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1 Introduction

The discretization of a strongly elliptic partial differential equation by a standard finite
element scheme leads to a linear system Ax = b of equations that has to be solved in
order to find the coefficients of the discrete approximation of the solution.

Systems of this type are usually solved by preconditioned Krylov or multilevel meth-
ods. For most non-multilevel preconditioners, the performance of Krylov methods deteri-
orates if the dimension of the linear system grows. Multilevel methods perform less than
optimal when the coefficients of the differential operator are non-smooth or anisotropic.
∗Max-Planck-Institut für Mathematik in den Naturwissenschaften, Inselstraße 22–26, 04103 Leipzig,

Germany
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The paper [2] introduces an alternative approach: the inverse of A is approximated by
an H-matrix, and it is possible to prove that the quality of the approximation depends
only on the ratio of the maximal and minimal eigenvalues of the coefficient matrices,
but not on their smoothness or the directions of anisotropy. Based on this result, the
approximation of LU - and Cholesky-factorizations can be investigated [1, 12], and these
approximative factorizations provide us with very efficient preconditioners for the origi-
nal linear system.

The proof in [2] consists of four major steps: first a low-rank approximation of Green’s
function on a subdomain is derived using Cacciopoli’s inequality and intermediate ap-
proximation steps by piecewise constant functions. In a second step, the integral operator
corresponding to Green’s function is discretized by Galerkin’s method, giving rise to a
dense matrix B. Due to the result of the first step, B can be approximated by an H-
matrix. In the third step, the connection between B and the inverse of A has to be
established. Using the mass matrix M , it can be proven that S := M−1BM−1 corre-
sponds to the L2-projection of the solution operator into the discrete space. Since A−1

corresponds to the Galerkin projection into the discrete space, the Aubin-Nitsche lemma
can be used to prove that S will converge to A−1 if the finite element grid is refined. In
the last step of the proof, the inverse of the mass matrix M−1 is approximated by an H-
matrix, and a general result [11, Theorem 2.24] concerning the structure of the product
of H-matrices is used to prove that S can be approximated by a product of H-matrix
approximations of B and M−1, although the rank of the product may be significantly
larger than the rank of the original matrices.

In this paper, we improve the original result in two ways: first we approximate the
solution operator directly instead of using an integral operator based on Green’s function.
This eliminates the second step of the original proof and yields error estimates with
respect to the “natural” Sobolev norms instead of the weaker L2-norm estimate given
in the original paper.

More importantly, we replace the L2-projections by Clément-type interpolation op-
erators [8]. This means that we can construct an approximation of the inverse matrix
directly without the detour via the inverse mass matrix M−1, thus getting local blockwise
estimates for the error instead of the global ones developed in [11].

The new approach also allows us to use the general framework of [4] to prove not only
error estimates for H-matrices, but also for the more efficient H2-matrices.

The paper is organized as follows: section 2 introduces the strongly elliptic and co-
ercive model problem, section 3 proves that the corresponding solution operator can be
approximated locally by low-rank operators, section 4 uses Clément-type interpolation
operators to construct low-rank approximations of matrix blocks, and the sections 5 and
6 use these approximations to define H- and H2-matrix approximation of A−1.

2 Model problem

We fix a domain Ω ⊆ Rd and a coefficient function C : Ω → Rd×d satisfying

C(x) = C(x)>, σ(C(x)) ⊆ [α, β] for all x ∈ Ω.
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We are interested in the partial differential operator

Lu := −
d∑

i,j=1

∂iCij∂ju (1)

mapping H1
0 (Ω) into H−1(Ω). For f ∈ H−1(Ω), the partial differential equation

Lu = f

is equivalent to the variational equation

a(v, u) :=
∫

Ω
〈∇v(x), C(x)∇u(x)〉2 dx = f(v) (2)

for all v ∈ H1
0 (Ω).

The bounds for the spectrum of C imply

α‖w‖2
2 ≤ 〈C(x)w,w〉2 = ‖C(x)1/2w‖2

2 ≤ β‖w‖2
2, for all w ∈ Rd.

Combining this inequality with the Cauchy-Schwarz inequality provides us with the
upper bound

〈∇v(x), C(x)∇u(x)〉2 = 〈C(x)1/2∇v(x), C(x)1/2∇u(x)〉2
≤ ‖C(x)1/2∇v(x)‖2‖C(x)1/2∇u(x)‖2

≤ β‖∇v(x)‖2‖∇u(x)‖2,

and the definition of the Sobolev space H1(Ω) yields

|a(u, v)| ≤ β‖u‖H1(Ω)‖v‖H1(Ω) for all u, v ∈ H1(Ω).

This means that the bilinear form a is bounded, i.e., continuous. Due to

〈∇u(x), C(x)∇u(x)〉2 ≥ α‖∇u(x)‖2
2,

Friedrichs’ inequality implies

a(u, u) ≥ α‖∇u‖2
L2(Ω) ≥ CΩα‖u‖2

H1(Ω) for all u ∈ H1
0 (Ω),

i.e., a is a coercive bilinear form, therefore (2) and the equivalent (1) possess unique
solutions [7].

3 Approximation of the solution operator

Let τ ⊆ Rd be a convex set with τ ∩ Ω 6= ∅. Let σ ⊆ Ω be a subset with dist(τ, σ) > 0.
Let ε ∈ R>0. We are looking for a finite-dimensional space V ⊆ H1(τ) such that for

each right-hand side f ∈ H−1(Ω) with supp f ⊆ σ the corresponding solution u ∈ H1
0 (Ω)
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of the variational equation (2) can be approximated in V , i.e., such that there exists a
v ∈ V with

‖u− v‖H1(τ) ≤ ε‖f‖H−1(Ω).

Since V is required to be independent of f , this property implies that the interaction
between the domains τ and σ can be described by a low-rank operator.

If the coefficient function C and the boundary of Ω were sufficiently smooth, interior
regularity estimates would yield an estimate of the form

‖u‖Hm(τ) ≤ C diam(τ)mm!‖f‖H−1(Ω)

and we could apply standard approximation theory to construct an approximating poly-
nomial ũ.

In the general case, we have to use a refined approach first presented in [2]: since
u ∈ H1(Ω) holds, we can approximate the solution by a piecewise constant function, but
the convergence rate will not be exponential. Projecting this function into a local space
of L-harmonic functions (cf. Definition 1 below) yields an approximation v1. We can
apply a weak interior regularity argument to show that v1|τ1 is contained in H1(τ1) for
a subset τ1 ⊆ Ω, therefore the error u1 := u|τ1 − v1|τ1 is also an L-harmonic function in
H1(τ1), and the argument can be repeated until a sufficiently accurate approximation
v := v1 + . . . + vp has been found.

