
ON THE STABILITY OF FULLY ADAPTIVE MULTISCALESCHEMES FOR CONSERVATION LAWS USING APPROXIMATEFLUX AND SOURCE RECONSTRUCTION STRATEGIES�NUNE HOVHANNISYANy AND SIEGFRIED M�ULLERzAbstra
t. In order to a

elerate �nite volume s
hemes applied to (inhomogeneous) hyperboli

onservation laws multiresolution based adaptive 
on
epts 
an be used. The basi
 idea is to analyzethe lo
al regularity by means of a multiresolution analysis of 
ell averages. By di�eren
e informationbetween su

essive re�nement levels lo
al grid adaptation is triggered employing threshold te
hniques.This leads to a signi�
ant gain in 
omputational 
omplexity. The 
rux is to 
ompute numeri
al 
uxesand sour
es on lo
al resolution levels su
h that the overall a

ura
y of the referen
e solution on the�nest dis
retization is maintained. In the present work a modi�ed approa
h based on polynomialre
onstru
tion te
hniques is introdu
ed and investigated analyti
ally. The eÆ
ien
y and a

ura
y ofthe adaptive 
on
ept is signi�
antly improved, in parti
ular for inhomogeneous equations. This is
on�rmed by numeri
al parameter studies.Key words. 
onservation laws, �nite volume s
hemes, grid adaptation, biorthogonal waveletsAMS subje
t 
lassi�
ations. 35L65, 65M12, 65M50, 65T60, 74S101. Introdu
tion. Nowadays �nite volume methods are routinely used for thedis
retization of 
onservation laws as they arise, for instan
e, in 
omputational 
uiddynami
s. Here, due to the inhomogeneity of the solutions, adaptive grid methods 
ansigni�
antly improve the eÆ
ien
y by 
on
entrating 
ells only where they are mostrequired, while redu
ing storage requirements as well as the 
omputational time.For this purpose, numeri
al s
hemes have been dis
ussed or are under 
urrentinvestigation that aim at adapting the spatial grid to the lo
al behavior of the 
ow�eld. In the early 90's Harten [13℄ proposed to use multiresolution te
hniques. The
ell averages on a given highest level of resolution (referen
e mesh) are representedas 
ell averages on some 
oarse level where the �ne s
ale information is en
odedin arrays of detail 
oeÆ
ients of as
ending resolution that reveals insight into thelo
al behavior of the solution. This multiresolution framework has been extended tomultidimensional problems [3, 1, 10, 8, 20℄ on Cartesian, 
urvilinear and unstru
turedmeshes, respe
tively.In Harten's original approa
h the multiresolution analysis is used to 
ontrol ahybrid 
ux 
omputation by whi
h 
omputational time for the 
ux 
omputation 
anbe saved whereas the overall 
omputational 
omplexity is not redu
ed but still staysproportional to the number of 
ells on the uniformly �ne referen
e mesh. Opposite tothis strategy, threshold te
hniques are applied to the multiresolution de
ompositionin [12, 18, 9, 16, 21℄ where detail 
oeÆ
ients below a threshold value are dis
arded.By means of the remaining signi�
ant details a lo
ally re�ned mesh is determinedwhose 
omplexity is signi�
antly redu
ed in 
omparison to the underlying referen
emesh. A 
omparison of Harten's original framework and the fully adaptive framework
an be found in [6℄.�This work has been performed with funding by the Deuts
he Fors
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hen.de).1



2 N. HOVHANNISYAN AND S. M�ULLERObje
tive. The 
entral mathemati
al problem is to verify that the solution 
om-puted on the lo
ally adapted mesh provides an a

ura
y that is of the same order asthe one of the referen
e s
heme on the referen
e mesh. This has been analyti
allyinvestigated in the 
ontext of a homogeneous s
alar 
onservation law in one spa
edimension, see [18, 9℄. The proof relies essentially on (i) the strategy how to predi
tsigni�
ant details at the new time level from the data at the old time level in orderto lo
ally re�ne the grid before the time evolution and (ii) the interpretation of theadaptive s
heme as the original �nite volume s
heme on the referen
e grid (referen
es
heme) to whi
h we apply the multiresolution analysis and thresholding. The se
ondproperty only holds true provided that the numeri
al 
uxes are 
omputed by dataat the highest spatial level employing a lo
al inverse multiresolution transformation.This lo
al 
ux 
omputation strategy is referred to as the exa
t 
ux re
onstru
tionstrategy. In higher dimensional appli
ations it will in
rease the 
omputational 
om-plexity. In parti
ular, for inhomogeneous 
onservation laws taking into a

