
Construction of data-sparse H2-matrices by
hierarchical compression

Steffen Börm∗

October 14, 2007

Discretizing an integral operator by a standard finite element or boundary
element method typically leads to a dense matrix. Since its storage complex-
ity grows quadratically with the number of degrees of freedom, the standard
representation of the matrix as a two-dimensional array cannot be applied
to large problem sizes.
H2-matrix techniques use a multilevel approach to represent the dense

matrix in a more efficient data-sparse format. We consider the challenging
task of finding a good multilevel representation of the matrix without relying
on a priori information of its contents.

This paper presents a relatively simple algorithm that can use any of the
popular low-rank approximation schemes (e.g., cross approximation) to find
an “initial guess” and constructs a matching multilevel structure on the fly.
Numerical experiments show that the resulting technique is as fast as com-
peting methods and requires far less storage for large problem dimensions.

Keywords: Hierarchical matrices, data-sparse approximation, non-local operators

AMS Subject Classification: 65F30, 65N38

Acknowledgement. A significant part of this work was carried out during a stay at
the Institut für Geometrie und Praktische Mathematik of the RWTH Aachen.

1 Introduction

We consider numerical methods for solving integral equations. A typical example is the
boundary integral equation∫

Γ
g(x, y)u(y) dy = f(x) for all x ∈ Γ,

∗Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstraße 22–26, 04103 Leipzig,
Germany

1

H2-MATRICES BY HIERARCHICAL COMPRESSION

where Γ ⊆ R3 is the boundary of a three-dimensional domain Ω ⊆ R3, g is the kernel
function, and f is a suitable right-hand side function.

If we approximate the solution u by a Galerkin scheme using finite element basis
functions (ϕi)i∈I , we have to handle the matrix G ∈ RI×I given by

Gij =
∫

Γ
ϕi(x)

∫
Γ

g(x, y)ϕj(y) dy dx for all i, j ∈ I. (1)

Unless very special basis functions have been chosen, the matrix G is densely populated,
i.e., almost all of its entries will be non-zero.

Storing G in the standard way, i.e., as a two-dimensional array, requires O(n2) units
of storage, where n := #I is the number of basis functions used in the discretization
scheme. In order to ensure a sufficient accuracy, we have to use a large number n of
basis functions, therefore the storage requirements for the matrix G will quickly exceed
the capacity of most of today’s computers.

Therefore several techniques have been developed to reduce the storage requirements
by replacing G with more efficient approximations G̃. Wavelet techniques [3, 12, 11, 30,
27] employ special basis functions in order to ensure that most entries of the resulting
Galerkin matrix G are almost zero, thus leading to a sparse approximation G̃ of the
matrix G. This approach works well if good wavelet bases are available and if the
corresponding entries of G̃ can be computed efficiently, so its application to complicated
geometries and complicated integral operators can be a challenging task.

An alternative approach is followed by panel-clustering techniques [21, 25] and the
closely related multipole expansion schemes [24, 16, 17, 23]: the domain Γ×Γ is split into
subdomains τ ×σ such that g|τ×σ is sufficiently smooth, and on each of the subdomains
a separable approximation

g(x, y) ≈ g̃(x, y) :=
k∑

ν=1

vν(x)wν(y) for all x ∈ τ, y ∈ σ,

of g is constructed, e.g., by Taylor or multipole expansions or interpolation. Since the
variables x and y are separated in g̃, the double integral in (1) is replaced by products
of single integrals that can be computed very efficiently.

Hierarchical (or short H-) matrices [18, 19, 13, 15] are the algebraic counterparts of
panel-clustering techniques: approximating g by a degenerate g̃ on subdomains τ × σ
corresponds to approximating submatrices G|t×s of G by low-rank matrices. An H-
matrix is given by a partition of the matrix into a hierarchy of submatrices and factorized
low-rank approximations of these submatrices.

Since low-rank approximations can also be constructed using singular value decom-
positions [18, 13, 8] or cross approximation techniques [28, 29, 2, 1, 7], H-matrices are
far more flexible than panel-clustering techniques. It is even possible to carry out ap-
proximate arithmetic operations like matrix inversion or factorization [15, 22] in almost
linear complexity, therefore new applications like the evaluation of matrix functions, the
solution of matrix equations or just the construction of very efficient preconditioners for
linear systems can be treated efficiently by this approach.

2

H2-MATRICES BY HIERARCHICAL COMPRESSION

Compared to multipole expansions, H-matrices offer the advantage that optimal low-
rank approximations (e.g., for inverses and preconditioners) can be constructed adap-
tively, while standard multipole techniques require specially-designed expansion systems
to reach optimal efficiency, and these expansion systems are only available for a small
number of standard situations.

Compared to wavelet methods, H-matrices offer the advantage that their implemen-
tation is far easier and that they, like most schemes based on the approximation of g in
the entire space, can handle complex geometries without additional effort.

In an H-matrix, each submatrix uses a low-rank factorization that is independent of
the factorizations of the other submatrices. This leads to relatively simple algorithms,
but also to a loss of efficiency: if a special factorization is used that takes advantage
of connections between a submatrix and its “neighbors”, the storage complexity can be
reduced significantly. This is the idea of H2-matrices [20, 9]: each submatrix is expressed
as an element of a low-dimensional matrix space, and the different matrix spaces are
embedded in a multilevel structure. A typical H-matrix requires O(nk log n) units of
storage, while an H2-matrix needs only O(nk), where k determines the accuracy of the
approximation. The additional logarithmic factor means thatH2-matrix approximations
will become more efficient compared to H-matrices as the problem size n increases.

We are therefore interested in an algorithm that combines the simplicity of H-matrix
constructions with the higher efficiency of H2-matrices. One solution is presented in [9]:
we can convert arbitrary matrices into H2-matrices, and the conversion procedure can
be adapted to handle H-matrices efficiently. Unfortunately, this approach requires the
entire H-matrix to be available to the algorithm, therefore its total storage requirements
will be at least as high as for a standard H-matrix.

This paper presents a new algorithm that avoids the necessity of storing the entire
H-matrix. It starts with independent initial low-rank approximations of submatrices,
as used in standard H-matrix techniques, that are recursively converted into larger
and larger H2-submatrices until the entire matrix has been approximated. Since each
submatrix is converted as soon as it becomes available, the storage requirements of the
resulting algorithm are close to those of the final H2-matrix. The basic building block
is a unification step that takes several independent H2-matrices and turns them into a
unified H2-matrix.

The new approach is not limited to the approximation of matrices resulting from the
discretization of integral operators. Using the unification step, many algorithms devel-
oped for H-matrices can be “refitted” easily to construct the more efficient H2-matrices.
An important field of application for this paradigm are adaptive matrix arithmetic oper-
ations: algorithms like the approximative H-matrix multiplication or inversion [15] can
now work with H2-matrices that require far less storage and thus allow us to fit much
larger problems into a given amount of storage.

The paper is organized in five sections: section 1 is the introduction you are currently
reading, section 2 defines the basic structure of H2-matrices, section 3 recalls the fun-
damental theory of H2-matrix compression and error control and derives the unification
step, section 4 describes the new conversion algorithm, and section 5 contains numerical
experiments that demonstrate its efficiency regarding time and storage requirements.

3

H2-MATRICES BY HIERARCHICAL COMPRESSION

2 H2-matrices

We will now briefly recall the structure of H2-matrices [20, 9].

2.1 Block structure

Hierarchical matrix techniques are based on detecting subblocks of the matrix which
admit a data-sparse approximation. In order to find these admissible blocks efficiently,
we introduce a hierarchy of subsets:

Definition 2.1 (Cluster tree) Let I be an index set. Let T be a labeled tree. We
denote its root by root(T), the label of t ∈ T by t̂, and the set of sons by sons(T , t) (or
just sons(t) if this does not lead to ambiguity).
T is a cluster tree for I if it satisfies the following conditions:

• ̂root(T) = I.

• If sons(t) 6= ∅ holds for t ∈ T , we have

t̂ =
⋃

s∈sons(t)

ŝ and

ŝ1 ∩ ŝ2 = ∅ for all s1, s2 ∈ sons(t) with s1 6= s2.

If T is a cluster tree for I, we will denote it by TI and call its nodes clusters. The set
of leaves of TI is denoted by

LI := {t ∈ TI : sons(t) = ∅}.

The definition implies t̂ ⊆ I for all clusters t ∈ TI . We can use induction to prove
that the set LI of leaves of TI is a disjoint partition of the index set I, i.e.,

I =
⋃̇

t∈LI
t̂. (2)

Given a cluster tree TI and a cluster t ∈ TI , we denote the subtree with root t by T t
I

and call its nodes, including t itself, the descendants of t. If t ∈ TI is a descendant of
t+ ∈ TI , the cluster t+ is called a predecessor of t. The set of predecessors of a cluster
t ∈ TI is defined by

pred(t) := {t+ ∈ TI : t ∈ T t+

I }.

Using cluster trees, we can now define a hierarchical partition of the matrix entries:

Definition 2.2 (Block cluster tree) Let I, J be index sets, and let TI and TJ be
corresponding cluster trees. Let T be a labeled tree. T is a block cluster tree for TI and
TJ if it satisfies the following conditions:

• root(T) = (root(TI), root(TJ)).

4

H2-MATRICES BY HIERARCHICAL COMPRESSION

• Each cluster b ∈ T has the form b = (t, s) for t ∈ TI and s ∈ TJ and its label
satisfies b̂ = t̂× ŝ.

• Let b = (t, s) ∈ T . If sons(b) 6= ∅, we have

sons(b) =

{t} × sons(s) if sons(t) = ∅, sons(s) 6= ∅,
sons(t)× {s} if sons(t) 6= ∅, sons(s) = ∅
sons(t)× sons(s) otherwise.

If T is a block cluster tree for I and J , we will denote it by TI×J and call its nodes
blocks. The leaves of TI×J are denoted by LI×J .

This definition implies that a block cluster tree for I and J is a cluster tree for the
product index set I × J , therefore the set of leaf labels

P := {b̂ = t̂× ŝ : b = (t, s) ∈ LI×J }

defines a disjoint partition of I × J into blocks of indices.

