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Abstract

The usual paradigm for signal processing is to model a signal as a bandlimited
function and capture the signal by means of its time samples. The Shannon-Nyquist
theory says that the sampling rate needs to be at least twice the bandwidth. For
broadbanded signals, such high sampling rates may be impossible to implement in
circuitry. Compressed Sensing is a new area of signal processing whose aim is to
circumvent this dilemma by sampling signals closer to their information rate instead
of their bandwidth. Rather than model the signal as bandlimited, Compressed
Sensing, assumes the signal can be represented or approximated by a few suitably
chosen terms from a basis expansion of the signal. It also enlarges the concept of
sample to include the application of any linear functional applied to the signal. In
this paper, we shall give a brief introduction to compressed sensing that centers on
the effectiveness and implementation of random sampling.
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1 Introduction

Compressed Sensing (CS) is a new area of signal processing whose goal is to capture a
signal/image with as few measurements as possible. While this idea has a long history
in mathematics dating back to seminal work in approximation theory and widths of the
1970’s (see for example [15, 14]), its potential in signal processing was recently brought
into focus by the the work of Candés, Romberg, and Tao [6, 7] and Donoho [10]. Related
developments occured in the work on finite rates of innovation by Vetterli, Marziliano and
Blue (see e.g. [16]) and the problem of data sketching in theoretical computer science (see
for example [11, 12, 5] as representative papers).
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The idea behind CS is to encode a workable approximation of the signal with as few
measurements as possible. There are several reasons for wanting to do this. The most
obvious is the challenge of encoding broadbanded signals as mentioned in the Abstract.
Since conventional sampling based on the model of bandlimited signals requires an inor-
dinate number of samples, the only alternatives seem to be to either change our notion of
signal model from bandlimited to something more representative of the information rate
in the signal or to change the notion of sample itself. CS does both.

The new model for signals utilized in CS is based on sparse approximation. It assumes
that the signal can be represented or well approximated by a linear combination of a small
number of waveforms taken from a basis or dictionary. We shall discuss only the discrete
version of Compressed Sensing in which the signal is a vector x ∈ IRN with N typically
very large. For example, in image processing N would be the number of pixels which may
be one million or more.

The typical paradigm for obtaining a compressed version of a discrete signal repre-
sented by a vector x ∈ IRN is to choose an appropriate basis, compute all of the coefficients
of x in this basis, and then retain only the k largest of these with k < N . Without loss of
generality, we shall assume that the appropriate basis is the canonical Kroenecker delta
basis. Any other basis can be treated by including a linear transformation to the canonical
basis. The view, expressed by CS is that rather than sample every entry of x, it may be
possible to actually compute only a few non-adaptive linear measurements and still retain
the necessary information about x in order to build a good compressed representation.
These measurements are represented by a vector

y = Φx, (1.1)

of dimension n < N where Φ is an n × N measurement matrix (called a CS matrix).
The recovery of an approximation x∗ of x from these measurements is performed by the
application of an operator ∆ which we refer to as the decoder to y:

x∗ := ∆(y) = ∆(Φx). (1.2)

In contrast to Φ, the operator ∆ is allowed to be non-linear. We call such an encoder-
decoder pair (Φ, ∆) a Compressed Sensing System.

The main questions in compressed sensing are: (i) what is the optimal or near optimal
performance we can obtain for a CS system? (ii) what are good CS matrices Φ? (iii)
what are the most efficient decoders ∆ realizing near optimal performance? This paper
will summarize part of our current understanding of these questions.