ount somesour
e term the exa
t strategy requires the 
omputation of all sour
es on the referen
egrid rather than the adaptive grid. This would 
ompletely deteriorate the eÆ
ien
yof the adaptive s
heme.The main purpose of the present work is to suggest an approximate 
ux and sour
ere
onstru
tion strategy. The basi
 idea is to 
ompute to ea
h 
ell in the adaptive grida re
onstru
tion polynomial by whi
h we provide the data for the 
omputation ofthe lo
al 
uxes. Moreover, the lo
al sour
es are determined by a quadrature ruleapplied to the 
omposite of the sour
e fun
tion and the re
onstru
tion polynomial.This strategy does not spoil the 
omputational 
omplexity of the adaptive s
hemeeven in higher dimensions. We will verify analyti
ally that by the suggested strategythe a

ura
y of the referen
e s
heme 
an be maintained. In parti
ular, we prove thatby the evolution pro
ess on the adaptive grid using the approximate re
onstru
tionstrategy we introdu
e an additional error in 
omparison to the evolution with exa
tre
onstru
tion that is proportional to the threshold value.Referen
e s
heme. In order to simplify the notation we 
on�ne ourselves to theone-dimensional 
ase although the 
on
epts extend to higher dimensional problems aswell and have been su

essfully applied to 
omplex 
on�gurations in 
uid dynami
s,e.g. [4℄ for the 
lassi
al fully adaptive �nite volume s
heme. We therefore 
onsider thes
alar inhomogeneous 
onservation lawut(t; x) + (f(u(t; x)))x = s(u(t; x)); t > 0; x 2 R; (1.1)subje
t to the initial 
onditionu(0; x) = u0(x); x 2 R: (1.2)If u0 2 L1(R) \ L1(R) and the 
ux f : R ! R and the sour
e s : R ! R are su
hthat all derivatives up to the se
ond order exist and are bounded, then there exists aunique entropy solution, see [19, 17℄.A 
onservative �nite volume dis
retization of the initial value problem (1.1), (1.2)
an be written in the formvn+1k = vnk � �Bnk + �Snk ; � := �h (1.3)for the 
ell averages vk . Here spa
e and time are uniformly dis
retized by h and � ,respe
tively. Conservation means that the 
ux balan
e Bnk has the formBnk := F (vnk�p+1; : : : ; vnk+p)� F (vnk�p; : : : ; vnk+p�1) = Fnk+1 � Fnk (1.4)
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Fig. 2.2. Two-s
ale de
ompositionwhere the fun
tion F (u1; : : : ; u2p) is the numeri
al 
ux fun
tion. The sour
e term isapproximated by the numeri
al sour
e fun
tion S. For simpli
ity of representation,we 
on�ne ourselves to the �rst order approximationSnk � S(vnk ) := s(vnk ): (1.5)Later on we will spe
ify assumptions on F and S that will guarantee the 
onvergen
eof the s
heme.Outline. In the following we �rst summarize the multiresolution analysis (MRA)in Se
tion 2. Then in Se
tion 3 the MRA is employed to 
ompress the set of evolutionequations given by a referen
e �nite volume s
heme on the referen
e grid in order toredu
e the 
omputational 
osts both in terms of CPU and memory. A new strategy isintrodu
ed in Se
tion 4 for the 
omputation of the lo
al numeri
al 
uxes and sour
eson 
oarser dis
retization levels that is based on polynomial re
onstru
tion. In Se
tion5 we verify that by the approximate 
ux and sour
e re
onstru
tion strategy the a
-
ura
y of the referen
e �nite volume s
heme 
an be maintained. Finally, in Se
tion 6,we perform numeri
al parameter studies for the invis
id Burgers equation 
omparingdi�erent strategies for the lo
al 
omputation of the numeri
al 
uxes and sour
es.2. Multiresolution analysis. A �nite volume dis
retization is typi
ally work-ing on a sequen
e of 
ell averages. In order to analyze the lo
al regularity behaviorof the data we de
ompose this sequen
e into 
oarse grid information and detail infor-mation des
ribing the update from low to high resolution. This new data format 
anbe 
ompressed by thresholding be
ause the details be
ome small when the solution islo
ally smooth. By means of the 
ompressed data a lo
ally re�ned grid is determined.To provide the MRA of the data one might used either the 
on
ept of biorthogo-nal wavelets [5℄ or Harten's dis
rete framework [14, 2℄ based on re
onstru
tion andpredi
tion. These 
on
epts are linked by the 
onvergen
e of subdivision s
hemes.Grid hierar
hy. Starting point for the 
onstru
tion of a MRA is a sequen
eof nested grids. Here we 
on�ne ourselves to 1D dyadi
 grid re�nements. For anextension to grid hierar
hies in higher dimensions we refer to [18℄. Let be Gl :=fVl;kgk2Il , l 2 N0 , Il = Z, a sequen
e of grids with in
reasing resolution. Thesemeshes are 
omposed of the intervals Vl;k = [xl;k; xl;k+1℄ determined by the gridpoints xl;k = 2�l k, k 2 Z with interval length hl = 2�l. Hen
e, the resulting gridhierar
hy is nested be
ause of the subdivision 
onditionVl;k = Vl+1;2k [ Vl+1;2k+1; 8 l 2 N0 ; k 2 Z: (2.1)The dyadi
 grid re�nement is illustrated in Figure 2.1.Cell averages and details. Relative to the partitions Gl we introdu
e theaverages of a s
alar, integrable fun
tion u 2 L1(
)ûl;k := 1jVl;k j ZVl;k u dx: (2.2)



