2
.

This immediately yields the following fact.
Remark 3.1. If Ψ is stable in the sense that

‖|v‖|2h ∼
∑
i∈I

|vi|2‖|ψi‖|2h (3.1)

for any v =
∑

i∈I viψi in Vh, then an optimal preconditioner is obtained by a symmetric diagonal scaling,
namely we have

κ(DAΨ
h D) ∼ 1 with D = diag

(
‖|ψi‖|−1

h : i ∈ I
)
.

In the conforming case such energy space stable bases are typically derived from L2-Riesz multilevel bases
by rescaling. In the DG context it is very easy to construct L2-stable multilevel bases for Vh using the
concept of multi-wavelets. One might therefore be tempted to construct a change-of-bases preconditioner
by suitably rescaling such a multi-wavelet basis. For such a multilevel basis of Vh, a refinement Th′ of
the mesh Th entails expanding the current basis Ψh for Vh to the larger basis Ψh′ by adding a collection
of new basis functions (on corresponding locally higher refinement levels) that span a complementary
space W of Vh so that Vh′ = Vh ⊕W . In the case of multi-wavelets all basis functions would consist
of globally discontinuous piecewise polynomials, and in the present context this turns out to cause a
principal problem that we describe now.

Consider a discontinuous basis function ψi of Ψ, and assume that it belongs to some space Vh. Clearly
there is at least one edge e in Eh for which ‖[ψi]‖L2(e) is positive. Now, if Th′ is a refinement of Th where
e is uniformly refined into 2l pieces, we have

‖|ψi‖|2h′ ≥
∑

e′∈Eh′ :e
′⊂e

1
|e′|

‖[ψi]‖2
L2(e′)

= 2l 1
|e|
‖[ψi]‖2

L2(e)
.

Hence ‖|ψi‖|h′ tends to infinity as the edge e is further refined. As a first consequence, this shows that
the ψi will not remain normalized when progressing to higher levels of refinements causing the mesh
dependent norm ‖| · ‖|h to change.

This does not exclude yet stability in the sense of (3.1). On the other hand, the energy norm of a
continuous v ∈ Vh reduces to a(v, v)1/2 and hence does not depend on the mesh. If ψi remains unchanged
when expanding the basis of Vh to a basis of Vh′ , the associated coordinate vi does not change either.
The desired stability of Ψ would thus yield

a(v, v) = ah(v, v) = ‖|v‖|2h′ ∼
∑

i′∈Ih′

|vi′ |2‖|ψi′‖|2h′ ≥ |vi|2‖|ψi‖|2h′ ,
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which clearly implies that vi = 0, since otherwise the (constant) quantity a(v, v) would have to tend to
infinity with h′ → 0.

From this observation we infer that when Ψ is a uniformly stable multilevel basis for the spaces Vh,
then it must have a subset Ψc that spans the conforming spaces V c

h := Vh ∩H1
0 (Ω). In particular, Ψ and

Vh respectively decompose into

Ψ = Ψc ∪Ψnc and Vh = V c
h ⊕ V nc

h

in such a way that subsets of Ψc and Ψnc are stable bases for V c
h and V nc

h , respectively, and that the
splitting is stable with respect to the discrete energy norm ‖| · ‖|h.

This observation that appears to exclude standard multi-wavelets will guide the subsequent develop-
ments.

3.2. Additive Schwarz preconditioners. It is of course not necessary to construct stable mul-
tilevel bases to produce efficient preconditioners for the problem (2.9) of finding uh ∈ Vh such that

ah(uh, v) = (f, v), v ∈ Vh. (3.2)

In fact, the theory of additive Schwarz schemes offers a more flexible framework based on so-called stable
splittings for the respective energy space which in turn permit redundant systems, namely frames. Such
stable splittings for the DG setting will be constructed in Section 4.3 below. First let us briefly recall the
notion of such splittings and under which circumstances they give rise to good Schwarz preconditioners.
The collection

S =
{
Vi

}
i∈Ih

, Vi ⊂ Vh,

is called a (‖| · ‖|h-)stable splitting of Vh, uniformly with respect to all triangulations Th of the specified
type, if

∑
i∈Ih

Vi = Vh and

cS‖|v‖|2h ≤ inf
vi∈Vi

v=
P

i∈Ih
vi

{∑
i∈Ih

‖|vi‖|2h

}
≤ CS‖|v‖|2h, v ∈ Vh (3.3)

holds with constants cS , CS independent of Th.
With the aid of such stable splittings one can transform equation (3.2) into an equivalent problem

which will be uniformly well conditioned.
To this end, the next ingredients are auxiliary inner products on the spaces Vi, namely

bi(·, ·) : Vi × Vi → R, i ∈ Ih,

yielding norms that are locally equivalent to ‖| · ‖|h, i.e. satisfy

cb‖|vi‖|2h ≤ bi(vi, vi) ≤ Cb‖|vi‖|2h, vi ∈ Vi, i ∈ Ih, (3.4)

for constants cb, Cb depending at most on the maximal degree k̄, the shape properties of T 0 and possibly
on the coefficients in the bilinear form a(·, ·) (see (4.37) below for concrete choices).

Finally, define the operators Pi : Vh → Vi and elements fi ∈ Vi by

bi(Piw, vi) = ah(w, vi), bi(fi, vi) = 〈f, vi〉, vi ∈ Vi, i ∈ Ih. (3.5)

Note that, whenever Vi = span(θi) is a one-dimensional space, the application of Pi just amounts to
solving a linear equation with a single unknown, namely

Piw = diθi ⇐⇒ di = ah(w, θi)/bi(θi, θi). (3.6)

The central result we shall use reads then as follows, see e.g. [14, 7].
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Theorem 3.1. Define Ph : Vh → Vh and f̄h ∈ Vh by

Ph :=
∑
i∈Ih

Pi, f̄h :=
∑
i∈Ih

fi. (3.7)

Then the problem (3.2) is equivalent to the operator equation

Phu = f̄h. (3.8)

Moreover, if (3.3) and (3.4) hold, then the spectral condition number of the symmetric positive definite
(with respect to the inner product ah(·, ·)) operator Ph can be bounded by

κ(Ph) ≤ 2C̄
CbCS

cbcS
(3.9)

thus by a constant independent of Th, see (2.8), (3.3) and (3.4). Recall that κ(Ph) = λmax(Ph)
λmin(Ph) , where

λmax(Ph) = sup
v∈Vh
v 6=0

ah(Phv, v)
ah(v, v)

and λmin(Ph) = inf
v∈Vh
v 6=0

ah(Phv, v)
ah(v, v)

.