2 Instance optimality: a measure of performance in

Compressed Sensing

To measure the performance of a CS system, we have two issues: (i) what is the distortion
between the signal x and the decoded approximation x∗?, (ii) what is the computational
effort in the decoding? Since we are dealing with discrete signals, the most natural
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measures of distortion are the `p norms defined by

‖x‖`p := ‖x‖`N
p

:=

{ (∑N
i=1 |xj|p

)1/p

, 0 < p < ∞,

maxj=1,...,N |xj|, p = ∞.
(2.1)

Since our assumption about the signal x centers on how well it can be approximated
by a linear combination of a few terms of the basis, it is natural to measure the quality
of performance by comparing the distortion ‖x − x∗‖`p with how well the signal can
be approximated by a given budget of k terms from the basis. The best we could do
given such a budget is to choose the k largest entries of x as the approximation. If we
denote by Sk ⊂ {1, · · · , N} the set of indices corresponding to these k largest entries,
then the performance of such an approximation process in the `p norm is the best k-term
approximation error

σk(x)`p := ‖x− xSk
‖`p = ‖xSc

k
‖`p , (2.2)

where for any set of indices S ⊂ {1, . . . , N}, we denote by Sc its complement and by xS the
vector obtained from x by setting to 0 all its component with indices not in S. Note xSk

is
best approximation of x from the set of k-sparse vectors, i.e. vectors which have at most k
non-zero coordinates. This approximation process should be considered as adaptive since
the indices of those coefficients that are retained will vary from one signal to the next. So
we are interested in comparing the performance of the non-adaptive CS system with the
optimal adaptive strategy of choosing the best k coordinates to approximate x.

In [3], we adressed the performance of CS systems by considering the following ques-
tion:

For a given space X = `N
p (i.e. IRN endowed with the `p-norm) and k < N , what is

the minimal value of n for which there exists a CS system (Φ, ∆) such that

‖x−∆(Φx)‖X ≤ C0σk(x)X , (2.3)

for all x ∈ IRN , with C0 a constant independent of k and N?

We say that a pair (Φ, ∆) which satisfies property (2.3) is instance-optimal of order k
with constant C0. Note that we could reverse the roles of n and k above by fixing n and
asking for the largest value of k for which (2.3) holds.

It was shown that the answer to the above question heavily depends on the `p norm
under consideration. Let us illustrate this by quoting two contrasting results from [3]:

(i) In the case p = 1, for any n ≥ ak log(N/k), with a a sufficiently large fixed constant,
it is possible to build encoding-decoding pairs (Φ, ∆), with Φ an n×N matrix, that
are instance-optimal of order k with constant C0 depending only on a. Moreover
the decoder ∆ can be taken as

∆(y) := argmin
Φz=y

‖z‖`1 . (2.4)

These facts can also be derived from the results of Candés, Romberg and Tao in [7].
Therefore, it is possible to obtain the accuracy of k-term approximation whenever
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the budget n for the number of non-adaptive measurements exceeds the number k
of adaptive measurements by the small factor a log(N/k).

(ii) In the case p = 2, if (Φ, ∆) is any CS system which is instance-optimal of order
k = 1, then the number of measurement n is always larger than aN where a > 0
depends only on C0 in (2.3). Therefore, the number of non-adaptive measurements
has to be very large in order to compete with even one single adaptive measurement.

While it appears from this last result that compressed sensing may not perform well
in `2, it turns out that this is not exactly the case. For example, a more optimistic result
was established by Candés, Romberg and Tao in [7]. They show that if n ≥ ak log(N/k)
it is possible to build CS systems (Φ, ∆) such that for all x ∈ IRN,

‖x−∆(Φx)‖`2 ≤ C0
σk(x)`1√

k
, (2.5)

with the decoder again defined by (2.4). Of course, (2.5) is not the same as instance-
optimal since it involves approximation in `1 on the right side. However, this estimate
does show that k-sparse signals are exactly reconstructed and signals x which are well
approximated by k-sparse signals in the `1 sense will be approximated well in the `2 sense
as well.