The key element of the proof is the space of locally L-harmonic functions:

Definition 1 (Locally L-harmonic functions) Let ω ⊆ Rd be a domain (that may
be unrelated to Ω). A function u ∈ L2(ω) is called locally L-harmonic on ω if for all
K ⊆ ω with dist(K, ∂ω) > 0 the following conditions hold:

u|K ∈ H1(K), (3a)

a(v, u|Ω) = 0 for all v ∈ H1
0 (Ω) with supp v ⊆ K, (3b)

u|ω\Ω = 0, (3c)

The space of all locally L-harmonic functions on ω is denoted by Z(ω).

For functions in Z(ω), the following weak interior regularity estimate holds (cf. [2,
Lemma 2.4]):
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Lemma 2 (Cacciopoli inequality) Let u ∈ Z(ω), and let ω̃ ⊆ ω be a domain with
dist(ω̃, ∂ω) > 0. Then we have u|ω̃ ∈ H1(ω̃) and

‖∇u‖L2(ω̃) ≤
creg

dist(ω̃, ∂ω)
‖u‖L2(ω), creg := 4

√
β/α ≥ 4.

As mentioned before, we will use orthogonal projections to map functions from L2(ω)
into Z(ω). The construction of these projections is straightforward if Z(ω) is a com-
plete set, i.e., closed in L2(ω). Using Lemma 2, this property can be proven (cf. [2,
Lemma 2.2]):

Lemma 3 The space Z(ω) is a closed subspace of L2(ω).

We introduce the maximum-norm diameter

diam∞(ω) := sup{‖x− y‖∞ : x, y ∈ ω}
= sup{|xi − yi| : x, y ∈ ω, i ∈ {1, . . . , d}

and can now state the basic approximation result (the proof is a slight modification of
[2, Lemma 2.6]):

Lemma 4 (Finite-dimensional approximation) Let ω ⊆ Rd be a convex domain.
Let ` ∈ N. Let Z be a closed subspace of L2(ω). There is a space V ⊆ Z with dim(V ) ≤ `d

such that for all u ∈ Z ∩H1(ω) a function v ∈ V can be found with

‖u− v‖L2(ω) ≤ capx
diam∞(ω)

`
‖∇u‖L2(ω), capx :=

2
√

d

π
.

Combining the construction of Lemma 4 with the regularity result of Lemma 4 al-
lows us to find finite-dimensional spaces approximating the solutions of the variational
equation (2):

Theorem 5 (Low-rank approximation) Let η ∈ R>0 and q ∈ (0, 1). There are
constants Capx, Cdim ∈ R>0 such that for all convex domains τ ⊆ Rd and all p ∈ N≥2,
we can find a space V ⊆ L2(τ ∩ Ω) satisfying

dim V ≤ Cdimpd+1 (4)

and for all domains σ ⊆ Ω with

diam(τ) ≤ 2η dist(τ, σ) (5)

and all right-hand sides f ∈ H−1(Ω) with supp f ⊆ σ, the corresponding solution u ∈
H1

0 (Ω) of the variational equation (2) can be approximated by a function v ∈ V with

‖∇u|τ −∇v‖L2(τ) ≤ Capxq
p‖f‖H−1(Ω), (6)

‖u|τ − v‖H1(τ) ≤ Capx(dist(τ, σ)/8 + 1)qp‖f‖H−1(Ω). (7)
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Proof: Let τ ⊆ Rd be a convex domain, let σ ⊆ Ω be a domain satisfying (5), let
δ := dist(τ, σ), and let p, ` ∈ N. We introduce the domains

ωi :=
{

x ∈ Rd : dist(x, τ) ≤ (p− i)δ
p

}
for all i ∈ {0, . . . , p}.

In order to apply Lemma 2, we need an estimate for the distance between the boundaries
of these subdomains. Let i ∈ {1, . . . , p}, x ∈ ωi and y ∈ ∂ωi−1. Due to dist(y, τ) =
(p− i + 1)δ/p, we can find z ∈ τ with ‖y − z‖2 ≥ (p− i + 1)δ/p− ε for all ε ∈ R>0 and
conclude

‖x− y‖2 ≥ ‖y − z‖2 − ‖x− z‖2 ≥
(p− i + 1)δ

p
− ε− (p− i)δ

p
=

δ

p
− ε,

i.e., dist(ωi, ∂ωi−1) ≥ δ/p.
Let f ∈ H−1(Ω) with supp f ⊆ σ. Let u ∈ H1

0 (Ω) be the corresponding solution of
the variational equation (2). Extending u by zero if necessary yields u0 ∈ H1

0 (Ω ∩ ω0).
For all domains K ⊆ ω0 with dist(K, ∂ω0) > 0, we have u0|K ∈ H1(K), and for all

v ∈ H1
0 (Ω) with supp v ⊆ K, we have supp v ∩ supp f = ∅ and therefore

a(v, u0|Ω) = a(v, u) = f(v) = 0,

so we can conclude u0 ∈ Z(ω0). We apply Lemma 4 to find a space V1 ⊆ Z(ω0) with
dim V1 ≤ `d and

‖u0 − v1‖L2(ω0) ≤ capx
diam∞(ω0)

`
‖∇u0‖L2(ω0)

≤ capx
diam∞(τ) + 2δ

`
‖∇u0‖L2(ω0).

The admissibility assumption (5) implies diam∞(τ) ≤ 2ηδ, and the estimate becomes

‖u0 − v1‖L2(ω0) ≤ capx
2(η + 1)δ

`
‖∇u0‖L2(ω0).

According to Lemma 2, the restriction u1 := (u0|ω1 − v1|ω1) of the error u0 − v1 is
contained in Z(ω1) ∩H1(ω1) and the interior regularity estimate

‖∇u1‖L2(ω1) ≤
creg

dist(ω1, ∂ω0)
‖u0 − v1‖L2(ω0)
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≤ creg
p

δ
capx

2(η + 1)δ
`

‖∇u0‖L2(ω0) = c
p

`
‖∇u0‖L2(ω0)

holds for the constant
c := 2cregcapx(η + 1).

We can apply the same argument to construct a space V2 ⊆ L2(ω1) and a function v2 ∈ V2

approximating u1, and proceed until we have found spaces V1, . . . , Vp and functions
v1 ∈ V1, . . . , vp ∈ Vp with

‖u|ωi−(v1|ωi + . . . + vi|ωi)‖L2(ωi)

≤ capx
2(η + 1)δ

`

(
c
p

`

)i−1
‖∇u0‖L2(τ)

=
δ

cregp

(
c
p

`

)i
‖∇u0‖L2(τ)

and
‖∇(u|ω`

− (v1|ω`
+ . . . + vi|ωi))‖L2(ω`) ≤

(
c
p

`

)i
‖∇u0‖L2(τ)

for all i ∈ {1, . . . , p}, so due to τ ⊆ ωp, the function

v := v1|τ + . . . + vp|τ ∈ V := V1|τ + . . . + Vp|τ

is an approximation of u0|τ in the space V := V1|τ + . . . + Vp|τ satisfying dim V ≤ p`d

and the error estimates

‖∇(u|τ − v)‖L2(τ) ≤
(
c
p

`

)`
‖∇u0‖L2(ω0),

‖u|τ − v‖H1(τ) =
(
‖u|τ − v‖2

L2(τ) + ‖∇(u|τ − v)|τ‖2
L2(τ)

)1/2

≤
(

δ2

c2
regp

2
+ 1
)1/2 (

c
p

`

)p
‖∇u0‖L2(ω0)

≤
(

δ2

4222
+ 1
)1/2 (

c
p

`

)p
‖∇u0‖L2(ω0)

≤ (δ/8 + 1)
(
c
p

`

)p
‖∇u0‖L2(ω0).