Definition 2.3 (Admissibility) Let TI and TJ be cluster trees for I and J . Let
α : TI×TJ → B = {true, false} be a predicate, which we will call admissibility condition.
A block cluster tree TI×J is called admissible if

(sons(TI , t) 6= ∅ ∨ sons(TJ , s) 6= ∅) =⇒ α(t, s) holds for all b = (t, s) ∈ LI×J ,

i.e., if each leaf of TI×J is either admissible or a pair of leaf clusters of the respective
cluster trees. For an admissible block cluster tree, we split the set of leaves into

L+
I×J := {b = (t, s) ∈ LI×J : α(t, s) holds} and L−I×J := LI×J \ L+

I×J ,

i.e., into admissible and inadmissible leaves. Usually, we will not work with α, but only
use L+

I×J and L−I×J .

For matrices resulting from the discretization of elliptic problems, the admissibility
condition

α(t, s) :=

{
true if max{diam(Ωt),diam(Ωs)} ≤ dist(Ωt,Ωs),
false otherwise

(3)

is frequently used, where Ωt and Ωs are suitable domains containing the supports of the
basis functions or functionals corresponding to t and s.

The condition (3) ensures that we are dealing with a region where we can expect
Green’s function to be smooth or at least separable. In the case I = J , this means that
the block t̂× ŝ lies “sufficiently far away” from the diagonal of the matrix.

If the indices in I and J correspond to locations in space, it is possible to construct
good cluster trees TI and TJ by binary space partitioning and a good block cluster tree
TI×J by a simple recursion strategy [13, 15].

5

H2-MATRICES BY HIERARCHICAL COMPRESSION

2.2 Matrix structure

Typical hierarchical matrices are defined based on the block partition P : given a local
rank k ∈ N, the submatrices M |t̂×ŝ corresponding to admissible leaf blocks b = (t, s) ∈
L+
I×J are required to be of low rank:

H(TI×J , k) := {M ∈ RI×J : rank(M |t̂×ŝ) ≤ k for all b = (t, s) ∈ L+
I×J }.

The parameter k is called the local rank of the H-matrix set. For each b = (t, s) ∈ L+
I×J ,

the low-rank matrix M |t̂×ŝ is represented in factorized form, i.e., by matrices Ab ∈ Rt̂×k

and Bb ∈ Rŝ×k with M |t̂×ŝ = AbB
>
b .

The H2-matrix format is a specialization of this representation: we require not only
that admissible blocks correspond to low-rank matrix blocks, but also that the ranges
of these blocks and their adjoints are contained in predefined spaces.

Definition 2.4 (Cluster basis) Let TI be a cluster tree, and let K = (Kt)t∈TI be a
family of index sets. A family V = (Vt)t∈TI of matrices satisfying Vt ∈ Rt̂×Kt for all
t ∈ TI is called cluster basis for TI and K. For each t ∈ TI , the cardinality #Kt is
called the rank of V in t.

In the literature, the matrices Vt are sometimes embedded in RI×Kt by extending
them by zero. Obviously, both notations are equivalent.

The high efficiency of H2-matrix methods is owed to the fact that the cluster bases
are designed to form a nested hierarchy matching the cluster tree:

Definition 2.5 (Nested cluster basis) Let V = (Vt)t∈TI be a cluster basis for a clus-
ter tree TI and a family (Kt)t∈TI of index sets. Let E = (Et)t∈TI be a family of matrices
satisfying Et′ ∈ RKt′×Kt and

(Vt)|t̂′×Kt
= Vt′Et′ (4)

for all t ∈ TI and all t′ ∈ sons(t). Then the cluster basis V is called nested with transfer
matrices E.

The case t = root(TI) is only included in order to avoid the necessity of treating a
special case: we can see that the definition does not require the transfer matrix for the
root of TI to satisfy any conditions. In practice, this matrix can be ignored completely.

If a cluster basis V = (Vt)t∈TI is nested, we have

Vt =

Vt1Et1
...

Vtτ Etτ

 =

Vt1
. . .

Vtτ

Et1

...
Etτ

for all t ∈ TI with # sons(t) = τ > 0 and sons(t) = {t1, . . . , tτ}. This means that we have
to store the matrices Vt only for leaf clusters t ∈ LI and can use the transfer matrices
Et′ to represent them implicitly for all other clusters. Since the transfer matrices Et′

6

H2-MATRICES BY HIERARCHICAL COMPRESSION

only require (#Kt′)(#Kt) units of storage, while the cluster basis matrices Vt require
(#t̂)(#Kt) units, this nested representation is very efficient for #t̂� #Kt′ .

The nested structure is the key difference between general hierarchical matrices and
H2-matrices [20, 9], since it allows us to construct very efficient algorithms by re-using
information across the entire cluster tree, similar to multigrid algorithms or other mul-
tilevel methods.

Definition 2.6 (H2-matrix) Let TI and TJ be cluster trees. Let TI×J be an admissible
block cluster tree. Let V and W be nested cluster bases for TI and TJ with families
K = (Kt)t∈TI and L = (Ls)s∈TJ of index sets. The set of H2-matrices for TI×J , V and
W is given by

H2(TI×J , V, W) := {X ∈ RI×J : for all b = (t, s) ∈ L+
I×J there is a matrix

Sb ∈ RKt×Ls satisfying X|t̂×ŝ = VtSbW
>
s }

In this context, V is called the row cluster basis, W is called the column cluster basis,
and the family S = (Sb)b∈L+

I×J
is called the family of coupling matrices.

Obviously, we have H2(TI×J , V, W) ⊆ H(TI×J , k) for the local rank

k := max{min{#Kt,#Ls} : b = (t, s) ∈ L+
I×J },

i.e., the H-matrix structure seems to be more flexible at first glance. A closer investi-
gation [6] shows that in the most important application fields, H2-matrices can perform
even better than H-matrices if the cluster bases V and W are chosen correctly.

2.3 Complexity

Let us now consider the storage complexity of the H2-matrix representation.
Block cluster trees constructed for standard situations have an important property:

for each t ∈ TI , there is only a limited number of blocks of the form (t, s), i.e., the
cardinalities of the sets

row(t) := {s ∈ TJ : (t, s) ∈ TI×J }, col(s) := {t ∈ TI : (t, s) ∈ TI×J }

can be bounded by a constant. For cluster trees and block cluster trees constructed by
geometric bisection, an explicit bound can be given, and this bound does not depend on
the number of degrees of freedom [13, 15].

Definition 2.7 (Sparsity) Let Csp ∈ N. The block cluster tree TI×J is Csp-sparse if
we have

row(t) = #{s ∈ TJ : (t, s) ∈ TI×J } ≤ Csp for all t ∈ TI , (5a)
col(s) = #{t ∈ TI : (t, s) ∈ TI×J } ≤ Csp for all s ∈ TJ . (5b)

7

H2-MATRICES BY HIERARCHICAL COMPRESSION

The complexity of an H2-matrix representation can be bounded if the following con-
ditions are fulfilled:

• the block cluster tree TI×J is admissible and Csp-sparse,

• each cluster has only a bounded number of sons, i.e., there is a constant Csn ≥ 1
with

sons(t) ≤ Csn, # sons(s) ≤ Csn for all t ∈ TI , s ∈ TJ , (6)

• each leaf cluster is not too large, i.e., there is a constant Clf ≥ 1 satisfying

#t̂ ≤ Clf#Kt, #ŝ ≤ Clf#Ls for all leaves t ∈ LI , s ∈ LJ . (7)

To keep the notations short, we introduce the abbreviations

kt := #Kt, ls := #Ls for all t ∈ TI , s ∈ TJ .

Let us first consider the storage complexity of the cluster bases V and W .

Lemma 2.8 (Storage of a cluster basis) A cluster basis V = (Vt)t∈TI , represented
by transfer matrices for all t ∈ TI \ LI , requires not more than

(Clf + C1/2
sn)

∑
t∈TI

k2
t units of storage.

Proof. For each leaf cluster t ∈ TI , we have to store the matrix Vt, which requires
(#t̂)(#Kt) units of storage. Due to (7), this is bounded by Clf(#Kt)2 ≤ Clfk

2
t , and all

of these matrices require not more than

Clf

∑
t∈LI

k2
t ≤ Clf

∑
t∈TI

k2
t units of storage.

For each non-leaf cluster t ∈ TI , we have to store the transfer matrices Et′ for all
t′ ∈ sons(t), which requires (#Kt′)(#Kt) = kt′kt units of storage and a total of

∑
t∈TI

∑
t′∈sons(t)

ktkt′ ≤

∑
t∈TI

∑
t′∈sons(t)

k2
t

1/2∑
t∈TI

∑
t′∈sons(t)

k2
t′

1/2

(6)

≤

Csn

∑
t∈TI

k2
t

1/2∑
t′∈TI

k2
t′

1/2

= C1/2
sn

∑
t∈TI

k2
t ,

where we have used the Cauchy-Schwarz inequality and the fact that each cluster has
at most one father.

Let us now consider the storage requirements of the coupling matrices and the nearfield
part of an H2-matrix.

8

H2-MATRICES BY HIERARCHICAL COMPRESSION

Lemma 2.9 (Storage of matrices) The coupling matrices (Sb)b∈L+
I×J

and the near-

field matrices (X|b̂)b∈L−I×J
for an H2-matrix X require not more than

C2
lfCsp

2

∑
t∈TI

k2
t +

∑
s∈TJ

l2s

 units of storage.

Proof. Let b = (t, s) ∈ LI×J . If b is admissible, the corresponding block is represented
by the matrix Sb, which requires (#Kt)(#Ls) units of storage. If b is not admissible, the
admissibility of TI×J implies that t and s have to be leaves of TI and TJ , respectively,
and due to (7), the matrix M |t̂×ŝ requires only (#t̂)(#ŝ) ≤ C2

lf(#Kt)(#Ls) units of
storage. In both cases not more than C2

lf(#Kt)(#Ls) = C2
lfktls units of storage are

needed, and we get the bound

C2
lf

∑
b=(t,s)∈LI×J

ktls ≤ C2
lf

 ∑
b=(t,s)∈LI×J

k2
t

1/2 ∑
b=(t,s)∈LI×J

l2s

1/2

≤ C2
lf

∑
t∈TI

∑
s∈row(t)

k2
t

1/2∑
s∈TJ

∑
t∈col(s)

l2s

1/2

(5)

≤ C2
lf

Csp

∑
t∈TI

k2
t

1/2Csp

∑
s∈TJ

l2s

1/2

≤
C2

lfCsp

2

∑
t∈TI

k2
t +

∑
s∈TJ

l2s

for the total storage complexity.