While instance-optimality cannot hold in `2, it turns out that instance-optimal pairs
for `2 can be constructed if one accepts a probabilistic statement in which Φ = Φ(ω),
ω ∈ Ω, is a random matrix-valued variable on a probability space (Ω, ρ). A first result in
this direction, obtained by Cormode and Mutukrishnan in [5], shows how to construct a
random matrix Φ with n ∼ k(log N)5/2 measurements and a decoder ∆ = ∆(ω), ω ∈ Ω,
such that for any x ∈ IRN ,

‖x−∆(Φx)‖`2 ≤ C0σk(x)`2 (2.6)

holds with overwhelming probability (larger than 1 − ε(n) where ε(n) tends rapidly to
0 as n → +∞). Note that this result says that given x, the set of ω ∈ Ω for which
(2.6) fails to hold has small measure. This set of failure will depend on x. We shall refer
to results of the form (2.6) as instance-optimality in probability. The above results on
instance-optimal in probability can be improved in several directions as will be discussed
later in this paper.

3 Optimal choices for the matrix Φ

If we fix the budget n of samples to be used in a CS system then the best systems from the
viewpoint above are those that give instance-optimality of order k for the largest values
of k. We have noted above that one may take k of the order n/ log(N/n) and achieve
instance-optimality in `1. One can show that this range of k cannot be improved (see [3]).

How can one design CS systems that have this optimal order of instance-optimality?
Candés and Tao [6] have introduced a property which can be used in order to derive
sufficient conditions for instance-optimality of order k:
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RIP: A matrix Φ satisfies the Restricted Isometry Property (RIP) of order k with constant
δk ∈ (0, 1), if

(1− δk)‖xT‖`2 ≤ ‖ΦxT‖`2 ≤ (1 + δk)‖xT‖`2 , x ∈ IRN , |T | ≤ k. (3.1)

The requirement (3.1) says that the mapping Φ acts like an isometry on k-sparse vectors.
The following theorem (proved in [3]) shows that any matrix Φ which satisfies the RIP

of order 3k admits a decoder ∆ so that the CS System (Φ, ∆) is instance-optimal in `1 of
order k.

Theorem 3.1 Let Φ be any matrix which satisfies RIP of order 3k with δ3k < 1. Then
there is a decoder ∆ such that the CS system (Φ, ∆) satisfies instance optimality of order
k in `1 with constant C0 = 2

√
21+δ

1−δ
.

For this theorem to be of any use, we need to have a way of constructing matrices Φ
which satisfy the RIP and we must be able to verify the RIP for these matrices. We have
already remarked that such constructions are known when k ≤ an/ log(N/n). What do
these constructions look like?

All of the constructions which exhibit the largest range of k utilize randomness. The
simplest of these to describe is the following. We want to fill in the nN entries of the
matrix Φ. We flip a fair coin and if it lands heads, we will fill the (1, 1) entry with the value
1/
√

n and if it lands tails then we fill this entry with the value −1/
√

n. The remaining
entries are filled in with the same procedure by using independent coin flips. We do not
know if, for a given set of coin flips, the resulting matrix Φ satisfies the RIP of order
k ≈ n/ log(N/n). It of course depends on the luck of the draw in our coin flips. But what
we can show is that with high probability the resulting matrix will have the RIP for this
range of k. In other words most of the time we have the RIP.

In [2], we have given a very simple proof that the above construction as well as other
standard random constructions of matrices lead to the RIP. These constructions include
the replacement of coin flips by independent draws of more general random variables such
as Gaussian. The derivation of RIP applies to matrices Φ whose entries are independent
realizations of a random variable r(ω), ω ∈ Ω, for which the matrices Φ(ω), ω ∈ Ω, satisfy
the following concentration of measure inequality:

P1 : For any x ∈ IRN and δ ∈ (0, 1]

|‖Φx‖2
`2
− ‖x‖2

`2
| ≤ δ‖x‖2

`2
(3.2)

holds with probability ≥ 1− b1e
−c1nδ2

where b1 and c1 are absolute constants.
Notice that the verification of P1 is a much simpler task than verifying RIP since we only
need verify P1 with high probability. It is shown in [2] that P1 implies the RIP as is
formulated in the following theorem