Since u is the solution of (2), we have

‖u‖2
H1(Ω) ≤

1
CΩα

a(u, u) =
1

CΩα
f(u) ≤ 1

CΩα
‖f‖H−1(Ω)‖u‖H1(Ω),

and this implies

‖u‖H1(Ω) ≤
1

CΩα
‖f‖H−1(Ω),

i.e.,

‖∇(u|τ − v)‖L2(τ) ≤
1

CΩα

(
c
p

`

)p
‖f‖H−1(Ω),
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‖u|τ − v‖H1(τ) ≤
1

CΩα
(δ/8 + 1)

(
c
p

`

)p
‖f‖H−1(Ω).

In order to get the estimates (4), (6) and (7), we have to choose ` appropriately. A
simple approach is to let

` :=
⌈

cp2

q(p− 1)

⌉
,

since this yields

c
p

`
≤ c

pq(p− 1)
cp2

=
q(p− 1)

p
= q

(
1 +

1
p− 1

)−1

,(
c
p

`

)p
≤ qp

(
1 +

1
p− 1

)−p

≤ qp

e
,

and the dimension of V can be bounded by

` ≤ cp2

q(p− 1)
+ 1 =

cp(p− 1)
q(p− 1)

+
c(p− 1)
q(p− 1)

+
c

q(p− 1)
+ 1

=
c

q
p +

c

q
+

c

q(p− 1)
+ 1 ≤ c

q
p + 2

c

q
+ 1

≤ c

q
p +

c

q
p +

1
2
p =

(
2
c

q
+

1
2

)
p

due to p ≥ 2, so setting

Cdim :=
(

2
c

q
+

1
2

)d

, Capx :=
1

CΩα

1
e

yields dim V ≤ p`d ≤ Cdimpd+1 and

‖∇(u|τ − v)‖L2(τ) ≤ Capxq
p‖f‖H−1(Ω),

‖u|τ − v‖H1(τ) ≤ Capxq
p(δ/8 + 1)‖f‖H−1(Ω),

therefore the proof is complete.

This result is closely related to [2, Theorem 2.8], but it yields an H1-norm estimate
for the solution of the variational equation (2) using the H−1-norm of the right-hand
side functional instead of an L2-norm estimate of Green’s function. The main difference
between both proofs is that the one given here exploits the fact that the original solution
u already is L-harmonic in τ , therefore we can perform the approximation by Lemma 4
first, and follow it by the regularity estimate of Lemma 2 in order to get an H1-estimate
for the error. The proof of [2, Theorem 2.8], on the other hand, deals with Green’s
function, and this function is not globally in H1, therefore the first step has to be the
regularity estimate and the resulting error bound is given only for the L2-norm.
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Of course, we can use the same ordering of regularity estimates and approximation
steps in Theorem 5 in order to get an estimate of the form

‖u|τ − v‖L2(τ) ≤ Capxq
p‖f‖H−1(Ω)

instead of (6). Since the space V constructed in this way would differ from the one used
in Theorem 5, we cannot simply combine both estimates in order to get an estimate for
the full H1-norm and have to rely on results of the type (7) instead.

4 Approximation of matrix blocks

Usually, strongly elliptic partial differential equations of the type (1) are treated numer-
ically by a finite element method: a mesh Th for the domain Ω is constructed, and nodal
basis functions (ϕi)i∈I are used to define a finite-dimensional space

Vh := span{ϕi : i ∈ I} ⊆ H1
0 (Ω),

where h ∈ R>0 is the mesh width of the triangulation and I is the set of its interior
nodes.

Using the standard Galerkin approach, an approximation uh ∈ Vh of u is represented
in the form

uh =
∑
i∈I

xiϕi

for the solution vector x ∈ RI of the linear system

Ax = b (8)

given by the stiffness matrix A ∈ RI×I and the load vector b ∈ RI defined by

Aij = a(ϕi, ϕj), bi = f(ϕi), for all i, j ∈ I. (9)

The system (8) can be solved by several techniques, e.g., by fast direct solvers [16],
multigrid iterations [13] or H-matrix methods [14, 11, 5]. We focus on the latter ap-
proach: H-matrices are data-sparse approximations of dense matrices. Many arithmetic
operations like the matrix multiplication, inversion, or LU and Cholesky factorizations
can be performed efficiently for H-matrices. As far as our application is concerned, this
means that we can compute an approximate H-matrix inverse S̃ of the stiffness matrix
A and use it as a preconditioner for the system (8).

The problem of proving that the H-matrix algorithms will yield a sufficiently accurate
approximation of the inverse can be reduced to an existence result: since the adaptive
arithmetic operations (cf. [10]) have a best-approximation property, we only have to
show that an approximation of A−1 by an H-matrix exists, because this already implies
that the computed approximation S̃ will be at least as good as this approximation.

This proof of existence can be accomplished using our main result stated in Theorem 5:
a block A−1|t×s describes the mapping from a right-hand side vector b with support in
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s to the restriction of the corresponding discrete solution to t. In order to apply our
approximation result, we have to exploit the relationship between the inverse matrix
A−1 and the inverse operator L−1.

In [2], this problem is solved by applying L2-orthogonal projections. Since these
projections are non-local operators, additional approximation steps are required, which
increase the rank, lead to sub-optimal error estimates, and make the overall proof quite
complicated.

We propose a different approach: instead of a non-local L2-projection, a Clément-
type interpolation operator [8] can be used to map continuous functions into the dis-
crete space. These operators are “sufficiently local” to provide us with improved error
estimates and guarantee that the rank of the approximation will not deteriorate.

Let us recall the basic definitions and properties of Clément interpolation operators:
for each i ∈ I, we fix a functional λi : L2(Ω) → R with supp λi ⊆ suppϕi satisfying the
local projection property

λi(ϕj) = δij for all j ∈ I (10)

and the local stability property

‖λi(u)ϕi‖L2(Ω) ≤ Ccs‖u‖L2(supp ϕi) for all u ∈ L2(Ω) (11)

for a constant Ccs ∈ R>0 depending only on the shape-regularity of the mesh. Construc-
tions of this kind can be found in [17, 3].