Obviously the complexity of applying the operator Ph in some iterative procedure has linear com-
plexity when the dimension of the subspaces Vi is uniformly bounded. Such stable splittings will be
constructed in Sections 4.3 and 5 below, see in particular Corollary 5.3 for one specific realization.

Now, to interprete the above result let us view (3.2) as the operator equation

Lhuh = f, where Lh is defined by 〈Lhw, v〉 = ah(w, v), w, v ∈ Vh.

Moreover, defining Li : Vi → Vi by bi(wi, vi) = 〈Liwi, vi〉 (i.e. L−1
i is the approximate inverse of the

restriction of Lh to Vi), and denoting by Qi : Vh → Vi the Vi-orthogonal projection, we have by definition,

Pi = L−1
i QiLh.

Therefore, we can write as usual

Phu =
( ∑

i∈Ih

L−1
i Qi

)
Lhu and f̄ =

( ∑
i∈Ih

L−1
i Qi

)
f, (3.10)

i.e. the operator

C :=
∑
i∈Ih

L−1
i Qi (3.11)

can be viewed as a preconditioner.

4. Stable splittings for the DG method. This section is devoted to the construction and analysis
of stable multilevel splittings for the DG method that can be used in Theorem 3.1. There are two
ingredients that are perhaps worth emphasizing.

• The first one is that stable splittings for Vh can simply be assembled from stable splittings for
an appropriate conforming and nonconforming part of Vh, respectively. The appropriateness will
hinge on certain admissible averaging operators that are required to satisfy a Jackson estimate.

• Second, the locality of such an estimate, however, turns out to impose a slightly stronger notion
of gradedness (see Definition 4.1 below) for the underlying meshes (without actually inflating the
complexity, see Remark 4.2 below) which we shall therefore address first.
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4.1. Admissible triangulations – extended grading. We have already defined a standard grad-
ing requirement prohibiting an edge to have more than one hanging vertex. The grading that we shall
have to impose on the triangulations will actually be slightly stronger, but essentially keeps the complexity
equivalent, see Remark 4.2 below.

To limit technicalities we shall only consider triangulations that are obtained by local subdivisions
into four congruent subtriangles, starting from a conforming and shape regular coarse T 0, as in Figure
2.1. As a consequence, every element of Th has a refinement level j(K), j(K) = 0 meaning that K ∈ T 0.
From the shape regularity of Th (inherited from that of T 0), one then easily infers

|K| := meas(K) ∼ (h|K)2 ∼ 2−2j(K) for any K ∈ Th (4.1)

with constants that depend only on the coarse T 0.
Definition 4.1 (graded triangulations). A triangulation Th obtained from refining a conforming

coarse T 0 as described above is called graded, if every hanging vertex n is the midpoint of an edge spanned
by two vertices, denoted by n′ and n′′ in Figure 4.1, left, and if in such a case, n′ and n′′ are never hanging
vertices themselves.

Note that this grading requirement implies the usual one, i.e. there is at most one hanging vertex
per edge.

K′

n′
n

K′′ n′′

K

Fig. 4.1. For Th be graded (the right one is not), n′ and n′′ must be regular vertices.

Remark 4.1 (necessity of the (extended) grading). The above grading requirement is necessary for
Theorem 1.1 (and further similar splittings) to hold.

To see the validity of the above claim consider one triangulation Th that has been obtained from one
single coarse triangle T 0 = {K0} by recursively refining the central child at each level up to some jh,
as shown in Figure 4.1, right. Clearly, such a Th satisfies the “classical” grading requirement permitting
only one hanging vertex per edge, but not the above stronger one. In particular, all its vertices except
those on ∂Ω are hanging, so that H1

0 (Ω) ∩ P1(Th) only contains 0. Hence Theorem 1.1 would imply here
that for any basis {φi : i ∈ Ih} of Vh := Pk(Th) consisting of local polynomial pieces normalized in L∞,
one has

‖|v‖|2h ∼
∑
i∈Ih

|di|2 for every v =
∑
i∈Ih

diφi ∈ Vh, (4.2)

with constants independent of the refinement level jh. Consider now the piecewise constant function
v = χK , where K is the central triangle on level two. If the φi are interpolatory, like in a local Lagrange
basis, one has di = 1 for all but finitely many indices i and the right hand side in (4.2) grows proportion-
ally to jh. On the other hand, since v is continuous inside K, it can be seen from the definition of the
energy norm, given in Section 2.1, see (2.7), that ‖|v‖|h doesn’t depend on the further refinements of Th,
which clearly contradicts (4.2). �

We shall next give an algorithmic characterization of the grading property in Definition 4.1. Since
the triangulations Th of interest result from (possibly local) refinements, such a refinement history defines
a tree T̂h, where Th is the set of leaves (i.e. final nodes) of T̂h. We denote by P (K) and C(K) the parent
and set of children, respectively, of a given triangle K. This means any child K ′ ∈ C(K) is obtained by
subdividing its parent K = P (K ′) once, according to the given rule. By P 2(K) = P (P (K)) we denote
the grandfather of K when j(K) ≥ 2.
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Also, by T j we denote the jth uniform dyadic refinement of T 0. Clearly, for any level j this is a
partition of Ω. Given any triangle K in Th, we then let its neighbors N(K) be defined as the collection
of triangles at level j(K), i.e. belonging to T j(K) (but not necessarily to T̂h) that share an edge with K.
Finally, N2(K) := ∪K′∈N(K)N(K ′) consists of the neighbors of the neighbors of K. In these terms a
constructive formulation of the grading property reads as follows.

Remark 4.2 (algorithmic formulation of the grading requirement). A triangle K in Th is said to
have the G-property if it is of level j(K) ≤ 1 or if

- in the case that P (K) is not the central child of P 2(K), every triangle of N(P (K)) is in the
tree T̂h, or

- in the case that P (K) is the central child of P 2(K), every triangle of N2(P (K)) is in the tree
T̂h.

Then the following properties hold, whose proofs are left to the reader.
1. A triangulation Th is graded in the sense of Definition 4.1 if and only if all its elements satisfy

the G-property.
2. Given any multilevel triangulation Th, its smallest graded refinement is built by imposing recur-

sively (starting from the highest levels) the G-property on all its elements.
Therefore the G-property is a practical tool for constructing graded triangulations. Moreover, it can be
checked that the set

T̂ ∗
h := T̂h ∪

⋃
K∈bTh

C(N2(P (K))) (4.3)

is indeed a tree, and that the corresponding set of leaves T ∗
h is a refinement of Th in which any triangle

has the G-property. T ∗
h is then a graded refinement of Th, and it is a standard exercise (see for instance

Lemma 2.4 in [4]) to derive from (4.3) the following complexity estimates

#(T ∗
h ) ∼ #(T̂ ∗

h ) ∼ #(T̂h) ∼ #(Th)

which holds with uniform constants. Thus, imposing our (extended) grading keeps the complexity of
adaptive triangulations up to uniform constants.