Adding the estimates of Lemma 2.8 and Lemma 2.9 yields an upper bound of(
C2

lfCsp

2
+ 2Clf + 2C1/2

sn

)∑
t∈TI

k2
t +

∑
s∈TJ

l2s

 (8)

for the storage requirements of an H2-matrix.
In simple situations, we can assume that the ranks of the matrices Vt and Ws are

bounded by a constant k ∈ N, i.e., that

#Kt ≤ k, #Ls ≤ k, holds for all t ∈ TI , s ∈ TJ .

This leads to an estimate of O((#TI + #TJ)k2) for the storage requirements.
In practical applications, the cluster trees are constructed in such a way that #TI .

n/k and #TJ . n/k hold for

n := max{#I,#J },

9

H2-MATRICES BY HIERARCHICAL COMPRESSION

therefore an H2-matrix representation of X requires only O(nk) units of storage.
In the general case, we can take advantage of the fact that the estimate (8) depends

only on the sums of k2
t and l2s and not on the maximum k, therefore we can admit higher

ranks for a small number of clusters and still get a low complexity. These variable-rank
methods [25, 4] can reach the optimal complexity of O(n) while keeping the matrix error
consistent with the discretization error.

3 Construction of cluster bases

Our goal is to approximate an arbitrary matrix X ∈ RI×J by an H2-matrix X̃. We
assume that the cluster trees TI and TJ and the block cluster tree TI×J are given.

3.1 Matrix approximation

If the row and column cluster bases V and W are also given, it is reasonable to wonder
if we can compute the best approximation of X in the matrix space H2(TI×J , V, W).

Definition 3.1 (Orthogonal cluster basis) Let V = (Vt)t∈TI be a cluster basis. It is
called orthogonal if

V >
t Vt = I holds for all t ∈ TI . (9)

If V and W are orthogonal cluster bases, the computation of the least-squares ap-
proximation of X in H2(TI×J , V, W) is straightforward: for an admissible block b =
(t, s) ∈ L+

I×J , we let Xt,s := X|t̂×ŝ and look for a good approximation of this block in
the factorized form VtSbW

>
s used by H2-matrices. We let S∗b := V >

t Xt,sWs and observe
that the orthogonality of Vt and Ws implies

‖Xt,s − VtS̃bW
>
s ‖2F = ‖Xt,s − VtS

∗
b Ws + Vt(S∗b − S̃b)W>

s ‖2F
= ‖Xt,s − VtS

∗
b Ws‖2F + ‖Vt(S∗b − S̃b)W>

s ‖2F
= ‖Xt,s − VtS

∗
b Ws‖2F + ‖S∗b − S̃b‖2F for all S̃b ∈ RKt×Ls ,

i.e., S∗b minimizes the blockwise approximation error. For the Frobenius norm, the
sum of the squares of the blockwise approximation errors yields the square of the total
approximation error, therefore the H2-matrix X̃ defined by X̃|t̂×ŝ = VtS

∗
b W>

s for all
b ∈ L+

I×J is indeed the best approximation of X in the space H2(TI×J , V, W) with
respect to the Frobenius norm. Using

‖Xt,s − VtS
∗
b W>

s ‖2F = ‖Xt,s − VtV
>
t Xt,s + VtV

>
t Xt,s − VtV

>
t Xt,sWsW

>
s ‖2F

= ‖Xt,s − VtV
>
t Xt,s‖2F + ‖VtV

>
t (Xt,s −Xt,sWsW

>
s)‖2F

≤ ‖Xt,s − VtV
>
t Xt,s‖2F + ‖Xt,s −Xt,sWsW

>
s ‖2F , (10)

the influence of V and W can be investigated independently.

10

H2-MATRICES BY HIERARCHICAL COMPRESSION

We conclude that finding the matrix X̃ is a relatively simple task once we have good
orthogonal cluster bases at our disposal, and that orthogonal row and column cluster
bases V and W can be considered “good” if

‖Xt,s − VtV
>
t Xt,s‖F ≤ ε, ‖X>

t,s −WsW
>
s X>

t,s‖F ≤ ε for all b = (t, s) ∈ L+
I×J

hold for a given error tolerance ε ∈ R>0.
Due to the symmetry of these inequalities, we can restrict our attention to the con-

struction of a good row cluster basis V , since applying the same technique to the trans-
posed matrix X> will then yield a good column cluster basis W .

In practical applications, the Frobenius norm is usually only of little interest, more
important are induced matrix norms like the spectral norm. The theory presented here
carries over to this case [4].

3.2 Orthogonalization

Let us now consider the construction of “good” cluster bases. In a first step, we assume
that a nested cluster basis V = (Vt)t∈TI for the cluster tree TI and the index sets
K = (Kt)t∈TI is given that satisfies

min
Zb∈RKt×ŝ

‖Xt,s − VtZb‖F ≤ ε for all b = (t, s) ∈ L+
I×J . (11)

We are looking for an orthogonal nested cluster basis Q = (Qt)t∈TI for the same cluster
tree and the new index sets (K̃t)t∈TI that satisfies

‖Xt,s −QtQ
>
t Xt,s‖F ≤ ε for all b = (t, s) ∈ L+

I×J ,

i.e., that allows us to compute the best approximation of Xt,s explicitly by an orthogonal
projection.

In general, the latter inequality will only hold if the range of Vt is contained in the
range of Qt, i.e., if there is a matrix Rt ∈ R eKt×Kt such that Vt = QtRt holds.

This equation already suggests a good approach for an algorithm: we are looking for
orthogonal factorizations of the matrices Vt, and we have the additional requirement
that the new cluster basis Q = (Qt)t∈TI has to be nested. To illustrate the idea, let us
consider a cluster t ∈ TI with sons(t) = {t1, t2} for t1 6= t2. Since V is nested, there are
transfer matrices Et1 and Et2 such that

Vt =
(

Vt1Et1

Vt2Et2

)
holds. We assume that the factorizations Vt1 = Qt1Rt1 and Vt2 = Qt2Rt2 and the
corresponding index sets K̃t1 and K̃t2 have already been computed. We also assume
that the K̃t1 ⊆ t̂1 and K̃t2 ⊆ t̂2 hold, since this implies K̃t1 ∩ K̃t2 = ∅ and allows us to
avoid formal problems in the construction of the matrix V̂t below. We get

Vt =
(

Vt1Et1

Vt2Et2

)
=
(

Qt1Rt1Et1

Qt2Rt2Et2

)
=
(

Qt1

Qt2

)(
Rt1Et1

Rt2Et2

)
=
(

Qt1

Qt2

)
V̂t

11

H2-MATRICES BY HIERARCHICAL COMPRESSION

for the auxiliary matrix

V̂t :=
(

Rt1Et1

Rt2Et2

)
∈ R bKt×Kt , K̂t := K̃t1∪̇K̃t2 .

We compute the factorization
V̂t = Q̂tRt

with an orthogonal matrix Q̂t ∈ R bKt× eKt and a matrix Rt ∈ R eKt×Kt using Givens or
Householder transformations. The index set K̃t is chosen as a subset of K̂t ⊆ t̂ of
cardinality min{#K̂t,#Kt}. The new cluster basis matrix Qt is defined by

Qt :=
(

Qt1

Qt2

)
Q̂t,

and it is obviously orthogonal. Due to K̂t = K̃t1∪̇K̃t2 , we can split Q̂t into its “upper
half” Ft1 := Q̂t| eKt1× eKt

and its “lower half” Ft2 := Q̂t| eKt2× eKt
and observe

Q̂t =
(

Ft1

Ft2

)
, Qt =

(
Qt1

Qt2

)
Q̂t =

(
Qt1

Qt2

)(
Ft1

Ft2

)
=
(

Qt1Ft1

Qt2Ft2

)
,

i.e., the cluster basis Q = (Qt)t∈TI is nested (cf. Definition 2.5), and the transfer matrices
are given by Ft. Due to our construction, we have

Vt =
(

Qt1

Qt2

)
V̂t =

(
Qt1

Qt2

)
Q̂tRt = QtRt,

i.e., the matrices Qt and Rt indeed form an orthogonal decomposition of the matrix Vt.
If t is a leaf, the situation is simple: we let K̂t := t̂, V̂t := Vt and Qt := Q̂t, i.e.,

we just compute a standard orthogonal factorization of Vt by Householder or Givens
transformations.

3.3 Truncation

The complexity of subsequent computations with the new cluster basis Q is determined
by the cardinalities of the index sets K̃ = (K̃t)t∈TI , therefore we would like these sets to
be as small as possible. The orthogonalization procedure guarantees #K̃t ≤ #Kt for all
t ∈ TI , i.e., the new cluster basis will at least not be less efficient than the original one,
but this is not necessarily the optimal result.

In order to improve efficiency, we replace the exact factorization Vt = QtRt by an
approximate factorization: we are looking for an orthogonal nested cluster basis Q =
(Qt)t∈TI such that Vt ≈ QtRt holds for the optimal coefficient matrices Rt := Q>

t Vt. We
aim to choose the cardinalities #K̃t as small as possible given the desired accuracy of
the approximation.

This goal is reached by the truncation algorithm: we replace the exact factorization
V̂t = Q̂tRt used in the orthogonalization algorithm by an approximate factorization

12

H2-MATRICES BY HIERARCHICAL COMPRESSION

Algorithm 1 Given X ∈ RM×N , construct an index set K ⊆M of minimal cardinality
and orthogonal Q ∈ RM×K such that ‖X −QQ>X‖F ≤ ε

procedure Lowrank(X, ε, var Q, K);
m← #M ; {µ1, . . . , µm} ←M ; n← #N ; {ν1, . . . , νn} ← N ;
X̂ ← 0 ∈ Rm×n;
for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} do X̂ij ← Xµiνj ;
Compute singular value decomposition X̂ = UΣV >;
k ← min{m,n}; ε̃← 0;
while k > 0 and ε̃ + Σ2

kk ≤ ε2 do begin k ← k − 1; ε̃← ε̃ + Σ2
kk end;

K ← {µ1, . . . , µk}; Q← 0 ∈ RM×K ;
for i ∈ {1, . . . ,m}, j ∈ {1, . . . , k} do Qµiµj ← Uij

V̂t ≈ Q̂tRt, e.g., by computing the singular value decomposition of V̂t and dropping all
singular values below a given error tolerance (cf. Algorithm 1).