Theorem 3.2 Suppose that n, N , and 0 < δ < 1 are given. If the random n × N
matrices Φ(ω) satisfy the concentration inequality P1, then there exist constants c2, c3 > 0
depending only on δ such that the RIP holds for Φ(ω) with the prescribed δ and any
k ≤ c2n/ log(N/k) with probability larger than 1− e−c3n.
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It is easy to verify that standard random variables such as the Bernoulli random
variable used with coin flips or the Gaussian random variable satisfy P1 (see [4]). Un-
fortunately, for any given realization of Φ, there is no simple way to check whether the
resulting matrix satisfies the RIP. Because of this, for large values of n,N , we are still
unable to directly put our hands on a matrix which satisfies the RIP of large order k
and therefore gives our best instance-optimal performance. There are some deterministic
constructions of matrices and verifications that they satisfy the RIP but the range of k
for which this is true is much more modest: k ≤ c

√
n/ log(N/n). One such construction

given in [8] is based on finite fields. Other constructions can be made using coding theory.

4 Instance-optimality in probability

While probability and randomness are used to prove the existence of matrices which satisfy
the RIP (and hence instance-optimality in `1) for the biggest range of k, we should note
that the CS system itself does not use randomness. Once we have a matrix which satisfies
the RIP, the compressed sensing is completely deterministic. However, the weakness in
the above results is that although we know such favorable matrices exist, it is hard to put
our hands on one and verify that it is a favorable choice.

There is another thread of compressed sensing where we put randomness into the
system itself. We begin with a family Φ(ω), ω ∈ Ω, of random matrices. Given a signal
x ∈ IRN , we draw one of these random matrices Φ(ω) and use it to encode x. This gives
a vector y(ω) = Φ(ω)x. We decode y(ω) by using a decoder ∆ = ∆(ω) which depends on
the matrix Φ (and therefore on our draw). This gives the vector x(ω) := ∆(y(ω)) and we
are interested in how well this vector approximates x.

It is interesting that such a random CS system can perform significantly better than
fixing the matrix once and for all. To explain this, we first state a theorem which follows
from [3].

Theorem 4.1 Assume that Φ(ω), ω ∈ Ω, is a random matrix whose entries are generated
by independent draws of a random variable r(ω). If Φ(ω) satisfies P1, then there is a family
of decoders ∆(ω), ω ∈ Ω, with the following property. If x is any vector in IRN , then with
high probability, we have

‖x− x(ω)‖`2 ≤ C0σk(x)`2 , (4.1)

for some k ≥ an/ log(N/n) with C0 and a absolute constants. In other words, with high
probability, the decoded x(ω) approximates x with instance-optimal accuracy in `2 for the
large range of k.

We invite the reader to consult [3] for the precise formulation of high probability in
which sense (4.1) holds.

5 Decoders

The main separation between the theoretical results of the 1970’s on approximation and
the current results on CS systems occurs with decoding. The early theoretical results
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did not consider the question of practical decoders ∆ to team with a CS matrix Φ.
The celebrated contribution of the early work on compressed sensing by Candés-Tao and
Donoho was to show that for certain constructions of CS matrices Φ, the decoding can
be done using `1 minimization as described in (2.4). This decoding is a problem in linear
programming and off the shelf methods for solving (2.4) by, for example, the simplex
algorithm or interior point methods can be applied.

While `1 minimization is an implementable decoder, there is still much interest in
trying to reduce the computational time in decoding. This is a major research area of
Theoretical Computer Science and the work in that area constructs some specific matri-
ces Φ and ad hoc decoders which perform better than the theoretical bounds for linear
programming. Moreover, in the case of random CS systems, the applicability of `1 mini-
mization in an `2 probabilistic instance-optimal system is not proven.