We shall henceforth assume that Th is graded in the sense of Definition 4.1.

4.2. Admissible conforming subspaces. Given a graded triangulation Th, it remains to construct
energy stable splittings to be used in Theorem 3.1. Motivated by the observations made in Section 3.1,
we shall first look decomposing Vh into a conforming and nonconforming part V c

h and V nc
h , respectively.

However, it turns out that in the more general framework offered by Schwarz preconditioners, even the
meaning of V c

h can be relaxed in that it need not exhaust all of Vh ∩ H1
0 (Ω). Different conforming

subspaces will be seen to lead to different versions of preconditioners that are all asymptotically optimal
in the sense of uniformly bounded condition numbers.

What matters is that the conforming part is the range of a suitable averaging projector A into
some subspace of Vh ∩H1

0 (Ω). In this section we formulate the key property that qualifies the averaging
projector as suitable, namely a certain local Jackson-type estimate involving for each K ∈ Th the localized
energy norms

‖|v‖|2h,ω :=
∑

K∈Th:K⊂ω

a(v, v)K +
∑

e∈Eh:e⊂ω

|e|−1‖[v]‖2
L2(e)

for certain neighborhoods ω = ω(K) ⊂ Ω of any K ∈ Th.
To define ω(K) we need some further preparations and notational conventions. The set of vertices

viz. first degree nodes will be denoted by

N1(K) := {vertices of K} and Nh,1 :=
⋃

K∈Th

N1(K).

In connection with higher order elements we shall have to consider later corresponding sets of higher kth
degree nodes that will be denoted by Nk(K), see Section 4.3.

9



Moreover, it will be convenient to set for any closed domain D

Th(D) := {K ∈ Th : K ∩D 6= ∅}.

Similarly we define the sets Nh,1(D) and Eh(D) for mesh elements touching D. For instance, Th(n)
consists of the triangles that share the vertex n (including hanging vertices). Note that when an edge
of a triangle K contains a hanging vertex the collections N1(K) and Nh,1(K) differ by that hanging
vertex. Unfortunately, due to hanging vertices, straightforward neighborhoods based on these notions do
not suffice and the construction of the domains ω(K) appearing in the announced Jackson estimate will
actually rely on some extended sets of mesh quantities.

To this end, recall that for any vertex n there are two possibilities: either it is hanging, i.e. there is
one triangle K in Th(n) for which n is not a vertex, and then n is the midpoint of one edge e = [n′, n′′]
of K, see Figure 4.1, or it is not. With these notations we first define

N ∗
h,1(n) :=

{
{n, n′, n′′} if n is hanging,
{n} otherwise, i.e. if n is regular.

(4.4)

Recall that the grading we impose on Th precisely means that both n′ and n′′ are regular, see Definition
4.1. For any triangle K ∈ Th we then set

N ∗
h,1(K) :=

⋃
n∈N1(K)

N ∗
h,1(n) ⊂ Nh,1, (4.5)

E∗h(K) :=
⋃

n∈N∗
h,1(K)

Eh(n) ⊂ Eh (4.6)

and

T ∗
h (K) :=

⋃
n∈N∗

h,1(K)

Th(n) ⊂ Th, (4.7)

and finally define the domain

ω(K) :=
⋃

K′∈T ∗h (K)

K ′ ⊂ Ω (4.8)

as the union of triangles that are in contact with the extended set of vertices N ∗
h,1(K). An illustration

is presented in Figure 4.2, where the sets N ∗
h,1(K), E∗h(K) and T ∗

h (K) are represented by white vertices,
bold edges and gray triangles, respectively.

Note in particular that the above definitions yield∑
K′∈T ∗h (K)

a(v, v)K′ +
∑

e∈E∗h(K)

|e|−1‖[v]‖2
L2(e)

≤ ‖|v‖|2h,ω(K). (4.9)

We are now prepared to formulate the key property of averaging projectors A that will be crucial for
the subsequent developments.

Property 4.3. A linear projector A that takes Vh into Vh ∩H1
0 (Ω) is called admissible if for any

v ∈ Vh one has the following Jackson estimate

‖(I −A)v‖L2(K) ≤ C∗2−j(K)‖|v‖|h,ω(K), K ∈ Th, (4.10)

with a constant C∗ that may depend on the shape properties of T 0 and on k̄ (and on concrete realizations
of γ). Note that the domains ω(K) defined by (4.8) are local (closed) neighborhoods of the triangles
K ∈ Th satisfying a bounded overlapping property, i.e.

sup
K∈Th

#
(
{K ′ ∈ Th : ω(K) ∩ ω(K ′) 6= ∅}

)
. 1 (4.11)
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K

Fig. 4.2. The neighborhood ω(K) consists of the union of the (gray) triangles in T ∗
h (K).

holds with a constant that depends only on T 0.
We postpone the concrete construction of admissible A and the verification of Property 4.3 to Section

4 and discuss first the consequences regarding stable splittings.
The significance of Property 4.3 lies in the following two consequences, summarized in Propositions

4.2 and 4.3. The first one concerns the energy stability of an admissible A.
Proposition 4.2. Assume that A satisfies the Jackson estimate (4.10). Then one has

‖|(I −A)v‖|h <∼ ‖|v‖|h, ‖|Av‖|h <∼ ‖|v‖|h, v ∈ Vh, (4.12)

where the constants depend on k̄, the shape properties of T 0 as well as on C∗ and C̄a defined in (4.14)
below.

As a consequence we have

‖|v‖|h ≤ ‖|Av‖|h + ‖|(I −A)v‖|h ≤ CA‖|v‖|h, (4.13)

with the above dependence of the constant CA in the upper bound.