In this setting we have

Vt =
(

Vt1Et1

Vt2Et2

)
≈
(

Qt1Rt1Et1

Qt2Rt2Et2

)
=
(

Qt1

Qt2

)
V̂t ≈

(
Qt1

Qt2

)
Q̂tRt = QtRt,

i.e., the approximation error Vt −QtRt is the sum of two errors: the first one is caused
by the approximation of Vt1 and Vt2 , the second one is caused by the approximation of
V̂t. Using the orthogonality of Qt1 and Qt2 yields

‖(Vt −QtRt)x‖22 =
∥∥∥∥((Vt1 −Qt1Rt1)Et1x

(Vt2 −Qt2Rt2)Et2x

)
+
(

Qt1

Qt2

)
(V̂t − Q̂tRt)x

∥∥∥∥2

2

= ‖(Vt1 −Qt1Rt1)Et1x‖22 + ‖(Vt2 −Qt2Rt2)Et2x‖22 + ‖(V̂t − Q̂tRt)x‖22
for all vectors x ∈ RKt . The first two terms of this sum are of the same structure as the
original term, only with the vectors Et1x and Et2x instead of x. Using the long-range
transfer matrices defined by

Er,t :=

{
Er,t′Et′ if r ∈ T t′

I for a t′ ∈ sons(t),
I otherwise, i.e., if r = t

for t ∈ TI , r ∈ T t
I ,

we can proceed by induction (cf. [5, Theorem 4] for a detailed general proof) to get

‖(Vt −QtRt)x‖22 =
∑
r∈T t

I

‖(V̂r − Q̂rRr)Er,tx‖22. (12)

This equation relates the total error to the local errors introduced in each step of the
algorithm, therefore it can be used to implement sophisticated error-control schemes.
Applying it to canonical unit vectors and summing up yields

‖Vt −QtRt‖2F =
∑
r∈T t

I

‖(V̂r − Q̂rRr)Er,t‖2F , (13)

while taking the supremum of (12) yields a similar estimate for the spectral norm.

13

H2-MATRICES BY HIERARCHICAL COMPRESSION

3.4 Matrix compression

Let us now return our attention to the problem of finding a “good” nested cluster basis
for an arbitrary matrix X ∈ RI×J .

Let b = (t, s) ∈ L+
I×J be an admissible block. According to (10), we have to find an

orthogonal nested cluster basis Q = (Qt)t∈TI such that

‖Xt,s −QtQ
>
t Xt,s‖F ≤ ε

holds for a given error tolerance ε ∈ R>0.
We approach this problem by using the concept of the total cluster basis introduced

in [6]: if we collect the relevant matrix blocks Xt,s in a large matrix Xt with

Xt,s = Xt|t̂×ŝ (14)

and find an algorithm that guarantees

‖Xt −QtQ
>
t Xt‖F ≤ ε,

this would immediately imply

‖Xt,s −QtQ
>
t Xt,s‖F = ‖(Xt −QtQ

>
t Xt)|t̂×ŝ‖F ≤ ‖Xt −QtQ

>
t Xt‖F ≤ ε.

We choose the matrices Xt in such a way that they not only satisfy (14), but also form
a nested cluster basis: we let

Xt := X|t̂×Nt
, Nt :=

⋃̇
{ŝ : with (t+, s) ∈ L+

I×J for t+ ∈ pred(t), s ∈ TJ }

for all clusters t ∈ TI . Obviously (Xt)t∈TI is a cluster basis with the index sets (Nt)t∈TI ,
and since Nt′ ⊆ Nt holds for all t ∈ TI , t′ ∈ sons(t), this cluster basis is also nested
with trivial transfer matrices. For all b = (t, s) ∈ L+

I×J , we have ŝ ⊆ Nt and therefore
Xt,s = Xt|t̂×ŝ.

This means that the total cluster basis (Xt)t∈TI can be used to represent each admis-
sible block of X with zero error. The ranks of the total cluster basis are usually too
large (on the order of #J) for useful algorithms, but we already know how to fix this:
we apply the truncation algorithm to the total cluster basis. Due to the simplicity of its
transfer matrices, the error estimate (13) takes the form

‖Xt −QtRt‖2F =
∑
r∈T t

I

‖(X̂r − Q̂rRr)| bKr×Nt
‖2F , (15)

and due to ŝ ⊆ Nt and Xt|t̂×ŝ = Xt,s for all admissible leaves (t, s) ∈ L+
I×J , we conclude

‖Xt,s −QtQ
>
t Xt,s‖2F =

∑
r∈T t

I

‖X̂r,s − Q̂rQ̂
>
r X̂r,s‖2F

for X̂r,s := X̂r| bKr×ŝ
, therefore we can control the approximation error by making sure

that the local errors on the right-hand side of this equation are under control.

14

H2-MATRICES BY HIERARCHICAL COMPRESSION

3.5 Unification

Using the total cluster basis (Xt)t∈TI directly to construct the adaptive cluster basis
(Qt)t∈TI is only an option if nothing about the structure of X is known, since it means
working with ranks on the order of #J and leads to algorithms of at least quadratic
complexity.

We consider the special matrix

X =
(
X1 . . . Xp

)
for submatrices Xi ∈ RI×Ji with disjoint index sets J1, . . . ,Jp. We assume that cluster
trees TJi are given for each i ∈ {1, . . . , p} and that each of the matrices Xi is an H2-
matrix with nested cluster bases Vi = (Vi,t)t∈TI and Wi = (Wi,s)s∈TJi

and coupling
matrices (Si,b)b∈L+

I×Ji

.

In order to make the computation of Q = (Qt)t∈TI as efficient as possible, we have to
take the special structure of the H2-matrices Xi into account.

Let t ∈ TI , t+ ∈ pred(t) and s ∈ TJi with (t, s) ∈ L+
I×Ji

. Since Xi is an H2-matrix,
we have

Xi,t+,s := (Xi)|t̂+×ŝ = Vi,t+Si,bW
>
i,s,

and since Vi is a nested cluster basis, we can apply (4) inductively to get

Vi,t+ |t̂×Ki,t+
= Vi,tEi,t,t+

and therefore

Xi|t̂×ŝ = (Vi,t+Si,bW
>
i,s)|t̂×ŝ = Vi,t+ |t̂×Ki,t+

Si,bW
>
i,s = Vi,tEi,t,t+Si,bW

>
i,s.

This means that the total cluster basis (Xi,t)t∈TI for the submatrix Xi satisfies

Xi,t = Vi,tZ
>
i,t for all t ∈ TI ,

where Zi,t ∈ RNi,t×Ki,t is given by

Zi,t|ŝ×Ki,t
= Wi,sS

>
i,bE

>
i,t,t+ for all t ∈ TI , t+ ∈ pred(t), s ∈ TJi

with b = (t+, s) ∈ L+
I×Ji

.

The matrix Zi,t has only #Ki,t columns, therefore we can use an orthogonal transforma-
tion to turn it into a upper triangular matrix with not more than #Ki,t columns. More
precisely, we can find an index set Ñi,t ⊆ Ni,t with #Ñi,t ≤ #Ki,t, an orthogonal matrix
Pi,t ∈ RNi,t× eNi,t and a matrix Z̃i,t ∈ R eNi,t×Ki,t with

Zi,t = Pi,tZ̃i,t for all t ∈ TI .

The weight matrix Z̃i,t is relatively small, since both the number of rows and the number
of columns are bounded by #Ki,t, and using the factorization

Xi,t = Vi,tZ̃
>
i,tP

>
i,t (16)

15

H2-MATRICES BY HIERARCHICAL COMPRESSION

allows us to handle the truncation algorithm far more efficiently: the orthogonality of
the matrix Pi,t implies

‖Xi,t −QtQ
>
t Xi,t‖F = ‖Vi,tZ̃

>
i,t −QtQ

>
t Vi,tZ̃

>
i,t‖F , (17a)

‖X̂i,t − Q̂tQ̂
>
t X̂i,t‖F = ‖V̂i,tZ̃

>
i,t − Q̂tQ̂

>
t V̂i,tZ̃

>
i,t‖F (17b)

for the matrices Ri,t := Q>
t Vi,t and

V̂i,t =

Vi,t if sons(t) = ∅,(

Ri,t1Ei,t1

Ri,t2Ei,t2

)
otherwise

already used in the orthogonalization algorithm.
Replacing all matrices Xi

t in the truncation algorithm by the more compact matrices
V i

t Z̃i
t means that we can handle the matrix

X̃t :=
(
V1,tZ̃

>
1,t . . . Vp,tZ̃

>
p,t

)
∈ Rt̂× bNt , N̂t := Ñ1,t ∪ . . . ∪ Ñp,t ⊆ Nt (18)

instead of the full total cluster basis matrix Xt without changing the result of the al-
gorithm. We will call the matrix X̃t the condensed counterpart of Xt: as far as our
algorithm is concerned, both matrices contain essentially the same information, but X̃t

is far smaller than Xt. Using this approach, the matrices X̂t appearing in the orthogo-
nalization and truncation procedures are given by

X̂t :=
(
V̂1,tZ̃

>
1,t . . . V̂p,tZ̃

>
p,t

)
∈ R bKt× bNt .

We can proceed as in the truncation algorithm: the singular value decomposition of X̂t

yields an orthogonal matrix Q̂t with minimal rank satisfying an error estimate of the
form

‖X̂t − Q̂tQ̂
>
t X̂t‖F ≤ εt

for an arbitrary εt ∈ R>0. Due to (17) and (15), we get

‖Xt,s −QtQ
>
t Xt,s‖2F ≤ ‖Xt −QtQ

>
t Xt‖2F ≤

∑
r∈T t

I

ε2t for all b = (t, s) ∈ L+
I×J

and conclude that by choosing the error tolerances (εt)t∈TI small enough an arbitrarily
good approximation can be computed. A similar result [6, Theorem 4.2] can be derived
for the total approximation error.