The interpolation operator is defined by

Ih : L2(Ω) → Vh, u 7→
∑
i∈Vh

λi(u)ϕi. (12)

The local projection property (10) implies its global counterpart

Ihvh = vh for all vh ∈ Vh, (13)

and the local stability property (11) combined with the shape-regularity of the mesh
yields the global stability property

‖Ihv‖L2(Ω) ≤ Ccl‖v‖L2(Ω) for all v ∈ L2(Ω) (14)

with a constant Ccl ∈ R>0 depending again only on the shape-regularity of the mesh.
Since the matrices we are dealing with are given with respect to the space RI , not Vh,

we need a way of switching between both spaces. This is handled by the standard basis
isomorphism

Φ : RI → Vh ⊆ H1
0 (Ω), x 7→

∑
i∈I

xiϕi.

The interpolation operator Ih can be expressed by

Ih = ΦΛ
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if we define Λ : L2(Ω) → RI by

(Λv)i := λi(v) for all i ∈ I, v ∈ L2(Ω).

In order to construct the approximation of A−1 by using L−1 we have to turn a vector
b ∈ RI into a functional, apply L−1, and approximate the result again in Vh. The first
step can be accomplished by using the adjoint of Λ: we define

Λ∗ : RI → (L2(Ω))′, b 7→ (v 7→ 〈b, Λv〉2).

This operator turns each vector in RI into a functional on L2(Ω).
If the vector b is given by (9) for a right-hand side functional f ∈ H−1(Ω), the

projection property (10) implies

(Λ∗b)(ϕi) = bi = f(ϕi) for all i ∈ I, b ∈ RI ,

therefore the functional Λ∗b and the original right-hand side f of (1) yield the same
Galerkin approximation uh.

We have to prove that Λ∗ is a bounded mapping with respect to the correct norms.
We assume that the finite element mesh is shape-regular in the sense of [9, Definition
2.2], and a simple application of [9, Proposition 3.1] yields that there is a positive definite
diagonal matrix H ∈ RI×I satisfying

Cb1‖Hd/2x‖2 ≤ ‖Φx‖L2(Ω) ≤ Cb2‖Hd/2x‖2 for all x ∈ RI ,

where Cb1, Cb2 ∈ R>0 are constants depending only on the shape-regularity of the mesh.
Using this inequality, we can now prove the necessary properties of Λ∗:

Lemma 6 (Λ∗ bounded and local) Let α ∈ [0, 1] and b ∈ RI . We have

‖Λ∗b‖H−1+α(Ω) ≤
Ccl

Cb1
‖H−d/2b‖2, (15)

i.e., Λ∗ is a continuous mapping from RI to H−1+α(Ω).
The mapping preserves locality, i.e., it satisfies

supp(Λ∗b) ⊂
⋃
{suppϕi : i ∈ I, bi 6= 0}. (16)

Proof: Let v ∈ H1
0 (Ω). Let y := Λv, vh := Φy = Ihv and v⊥ = v − vh. Since the

interpolation operator Ih is a projection, we have

Ihv⊥ = Ih(v − vh) = Ihv − IhIhv = 0,

and since Φ is bijective, 0 = Ihv⊥ = ΦΛv⊥ implies Λv⊥ = 0.
Due to the definition of Λ∗, we get

(Λ∗b)(v) = 〈b, Λv〉2 = 〈b, y〉2 = 〈b, H−d/2Hd/2y〉2
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= 〈H−d/2b, Hd/2y〉2 ≤ ‖H−d/2b‖2‖Hd/2y‖2

≤ ‖H−d/2b‖2

Cb1
‖Φy‖2 =

‖H−d/2b‖2

Cb1
‖vh‖L2(Ω)

=
‖H−d/2b‖2

Cb1
‖Ihv‖L2(Ω) ≤

Ccl

Cb1
‖H−d/2b‖2‖v‖L2(Ω),

and this implies (15).
The support of f ∈ H−1(Ω) is defined as the smallest closed set such that f(v) = 0

holds for all v ∈ H1
0 (Ω) with supp v∩ supp f = ∅. In order to prove (16), we assume that

supp v ∩ suppϕi = ∅ holds for all i ∈ I with bi 6= 0 (17)

and have to prove (Λ∗b)(v) = 0. Due to (17), we have v|supp ϕi ≡ 0 for i ∈ I with bi 6= 0,
and (17) implies

|yi| =
‖yiϕi‖L2(Ω)

‖ϕi‖L2(Ω)
≤ Ccs

‖ϕi‖L2(Ω)
‖v‖L2(supp ϕi) = 0

for all i ∈ I with bi 6= 0,

therefore 0 = 〈b, y〉2 = (Λ∗b)(v), and this completes the proof.

This result allows us to switch from the vector b corresponding to the discrete setting
to the functional f of the variational setting. In the variational setting, we can apply
Theorem 5 to construct the desired approximation of the solution, then we have to switch
back to the discrete setting. Unfortunately, we cannot use the Galerkin projection to
perform this last step, which would be the natural choice considering that we want to
approximate uh, since it is a global operator and the approximation result only holds
for a subdomain. Therefore we have to rely on the Clément-type interpolation operator
again, which has the desired locality property.

Using interpolation instead of the Galerkin projection leads to a second discrete ap-
proximation of L−1, given by the matrix

S = ΛL−1Λ∗ ∈ RI×I .

If we let b ∈ RI , f := Λ∗b, u := L−1f and ũh := Ihu, we observe ΦSb = ũh, i.e.,
S indeed provides us with the coefficients of the Clément-type approximation of the
solution operator.

In general, we know that uh will converge to u if the mesh width h tends to zero.
Since Ih is L2-stable, this means that due to

‖ũh − u‖L2(Ω) = ‖Ihu− u‖L2(Ω) = ‖Ih(u− uh)− (u− uh)‖L2(Ω)

≤ (Ccl + 1)‖u− uh‖L2(Ω), (18)

the interpolated solution ũh will converge to the same limit.
If the equation (1) is H1+α(Ω)-regular, it is possible to derive a refined error estimate

for the matrices S and A−1:
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Lemma 7 (Clément vs. Galerkin) Let α ∈ [0, 1]. We assume that for all functionals
f ∈ H−1+α(Ω), the solution u := L−1f satisfies u ∈ H1+α

0 (Ω) and

‖u‖H1+α(Ω) ≤ Crg‖f‖H−1+α(Ω). (19)

Then there is a constant Ccg ∈ R>0 depending only on Crg, Ccl, Cb1, and the shape-
regularity of the mesh with

‖Hd/2(S −A−1)b‖2 ≤ Ccgh
2α‖H−d/2b‖2 for all b ∈ RI .

Proof: Let b ∈ RI , let f := Λ∗b and u := L−1f . Let x := A−1b and uh := Φx. Let
x̃ := Sb and ũh := Φx̃. By definition, we have ũh = Ihu.