Proof: Since the jumps of (I −A)v equal the jumps of v we need only estimate
∑

K∈Th
a((I −A)v, (I −

A)v)K . To keep track of the dependence of the various constants, recall that λK is defined by (2.5) and
let

Ca,K := 2 max {λK , 2−2j(K)‖b‖L∞(K)} and C̄a := max
K∈Th

Ca,K <∼ Ca, (4.14)

see (2.3). Since (I −A)v is a polynomial on K, a standard inverse estimate yields

a((I −A)v, (I −A)v)K ≤ cCa,K22j(K)‖(I −A)v‖2
L2(K)

<∼ C∗Ca,K‖|v‖|2h,ω(K),

where c depends on k and T 0 and where we have used (4.10) again in the last step. On account of
the bounded overlap of the ω(K),K ∈ Th (see (4.11)), and since ‖|Av‖|h ≤ ‖|v‖|h + ‖|(I − A)v‖|h, this
concludes the proof. �

Thus, defining

V c
h := AVh and V nc

h := (I −A)Vh, (4.15)

as possible candidates for conforming and nonconforming parts of Vh, the above observation (4.13) already
indicates that a stable splitting for all of Vh of the form (3.3) can be composed of stable splittings for the
individual subspaces V c

h and V nc
h , respectively. In fact, this would allows us to invoke known splittings

for conforming spaces, see e.g. [3, 5, 7, 14] and Section 5.1.1.
Now, the second consequence of Property 4.3 is a localization of V nc

h that will simplify the identifi-
cation of stable splittings for the nonconforming part. In what follows we shall make frequent use of the

11



following simple consequences of standard trace inequalities, rescaling arguments and the fact that all
norms on a fixed finite dimensional space are equivalent.

Remark 4.4. For any polynomial P ∈ Pk, any K ∈ Th and any edge e of K, the following relations
hold.

(i) One has

‖P‖L∞(e) ∼ 2j(K)/2‖P‖L2(e), (4.16)

where the constants depend only on the degree k of P and on T0.
(ii) There exists a constant c depending only on the degree k of P and on T 0 such that

‖|χKP‖|h ≤ c(Ca,K + 1)
1
2

{
2j(K)‖P‖L2(K),
‖P‖L∞(K),

(4.17)

where the constant c depends only k and the shape properties of T 0 and Ca,K is given by (4.14).
Observe then that splittings for V nc

h will indeed take a simple form due to localization.
Proposition 4.3. Assume that A is admissible, i.e. satisfies (4.10). Then there exists a constant

C0, depending only on k̄, the shape properties of T 0, on C̄a defined in (4.14), and on the constant C∗ in
(4.10) such that for wK := χKw

‖|w‖|2h ≤
∑

K∈Th

‖|wK‖|2h ≤ C0‖|w‖|2h, w ∈ V nc
h := (I −A)Vh. (4.18)

Proof: The lower inequality in (4.18) is due to the fact that for any edge e ⊂ K ∩K ′ one has

‖[w]‖2
L2(e)

≤ ‖wK‖2
L2(e)

+ ‖wK′
‖2

L2(e)
.

As for the upper inequality, since w ∈ V nc
h and wK is a polynomial on K, we infer from (4.17) and (4.10)

(noticing (I −A)w = w) that

‖|wK‖|2h <∼ (Ca,K + 1)22j(K)‖wK‖2
L2(K)

<∼ (Ca,K + 1)C∗‖|w‖|2h(ω(K)), (4.19)

where Ca,K can be bounded by Ca from (2.3). The upper inequality follows now again from (4.11). �

4.3. Energy stable splittings for Vh. As mentioned above, the stability of A asserted by Propo-
sition 4.2 implies that stable splittings for the individual parts V c

h and V nc
h give rise to stable splittings

for all of Vh. Moreover, the localization in V nc
h given by Proposition 4.3 together with the fact that the

frame for the nonconforming part need actually not be contained in V nc
h greatly simplifies finding such a

complementary frame.
Theorem 4.4. Let {V c

i }i∈Ic
h

be a stable splitting for V c
h , i.e.

c1a(v, v) ≤ inf
vi∈V c

i

v=
P

i∈Ic
h

vi

∑
i∈Ic

h

a(vi, vi)

 ≤ C1a(v, v), v ∈ V c
h , (4.20)

holds for some constants c1, C1 independent of Th. Then one has for any v ∈ Vh

cS‖|v‖|2h ≤ inf
vK , vi

v=
P

K∈Th
vK+

P
i∈Ic

h
vi

 ∑
K∈Th

‖|vK‖|2h +
∑
i∈Ic

h

a(vi, vi)

 ≤ CS‖|v‖|2h, (4.21)

where the vK and vi belong to χKPk(K) and V c
i , respectively, and cS = (max{2, c−1

1 })−1, CS = CA max{C0, C1}.
Thus the collection

S = {χKPk(K) : K ∈ Th} ∪ {V c
i : i ∈ Ic

h} (4.22)
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is a stable splitting for Vh in the sense of (3.3).

Proof: By definition of the infimum we have

inf
vK , vi

v=
P

K∈Th
vK+

P
i∈Ic

h
vi

{ ∑
K∈Th

‖|vK‖|2h +
∑
i∈Ic

h

a(vi, vi)
}

≤ inf
vK

(I−A)v=
P

K∈Th
vK

{ ∑
K∈Th

‖|vK‖|2h
}

+ inf
vi

Av=
P

i∈Ic
h

vi

{∑
i∈Ic

h

a(vi, vi)
}

≤ C0‖|(I −A)v‖|2h + C1‖|Av‖|2h ≤ CS‖|v‖|2h, (4.23)

where we have used Proposition 4.3 and (4.20) in the second step (remember that a(·, ·) and ‖| · ‖|2h
coincide on V c

h ) and Proposition 4.2 in the last step. Thus CS = CA max{C0, C1}. This confirms the
upper bound in (4.21).

In order to confirm the other direction consider any expansion

v =
∑

K∈Th

ṽK +
∑
i∈Ic

h

ṽi =: v1 + v2

with ṽK ∈ χKPk(K) and ṽi ∈ V c
i . Writing first

‖|v‖|2h ≤ 2(‖|v1‖|2h + ‖|v2‖|2h), (4.24)

we note that by (4.20)

‖|v2‖|2h = a(v2, v2) ≤ c−1
1 inf

vi

v2=
P

i∈Ic
h

vi

∑
i∈Ic

h

a(vi, vi)

 ≤ c−1
1

∑
i∈Ic

h

a(ṽi, ṽi), (4.25)

while as in the proof of Proposition 4.3 one has for any
v1 =

∑
K∈T −h ṽK ∈ Vh

‖|v1‖|2h ≤
∑

K∈Th

‖|ṽK‖|2h. (4.26)

Thus, we can combine (4.25) and (4.26) to conclude that

‖|v‖|2h ≤ 2
( ∑

K∈Th

‖|ṽK‖|2h + c−1
1

∑
i∈Ic

h

a(ṽi, ṽi)
)
.

Since the decomposition of v was arbitrary we have shown the lower inequality in (4.21) for cS =
1
2 (max{1, c−1

1 })−1. �

Theorem 4.4 covers various possible specifications of splittings which we shall begin to discuss now.
Recall first that, in principle, energy stable splittings for conforming finite element spaces are well under-
stood. Of course, a concrete identification of collections {V c

i }i∈Ic
h

depends on the concrete realization of
an admissible projector A, i.e. on the specific subspace AVh. We postpone this issue to Section 5.