4 N. HOVHANNISYAN AND S. M�ULLERObviously the nestedness of the grids as well as the linearity of integration imply thetwo{s
ale relation̂ul;k = 12(ûl+1;2k + ûl+1;2k+1) =: Xr2M0l;kml;0r;k ûl+1;r (2.3)where for later use we introdu
e the mask 
oeÆ
ients ml;0r;k := 0:5 and their supportindex M0l;k = f2k; 2k + 1g. An error between level l and l + 1 
an be introdu
ed byel;2k = ûl+1;2k � ûl;k; el;2k+1 = ûl+1;2k+1 � ûl;k:These are two options for one missing information to re
ompute the data on highers
ale. To remove the redundan
y a linear 
ombination of the errorsdl;k := 12 (el;2k � el;2k+1) = 12(ûl+1;2k � ûl+1;2k+1) (2.4)
an be introdu
ed. Then the system of equations (2.3) and (2.4) is regular and weobtain the inverse two-s
ale relationûl+1;2k+i = ûl;k + dl;k; ûl+1;2k+i = ûl;k � dl;k: (2.5)Can
ellation Property. Obviously, the detail vanishes if the underlying fun
-tion u is a 
onstant, see also Figure 2.2. This motivates to negle
t all suÆ
ientlysmall details in order to 
ompress the original data. For general u, it 
an be shownthat the details be
ome small with in
reasing re�nement level when the underlyingfun
tion is smooth. Higher 
ompression rates 
an be realized if the details vanishfor higher order polynomials up to some degree M � 1 as well be
ause the de
ay isproportional to 2�lM . This 
orresponds to higher order vanishing moments in thewavelet framework, e.g. [7℄.Higher vanishing moments. In order to realize higher vanishing moments weintrodu
e additional parameters in (2.5) by a 
oarse grid modi�
ation, i.e.,dl;k = 12(ûl+1;2k � ûl+1;2k+1) + 2sXr=0 lrûl;k�s+r = Xr2M1l;kml;1r;k ûl+1;r: (2.6)By means of (2.3) the 
oarse grid averages ûl;k�s+r 
an be rewritten in terms of the �negrid averages ûl+1;r 
hara
terizing the mask 
oeÆ
ients ml;1r;k and the support indexM1l;k. These parameters are then 
hosen su
h that the details vanish for polynomialsup to degree 2s, i.e., M = 2s+1. In the wavelet framework this pro
edure is referredto the 
hange of stable 
ompletion [5℄ or se
ond generation wavelets [22℄. For some sthe resulting parameters are listed in Table 2.1. In 
ase of s = 0 these 
orrespond tothe Haar wavelet. For our 
omputations we only use s = 1; 2; for s = 0 the adaptives
heme does not work at all. The inverse two-s
ale relation then readsûl+1;2k+i = ûl;k + (�1)idl;k + (�1)i+1 sXr=�s lr+sûl;k+r=: Xr2G0l;2k+i gl;0r;2k+i ûl;r + Xr2G1l;2k+i gl;1r;2k+i dl;r; i = 0; 1 (2.7)