An attractive alternative to `1 minimization is Orthogonal Matching Pursuit (OMP)
which is a prominent method in signal processing. Gilbert and Tropp [13] have studied
OMP as a decoder for compressed sensing and proved first results in the probabilistic
setting. The application of OMP for CS decoding can be described as follows. We denote
the columns of Φ by (φj)j=1,···,N and we first try to find a good approximation to y which
is a sparse linear combination of these columns. As the first step of OMP, we define

j1 := argmax
j=1,···,N

|〈y, φj〉|, (5.1)

and approximate y by its projection y1 := z1
j1

φj1 with z1
j1

:= 〈y, φj1〉/‖φj1‖2. At the step
i of the algorithm, we have defined a set of indices {j1, · · · , ji} and the approximant yi =∑i

l=1 zi
jl
φjl

which is by definition the orthogonal projection of y onto Span{φj1 , · · · , φji
}.

The new index is defined by

ji+1 := argmax
j=1,···,N

|〈ri, φj〉|, (5.2)

where ri := y− yi is the residual. The components zi
j1

, · · · , zi
ji
, when augmented by zeros

in the other coordinates, define a sparse approximation to x that we denote by xi and
which is supported on {j1, · · · , ji}:

xi
j = zi

j, if j ∈ {j1, · · · , ji}, 0 otherwise. (5.3)

The following striking result was proved in [13] for fairly general classes of random
matrices (such as Gaussian and Bernoulli): if n ≥ ak log N with a sufficiently large, then
for any k sparse vector x, the OMP algorithm returns x exactly after k iterations (xk = x),
with probability greater than 1−N−b where b can be made arbitrarily large by taking a
large enough.

Note that OMP is computationally relatively inexpensive, even when compared with
`1 minimization. The decoding in the above algorithm would require O(Nkn) arithmetic
operations which is less than the best known theoretical bounds for `1 minimization.

Recently, the authors have shown that OMP is not only a valid strategy for the recovery
of k-sparse vectors, but also for arbitrary N -dimensional vectors. Namely, we prove that
for any x ∈ IRN , and any n ≥ ak log N , the recursive application of 2k steps of the

7



OMP algorithm on the data y gives a decoding ∆(y) := x2k which satisfies probabilistic
instance-optimality in `2 provided that the random matrices Φ(ω), ω ∈ Ω, satisfy property
P1 and the following additional properties

P0: the vectors (φi)i=1,···,N are statistically independent.

P2: for any z ∈ IRn, l ∈ {1, . . . , N}, and δ ∈ (0, 1],

|〈z, φl〉| ≤ δ‖z‖`2 (5.4)

holds with probability ≥ 1− b2e
−c2nδ2

, where b2 and c2 are absolute constants.
Similar to property P1, P2 can be easily established for standard constructions of

random matrices such as the Bernouli and Gaussian families (see [4]).
The following theorem is proved in [4]

Theorem 5.1 If the random matrix Φ(ω), ω ∈ Ω, satisfies P0, P1 and P2, then, for
C0 := 5 + 146

√
2, the vector x∗ = x2k obtained after 2k iterations of the OMP algorithm

satisfies
‖x− x∗‖`2 ≤ C0σk(x), (5.5)

with probability larger than 1 − N−β provided that n ≥ ak log N . Here β can be made
arbitrarily large by choosing the constant a sufficiently large.

Note that, given n, N , the specific decoder OMP provides `2-instance optimality for a
slightly smaller range of k than claimed in Theorem 4.1. However, the decoder upon
which the result in Theorem 4.1 is based upon is not computationally feasible because it
requires solving least squares problems for all subsets of k columns of Φ, see [3].

Unlike the case of sparse signals we cannot expect the greedy algorithm to identify
exactly the set Sk of k largest coefficients in absolute value because there may be many
coefficients outside Sk of nearly the same size. All we can hope for is that it does identify
with high probability a set of indices whose coefficients carry enough of the total `2-norm
to restore x to accuracy Cσk(x). The proof in [4] shows that with high probability, the
OMP chooses indices from the following set set

Tk :=
{

j : |xj| ≥
σk(x)√

k

}
. (5.6)

Notice that Tk depends only on x and not on ω ∈ Ω.
The fact that selecting indices from Tk is sufficient for instance-optimality follows from

the observation that Tk is not too different from Sk, according to the following

Lemma 5.2 For each k = 1, 2, . . ., we have

(i) |Tk| ≤ 2k;

(ii) ‖xT c
k
‖ ≤

√
2σk(x).