During the course of the algorithm, we also need the operators Ri,t = Q>
t Vi,t describing

the mapping from the old cluster bases to the new one. A direct computation would be
too time-consuming, but since the orthogonality of Qt1 and Qt2 implies

Ri,t = Q>
t Vi,t = Q̂>

t V̂i,t,

16

H2-MATRICES BY HIERARCHICAL COMPRESSION

Algorithm 2 Given X ∈ RM×N , construct an index set K ⊆ M and a factorization
X = QR such that Q ∈ RM×K is orthogonal, R ∈ RK×N and #K ≤ #N

procedure Householder(X, var Q, R, K);
m← #M ; {µ1, . . . , µm} ←M ; n← #N ; {ν1, . . . , νn} ← N ; k ← min{m,n};
X̂ ← 0 ∈ Rm×n; Q̂← I ∈ Rm×m;
for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n} do X̂ij ← Xµiνj ;
Apply k Householder reflections to X̂ to make it upper triangular;
Apply the same reflections to Q̂;
K ← {µ1, . . . , µk}; Q← 0 ∈ RM×K ; R← 0 ∈ RK×N

for i ∈ {1, . . . ,m}, j ∈ {1, . . . , k} do Qµiµj ← Q̂ji;
for i ∈ {1, . . . , k}, j ∈ {1, . . . , n} do Rµiνj ← X̂ij

we can perform this task more efficiently.
We intend to use this basis construction recursively, so we require the weight matri-

ces (Z̃t)t∈TI for the unified approximation with the new cluster basis Q. Fortunately,
their construction is straightforward: the total cluster basis matrices for the unified
approximation are given by QtQ

>
t Xt, and due to (16) and (18), we have

QtQ
>
t Xt = QtQ

>
t

(
X1,t . . . Xp,t

)
= QtQ

>
t

(
V1,tZ̃

>
1,tP

>
1,t . . . Vp,tZ̃

>
p,tP

>
p,t

)

= QtQ
>
t X̃t

P1,t

. . .
Pp,t

>

= QtỸt

P1,t

. . .
Pp,t

>

for the matrix Ỹt := Q>
t X̃t ∈ R eKt× bNt , and we can use a standard orthogonal factorization

(cf. Algorithm 2) to find an index set Ñt ⊆ N̂t, a matrix Z̃t ∈ R eNt× eKt and an orthogonal
matrix P̂t ∈ R bNt× eNt with

Ỹ >
t = P̂tZ̃t,

therefore we get

QtQ
>
t Xt = QtỸt

P1,t

. . .
Pp,t

>

= Qt(Z̃tP̂t)>

P1,t

. . .
Pp,t

>

= QtZ̃
>
t P>

t

for the orthogonal matrix

Pt :=

P1,t

. . .
Pp,t

 P̂t,

and conclude that Z̃t is a weight matrix for the new approximation defined by the
projection into the new cluster basis Q. The resulting recursive procedure is given in
Algorithm 3.

17

H2-MATRICES BY HIERARCHICAL COMPRESSION

Algorithm 3 Construct unified cluster basis V = (Vt)t∈TI with weight matrices (Z̃t)t∈TI
for cluster bases V1, . . . , Vp with weight matrices Z̃1, . . . , Z̃p

procedure Unify(t, V1, . . . , Vp, Z̃1, . . . , Z̃p, var Q, Z̃, R1, . . . , Rp);
if sons(t) = ∅ then begin

K̂t ← t̂;
for i ∈ {1, . . . , p} do V̂i,t ← Vi,t

end else begin
K̂t ← ∅;
for t′ ∈ sons(t) do begin

Unify(t′, V1, . . . , Vp, Z̃1, . . . , Z̃p, Q, Z̃, R1, . . . , Rp);
K̂t ← K̂t∪̇K̃t′

end;
for i ∈ {1, . . . , p} do begin

V̂i,t ← 0 ∈ R bKt×Ki,t ;
for t′ ∈ sons(t) do V̂i,t| eKt′×Ki,t

← Ri,t′Ei,t′

end
end;
N̂t ← ∅;
for i ∈ {1, . . . , p} do N̂t ← N̂t∪̇Ñi,t;
X̂t ← 0 ∈ R bKt× bNt ;
for i ∈ {1, . . . , p} do X̂t| bKt× eNi,t

← V̂i,tZ̃i,t;

Lowrank(X̂t, εt, Q̂t, K̃t);
for i ∈ {1, . . . , p} do Ri,t ← Q̂>

t V̂i,t;
Ỹt ← Q̂>

t X̂t ∈ R eKt× bNt ;
Householder(Ỹ >

t , P̂t, Z̃t, Ñt);
if sons(t) = ∅ then

Qt ← Q̂t

else
for t′ ∈ sons(t) do Ft′ ← Q̂t| eKt′× eKt

3.6 Complexity of the unification

Let us now investigate the complexity of Algorithm 3. We assume that the computation
of the Householder factorization of a m×n matrix requires Cqrmn2 operations and that
its singular value decomposition (up to machine accuracy) can be found in Csvdmn2

operations.
We introduce the abbreviation

ki,t := #Ki,t, for all t ∈ TI

18

H2-MATRICES BY HIERARCHICAL COMPRESSION

and start by establishing a number of basic estimates: by construction, we have

#Ñi,t ≤ #Ki,t = ki,t for all i ∈ {1, . . . , p}, t′ ∈ TI ,

and this implies

#N̂t =
p∑

i=1

#Ñi,t ≤
p∑

i=1

ki,t for all t ∈ TI .

Since X̂t has only #N̂t columns, its rank cannot be higher, therefore also the rank of
the new cluster basis Qt has to be bounded by

#K̃t ≤ #N̂t ≤
p∑

i=1

ki,t for all t ∈ TI . (19)

Let us now consider the last remaining quantity #K̂t. If t is a leaf, we have K̂t = t̂ and
get #K̂t ≤ Clfki,t for any i ∈ {1, . . . , p}, which trivially implies

#K̂t ≤ Clf

p∑
i=1

ki,t for all t ∈ LI .

Otherwise, we have

#K̂t =
∑

t′∈sons(t)

#K̃t′ ≤
p∑

i=1

∑
t′∈sons(t)

ki,t′ for all t ∈ TI \ LI .

Using these preliminary estimates, we can now give a bound for the algorithmic com-
plexity of Algorithm 3:

Lemma 3.2 (Complexity of unification) There is a constant Cuni ∈ R>0 depending
only on Cqr, Csvd, Clf and Csn such that Algorithm 3 requires not more than

Cunip
2

p∑
i=1

∑
r∈T t

I

k3
i,r arithmetic operations.

Proof. Let t ∈ TI . Algorithm 3 starts by preparing the matrix V̂i,t. If t is a leaf, the
matrix Vi,t is copied and no arithmetic operations are performed. If t is not a leaf, the
matrices Ri,t′ and Ei,t′ are multiplied for all i ∈ {1, . . . , p} and t′ ∈ sons(t), and this
requires not more than

p∑
i=1

∑
t′∈sons(t)

2(#K̃t′)(#Ki,t′)(#Ki,t) ≤ 2
p∑

i=1

p∑
j=1

∑
t′∈sons(t)

kj,t′ki,t′ki,t operations

19

H2-MATRICES BY HIERARCHICAL COMPRESSION

due to (19). We employ the elementary inequality

xyz ≤ 1
3
(x3 + y3 + z3) for all x, y, z ∈ R≥0

to bound this term by

2
3

p∑
i=1

p∑
j=1

∑
t′∈sons(t)

k3
j,t′ + k3

i,t′ + k3
i,t ≤

2
3
p

p∑
i=1

∑
t′∈sons(t)

2k3
i,t′ + k3

i,t.

Since most of our estimates will be of a similar form with different constants, we introduce

αt :=
p∑

i=1

k3
i,t, βt :=

p∑
i=1

∑
t′∈sons(t)

k3
i,t′

and get
p∑

i=1

∑
t′∈sons(t)

2(#K̃t′)(#Ki,t′)(#Ki,t) ≤
(

2
3
Csnp

)
αt +

(
4
3
p

)
βt.

We can use similar techniques to prove that the number of operations for the construction
of X̂t by multiplying V̂i,t and Z̃i,t is bounded by

p∑
i=1

2(#K̂t)(#Ki,t)(#Ñi,t) ≤
(

2Clfp +
4
3
Csnp

)
αt +

(
2
3
p

)
βt,

that the computation of the singular value decomposition of X̂t takes not more than

Csvd(#K̂t)(#N̂t)2 ≤
(

CsvdClfp
2 +

2
3
CsvdCsnp

2

)
αt +

(
1
3
Csvdp

2

)
βt

operations, that the transformation matrices Ri,t can be constructed in not more than

2
p∑

i=1

(#K̃t)(#K̂t)(#Ki,t) ≤
(

2C2
lfp

2 +
2
3
Csnp

2

)
αt +

(
4
3
p2

)
βt

operations, that we can compute the “uncondensed” weight matrix Ỹt in not more than

2(#K̃t)(#K̂t)(#N̂t) ≤
(

2C2
lfp

2 +
2
3
Csnp

2

)
αt +

(
4
3
p2

)
βt

operations and that the orthogonal factorization used to find the final weight matrix Z̃t

takes not more than

Cqr(#N̂t)(#K̃t)2 ≤
(

CqrC
2
lfp

2 +
1
3
CqrCsnp

2

)
αt +

(
2
3
Cqrp

2

)
βt

20

H2-MATRICES BY HIERARCHICAL COMPRESSION

arithmetic operations. Adding up these estimates yields a bound of

C1p
2αt + C2p

2βt = C1p
2

p∑
i=1

k3
i,t + C2p

2
p∑

i=1

∑
t′∈sons(t)

k3
i,t′

for constants C1, C2 ∈ R≥0 depending only on Cqr, Csvd, Clf and Csn.
Since Algorithm 3 uses recursive calls to compute the matrices also for all descendants

r of t, a bound for the total number of operations can be derived by summing this result
over all descendants. Due to the fact that each of these descendants cannot have more
than one father, we get the bound∑

r∈T t
I

C1p
2αt + C2p

2βt = C1p
2

p∑
i=1

∑
r∈T t

I

k3
i,r + C2p

2
p∑

i=1

∑
r∈T t

I

∑
r′∈sons(r)

k3
i,r′

≤ C1p
2

p∑
i=1

∑
r∈T t

I

k3
i,r + C2p

2
p∑

i=1

∑
r′∈T t

I

k3
i,r′

≤ (C1 + C2)p2
p∑

i=1

∑
r∈T t

I

k3
i,r,

and using Cuni := C1 + C2, this is the estimate we need.