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 5Table 2.1Lifting 
oeÆ
ientss l0 l1 l2 l3 l40 01 -1/8 0 1/82 3/128 -11/64 0 11/64 -3/128with mask 
oeÆ
ients gl;er;2k+i and 
orresponding support Gel;2k+i, e = 0; 1.Multis
ale Transformation. Re
ursively applying the two-s
ale relations (2.3)and (2.6) array of 
ell averages uL := (ûL;k)k2IL 
orresponding to a �nest uniformdis
retization level is transformed su

essively into a sequen
e of 
oarse grid datau0 := (û0;k)k2I0 and details dl := (dl;k)k2Il , l = 0; : : : ; L � 1. We refer to thistransformation as multis
ale transformation determined by the multis
ale operatorML : ûL �! (û0;d0; : : : ;dL�1) withûl =MTl;0ûl+1; dl =MTl;1ûl+1:It is reversed by re
ursively applying the two-s
ale relation (2.7). The resulting in-verse multis
ale transformation is des
ribed by inverse multis
ale operator M�1L :(û0;d0; : : : ;dL�1) �! ûL witĥul+1 =GTl;0ûl +GTl;1dl:Subdivision s
heme. By means of the inverse multis
ale transformation thearray of 
ell averages uL 
an be transformed toûL =GLl;0ûl + L�1Xj=l GLj;1dj = Xk2Il	Ll;k;0ûl;k + L�1Xj=l Xk2Il	Lj;k;1dj;k; (2.8)for l = 0; : : : ; L � 1 where the subdivision pro
edure is determined by the matri
esGLl;e := GTL�1;0 � : : : �GTl+1;0GTl;e, e 2 f0; 1g. The ve
tors 	Ll;k;e := GLl;1;e
l;k with theDira
 ve
tor 
l;k = (Æk;r)r2Il denote the k-th 
olumn of the subdivision pro
edure.These are sparse be
ause of the inverse two-s
ale relation (2.7). Their supports��(l)L;k;e := supp(	Ll;k;e)are uniformly bounded by��(L�1)L;k;0 = ��k2�� s; : : : ;�k2�+ s� ; ��(l)L;k;0 � �� k2L�l�� 2s; : : : ;� k2L�l�+ 2s���(L�1)L;k;1 = ��k2�� ; ��(l)L;k;1 � �� k2L�l�� s; : : : ;� k2L�l�+ s� (2.9)for 0 � l < L � 1. If the subdivision s
heme 
onverges then there is a link betweenthe dis
rete framework and biorthogonal wavelets summarized in the followingTheorem 2.1. (Biorthogonal wavelet de
ompositions) Assume that the pie
ewise
onstant fun
tions  Lj;k;e; e 2 f0; 1g de�ned by Lj;k;e(x) := (	Lj;k;e)r; x 2 VL;r; r 2 IL (2.10)
onverge uniformly in L towards a fun
tion  j;k;e 2 L1(
) in the sup{norm. Thenthe limit fun
tions (primal s
aling fun
tions (e = 0) resp. wavelets (e = 1)) satisfythe following properties:



6 N. HOVHANNISYAN AND S. M�ULLER1.) Any fun
tion u 2 L1(
) 
an be uniquely expanded in a series of the primalwavelet basis, i.e.,u = Pk2I0hu; ~ 0;k;0iL2  0;k;0 + Pj2N Pk2Ijhu; ~ j;k;1iL2  j;k;1;2.) the primal wavelets satisfy the duality relationh j;k;e; ~ j0;k0;e0iL2 = Æ(j;k;e);(j0 ;k0;e0);3.) the 
omponents of the dis
rete basis ve
tors 
oin
ide with the averages of thefun
tion  j;k;e, i.e., 	Lj;k;e = (h j;k;e; ~�L;ri)r2IL ;4.) the fun
tions  j;k;e are uniformly bounded in the sup{norm, i.e., there existsa 
onstant C > 0 independent of j, k and e su
h thatk j;k;ekL1 < C;5.) if the grid is quasi{uniform and the mask matri
es Gj;e are uniformly banded,then the fun
tions  j;k;e are 
ompa
tly supported and, in parti
ular,j supp  j;k;ej � C 2�jd.A proof 
an be found in [7℄.Thresholding and approximation. Due to the 
an
ellation property thedetails might be
ome negligible small whenever the underlying fun
tion is lo
allysmooth. This gives rise to hard thresholding 
hara
terized by the index setD" := f(l; k; 1) : jdl;k j > "lg [ f(0; k; 0) : jû0;kj > "0g:Here " denotes the ve
tor of level-dependent threshold values. Then the thresholdoperator TD" : (û0;d0; : : : ;dL�1) �! (~u0; ~d0; : : : ; ~dL�1) is de�ned elementwise by~dl;k := � dl;k ; (l; k; 1) 2 D";0 ; else ~u0;k := � û0;k ; (0; k; 0) 2 D";0 ; else :Later on we will not only perform thresholding by the set D" but by an arbitraryindex set D. Then the approximation error due to thresholding is determined byûL �AD ûL = X(j;k;e)62D	Lj;k;e dj;k;e (2.11)where AD := M�1L TDML and, in parti
ular for D = D", A" := M�1L TD" ML. Inorder to 
ontrol the perturbation error we need 
onvergen
e of the subdivision s
hemeat least in the l1{metri
, see Theorem 2.1.3. From the referen
e s
heme to an adaptive s
heme. We will brie
ysummarize how to a

elerate a �nite volume s
heme by means of a MRA and data
ompression via thresholding. For this purpose we �rst apply the multis
ale trans-formation (2.3) and (2.7) to the evolution equations (1.3) on the uniform referen
emesh, i.e., k 2 IL. This gives the evolution equations for the 
ell averagesvn+1l;k = vnl;k � �lBnl;k + � Snl;k (3.1)



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 7and the multis
ale 
oeÆ
ients, respe
tively,vn+10;k = vn0;k � Xr2M00;km0;0r;k �1 Bn1;r + � Xr2M00;km0;0r;kSn1;r; (3.2)dn+1l;k = dnl;k � Xr2M1l;kml;1r;k �l+1 Bnl+1;r + � Xr2M1l;kml;1r;kSnl+1;r: (3.3)Here the numeri
al 
uxes Fnl;k , respe
tively the numeri
al 
ux balan
es Bnl;k :=Fnl;k+1 � Fnl;k and numeri
al sour
es Snl;k are re
ursively de�ned from �ne to 
oarses
ale viaFnl;k = Fnl+1;2k = : : : = FnL;2L�lk = F (vnL;2L�lk�p; : : : ; vnL;2L�lk+p�1); (3.4)Snl;k = 2�1Xr2M0l;k Snl+1;r = 2l�L 2L�l�1Xi=0 SnL;2L�lk+i = 2l�L 2L�l�1Xi=0 S(vnL;2L�lk+i):(3.5)Note that due to the nestedness of the grid hierar
hy and the 
onservation property ofthe numeri
al 
uxes, the 
oarse-s
ale 
ux balan
es are only 
omputed by the �ne-s
ale
uxes 
orresponding to the edges of the 
oarse 
ell, see (3:4). These, in parti
ular,have to be determined by the �ne s
ale data. However, the internal 
uxes 
an
eland, hen
e, the overall 
omplexity is redu
ed. The 
oarse s
ale sour
es are 
omputedsimilarly due to the re
ursive formulae (3:5). However we have to 
ompute all sour
eson the �nest s
ale. Hen
e there is no 
omplexity redu
tion, i.e., we still have the
omplexity of the referen
e grid. We will refer to (3.4) and (3.5) as exa
t 
ux andsour
e re
onstru
tion, respe
tively.Adaptive multiresolution FVS. A