Using the standard Aubin-Nitsche lemma yields

‖u− uh‖L2(Ω) ≤ Canh
2α‖f‖H−1+α(Ω),

with a constant Can depending only on Crg and the shape-regularity parameters of the
mesh. Combining this estimate with (18) gives us

‖uh − ũh‖L2(Ω) ≤ ‖uh − u‖L2(Ω) + ‖u− ũh‖L2(Ω)

≤ Can(Ccl + 2)h2α‖f‖H−1+α(Ω).

We observe

‖Hd/2(S −A−1)b‖2 ≤
1

Cb1
‖ΦSb− ΦA−1b‖L2(Ω)

=
1

Cb1
‖ũh − uh‖L2(Ω) ≤

Can(Ccl + 2)
Cb1

h2α‖f‖H−1+α(Ω)

≤ Can(Ccl + 2)
Cb1

h2α Ccl

Cb1
‖H−d/2b‖2

and complete the proof be setting Ccg := CanCcl(Ccl + 2)/C2
b1.

Due to this result, a good approximation of S on a sufficiently fine mesh is also a good
approximation of A−1, and a good approximation of S can be constructed by Theorem 5:
we consider the approximation of S|t×s for two sets t, s ⊆ I of indices. In order to apply
our approximation result, we have to translate the index sets t and s into subdomains
of Rd. We do this by assuming that domains Bt, Ds ⊆ Rd satisfying

suppϕi ⊆ Bt, suppϕj ⊆ Ds for all i ∈ t, j ∈ s

are given. We require Bt to be convex, Ds is allowed to be non-convex.

Theorem 8 (Blockwise low-rank approximation) Let η ∈ R>0 and q ∈ (0, 1).
There are constants Cblk, Cdim ∈ R>0 depending only on η, q, Ω and the shape regu-
larity of the mesh such that for all t, s ⊆ I with

diam(Bt) ≤ 2η dist(Bt, Ds)

13



and all p ∈ N≥2 we can find a rank k ∈ N with k ≤ Cdimpd+1 and matrices Xt,s ∈ Rt×k,
Yt,s ∈ Rs×k with

‖Hd/2
t (S|t×s −Xt,sY

>
t,s)b‖2 ≤ Cblkq

p‖H−d/2
s b‖2 for all b ∈ Rs

for Ht := H|t×t, Hs := H|s×s, i.e., the submatrix of S corresponding to the block t × s
can be approximated by a matrix of rank k.

Proof: Due to Theorem 5, there is a space V ⊆ L2(Bt) with dim V ≤ Cdimpd+1 and

‖u|τ − v‖H1(τ) ≤ Capx(dist(Bt, Ds)/8 + 1)qp‖f‖H−1(Ω)

for τ :=
⋃
{suppϕi : i ∈ t} ⊆ Ω, all f ∈ H−1(Ω) with supp f ⊆ Ds, u := L−1f and a

function v ∈ V .
Let b ∈ Rs. We extend b to a vector b̂ ∈ RI by

b̂i :=

{
bi if i ∈ s,

0 otherwise
for all i ∈ I.

Due to Lemma 6, the functional f := Λ∗b̂ satisfies

supp f ⊆ Ds, ‖f‖H−1(Ω) ≤
Ccl

Cb1
‖H−d/2b̂‖2 =

Ccl

Cb1
‖H−d/2

s b‖2. (20)

Let u := L−1f . Since v approximates u only locally, we need local variants of Λ and Φ:

Λt : L2(τ) → Rt, v 7→ (λi(v))i∈t,

Φt : Rt → Vh, y 7→
∑
i∈t

yiϕi.

We let x̃ := Λtu. According to the definition of S, we have x̃ = (Sb̂)|t = S|t×sb.
Let us now turn our attention to the local approximation of u. We have already seen

that we can find a function v ∈ V with

‖u|τ − v‖H1(τ) ≤ Capx(dist(Bt, Ds)/8 + 1)qp‖f‖H−1(Ω)

≤ Capx(diam(Ω)/8 + 1)qp‖f‖H−1(Ω). (21)

We let ỹ := Λtv and observe that (11) implies

‖ϕi(x̃i − ỹi)‖L2(Ω) ≤ Ccs‖u|τ − v‖L2(supp ϕi) for all i ∈ I,

and due to the shape-regularity of the mesh this yields

‖Hd/2
t (x̃− ỹ)‖L2(τ) ≤

1
Cb1

‖Φt(x̃− ỹ)‖L2(τ)

=
1

Cb1
‖ΦtΛt(u|τ − v)‖L2(τ)

14



=
1

Cb1
‖Ih(u|τ − v)‖L2(τ) ≤

Ccl

Cb1
‖u|τ − v‖L2(τ). (22)

Now we can define

Cblk := Capx(diam(Ω)/8 + 1)
C2

cl

C2
b1

and combining (20), (21) and (22) yields

‖Hd/2
t (x̃− ỹ)‖L2(τ) ≤ Cblkq

p‖H−d/2
s b‖2.

Using this result, we can now derive the low-rank approximation Xt,sY
>
t,s of S|t×s: we

introduce the space
Zh := {Hd/2

t Λtw : w ∈ V }

and observe k := dim Zh ≤ dim V ≤ Cdimpd+1 for the rank and H
d/2
t ỹ = H

d/2
t Λtv ∈ Zh.

We fix an orthogonal basis of Zh, i.e., a matrix Q ∈ Rt×k with orthogonal columns and
range Q = Zh.

We define z̃ := H
−1/2
t QQ>H

d/2
t x̃. Since Q is orthogonal, QQ> is the orthogonal

projection onto Zh and we get

〈Hd/2
t (x̃− z̃), w〉2 = 〈Hd/2

t x̃−QQ>H
d/2
t x̃, QQ>w〉2 = 0

for all w ∈ Zh,

i.e., H
d/2
t z̃ is the best approximation of H

d/2
t x̃ in the space Zh. In particular, H

d/2
t z̃ is

at least as good as H
d/2
t ỹ, and we get

‖Hd/2
t (x̃− z̃)‖2 ≤ ‖Hd/2

t (x̃− ỹ)‖2 ≤ Cblkq
p‖H−1/2

s b‖2.

We let

Xt,s := H
−1/2
t Q ∈ Rt×k, Yt,s := S|>t×sH

d/2
t Q ∈ Rs×k

and conclude

z̃ = H
−1/2
t QQ>H

d/2
t x̃ = (H−1/2

t Q)(Q>H
d/2
t S|t×s)b = Xt,sY

>
t,sb,

which completes the proof.

5 Approximation by an H-matrix

Using the blockwise approximation result of Theorem 8, we can now construct an H-
matrix approximation of S, and due to Lemma 7, this will also approximate the matrix
A−1.

We briefly recall the basic concepts of hierarchical matrices: they are based on a
cluster tree, i.e., a tree TI satisfying
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• root(TI) = I,

• if t ∈ TI with sons(t) 6= ∅, we have t =
⋃
{t′ : t′ ∈ sons(t)},

• if t ∈ TI with sons(t) = ∅, we have #t ≤ nmin.