At this point we note first that the subspaces V nc
K := χKPk(K) are of uniformly bounded finite

dimension depending only on k̄ and therefore could be further broken down. In fact, any (reasonable)
basis for Vh will be seen to be an energy stable frame for V nc

h . To describe such a basis it is convenient
to introduce the canonical k-mesh

Nk(K) :=
{
p = pβ :=

1
k

2∑
j=0

βjnj : β ∈ Z3
+,

2∑
j=0

βj = k
}
, (4.27)
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β = (2, 1, 0) n1

β = (1, 1, 1)

β = (0, 3, 0)

n2

n0

Fig. 4.3. Canonical mesh for k = 3, N3(K).

induced on the triangle K, see Figure 4.3. Of course, for k = 1 we simply have

N1(K) = {n0, . . . , n2},

the set of vertices of K itself, as used before. Note that the β/k are the barycentric coordinates of the
mesh points p = pβ , a fact that will be used later again. Clearly we have dim(Pk) = #Nk(K).

Now let {Pp : p ∈ Nk(K̂)} be a fixed basis for Pk, where K̂ is the standard triangle with vertices
(0, 0), (1, 0), (0, 1), and define for K = FK̂ ∈ Th, F = FK affine,

φK,p := χKPp ◦ F−1
K , p ∈ Nk(K). (4.28)

Obviously, Φh := {φK,p : p ∈ Nk(K),K ∈ Th} is a basis for Vh. Later, the reference polynomials Pp will
be (essentially) normalized in L∞ (or in H1, which is equivalent in R2). Thus one has

‖Pp‖L∞(K̂) ∼ 1, ‖{ap}p∈Nk(K̂)‖`∞ ∼
∥∥∥ ∑

p∈Nk(K̂)

apPp

∥∥∥
L∞(K̂)

, (4.29)

with constants depending only on k (and the specific choice of the polynomial basis).
Theorem 4.4 yields then the following general result, where it is seen that a complementary frame is

simply given by a union of local polynomial basis functions that do not need to belong to the noncon-
forming part V nc

h but only to span it.
Corollary 4.5. Assume that A is admissible (i.e. satisfies the Jackson estimate (4.10)) and let

{V c
i : i ∈ Ic

h} be any energy stable splitting for V c
h := AVh. Moreover, let the basis functions φK,p be

constructed as above, i.e. they satisfy (4.28), and assume that the set of indices

Inc
h ⊆ {i = (K, p) : p ∈ Nk(K),K ∈ Th} (4.30)

satisfies

V nc
h := (I −A)Vh ⊆ span{φi : i ∈ Inc

h } =: span Φnc
h . (4.31)

Then, setting V nc
i := spanφi, the collection

S = {V nc
i : i ∈ Inc

h } ∪ {V c
i : i ∈ Ic

h} (4.32)

is an energy stable splitting for Vh in the sense of (3.3).

Proof: In view of Theorem 4.4, it suffices to estimate the local contributions ‖|wK‖|h, wK = χKw, for
w ∈ V nc

h . More precisely, we shall prove that∑
K∈Th

‖|wK‖|2h <∼
∑

(K,p)∈Inc
h

‖|wK,pφK,p‖|2h <∼
∑

K∈Th

‖|wK‖|2h (4.33)
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holds with constants depending only on k̄, the shape properties of T 0, and the constants in (4.10), (2.3).
Indeed writing

wK =
∑

(K,p)∈Inc
h

wK,pφK,p,

we note from (4.28) and (4.29) that ‖φK,p‖L∞(K) ∼ 1. Hence, by (4.17) we have ‖|wK,pφK,p‖|2h <∼ (Ca,K+
1)|wK,p|2 with a further constant factor depending on k̄ and the shape properties of T 0. Using the fact
that only a fixed finite number (depending on k̄) of basis functions are supported on each K, and taking
the normalization (4.29) into account, we conclude that

‖|wK‖|2h‖|w
K
p ‖|

2
h

<∼
∑

(K,p)∈Inc
h

‖|wK,pφK,p‖|2h <∼
∥∥∥{wK,p‖|φK,p‖|h

}
(K,p)∈Inc

h

∥∥∥2

`∞

<∼
∥∥∥ ∑

(K,p)∈Inc
h

wK,pφK,p

∥∥∥2

L∞(K)
= ‖w‖2

L∞(K), (4.34)

where the constants depend only on k̄ as well as on Ca,K , γ in (4.17) and (4.29). Now we use again a
scaling/norm equivalence argument and (4.10) to obtain

‖w‖L∞(K) <∼ 2j(K)‖w‖L2(K) <∼ C∗‖|w‖|h(ω(K)), (4.35)

where the remaining unspecified constant factor depends only on k̄, and the shape properties of T 0.
Finally, we note again that for any edge e ⊂ K ′ ∩ K ′′ one has ‖[w]‖2

L2(e)
≤ ‖wK′‖2

L2(e)
+ ‖wK′′‖2

L2(e)
,

hence

‖|w‖|2h(ω(K)) ≤
∑

K′∈Th:K′⊂ω(K)

‖|wK′
‖|2h. (4.36)

Combining now (4.34), (4.35), (4.36) and using again (4.11), yields (4.33) and completes the proof. �

For the concrete realization of the preconditioned problem (3.8), it now remains to identify viable
choices of the auxiliary bilinear forms bi(·, ·) for i ∈ Ih := Ic

h ∪ Inc
h . Here Ic

h, Inc
h are the index sets

for stable splittings {V c
i }, {V nc

i } of V c
h , V nc

h , respectively, as discussed above. Likewise, the conforming
splitting typically contains the full coarse grid space. In general, let ω(i) denote the union of all the
supports of the nodal basis functions spanning the subspace V c

i (which could be all of Ω when i refers to
a full coarse level space).

Some admissible choices for the bi(·, ·) are the following:
a(v, w)K +

∑
e∈Eh,e⊂∂K |e|−1

∫
e
[v][w] or

|K|−1(v, w)K +
∑

e∈Eh,e⊂∂K |e|−1
∫

e
[v][w] when i = (K, p) ∈ Inc

h

a(v, w)ω(i) or
|ω(i)|−1(v, w)ω(i) when i ∈ Ic

h.

(4.37)

Remark 4.5. In all the above cases in (4.37) there exist constants cb, Cb depending only on the
degree k, the shape properties of T 0 and possibly on the coefficients in the bilinear form a(·, ·), such that
(3.4) holds.