ording to the subdivision s
heme (2.8) thereferen
e s
heme (1.3) 
an be rewritten asvn+1L = Xk2I0	L0;k;0 vn+10;k + L�1Xl=0 Xk2Il	Ll;k;1 dn+1l;k (3.6)with the multis
ale 
oeÆ
ients determined by (3.2) and(3.3). The idea of the adaptiveFVS is to perform the evolution only for signi�
ant detailsDn+1 := n(l; k) ; jdn+1l;k j > "l; k 2 Il; l 2 f0; : : : ; L� 1goand to dis
ard all other equations. Sin
e this set 
annot be 
omputed before the dataat time level tn+1 are known, a predi
tion set ~Dn+1 has to be 
omputed from Dn su
hthat the reliability 
ondition Dn [ Dn+1 � ~Dn+1 (3.7)holds. Then the evolution step of the adaptive s
heme 
onsists of the three steps:Step 1. (Re�nement) Determine the predi
tion set ~Dn+1 and apply the approxima-tion operator A ~Dn+1 to the given data, i.e.,vnL; ~Dn+1 := A ~Dn+1vnL;Dn : (3.8)Step 2. (Evolution) Evolve the multis
ale 
oeÆ
ients 
orresponding to ~Dn+1 in timea

ording to (3.2), (3.3), i.e.,vn+1L; ~Dn+1 := Xk2I0	L0;k;0vn+10;k + X(l;k)2 ~Dn+1	Ll;k;1dn+1l;k = EL; ~Dn+1vnL; ~Dn+1 ; (3.9)



8 N. HOVHANNISYAN AND S. M�ULLERStep 3. (Coarsening) Threshold the new data by applying the approximation oper-ator A", i.e.,vn+1L;Dn+1 := A"vn+1L; ~Dn+1 = Xk2I0	L0;k;0vn+10;k + X(l;k)2Dn+1	Ll;k;1 dn+1l;k : (3.10)We emphasize that all operators are applied lo
ally, i.e., the multis
ale operatorsML,M�1L , the threshold operator TD and the approximation operator AD only workon the set of signi�
ant 
oeÆ
ients. If there is no inhomogeneity, i.e., s = 0, then the
omplexity of the resulting algorithm might be signi�
antly redu
ed to the 
ardinalityof #D. However, if there is a sour
e term and the sour
es on the lo
al s
ales are 
om-puted by the exa
t re
onstru
tion strategy (3.5) then the 
omputational 
omplexity isstill that of the referen
e FVS. To some extend this also holds true for the numeri
al
ux 
omputation on lo
al s
ales using the exa
t 
ux re
onstru
tion strategy (3.4).In higher spatial dimensions the 
ell edges do not 
oin
ide on di�erent levels, but a
oarse edge is 
omposed of several subedges on �ner s
ales in
reasing the 
omplex-ity by some exponential term. Hen
e the adaptive s
heme with both exa
t 
ux andsour
e re
onstru
tion is useless for pra
ti
al purposes. However we will employ itin our analysis of a modi�ed adaptive s
heme based on approximate 
ux and sour
ere
onstru
tion des
ribed below. There the modi�ed adaptive s
heme is 
onsidered asa perturbation of the original adaptive s
heme.Adaptive grid. Alternatively to the evolution of the multis
ale 
oeÆ
ients wemight evolve the 
ell averages a

ording to (3.1) on a lo
ally re�ned grid 
hara
terizedby the index set G � f(l; k) ; k 2 Il; l = 0; : : : ; Lg, i.e., 
 = S(l;k)2G Vl;k whi
h is
omputed from D = ~Dn+1. For this purpose we have to assume that D is a gradedtree of degree q = 1, i.e., the relation(l; k) 2 D ) (l � 1; r) 2 D; r = bk=2
 � q; : : : ; bk=2
+ q; (3.11)holds for any l 2 f1; : : : ; L � 1g. Then G 
an be determined re
ursively. For thispurpose the index set G is initialized by all indi
es of the 
oarsest dis
retization.Then, traversing through the levels from 
oarse to �ne we pro
eed as follows: if(l; k) 2 D then the 
ell Vl;k is lo
ally re�ned, i.e., the index (l; k) is removed from Gand the indi
es of the sub
ells on the �ner level are added to G. Finally we obtainthe lo
ally adapted grid whi
h naturally 
orresponds to the leaves of the graded treeof signi�
ant details. However, for analyti
al purposes it is more 
onvenient to writethe evolution pro
ess in terms of the multis
ale 
oeÆ
ients.4. Approximate 
ux and sour
e approximation strategies. In order toimprove the eÆ
ien
y of the adaptive s
heme we present a new strategy how to 
om-pute the numeri
al 
uxes and sour
es on lo
al s
ales. It is essentially based on poly-nomial re
onstru
tion te
hniques as have been introdu
ed in [15℄. Then the basi
 ideais to 
ompute missing data on the �nest s
ale by evaluation of re
onstru
tion poly-nomials instead of lo
ally performing the inverse multis
ale transformation. Froma pra
ti
al point of view, it is suÆ
ient to introdu
e only the modi�ed 
uxes andsour
es needed to perform the evolution (3.1) of the 
ell averages 
orresponding tothe adaptive grid G. However, the error analysis relies on the evolution pro
ess (3.1),(3.3) of the multis
ale 
oeÆ
ients 
orresponding to the set D. In this 
ase we haveto 
ompute additional numeri
al 
uxes and sour
es. To ensure equivalen
e of the twoevolution pro
esses when applying the inverse MST (2.7) to (3.1), (3.3) we need a
onsistent 
omputation of the 
uxes and sour
es.