It is interesting to remark that for general dictionaries, the OMP algorithm is known
to converge slowly: its approximation error ‖y − yk‖`2 can at best be bounded by k−1/2
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(see [9] and [1] for a general discussion on the rate of convergence). In the present setting,
its improved convergence properties are strongly tied to the probabilistic properties of Φ.

In the case of signals x with relatively low rates of best k-term approximation, we
can actually use the results obtained in [1] in order to prove that the OMP decoder
performs well without requiring the additional assumptions P0 and P2. Namely, we have
the following.

Theorem 5.3 Assume that the n × N matrices Φ(ω), ω ∈ Ω, satisfy the concentration
property P1 and let 1 ≤ p < 2. Then there exist absolute constants b3, c3 such that for
any x ∈ IRN the output xk of the kth step of OMP satisfies with probability larger than
1− b3e

−c3n

‖x− xk‖`2 ≤ 10‖x‖`pk
−s, s =

1

p
− 1

2
, (5.7)

provided that n ≥ (2/c1)k log(N/n).

Proof: Recalling that xSk
denotes the best k-term approximation to x and setting yk :=

Φxk, we have

‖x− xk‖`2 ≤ σk(x)`2 + ‖xSk
− xk‖`2 ≤ σk(x)`2 + 2‖Φ(xSk

− xk)‖`2

≤ σk(x)`2 + 2
{
‖Φ(xSk

− x)‖`2 + ‖y − yk‖`2

}
≤ 4σk(x)`2 + 2‖y − yk‖`2 , (5.8)

where we have used RIP of order 2k with δ = 1/2 in the second inequality and P1 with
δ = 1/2 in the last step.

So it remains to estimate the residual error ‖y−yk‖`2 . To this end, we invoke Theorem
2.3 in [1], which implies that

‖y − yk‖`2 ≤ 2 inf
x′∈IRN

{‖y − Φx′‖`2 + k−1/2‖x′‖`1}. (5.9)

Since y = Φx and x − x̂ is independent of Φ, we can again employ P1 for δ = 1/2 to
conclude that

‖y − yk‖`2 ≤ 3 inf
x′∈IRN

{‖x− x′‖`2 + k−1/2‖x′‖`1} =: 3K(x, k−1/2, `N
2 , `N

1 ), (5.10)

where K(x, t,X, Y ) := infx′∈X {‖x − x′‖X + t‖x′‖Y } denotes the K-functional of Lions
and Peetre.

For 1
p

= θ
2

+ 1
2

(i.e. θ/2 = s), the space `N
p is contained in the interpolation space

[`N
2 , `N

1 ]θ,∞ in the sense of the inequality

sup
t>0

K(x, t, `N
2 , `N

1 )t−θ ≤ ‖x‖`p , (5.11)

between their respective norm. Therefore, we infer that K(x, k−1/2, `N
2 , `N

1 ) ≤ ‖x‖`pk
−s.

It is also not hard to show that σk(x)`2 ≤ ‖x‖`pk
−s for s = 1

p
− 1

2
which, in view of (5.8),

(5.9), and (5.10), yields

‖x−xk‖`2 ≤ 4σk(x)`2 +6K(x, k−1/2, `N
2 , `N

1 ) ≤ 4σk(x)`2 +6‖x‖`pk
−s ≤ 10‖x‖`pk

−s. (5.12)
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This confirms the assertion. 2

Note that aside from the better bounds for the probability of success, the range k
for which the above result holds is somewhat larger than in Theorem 5.1. On the other
hand, it is considerably weaker because it provides the best rate only for the whole unit
ball of `N

p , p ∈ [1, 2) instead of in the instance-optimal sense for any rate of best k-term
approximation.
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