We can again consider special cases: if ki,t ≤ k holds for all i ∈ {1, . . . , p} and
all t ∈ TI , Algorithm 3 requires O((#TI)k3p3) operations, and for #TI . n/k, we
get O(nk2p3). Lemma 3.2 provides us with a worst-case bound: our estimates allow
the case #K̃t = #N̂t, corresponding to completely unrelated submatrices, while in
practice we expect that the submatrices correspond to subblocks of a matrix that can
be approximated globally by an H2-matrix, therefore the resulting rank #K̃t can be
expected to be similar to #Ki,t.

4 Hierarchical compression

Based on the unification technique presented in the previous section, we can now intro-
duce the hierarchical compression algorithm.

A simple approach is to use the block cluster tree: for each admissible leaf, we construct
a low-rank approximation of the corresponding submatrix using a standard technique
(like interpolation or adaptive or hybrid cross approximation [2, 7]). Then we work
towards the root of the block cluster tree and construct unified row and column cluster
bases for each submatrix.

4.1 Leaf matrices

Let b = (t, s) ∈ L+
I×J be an admissible leaf of the block cluster tree TI×J . We assume

that we can find a low-rank approximation of G|t̂×ŝ in the form

G|t̂×ŝ ≈ AbB
>
b , Ab ∈ Rt̂×kb , Bb ∈ Rŝ×kb

21

H2-MATRICES BY HIERARCHICAL COMPRESSION

for kb ∈ N, e.g., by the simple and flexible cross approximation techniques [1, 2, 7]. In
order to turn it into an H2-matrix representation of the submatrix, we have to construct
row and column cluster bases and a coupling matrix.

For the purposes of error control and overall efficiency, we would like to ensure that the
row and column cluster bases are orthogonal. We apply Householder factorizations in
such a way that all intermediate results have minimal rank: let us first assume #t̂ ≤ #ŝ.
We compute the Householder factorization

Vb,tÂ = Ab

with an orthogonal matrix Vb,t and observe that Â cannot have more than min{#t̂, kb} ≤
k̃ := min{#t̂, #ŝ, k} rows. Now we compute the Householder factorization

Wb,sB̂ = BbÂ
>

with an orthogonal matrix Wb,s. Due to our construction of Â, the matrix B̂ cannot
have more than k̃ columns, and due to the nature of the Householder factorization, it
therefore cannot have more than k̃ rows. We let Sb,b := B̂> and observe

Vb,tSb,bW
>
b,s = Vb,t(Wb,sB̂)> = Vb,t(BbÂ

>)> = Vb,tÂB>
b = AbB

>
b .

This is the three-term factorization used by H2-matrices. If #t̂ ≥ #ŝ, we can use a
similar approach, starting with Bb instead of Ab (cf. Algorithm 5). The matrices Vb,t

and Wb,s can be subdivided in order to construct orthogonal cluster bases for the entire
subtrees T t

I and T s
I without additional arithmetic operations.

We may encounter a situation where the rank of the initial approximation AbB
>
b of

the submatrix G|t̂×ŝ is too high. Under these circumstances, we can reduce the rank of
the approximation by computing the singular value decomposition

QbΣbPb = Sb,b

of the matrix Sb,b, dropping the sufficiently small singular values in the matrix Σb and
multiplying Vb,t and Wb,s by Qb and Pb, respectively.

4.2 Subdivided matrices

Let now b = (t, s) ∈ TI×J \ LI×J . According to Definition 2.2, we have

sons(b) =

sons(t)× sons(s) if sons(t) 6= ∅, sons(s) 6= ∅,
{t} × sons(s) if sons(t) = ∅, sons(s) 6= ∅,
sons(t)× {s} if sons(t) 6= ∅, sons(s) = ∅.

The handling of the second and third case is straightforward once the more general first
case is treated, therefore we can assume sons(t) 6= ∅ and sons(s) 6= ∅.

22

H2-MATRICES BY HIERARCHICAL COMPRESSION

Algorithm 4 Compute the coupling matrices S̃b ← RtSbP
>
s for all admissible leaves

procedure Convert(b, S, R, P , var S̃);
if sons(b) = ∅ then

if b admissible then begin
(t, s)← b;
X ← RtSb; S̃b ← XP>

s

end else Nothing to do for inadmissible leaves
else

for b′ ∈ sons(b) do Convert(b′, S, R, P , S̃)

In order to keep the presentation simple, we again consider only the case # sons(t) =
2 = # sons(s) and let {t1, t2} := sons(t), {s1, s2} := sons(s). We let

b11 := (t1, s1), b12 := (t1, s2), b21 := (t2, s1), b22 := (t2, s2).

and find
sons(b) = {b11, b12, b21, b22}.

Due to Definition 2.1, we have

t̂ = t̂1∪̇t̂2, ŝ = ŝ1∪̇ŝ2

and find

G|b̂ =
(

G|b̂11 G|b̂12
G|b̂21 G|b̂22

)
.

We construct the H2-matrix construction of G|t̂×ŝ by recursion: first we find H2-matrix
approximations of the submatrices

G|b̂ij
= G|t̂i×ŝj

≈ G̃ij ∈ H2(T bij

I×J , Vij ,Wij) for all i ∈ {1, 2}, j ∈ {1, 2},

where Vij is a nested row cluster basis for the subtree T ti
I and Wij is a nested column

cluster basis for the subtree T sj

J . Now(
G̃11 G̃12

G̃21 G̃22

)
is an approximation of G|t̂×ŝ consisting of independent H2-submatrices, and we are in
the situation of subsection 3.5: we have to find row cluster bases Vi for i ∈ {1, 2} that
approximate Vi1 and Vi2 simultaneously, and we have to find column cluster bases Wj

for j ∈ {1, 2} that approximate W1j and W2j simultaneously. This problem can be
solved by Algorithm 3. Using the resulting bases we can then define the row cluster
basis Vb = (Vb,r)r∈T t

I
and its index sets (Kb,r)r∈T t

I
by

(Vb,r,Kb,r) :=

(V1,r,K1,r) if r ∈ T t1

I ,

(V2,r,K2,r) if r ∈ T t2
I ,

(0, ∅) otherwise

for all r ∈ T t
I .

23

H2-MATRICES BY HIERARCHICAL COMPRESSION

The column cluster basis Wb = (Wb,r)r∈T s
J

and its index sets (Lb,r)r∈T s
J

are defined
similarly by

(Wb,r, Lb,r) :=

(W1,r, L1,r) if r ∈ T s1

I ,

(W2,r, L2,r) if r ∈ T s2
I ,

(0, ∅) otherwise

for all r ∈ T s
J .

Since V1, V2, W1 and W2 are nested and orthogonal, so are Vb and Wb.
Let b∗ = (t∗, s∗) ∈ T b

I×J be an admissible block. Since b itself is not admissible, there

exist i, j ∈ {1, 2} such that b∗ ∈ T bij

I×J , and due to our assumption, we have

G|b̂∗ ≈ G̃ij |b̂∗ = Vij,t∗Sij,b∗W
>
ij,s∗ .

We switch to the new unified bases Vb and Wb by applying the orthogonal projections
Vb,t∗V

>
b,t∗ and Wb,s∗W

>
b,s∗ to this approximation and get

G|b̂∗ ≈ Vb,t∗(V >
b,t∗Vij,t∗)Sij,b∗(W>

ij,s∗Wb,s∗)Wb,s∗ = Vb,t∗Sb,b∗Wb,s∗

for the new coupling matrix

Sb,b∗ := (V >
b,t∗Vij,t∗)Sij,b∗(W>

ij,s∗Wb,s∗).

Using the matrices

Rij,t∗ := V >
b,t∗Vij,t∗ , Pij,s∗ := W>

b,s∗Wij,s∗

provided by Algorithm 3, the computation of the new coupling matrix can be expressed
in the form

Sb,b∗ = Rij,t∗Sij,b∗P
>
ij,s∗ ,

and since all three factors of this product can be expected to be small, the change of
basis is efficient. Applying this procedure to all submatrices of G|b̂ yields the desired
H2-matrix approximation in the space H2(T b

I×J , Vb,Wb) (cf. Algorithm 4).
In order to apply Algorithm 3, we require weight matrices Zb and Yb for Vb and Wb,

respectively, but these are easily constructed for leaf blocks and provided by Algorithm 3
for all subdivided blocks.

Applying Algorithm 3 to find the new cluster bases and using Algorithm 4 to convert
the submatrices into the new H2-matrix representation yields the recursive Algorithm 5.

4.3 Complexity of the hierarchical compression

At first glance, the analysis of the hierarchical compression Algorithm 5 seems to be a
complicated task, since a large number of cluster bases (one row and one column cluster
basis for each block in the block cluster tree) has to be taken into account. Fortunately we
can simplify the analysis by an optimality argument: cluster bases constructed for a block
b ∈ TI×J have to be able to approximate the entire matrix G|b̂. This means that they also

24

H2-MATRICES BY HIERARCHICAL COMPRESSION

Algorithm 5 Find an approximation of G|b̂ in an H2-matrix space corresponding to
the block cluster tree T b

I×J and the adaptively constructed cluster bases Vb and Wb

procedure HierarchicalCompression(b, var Vb, Wb, Sb, Zb, Yb);
(t, s)← b;
if sons(b) = ∅ then

if b admissible then begin
Find low-rank approximation G|b̂ ≈ AbB

>
b ;

if #t̂ ≥ #ŝ then begin
Householder(Bb, Wb,s, B̂, Lb,s); Householder(AbB̂

>, Vb,t, Â, Kb,t); Sb,b ← Â
end else begin

Householder(Ab, Vb,s, Â, Kb,t); Householder(BbÂ
>, Wb,s, B̂, Lb,s); Sb,b ← B̂>

end;
Zb,t ← Sb,b; Yb,s ← S>b,b

end else begin
Store G|b̂ in standard representation;
Zb,t ← 0; Yb,s ← 0

end
else begin

if sons(t) = ∅ then begin τ ← 1; t1 ← t end
else begin τ ← # sons(t); {t1, . . . , tτ} ← sons(t) end;
if sons(s) = ∅ then begin σ ← 1; s1 ← s end
else begin σ ← # sons(s); {s1, . . . , sσ} ← sons(s) end;
for i ∈ {1, . . . , τ}, j ∈ {1, . . . , σ} do

HierarchicalCompression((ti, sj), Vij , Wij , Sij , Zij , Yij);
for i ∈ {1, . . . , τ} do Unify(ti, Vi1, . . . , Viσ, Zi1, . . . , Ziσ, Vb, Zb, Ri1, . . . , Riσ);
for j ∈ {1, . . . , σ} do Unify(sj , W1j , . . . , Wτj , Y1j , . . . , Yτj , Wb, Yb, P1j , . . . , Pτj);
for i ∈ {1, . . . , τ}, j ∈ {1, . . . , σ} do Convert((ti, sj), Sij , Rij , Pij , Sb);

end

have to be able to approximate each submatrix G|b̂∗ for b∗ ∈ T b
I×J . Since Algorithm 1

uses the singular value decomposition to find optimal low-rank approximations, this
implies that the ranks of the cluster bases for b∗ are bounded by the ranks for b.