Thus we can summarize these findings as follows.
Theorem 4.6. Assume that A is admissible. Then the additive Schwarz preconditioner based on the

the above splittings (for the respective realizations of V c
h , see Section 5.1.1) and for any of the bilinear

forms from (4.37) is asymptotically optimal in the sense of Theorem 3.1.
The robustness of the scheme with respect to the diffusion coefficients in a(·, ·) will be discussed in

more detail elsewhere.
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5. Projecting onto the minimal conforming subspace. In principle the results of the previous
section offer a general framework for a family of stable splittings and associated preconditioners. In this
paper we are content with one specific realization of an admissible projector A and the identification of
corresponding stable splittings for the conforming part. Specifically, we choose A = A1 so as to map Vh

into continuous piecewise affine elements - in this sense the smallest possible subspace of H1
0 -conforming

trial functions, i.e.

V c
h,1 := A1Vh = H1

0 (Ω) ∩ P1(Th). (5.1)

In general it differs from Vh ∩H1
0 (Ω) whenever higher degrees are permitted.

An alternative would be to have A = Ak produce globally continuous finite elements of the same
degree as the original discontinuous elements and in that sense to split off the maximal conforming
subspace in Vh, i.e.

V c
h,k := AkVh = Vh ∩H1

0 (Ω). (5.2)

This will be elaborated on in a forthcoming paper.
In principle, such averaging operators are familiar in other contexts concerning DG discretizations,

see e.g. [10]. The form of such projectors in the presence of hanging vertices is to our knowledge less
familiar. Since hanging vertices do appear to add some complication we shall give in what follows an
explicit selfcontained construction.

5.1. The construction of A1. The construction of A1 is inspired by the results in [10, 11] but has
to cope with hanging nodes. For this reason, let us remember that we call regular those vertices that
are not hanging. In particular, every vertex on the boundary ∂Ω is regular. Since boundary vertices
are subject to a zero boundary condition in H1

0 (Ω), we can define A1v by prescribing its nodal values at
every interior regular vertex n, following

(A1v)(n) :=
1

#
(
Th(n)

) ∑
K∈Th(n)

vK(n). (5.3)

Since V c
h,1 is always a subset of Vh (that is, for any degree distribution k), the space

V nc
h,1 := (I −A1)Vh (5.4)

stands as a possible candidate for complementing V c
h,1, i.e. we have

Vh = V c
h,1 ⊕ V nc

h,1.

5.1.1. Energy stable splittings for V c
h,1. To describe an energy frame Φc

h,1 for V c
h,1 we can

essentially resort to known results. In fact Φc
h,1 has multilevel structure and is comprised by all nodal

continuous basis functions associated with all predecessors of Th within the tree T̂h. To describe this, let
us denote again by T j the jth uniform dyadic refinement of T 0 and let

T j
h := {K ∈ T j : ∃ K ′ ∈ Th s.t. K ′ ⊆ K} = T j ∩ T̂h, (5.5)

i.e. T j
h is comprised of all level j triangles that appear in the refinement history leading to Th. Moreover,

let

Ωj
h :=

⋃
{K : K ∈ T j

h }

the area covered by the elements in T j
h . The subspace V c

h,1 := A1Vh consists of all continuous piecewise
linear functions on Th. Consider now N j,c

h,1 the set of those vertices that belong to a triangle in T j
h and

lie in the interior of Ωj
h, i.e.

N j,c
h,1 :=

⋃
{N1(K) \ ∂Ωj

h : K ∈ T j
h }.
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Note that since hanging vertices are always located on some boundary ∂Ωj
h, the vertices in N j,c

h,1 are
neither hanging, nor they lie in the boundary of the corresponding domains.

Now define the multilevel index set

Ic
h,1 :=

⋃
{i = (j, n) : j = 0, . . . , jh, n ∈ N j,c

h,1}, (5.6)

where jh is the maximal level appearing in Th. With each i = (j, n) ∈ Ic
h,1 we associate now the standard

nodal (piecewise affine) hat function ϕc
i at the vertex n supported on the star of triangles in T j

h sharing
n. Clearly ϕc

i is continuous, and it immediately follows from (4.17) that

‖|ϕc
i‖|h = a(ϕc

i , ϕ
c
i )

1/2 ∼ 1, i ∈ Ic
h,1, (5.7)

holds with constants depending only on the constants in (2.3) and on the shape properties of T 0. Now
set

Φc
h,1 := {ϕc

i : i ∈ Ic
h,1}.

It is easy to see that Φc
h,1 spans V c

h,1 and it is known (see e.g. [14, 7, 5]) that this collection is an
energy-stable splitting, i.e.

a(v, v) ∼ inf
vi∈R

v=
P

i∈Ic
h,1

viϕ
c
i

 ∑
i∈Ic

h,1

v2
i a(ϕ

c
i , ϕ

c
i )

 , v ∈ V c
h,1, (5.8)

where the constants depend only on T 0 and the constants ca, Ca

5.1.2. The Jackson estimate for A1. We shall confirm now the validity of Property 4.3 for
A = A1. To this end, let us first establish the following intermediate result that is only valid for
piecewise affine functions. Remember that the different sets Eh(n), N ∗

h,1(n), Th(n), . . . which denote local
neighborhoods made of mesh elements, are defined in Section 4.2.

Lemma 5.1. If v ∈ P1(Th) is a piecewise affine function, then we have for any node n ∈ Nh,1∣∣(v −A1v)K(n)
∣∣ ≤ ∑

n′∈N∗
h,1(n)

∑
e∈Eh(n′)

‖[v]‖L∞(e), ∀K ∈ Th. (5.9)

Proof: We begin with the following basic estimate, independent of the operator A1: at any vertex
n ∈ Nh,1, we have

|(vK − vK′
)(n)| ≤

∑
e∈Eh(n)

‖[v]‖L∞(e), K, K ′ ∈ Th(n) (5.10)

for any v ∈ Vh. Indeed, since K and K ′ do not necessarily share an edge, write Th(n) = {K1, . . . ,KM}
the (closed) triangles containing n, in such a way that Ki and Ki+1 have the edge ei ∈ Eh(n) as their
intersection, and assume that K = KM and K ′ = Km with m < M (observe from the definition of the
set Eh that this is possible even when n is a hanging vertex). It is then easily seen that

|(vK − vK′
)(n)| ≤

M−1∑
i=m

|(vKi+1 − vKi)(n)| ≤
M−1∑
i=m

‖[v]‖L∞(ei),

which clearly gives (5.10).
Actually, because the jumps over boundary edges are defined as if v was extended to 0 outside Ω,

this argument yields the following estimate when n is on ∂Ω

|vK(n)| ≤
∑

e∈Eh(n)