The elements t ∈ TI of the cluster tree are called clusters. Based on the cluster tree, the
index set I × I corresponding to a matrix M ∈ RI×I is split into a partition

P = {t× s : t, s ∈ TI}.

An admissibility condition is used to distinguish between admissible and inadmissible
blocks in P : a block is admissible if we expect to be able to approximate if by low rank,
and it is inadmissible otherwise.

Considering the requirements of Theorem 8, it is reasonable to introduce a family
(Bt)t∈TI of convex domains satisfying

suppϕi ⊆ Bt for all i ∈ t

and to consider a block t× s admissible if

max{diam(Bt),diam(Bs)} ≤ 2η dist(Bt, Bs) (23)

holds. Usually spheres or axis-parallel boxes are used for Bt, since they can be con-
structed by simple recursive algorithms. In order to keep the proofs simple, we also
assume that Bt′ ⊆ Bt holds for all t ∈ TI , t′ ∈ sons(t). This is the case for all standard
constructions.

We split P into admissible (“farfield”) and inadmissible (“nearfield”) blocks with re-
spect to this condition:

Pfar := {t× s ∈ P : (23) holds}, Pnear := P \ Pfar.

If a block t× s satisfies the condition (23), we can apply Theorem 8 to Bt and Ds := Bs

and get a rank k ≤ Cdimpd+1 and matrices Xt,s ∈ Rt×k, Yt,s ∈ Rs×k with

‖Hd/2
t (S|t,s −Xt,sY

>
t,s)b‖2 ≤ Cblkq

p‖H−1/2
s b‖2 for all b ∈ Rs. (24)

We define the H-matrix approximation S̃ ∈ RI×I of S by

S̃|t×s :=

{
Xt,sY

>
t,s if t× s ∈ Pfar,

S|t×s otherwise
for all t× s ∈ P.

In order to derive an estimate for the error ‖S − S̃‖2, we employ a simplified variant of
the framework introduced in [10]: we define the level of a cluster t ∈ TI by

level(t) :=

{
level(t+) + 1 if there is a t+ ∈ TI with t ∈ sons(t+),
0 otherwise, i.e., if t = root(TI)
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for all t ∈ TI

and observe that the definition of the cluster tree implies that {t ∈ TI : level(t) = `} is
a disjoint partition of a subset of I for all ` ∈ N0. In particular, we have∑

t∈TI
level(t)=`

‖x|t‖2
2 ≤ ‖x‖2

2 for all x ∈ RI , ` ∈ N0. (25)

The block rows and block columns for clusters are defined by

row(t) := {s ∈ TI : t× s ∈ Pfar},
col(t) := {s ∈ TI : s× t ∈ Pfar} for all t ∈ TI .

The analysis of [10, 11] is based on the assumption that the cardinalities of the block
rows and block columns are bounded, i.e., that there is a sparsity constant Csp ∈ N
satisfying

# row(t) ≤ Csp,

# col(t) ≤ Csp for all t ∈ TI .

In order to keep the presentation simple, we also assume that the partition P is level-
consistent, i.e., that

level(t) = level(s) holds for all t× s ∈ P.

A general construction ensuring that these conditions are fulfilled can be found in [11].

Lemma 9 (Spectral norm estimate) Let M ∈ RI×I , and let x ∈ RI . Then we have

‖Mx‖2 ≤ Csp

( ∞∑
`=0

max{‖M |t×s‖2 : t× s ∈ P, level(t) = `}

)
‖x‖2.

Proof: We introduce

εt,s := ‖M |t×s‖2 for all t× s ∈ P,

ε` := max{εt,s : t× s ∈ P, level(t) = `} for all ` ∈ N0.

For an arbitrary y ∈ RI , the Cauchy-Schwarz inequality implies

〈y, Mx〉2 =
∑

t×s∈P

〈y|t,M |t×sx|s〉2 ≤
∑

t×s∈P

εt,s‖y|t‖2‖x|s‖2

≤

( ∑
t×s∈P

εt,s‖y|t‖2
2

)1/2( ∑
t×s∈P

εt,s‖x|s‖2
2

)1/2

,
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and (25) yields

∑
t×s∈P

εt,s‖x|s‖2
2 =

∑
t∈TI

∑
s∈TI

t×s∈P

εt,s‖x|s‖2
2 =

∞∑
`=0

∑
t∈TI

level(t)=`

∑
s∈TI

t×s∈P

ε`‖x|s‖2
2

≤ Csp

∞∑
`=0

ε`

∑
t∈TI

level(t)=`

‖x|s‖2
2 ≤ Csp

∞∑
`=0

ε`‖x‖2
2,

and we conclude

〈y, Mx〉2 ≤ Csp

∞∑
`=0

ε`‖y‖2‖x‖2.

Applying this estimate to y := Mx completes the proof.

This result allows us to prove that S̃ is indeed an H-matrix approximation of the
solution operator S:

Corollary 10 (H-matrix approximation) Let (24) hold for all admissible blocks t×
s ∈ P . Let % := max{level(t) : t ∈ TI} be the depth of the cluster tree TI . Then we
have

‖Hd/2(S − S̃)b‖2 ≤ CspCblk(% + 1)qp‖H−d/2b‖2 for all b ∈ RI .

Proof: We introduce the matrix E := Hd/2(S − S̃)Hd/2. Since H is a diagonal matrix,
we have

E|t×s = H
d/2
t (S|t×s − S̃|t×s)H1/2

s for all t× s ∈ P,

and (24) is equivalent with

‖E|t×sb̂‖2 = ‖Hd/2
t (S − S̃)|t×sH

1/2
s b̂‖2 ≤ Cblkq

p‖b̂‖2

for all b ∈ Rs, t× s ∈ Pfar,

therefore we can use Lemma 9 to get

‖Hd/2(S − S̃)Hd/2b̂‖2 = ‖Eb̂‖2 ≤ CspCblk(% + 1)qp‖b̂‖2

for all b̂ ∈ RI .

Substituting b̂ = H−d/2b yields the desired result.

This means that S can be approximated by the H-matrix S̃ and that the accuracy of
the approximation improves exponentially while the storage complexity grows only like
a polynomial of order d + 1.
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6 Approximation by an H2-matrix

Let us now consider the approximation of S by an H2-matrix [15, 6]. H2-matrices
combine concepts of H-matrices and multilevel techniques: for each admissible block
t× s ∈ Pfar, the corresponding submatrix is not only required to be of low rank, but its
range and the range of its adjoint are required to be contained in special subspaces.

The subspaces are defined by cluster bases. Let (Vt)t∈TI be a family of matrices
satisfying Vt ∈ Rt×k for a family of integers (kt)t∈TI . It is called a (nested) cluster basis
if for all t ∈ TI and t′ ∈ sons(t) there is a matrix Et′ ∈ Rkt′×kt with

Vt|t′×kt = Vt′Et′ ,

i.e., if the matrices Vt for larger clusters can be expressed in terms of the matrices Vt′

of smaller clusters. In this context, the family (kt)t∈TI is called the rank distribution of
the cluster basis.