Therefore we can restrict our attention to the ranks used in the largest block when
analyzing the complexity of Algorithm 5.

Let b = (t, s) ∈ TI×J , and let (Kb,t∗)t∗∈T t
I

and (Lb,s∗)s∗∈T s
J

be the index families for the
cluster bases Vb = (Vb,t∗)t∗∈T t

I
and Wb = (Wb,s∗)s∗∈T s

J
. We introduce the abbreviations

kt∗ := #Kb,t∗ , ls∗ := #Lb,s∗ for all t∗ ∈ T t
I , s∗ ∈ T s

J

and again assume that

#t̂∗ ≤ Clfkt∗ , #ŝ∗ ≤ Clf ls∗ hold for all t∗ ∈ T t
I , s∗ ∈ T s

J .

25

H2-MATRICES BY HIERARCHICAL COMPRESSION

Lemma 4.1 (Leaf blocks) Let b ∈ TI×J . Let k, Cff , Cnf ∈ R≥1 be such that

• for all admissible leaves b∗ = (t∗, s∗) ∈ T b
I×J ∩L

+
I×J an approximation AbB

>
b with

Ab ∈ R#t̂∗×kb and Bb ∈ R#ŝ∗×kb can be computed in not more than

Cff(#t̂∗ + #ŝ∗)k2
b operations with kb ≤ k,

• and for all inadmissible leaves b∗ = (t∗, s∗) ∈ T b
I×J ∩ L

−
I×J the block G|b̂∗ can be

computed in not more than

Cnf(#t̂∗)(#ŝ∗) operations.

Then Algorithm 5 treats all leaf blocks in T b
I×J with not more than

Cffk2 depth(T b
I×J)(#t̂ + #ŝ) +

1
2
CnfClfk(#t̂ + #ŝ) arithmetic operations.

Proof. If b is an admissible leaf, an initial rank kb approximation G|b̂ ≈ AbB
>
b is com-

puted by a suitable algorithm (e.g., cross approximation). If #t̂ ≥ #ŝ holds, an orthog-
onal decomposition of Bb is computed, which takes not more than

Cqr(#ŝ)k2
b operations.

Then the product AbB̂
> is computed in

2(#t̂)kb min{kb,#ŝ} ≤ 2(#t̂)k2
b operations,

and finally its orthogonal decomposition is constructed in not more than

Cqr(#t̂)(min{kb,#ŝ})2 ≤ Cqr(#t̂)k2
b operations.

We can apply the same reasoning to the case #t̂ ≤ #ŝ and conclude that an admissible
leaf block is treated in not more than

(Cff + Cqr + 2)k2
b (#t̂ + #ŝ) operations

by Algorithm 5.
If b is an inadmissible leaf, our assumption yields that not more than

Cnf(#t̂)(#ŝ) ≤ 1
2
CnfClf((#t̂)ls + kt(#ŝ)) ≤ 1

2
CnfClfk(#t̂ + #ŝ) operations

are required for building G|b̂.
A simple recursion and standard arguments (cf. [15, Lemma 2.4]) yield a bound of

(Cff + Cqr + 2)k2
b depth(T b

I×J)(#t̂ + #ŝ) +
1
2
CnfClfk(#t̂ + #ŝ)

for the total number of operations required by Algorithm 5 to treat all leaf blocks.

In the context of matrices resulting from the discretization of integral operators, the
conditions of Lemma 4.1 are satisfied by methods like adaptive [1, 2] and hybrid cross ap-
proximation [7], where the constants Cff and Cnf may depend on the order of quadrature
used to compute the singular and regular integrals.

26

H2-MATRICES BY HIERARCHICAL COMPRESSION

Lemma 4.2 (Conversion) The conversion Algorithm 4 requires not more than

2
∑

b∗=(t∗,s∗)∈T b
I×J

(k3
t∗ + l3s∗) arithmetic operations.

Proof. For an admissible block, the computation of the matrix X in Algorithm 4 requires
not more than 2k2

t ls operations, the subsequent computation of the matrix S̃b requires
2ktl

2
s operations, leading to a bound of

2(k2
t ls + ktl

2
s) ≤

2
3
(2k3

t + l3s + k3
t + l3s) = 2(k3

t + l3s).

A simple induction yields the desired result for subdivided blocks.

Lemma 4.3 (Non-leaf blocks) Let b ∈ TI×J . Algorithm 5 treats all non-leaf blocks
in T b

I×J with not more than

Csp(C3
snCuni + 2) depth(T b

I×J)

∑
t∗∈T t

I

k3
t∗ +

∑
s∗∈T s

J

l3s∗

 arithmetic operations,

where Csp is the sparsity constant introduced in Definition 2.7 and Cuni is the complexity
constant of Lemma 3.2.

Proof. Except for the recursive call, Algorithm 5 handles the block b by applying the uni-
fication Algorithm 3 to the row and column cluster bases and then using the conversion
Algorithm 4 to switch to the new bases.

Using p ≤ Csn and Lemma 3.2 yields a bound of

CuniC
3
sn

∑
t∗∈T t

I

k3
t∗ +

∑
s∗∈T s

J

l3s∗

for the number of operations used for the two unification steps, and due to Lemma 4.2,
the conversion requires not more than

2
∑

b∗=(t∗,s∗)∈T b
I×J

(k3
t∗ + l3s∗)

operations. The recursive structure of Algorithm 5 ensures that these computations are
carried out at most once for each subblock of b, therefore we can bound the total number
of operations by

∑
b+=(t+,s+)∈T b

I×J

2
∑

b∗=(t∗,s∗)∈T b+
I×J

(k3
t∗ + l3s∗) + CuniC

3
sn

 ∑
t∗∈T t+

I

k3
t∗ +

∑
s∗∈T s+

J

l3s∗

 . (20)

27

H2-MATRICES BY HIERARCHICAL COMPRESSION

For the first term, we introduce the set

Pb∗ := {b+ ∈ T b
I×J : b∗ ∈ T b+

I×J } for all b∗ ∈ T b
I×J

and observe that b+, b∗ ∈ T b
I×J implies

#Pb∗ ≤ depth(T b
I×J) for all b∗ ∈ T b

I×J ,

so we get ∑
b+=(t+,s+)∈T b

I×J

2
∑

b∗=(t∗,s∗)∈T b+
I×J

(k3
t∗ + l3s∗) = 2

∑
b∗=(t∗,s∗)∈T b

I×J

(k3
t∗ + l3s∗)#Pb∗

≤ 2 depth(T b
I×J)

∑
b∗=(t∗,s∗)∈T b

I×J

(k3
t∗ + l3s∗)

= 2 depth(T b
I×J)

∑
t∗∈T t

I

k3
t∗# row(t∗) +

∑
s∗∈T s

J

l3s∗# col(s∗)

≤ 2Csp depth(T b

I×J)

∑
t∗∈T t

I

k3
t∗ +

∑
s∗∈T s

J

l3s∗

 .

For the second term in (20), we use

Pt∗ := {b+ = (t+, s+) ∈ T b
I×J : t∗ ∈ T t+

I } for all t∗ ∈ T t
I ,

Ps∗ := {b+ = (t+, s+) ∈ T b
I×J : s∗ ∈ T s+

J } for all s∗ ∈ T s
J .

We have

#Pt∗ ≤ Csp#{t+ ∈ TI : t∗ ∈ T t+

I and there exists s+ ∈ TJ with (t+, s+) ∈ T b
I×J }

≤ Csp depth(T b
I×J)

due to (t+, s+), b ∈ T b
I×J . Applying the same argument to Ps∗ yields

#Pt∗ ≤ Csp depth(T b
I×J), #Ps∗ ≤ Csp depth(T b

I×J) for all t∗ ∈ T t
I , s∗ ∈ T s

J .

This means

CuniC
3
sn

∑
b+=(t+,s+)∈T b

I×J

 ∑
t∗∈T t+

I

k3
t∗ +

∑
s∗∈T s+

J

l3s∗

= CuniC

3
sn

∑
t∗∈T t

I

k3
t∗#Pt∗ +

∑
s∗∈T s

J

l3s∗#Ps∗

28

H2-MATRICES BY HIERARCHICAL COMPRESSION

SLP matrix DLP matrix L2 error
n Build Mem M/n Build Mem M/n ε1 ε2

2048 6.3 10.7 5.3 10.2 7.2 3.6 1.2−1 2.3−2

8192 33.1 37.1 7.1 54.3 43.0 5.4 6.2−2 1.1−2

32768 167.7 281.8 8.8 271.2 233.6 7.3 3.1−2 6.7−3

131072 1146.2 1331.9 10.4 1534.4 1032.3 8.1 1.5−2 2.8−3

524288 6081.9 6014.1 11.7 7867.0 4938.2 9.6 7.7−3 1.4−3

Table 1: Boundary integral operators on the unit sphere

≤ CspCuniC
3
sn depth(T b

I×J)

∑
t∗∈T t

I

k3
t∗ +

∑
s∗∈T s

J

l3s∗

and adding our estimates yields the bound we have to prove.

In standard situations, we have

kt ≤ k, ls ≤ k for all t ∈ TI , s ∈ TJ

and typical cluster trees and block partitions (cf. [15]) satisfy

#TI ≤ n/k, #TJ ≤ n/k, depth(TI×J) ∼ log(n),

so the estimates of Lemma 4.1 and Lemma 4.3 imply that Algorithm 5 constructs an
H2-matrix approximation of G in O(nk2 log n) operations.