‖[v]‖L∞(e), n ∈ ∂Ω, K ∈ Th(n). (5.11)
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Now to prove the assertion of the lemma we consider n ∈ K and distinguish three cases: (i) n is on
the boundary ∂Ω, (ii) n is a regular vertex in the interior of Ω, and finally (iii) n is hanging, i.e. there is
(only) one triangle that contains n and for which n is not a vertex. Note that in the two first cases we
have N ∗

h,1(n) = {n}.
In the case (i), (5.11) readily yields Lemma 5.1 since then we have A1v = 0.
In the case (ii) where n is interior and regular, by definition (5.3) of A1, we have∣∣(v −A1v)K(n)

∣∣ ≤ 1
#(Th(n))

∑
K′∈Th(n)

∣∣(vK − vK′
)(n)

∣∣, (5.12)

so that Lemma 5.1 now follows from (5.10).
Finally, in the case (iii) where n is hanging, denote by K ′ the unique triangle in Th(n) for which n is

not a vertex, and by [n′, n′′] the edge of K ′ for which n is the midpoint. Since both v and A1v are affine
on K ′, we have ∣∣(v −A1v)K′

(n)
∣∣ ≤ 1

2

(∣∣(v −A1v)K′
(n′)

∣∣+ ∣∣(v −A1v)K′
(n′′)

∣∣). (5.13)

Now from the grading of Th, we know that n′ and n′′ are never hanging themselves, so that (5.12) applies,
providing, on account of (5.10),∣∣(v −A1v)K′

(ň)
∣∣ ≤ ∑

e∈Eh(ň)

‖[v]‖L∞(e), ň = n′ or n′′. (5.14)

Writing then ∣∣(v −A1v)K(n)
∣∣ ≤ ∣∣vK(n)− vK′

(n)
∣∣+ ∣∣(v −A1v)K′

(n)
∣∣,

we prove (5.9) in the case (iii) by combining the estimates (5.13), (5.10) and (5.14), since then we have
by definition N ∗

h,1(n) = {n, n′, n′′}, see (4.4). �

We are now ready to verify the validity of Property 4.3 for A1.
Proposition 5.2. The projector A1 has Property 4.3 where C∗ in (4.10) depends only on the shape

properties of T 0, on k̄, and on maxK′⊂ω(K) λ
−1
K′ .

Proof: To estimate the projection error (I −A1)v consider the interpolation operator P1 : Vh → P1(Th)
given by

{P1v}K(n) := vK(n), K ∈ Th, n ∈ N1(K), (5.15)

for which the estimate

‖(I − P1)v‖L2(K) . 2−j(K)‖∇v‖L2(K) (5.16)

is well known with a constant depending only on the shape properties of T 0. In view of (5.3), it is readily
seen that A1P1 = A1, so that the projection error reads

(I −A1)v = (I − P1)v + (I −A1)P1v.

Writing w := (I −A1)P1v ∈ P1(Th) it follows that

‖(I −A1)v‖L2(K) . 2−j(K)‖∇v‖L2(K) + ‖w‖L2(K). (5.17)

Now, denote by {φ1
(K,n) : n ∈ N1(K)} the discontinuous nodal basis of P1(K). On any triangle K ∈ Th

we have

‖w‖L2(K) ≤
∑

n∈N1(K)

|wK(n)| ‖φ1
(K,n)‖L2 .

∑
n∈N1(K)

2−j(K)|wK(n)|.
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Applying then Lemma 5.1 to P1v, and recalling that the set E∗h(K) is given by (4.6), we find

‖w‖L2(K) . 2−j(K)
∑

e∈E∗h(K)

‖[P1v]‖L∞(e),

where the constant depends only on the shape properties of T 0.
Now assume for the moment that for any edge e ∈ Eh there is one triangle Ke for which e ⊂ ∂Ke,

and such that the inequality

‖[P1v]‖L∞(e) . ‖[v]‖L∞(e) + ‖∇v‖L2(Ke) (5.18)

holds with a constant that only depends on the shape properties of T 0. Since for every e in E∗h(K), any
such Ke is in T ∗

h (K), see (4.6) and (4.7), this would yield

‖w‖L2(K) . 2−j(K)

 ∑
e∈E∗h(K)

‖[v]‖L∞(e) +
∑

K′∈T ∗h (K)

‖∇v‖L2(K′)

 .

Now since [v] is a polynomial on any edge e ∈ Eh, we recall from (4.17) that ‖[v]‖L∞(e) ∼ |e|−1/2‖[v]‖L2(e).
Moreover, as in (2.6) each term ‖∇v‖L2(K′) can be bounded by Cλ−1

K′a(v, v)K′ where C depends only on
k̄ and the shape properties of T 0. Note that this means that, aside from the dependence on k and the
shape properties of T 0, the constant is of the order

C ∼ max
e⊂ω(K)

γe, (5.19)

see the remarks following (2.7).
Since the sets E∗h(K) are of uniformly bounded cardinality (depending only on T 0), we find (upon

using also (5.17) and (4.9)) that

‖(I −A1)v‖L2(K) . C∗2−j(K)‖|v‖|h(ω(K)),

where the constant C∗ is of the form CmaxK′⊂ω(K) λ
−1
K′ , C depending only on k̄ and the shape properties

of T 0. This completes the proof of Lemma 4.3.
Thus, it only remains to prove (5.18). Here three situations may occur: either (1) the edge e is on

the boundary ∂Ω, or this is not the case and we can write e = Ke ∩K ′
e with Ke,K

′
e ∈ Th. Now either (2)

e is an edge of both Ke and K ′
e, or again (3) this is not not the case. In the two first cases, we observe

that [P1v]e = P1([v]e), so that

‖[P1v]‖L∞(e) ≤ ‖[v]‖L∞(e)

is obvious. Now according to the structure of graded triangulations, the only possible configuration in
case (3) is represented in Figure 4.1 with e = [n′, n]. Setting then Ke and K ′

e to be the coarser and finer
triangles, respectively (i.e. K and K ′ in Figure 4.1), we observe that P1v is affine on Ke. Therefore

‖[P1v]‖L∞(e) = max
{
|vKe(n′)− vK′

e(n′)|,
∣∣1
2
(
vKe(n′) + vKe(n′′)

)
− vK′

e(n)
∣∣}.

Writing

1
2
(
vKe(n′) + vKe(n′′)

)
=

1
2
(
vKe(n′)− vKe(n)

)
+

1
2
(
vKe(n)− vKe(n′′)

)
+ vKe(n),

we find (with an absolute constant)

‖[P1v]‖L∞(e) . ‖[v]‖L∞(e) + |vKe(n′)− vKe(n)|+ |vKe(n)− vKe(n′′)|.