The concept of nested cluster bases is similar to that of nested hierarchies of subspaces
used in the analysis of multilevel techniques: the basis functions on coarser levels can be
expressed by basis functions on finer levels, usually by a prolongation or interpolation
operator.

Let (Vt)t∈TI and (Ws)s∈TI be cluster bases with the rank distributions (kt)t∈TI and
(`s)s∈TI . The matrix M ∈ RI×I is an H2-matrix with respect to these bases and the
partition P if for each t× s ∈ Pfar a coupling matrix Ct,s ∈ Rkt×`s exists that satisfies

M |t×s = VtCt,sW
>
s .

Since the rank of M |t×s is bounded by min{kt, `s}, each H2-matrix is also an H-matrix,
but the converse does not hold since Vt and Ws depend only on t or s, but not on both.

In order to prove that S can be approximated by an H2-matrix, we have to prove that
suitable cluster bases (Vt)t∈TI and (Ws)s∈TI exist. We use the framework described in
[4]: we define the sets of descendants by

sons∗(t) :=

{
{t} ∪

⋃
t′∈sons(t) sons∗(t′) if sons(t) 6= ∅,

{t} otherwise

for all t ∈ TI
and the sets of predecessors by

pred(t) := {t+ ∈ TI : t ∈ sons∗(t+)} for all t ∈ TI .

for each t ∈ TI , we let

row∗(t) :=
⋃
{row(t+) : t+ ∈ pred(t)},

Rt :=
⋃
{s : s ∈ row∗(t)}.

The total cluster basis (St)t∈TI is defined by

St := S|t×Rt for all t ∈ TI .

Low-rank approximations of the matrices St give rise to suitable cluster bases:
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Lemma 11 (Approximation of the total cluster basis) We assume that for each
t ∈ TI an accuracy εt ∈ R>0, a rank kt ∈ N, and matrices Xt ∈ Rt×kt, Yt ∈ RRt×kt are
given with

‖St −XtY
>
t ‖2 ≤ εt. (26)

Then there is a cluster basis (Vt)t∈TI with rank distribution (kt)t∈TI satisfying

‖S|t×s − VtV
>
t S|t×s‖2

2 ≤
∑

r∈sons∗(t)

ε2r for all t× s ∈ Pfar

and V >
t Vt = I for all t ∈ TI .

Proof: Due to [4, eq. (10)], restricting the global error estimate of [4, Theorem 3.13] to
the submatrix S|t×s gives us the desired estimate.

We can use Theorem 8 to prove that the assumptions of Lemma 11 are satisfied.

Lemma 12 (Projection error) Let q ∈ (0, 1). For all p ∈ N, we can find cluster bases
(Vt)t∈TI and (Ut)t∈TI with the rank distribution (kt)t∈TI such that

‖Hd/2
t (S|t×s − VtU

>
t S|t×s)H1/2

s ‖2 ≤ Cblkq
p
√

# sons∗(t)
holds for all t× s ∈ Pfar,

the ranks are bounded by kt ≤ Cdimpd+1 and

U>
t Vt = I holds for all t ∈ TI .

Proof: Let p ∈ N. We have to prove that we can find suitable low-rank approximations
of the matrix St such that (26) holds. Let t ∈ TI and define

Dt :=
⋃
{Bs : s ∈ row∗(t)}.

For any s ∈ row∗(t), we can find t+ ∈ pred(t) such that t+ × s ∈ Pfar, i.e., that the
admissibility condition (23) holds for Bt+ ×Bs. Since Bt ⊆ Bt+ , we conclude

diam(Bt) ≤ diam(Bt+) ≤ 2η dist(Bt+ , Bs) ≤ 2η dist(Bt, Bs).

Since s is an arbitrary element of row∗(t), this means

diam(Bt) ≤ 2η dist(Bt, Dt).

We apply Theorem 8 to find a rank kt ∈ N with kt ≤ Cdimpd+1 and matrices Xt ∈ Rt×kt

and Yt ∈ RRt×kt with

‖Hd/2
t (St −XtY

>
t )H1/2

Rt
‖2 ≤ Cblkq

p. (27)

In order to apply Lemma 11, we have to introduce the scaled matrices

Ŝ := Hd/2SHd/2, Ŝt := H
d/2
t StH

1/2
Rt

,
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X̂t := H
d/2
t Xt, Ŷt := H

1/2
Rt

Yt for all t ∈ TI

and observe that (27) reads

‖Ŝt − X̂tŶ
>
t ‖2 ≤ Cblkq

p.

We use Lemma 11 to get a cluster basis (V̂t)t∈TI with

‖Ŝ|t×s − V̂tV̂
>
t Ŝ|t×s‖2

2 ≤ C2
blk

∑
r∈sons∗(t)

q2p = C2
blkq

2p# sons∗(t)

for all t ∈ TI .

Now we can define the cluster bases (Vt)t∈TI and (Ut)t∈TI by

Vt := H
−1/2
t V̂t, Ut := H

d/2
t V̂t for all t ∈ TI

and get

‖Hd/2
t (S|t×s − VtU

>
t S|t×s)H1/2

s ‖2

= ‖(Hd/2
t S|t×sH

1/2
s −H

d/2
t VtV̂

>
t H

d/2
t S|t×sH

1/2
s )‖2

= ‖Ŝ|t×s − V̂tV̂
>
t Ŝ|t×s‖2 ≤ C2

blkq
2p# sons∗(t)

for all t ∈ TI .

This is the desired result.

This error estimate suggests how to define the H2-matrix approximation of S: we
define S̃ ∈ RI×I by projecting each admissible block, i.e., by setting

Ŝ|t×s :=

{
VtU

>
t S|t×sUsV

>
s if t× s ∈ Pfar,

S|t×s otherwise
for all t× s ∈ Pfar.

The coupling matrices are given by Ct,s := U>
t S|t×sUs for all t × s ∈ Pfar, and we use

(Vt)t∈TI both as row and column cluster basis, since S is symmetric.