5 Numerical experiments

We apply the hierarchical compression scheme to a boundary integral problem: consider
a Lipschitz domain Ω ⊆ R3 and a harmonic function u in this domain. The Dirichlet
values u|Γ on the boundary Γ := ∂Ω of Ω are connected to the Neumann values ∂nu|Γ
by Green’s formula∫

Γ
g(x, y)∂nu(y) dy =

1
2
u(x) +

∫
Γ

∂n(y)g(x, y)u(y) dy for all x ∈ Γ, (21)

which allows us to compute the Neumann values corresponding to given Dirichlet values,
where the kernel function is given by

g(x, y) :=
1
4π

1
‖x− y‖2

for all x, y ∈ R3, x 6= y.

The integral operator on the left-hand side of (21) is called the single layer potential
operator, the integral operator on the right-hand side is called the double layer poten-
tial operator. We discretize (21) by a Galerkin scheme with piecewise constant basis

29

H2-MATRICES BY HIERARCHICAL COMPRESSION

H-matrix H2-matrix
n Build Mem ‖V − Ṽ ‖2 Build Mem ‖V − Ṽ ‖2

25744 141.2 184.0 1.8−8 130.5 215.4 1.1−8

102976 791.2 1327.9 5.7−10 798.2 869.0 3.0−10

411904 4520.9 7572.2 2.7−11 4541.3 3695.0 1.3−11

25088 160.8 219.7 1.7−8 156.6 192.5 1.2−8

100352 942.7 1312.5 6.1−10 993.2 941.8 5.1−10

401408 5860.8 7889.3 3.3−11 5874.6 4304.6 1.1−11

28952 313.1 347.1 3.2−8 274.2 522.7 2.1−8

115808 1470.9 2338.6 1.2−9 1593.6 1981.9 3.7−10

463232 8935.3 14171.0 7.9−11 9710.6 9006.4 1.4−11

Table 2: Comparison of H- and H2-matrix compression

functions for the Neumann values ∂nu|Γ and continuous piecewise linear basis functions
for the Dirichlet values u|Γ, thus approximating the single and double layer potential
operators by matrices V and K.

These matrices are dense and can only be handled efficiently if a compression scheme
and a cubature quadrature rule is applied. We use Algorithm 5 in combination with an
initial low-rank approximation provided by the HCA method [7] and a grey-box quadra-
ture rule [26]. Strang’s lemma (e.g., [10, Theorem 4.1.1]) implies that error estimates
of the form ‖V − Ṽ ‖2 . h4 and ‖K − K̃‖2 . h4 would ensure that the optimal order
of convergence of the overall scheme is preserved. We achieve this goal by using the
advanced error control technique presented in [4].

Table 1 contains the results for a simple situation: we approximate the unit sphere by
n plane triangles and apply our scheme to the harmonic functions

u1(x) = x1 + x2 + x3, u2(x) = x2
1 − x2

3 for all x ∈ R3

to test the approximation properties of the approximation scheme. The columns “Build”
contain the time for the construction of the matrices (including quadrature of the singular
nearfield integrals) in seconds, measured on one processor of a SunFire X4600 computer,
the columns “Mem” give the storage requirements for near- and farfield in megabytes,
the columns “M/n” give the storage requirements per degree of freedom in kilobytes,
while ε1 and ε2 are the L2-norm errors of the Neumann values ∂nu|Γ.

We can see that the errors converge like 1/n, which is the optimal rate for a piecewise
constant approximation. We can also see that the storage requirements per degree
of freedom increase roughly by a factor of 1.6 if the number of degrees of freedom is
quadrupled, this hints at a storage complexity of O(n log n).

In a second experiment, we compare the H2-matrix approximation provided by the
hierarchical compression algorithm with an approximation in the H-matrix format: the
adaptive coarsening algorithm [14] not only uses near-optimal low-rank approximations
in each admissible block, it also optimizes the block cluster tree in order to reduce the

30

H2-MATRICES BY HIERARCHICAL COMPRESSION

storage requirements to the minimum. The resulting H-matrix is very close to the best
possible approximation in this representation.

We compare both techniques using three different geometries: the first two are ex-
amples from the NetGen package by Joachim Schöberl, namely an approximation of a
crank shaft with 25744 plane triangles and an approximation of a pierced sphere with
25088 plane triangles, the third one is an approximation of a three-dimensional foam
with 28952 plane triangles courtesy of Günther Of and Heiko Andrä. Each of the ge-
ometries is refined twice by splitting each triangle into four congruent subtriangles, thus
providing us with a range of problem dimensions.

We approximate the single layer potential matrix V on each of the resulting nine
surface meshes and compare the time for the construction and the storage requirements.
The results are given in Table 2, and we can see that H- and H2-matrices require
approximately the same time to build, but that the storage requirements of the H2-
matrices are clearly preferable for large problem dimensions: in the NetGen examples
with roughly 400000 degrees of freedom, they require only half of the storage needed by
their H-matrix counterparts and reach a better accuracy. For higher resolutions of the
foam example, the H2-matrix is also preferable: if offers an error of 1.4× 10−11 using 9
gigabytes, while the H-matrix only reaches an error of 7.9× 10−11 using 14 gigabytes.

The experiments demonstrate that with the hierarchical compression Algorithm 5, the
H2-matrix method is significantly better than the best known H-matrix approach: it
requires approximately the same amount of time (which is no surprise, since it is based on
the same initial low-rank approximation), and its improved storage complexity is clearly
visible for large problem dimensions n. The estimates of Lemma 2.8 and Lemma 2.9
indicate that the advantage of the H2-matrix format will become even more pronounced
if the problem dimension n grows larger.

References

[1] M. Bebendorf. Approximation of boundary element matrices. Numer. Math.,
86(4):565–589, 2000.

[2] M. Bebendorf and S. Rjasanow. Adaptive Low-Rank Approximation of Collocation
Matrices. Computing, 70(1):1–24, 2003.

[3] G. Beylkin, R. Coifman, and V. Rokhlin. The fast wavelet transform and numerical
algorithms. Comm. Pure and Appl. Math., 44:141–183, 1991.

[4] S. Börm. Adaptive variable-rank approximation of dense matrices. Preprint
114/2005, Max Planck Institute for Mathematics in the Sciences, 2005. To appear
in SIAM J. of Sci. Comp.

[5] S. Börm. Approximation of integral operators by H2-matrices with adaptive bases.
Computing, 74(3):249–271, 2005.

[6] S. Börm. Data-sparse approximation of non-local operators by H2-matrices. Linear
Algebra and its Applications, 422:380–403, 2007.

31

H2-MATRICES BY HIERARCHICAL COMPRESSION

[7] S. Börm and L. Grasedyck. Hybrid cross approximation of integral operators. Nu-
merische Mathematik, 101:221–249, 2005.

[8] S. Börm, L. Grasedyck, and W. Hackbusch. Hierarchical Matrices. Lecture Note
21 of the Max Planck Institute for Mathematics in the Sciences, 2003.

[9] S. Börm and W. Hackbusch. Data-sparse approximation by adaptive H2-matrices.
Computing, 69:1–35, 2002.

[10] P. G. Ciarlet. The finite element method for elliptic problems. SIAM, 2002.

[11] W. Dahmen, H. Harbrecht, and R. Schneider. Compression techniques for boundary
integral equations — Asymptotically optimal complexity estimates. SIAM J. Num.
Anal., 43(6):2251–2271, 2006.

[12] W. Dahmen and R. Schneider. Wavelets on manifolds I: Construction and domain
decomposition. SIAM Journal of Mathematical Analysis, 31:184–230, 1999.

[13] L. Grasedyck. Theorie und Anwendungen Hierarchischer Matrizen. Doctoral thesis,
Universität Kiel, 2001.

[14] L. Grasedyck. Adaptive recompression of H-matrices for BEM. Computing,
74(3):205–223, 2004.

[15] L. Grasedyck and W. Hackbusch. Construction and arithmetics of H-matrices.
Computing, 70:295–334, 2003.

[16] L. Greengard and V. Rokhlin. A fast algorithm for particle simulations. Journal of
Computational Physics, 73:325–348, 1987.

[17] L. Greengard and V. Rokhlin. A new version of the fast multipole method for the
Laplace in three dimensions. In Acta Numerica 1997, pages 229–269. Cambridge
University Press, 1997.

[18] W. Hackbusch. A sparse matrix arithmetic based on H-matrices. Part I: Introduc-
tion to H-matrices. Computing, 62:89–108, 1999.

[19] W. Hackbusch and B. Khoromskij. A sparse matrix arithmetic based onH-matrices.
Part II: Application to multi-dimensional problems. Computing, 64:21–47, 2000.

[20] W. Hackbusch, B. Khoromskij, and S. A. Sauter. On H2-matrices. In H. Bungartz,
R. Hoppe, and C. Zenger, editors, Lectures on Applied Mathematics, pages 9–29.
Springer-Verlag, Berlin, 2000.

[21] W. Hackbusch and Z. P. Nowak. On the fast matrix multiplication in the boundary
element method by panel clustering. Numerische Mathematik, 54:463–491, 1989.

[22] M. Lintner. The eigenvalue problem for the 2d Laplacian in H-matrix arithmetic
and application to the heat and wave equation. Computing, 72:293–323, 2004.

32

H2-MATRICES BY HIERARCHICAL COMPRESSION

[23] G. Of, O. Steinbach, and W. L. Wendland. The fast multipole method for the
symmetric boundary integral formulation. IMA J. Numer. Anal., 26:272–296, 2006.

[24] V. Rokhlin. Rapid solution of integral equations of classical potential theory. Journal
of Computational Physics, 60:187–207, 1985.

[25] S. A. Sauter. Variable order panel clustering. Computing, 64:223–261, 2000.

[26] S. A. Sauter and C. Schwab. Randelementmethoden. Teubner, 2004.

[27] J. Tausch and J. White. Multiscale bases for the sparse representation of boundary
integral operators on complex geometries. SIAM J. Sci. Comput., 24(5):1610–1629,
2003.

[28] E. E. Tyrtyshnikov. Mosaic-skeleton approximation. Calcolo, 33:47–57, 1996.

[29] E. E. Tyrtyshnikov. Incomplete cross approximation in the mosaic-skeleton method.
Computing, 64:367–380, 2000.

[30] T. von Petersdorff and C. Schwab. Fully discretized multiscale Galerkin BEM. In
W. Dahmen, A. Kurdila, and P. Oswald, editors, Multiscale wavelet methods for
PDEs, pages 287–346. Academic Press, San Diego, 1997.

33