Using a scaling argument together with the fact that v is polynomial on Ke, one finally verifies that

|vKe(n)− vKe(ň)| . ‖∇v‖L2(Ke), ň = n′ or n′′,
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Fig. 6.1. Condition numbers for the cases C0, C1, C2 and C3 for γ = 10 and di = 1.

holds with a constant that depends only on the shape properties of T 0. Collecting the above estimates,
one confirms (5.18) and completes the proof. �

Combining Corollary 4.5, (5.8) and Propositions 5.2, yields the following result.
Corollary 5.3. Let Ic

h,1 and ϕc
i be defined as in Section 5.1.1. Then for any basis {φK,p : K ∈

Th, p ∈ Nk(K)} of Vh constructed as in (4.28) (such as a piecewise Lagrange basis), the collection

S1 := {span(ϕc
i ) : i ∈ Ic

h,1} ∪ {span(φK,p) : K ∈ Th, p ∈ Nk(K)}

is a stable splitting of Vh in the sense of (3.3). In particular, the corresponding problem (3.8) is equivalent
to the original equation (3.2) and has a condition number bounded by a constant independent of Th.

Remark 5.1 (proof of Theorem 1.1). Theorem 1.1 is an immediate consequence of Corollary 4.5
and Proposition 5.2, observing that V c

h can always be regarded as a splitting of itself.

6. Numerical Experiments. We now present some first numerical experiments for the simple
model problem a(u, v) =

∫
Ω
∇u · ∇v where Ω is an L-shaped domain in R2 obtained by cutting out the

upper right square (1, 2]2 from [0, 2]2. Moreover, we shall only consider the first degree case k̄ = 1 on a
uniformly refined grid. At this point we are mainly interested in the quantitative influence of the specific
choice of the auxiliary bilinear forms bi(·, ·), of the stabilization parameter γ, and of the low dimensional
subspaces Vi in the nonconforming part.

We shall use the following notation: di := dimVi denotes the dimension of the subspaces in the
nonconforming splitting. di = 3 refers to the case that Vi is spanned by the three nodal basis functions
on each triangle in Th.

The case C0 refers to the choice

bi(v, w) =
{
a(v, w)K +

∑
e∈Eh,e∈∂K |e|−1

∫
e
[v][w] for i = (K, p) ∈ Inc

h ,

a(v, w)ω(i) for i = (j, p) ∈ Ic
h,

(6.1)

of the auxiliary inner products (see (4.37)), while C1 corresponds to

bi(v, w) =
{
|K|−1(v, w)K +

∑
e∈Eh,e∈∂K |e|−1

∫
e
[v][w] for i = (K, p) ∈ Inc

h ,

22j (v, w)ω(i) for i = (j, p) ∈ Ic
h.

(6.2)

In order to test the preconditioning effect we have estimated the condition numbers using power
iteration. Figure 6.1 shows the dependence of the condition number of the preconditioned operator κ(Ph)
on the number of degrees of freedom for four selections of bi(·, ·). In addition to C0 and C1, we consider
the cases C2 and C3 which are given by combining the first line of (6.1) with the second line of (6.2) and
vice versa, respectively. Qualitatively for all choices of bi(·, ·) the condition numbers of the preconditioned
operator Ph show the same bounded behavior.

Recall that γ = 10 is usually considered as an appropriate choice. We consider first the moderate
values γ = 5, γ = 7.5 in the case di = 1.
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Level #DOF κ for preconditioner (case/γ)
none C0/5 C1/5 C0/7.5 C1/7.5

1 72 13.62 12.24 13.62 15.60 11.24
2 288 106.84 14.24 20.45 20.22 13.60
3 1152 414.51 15.53 26.19 22.72 17.31
4 4608 1646.80 16.23 30.94 24.03 20.39

For small γ the choice C0 appears to be slightly superior while for larger γ roles reverse, as shown in the
next table for γ = 10, γ = 15.

Level #DOF κ for preconditioner (case/γ)
none C0/10 C1/10 C0/15 C1/15

1 72 12.20 19.89 12.25 28.56 13.95
2 288 210.10 26.50 12.71 39.09 14.53
3 1152 825.76 30.07 14.30 44.79 14.71
4 4608 3294.20 31.92 16.76 47.74 14.77

We turn now to the case di = 3 for γ = 5, γ = 7.5.

Level #DOF κ for preconditioner (case/γ)
none C0/5 C1/5 C0/7.5 C1/7.5

1 72 13.62 12.24 13.62 15.60 11.11
2 288 106.84 14.24 20.45 20.22 13.60
3 1152 414.51 15.53 26.19 22.72 17.31
4 4608 1646.80 16.23 30.92 24.03 20.38

and further again for γ = 10, γ = 15.

Level #DOF κ for preconditioner (case/γ)
none C0/10 C1/10 C0/15 C1/15

1 72 12.20 23.45 8.19 33.89 9.30
2 288 210.10 32.67 10.59 48.19 9.21
3 1152 825.76 37.96 13.48 56.50 10.08
4 4608 3294.20 40.72 15.88 60.85 11.83

which shows a similar effect as for di = 1 before.
We conclude with inspecting the number of cg-iterations for significantly larger problem sizes to

reduce the relative error, that is the quotient of the l2-norms of residual and right hand side vectors, to
10−5. In this example, we have chosen γ = 10, f = 1 on Ω as right hand side and zero as the initial guess
for the conjugate gradient method. The results in the following table show that the number of iterations
remains indeed bounded independently of the problem size.

Level #DOF
Number of iterations

for preconditioner (case/di)
none C0/1 C0/3 C1/1 C1/3

1 72 25 20 21 17 14
2 288 56 25 27 17 16
3 1152 107 27 30 16 16
4 4608 212 28 31 16 16
5 18432 426 28 31 17 16
6 73728 861 27 31 17 17
7 294912 1742 27 30 17 17
8 1179648 3558 26 29 18 17
9 4718592 7226 26 29 18 18
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7. Concluding Remarks. We have reduced the problem of devising multilevel Schwarz precon-
ditioners for the Symmetric Interior penalty DG formulation to the availability of admissible averaging
projectors provided that the underlying meshes satisfy a certain grading property. We have specified
one such projector for which uniformly bounded condition numbers are proved under no extra regularity
conditions for any graded triangulations and fixed highest polynomial degree. First numerical experi-
ments illustrate the theoretical findings for a simple model problem and piecewise linear trial functions.
Alternative splittings for higher order discretizations will be explored in a forthcoming paper together
with more extensive numerical experiments for variable coefficients.
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