Corollary 13 (H2-matrix approximation) Let q, p and the cluster bases (Vt)t∈TI ,
(Ut)t∈TI with ranks (kt)t∈TI be as in Lemma 12. We assume that the cluster tree TI is
not degenerate, i.e., that there are constants Csn ∈ R>0 and ζ ∈ (0, 1) with

# sons∗(t) ≤ Csnζ
level(t)#TI for all t ∈ TI .

Then we have

‖Hd/2(S − S̃)b‖2 ≤
CspCblk

√
2Csn

1−
√

ζ
qp
√

#TI‖H−d/2b‖2

for all b ∈ RI .
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Proof: Let Ŝ and (V̂t)t∈TI be defined as in the proof of Lemma 12. Then we have

‖Hd/2
t (S|t×s − S̃|t×s)H1/2

s ‖2
2 = ‖Ŝ|t×s − V̂tV̂

>
t Ŝ|t×sV̂sV̂

>
s ‖2

2

= ‖Ŝ|t×s − V̂tV̂
>
t Ŝ|t×s + V̂tV̂

>
t (Ŝ|t×s − Ŝ|t×sV̂sV̂

>
s )‖2

2

= ‖Ŝ|t×s − V̂tV̂
>
t Ŝ|t×s‖2

2 + ‖V̂tV̂
>
t (Ŝ|t×s − Ŝ|t×sV̂sV̂

>
s )‖2

2

≤ ‖Ŝ|t×s − V̂tV̂
>
t Ŝ|t×s‖2

2 + ‖Ŝ|s×t − V̂sV̂
>
s Ŝ|s×t‖2

2

≤ C2
blk(q

2p# sons∗(t) + q2p# sons∗(s))

= C2
blkq

2p(# sons∗(t) + # sons(s))

≤ C2
blkCsnq

2p(ζ level(t) + ζ level(s))#TI
= 2C2

blkCsnq
2pζ level(t)/2ζ level(s)/2#TI .

As in the proof of Corollary 10, we introduce the error matrix E := Hd/2(S − S̃)Hd/2.
We have just proven

‖E|t×s‖2 ≤ Cblk

√
2Csn#TIqpζ level(t)/2 for all t× s ∈ Pfar,

so we can apply Lemma 9 in order to get

‖E‖2 ≤ CspCblk

√
2Csn#TIqp

∞∑
`=0

ζ`/2 ≤ CspCblk

√
2Csn

1−
√

ζ
qp
√

#TI ,

and the proof can be completed as in the case of Corollary 10.

While in the case of the H-matrix estimate in Corollary 10 only the depth of the
cluster tree appeared as an additional factor, the H2-matrix estimate in Corollary 13
involves a factor of

√
#TI ∼

√
#I. Fortunately, both factors can be compensated by

increasing p: if the number of degrees of freedom grows, we would have to increase p
anyway in order to keep pace with the improving discretization error, and the additional
factors in the error estimates only mean that we have to increase p a little faster.

7 Numerical experiments

The usefulness ofH-matrix approximations of inverses and LU or Cholesky factorizations
of stiffness matrices of elliptic partial differential equations has already been discussed
in several papers (e.g., [11, 2, 12], to name just a few).

We can therefore focus on approximations using the more efficient H2-matrices and
investigate whether they offer advantages compared to H-matrix schemes.

Our experiments are carried out on the symmetric unit square Ω := [−1, 1]2 with
four different types of coeffient matrices. For basic tests, we use CC ≡ 1 in (1), i.e., L
will be the Laplace operator. Next, we investigate three problems with discontinuous
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Table 1: Approximation of the inverse for Poisson’s equation

H-matrix H2-matrix
n Mem/n Near/n Error Mem/n Near/n Error

1024 3.5 2.7 1.1−4 2.6 2.0 1.1−4

4096 5.6 3.2 3.5−4 3.6 2.3 2.8−4

16384 9.0 4.1 1.9−4 4.7 2.5 1.6−4

65536 12.6 4.3 2.4−4 5.7 3.6 1.5−4

262144 24.1 14.4 1.6−4 6.5 3.7 1.3−4

Table 2: Approximation of the inverse for the “quartered” coefficient CQ

H-matrix H2-matrix
n Mem/n Near/n Error Mem/n Near/n Error

1024 2.6 2.0 1.5−4 3.5 2.7 2.8−4

4096 5.5 3.2 5.1−4 3.7 2.3 3.8−4

16384 8.9 4.1 3.2−4 4.8 2.5 2.2−4

65536 12.5 4.3 3.2−4 5.8 3.6 2.0−4

262144 23.9 14.4 2.1−4 6.5 3.7 1.9−4

coefficients: in the first problem, we separate the square Ω into four quarters and switch
the coefficients between 1 and 100:

CQ(x) :=

{
100 if x ∈ [−1, 0)× [−1, 0) or x ∈ [0, 1]× [0, 1],
1 otherwise.

In the second problem, we separate the lower and upper half of the square by a strip
with high conductivity:

CL(x) :=

{
100 if x2 ∈ [0, 1/16),
1 otherwise.

In the third problem, we introduce anisotropic coefficients in the lower half of the square:

CA(x) :=

{
I if x2 ∈ [−1, 0),
diag(100, 1) otherwise.

All of these coefficient functions satisfy the assumptions of our theory with the bounds
α = 1 and β = 100 for the spectrum.

The approximation of the inverse matrices A−1 depends on several parameters. Most
important are nmin ∈ N (cf. section 5), which determines how much of the matrix
is stored as a standard dense matrix (the nearfield part), and the accuracy ε̂ ∈ R>0

used during the adaptive computation process. In our experiments, we pick an nmin
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Table 3: Approximation of the inverse for the “line” coefficient CL

H-matrix H2-matrix
n Mem/n Near/n Error Mem/n Near/n Error

1024 3.5 2.7 1.3−4 2.6 2.0 9.3−5

4096 5.5 3.2 3.2−4 3.6 2.3 2.8−4

16384 8.8 4.1 2.8−4 4.7 2.5 1.6−4

65536 12.5 4.3 2.3−4 5.7 3.6 1.5−4

262144 24.3 14.4 8.0−5 6.7 3.7 6.4−5

Table 4: Approximation of the inverse for the anisotropic coefficient CA

H-matrix H2-matrix
n Mem/n Near/n Error Mem/n Near/n Error

1024 3.5 2.7 5.7−4 2.6 2.0 2.5−4

4096 5.6 3.2 1.2−3 3.8 2.3 4.4−4

16384 9.1 4.1 6.6−4 5.0 2.5 4.4−4

65536 13.3 4.3 3.3−4 6.3 3.6 3.7−4

262144 25.6 14.4 5.8−4 7.2 3.7 4.7−4

that ensures that the storage requirements of the near- and farfield parts of the matrix
are roughly balanced. The accuracy ε̂ is chosen in such a way that the inversion error
‖I− S̃A‖2 is less than 10−3, which guarantees that the H- or H2-matrix S̃ is a very good
preconditioner for the linear system.

The tables 1, 2, 3 and 4 list the storage requirements and inversion errors for H-
and H2-matrix approximations of A−1 with the coefficient functions CC , CQ, CL and
CA introduced above. The columns “Mem/n” give the storage requirements per degree
of freedom in KBytes, the columns “Near/n” give the nearfield part of the storage
requirements, and the columns “Error” give an estimate for the inversion error ‖I−S̃A‖2

computed by a power iteration.
We can see that the H2-matrix approximations always require less storage than their

H-matrix counterparts, although they reach a similar accuracy. For the H2-matrix
approximation, the storage requirements seem to behave like O(n log n), i.e., even better
than the theoretical prediction of O(n log3 n).
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