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 9Polynomial re
onstru
tion. For ea
h 
ell Vl;k in the adaptive grid, i.e., (l; k) 2G, we 
ompute a re
onstru
tion polynomial RNl;k 2 �N of degree N su
h that1jVl;r j ZVl;r RNl;k(x) dx = vnl;r; 8r 2 Sl;k; (4.1)where Sl;k � Il denotes the re
onstru
tion sten
il to be spe
i�ed below. From thesepolynomials we 
an 
al
ulate re
onstru
ted averageswnL;2L�lk+r := 1jVL;2L�lk+r j ZVL;2L�lk+r RNl;k(x) dx (4.2)for all 
ells VL;r � Vl;k, i.e., r 2 f2L�lk; : : : ; 2L�l(k+1)�1g. Note that the re
onstru
-tion polynomial RNl;k 
an be 
omputed by solving the linear system established by there
onstru
tion 
onditions (4:1). Alternatively, it 
an be determined via re
onstru
tionof the primitive fun
tion, 
f. [15℄. For this purpose assume that Sl;k = fk; : : : ; k+Ngwith k � N � k � k. Then determine the interpolation polynomial QN+1l;k of theprimitive fun
tion by the interpolation 
onditionQN+1l;k (xl;k0 ) =Wl;k0 ; k0 2 fk; : : : ; k +N + 1g (4.3)where Wl;k0+1 := Wl;k0 + hlvl;k0 ; Wl;k := hlPr<k vl;r. Finally, the re
onstru
tionpolynomial is determined by RNl;k(x) := ddxQN+1l;k (x): (4.4)Approximate 
ux re
onstru
tion. Before des
ribing the new 
ux 
omputa-tion we need to determine the 
ell interfa
es where we have to 
ompute a numeri
al
ux. For this purpose, we �rst 
onsider the evolution pro
ess (3.1) on the adaptivegrid 
hara
terized by the index set G. For ea
h 
ell Vl;k ; (l; k) 2 G, the 
uxes Fnl;kand Fnl;k+1 have to be 
omputed. The union of these interfa
es is determined by theset FG := S(l;k)2Gf(l; k); (l; k+1)g, for an illustration see Fig. 4.1, interfa
es markedby � and Æ. Sin
e xl;k = xl+1;2k , we have to avoid in
onsistent 
omputations of the
uxes Fl;k and Fl+1;2k. For this purpose, we put Fl;k = Fl+1;2k, i.e., inje
tion fromhigher s
ales. This pro
edure is motivated by the derivation of the adaptive s
hemea

ording to Se
tion 3. Hen
e, only at interfa
es related to the setFG := f(l; k) 2 FG j (l + 1; 2k) 62 FGgthe 
uxes are 
al
ulated from the numeri
al 
ux fun
tion F : R2p $ R. In Fig. 4.1these interfa
es are marked by �.On the other hand, in the evolution pro
ess (3.2), (3.3) of the multis
ale 
oeÆ-
ients we a

ess to the 
uxes Fnl;k determined by the setFD := [(l;k)2D [r2M1l;kf(l + 1; r); (l + 1; r + 1)g [ [k2I0f(0; k); (0; k + 1)g � FG :For an illustration see Fig. 4.2, interfa
es marked by � and Æ. Sin
e FD � FG , wehave to provide the 
ux 
omputation for all indi
es (l; k) 2 FD. Here we have todistinguish three 
ases: (i) if (l; k) 2 FG the 
ux is 
omputed by the numeri
al 
uxfun
tion F with respe
t to the re
onstru
ted averages (4.2), i.e.,�Fnl;k = F (wnL;2L�lk�p; : : : ; wnL;2L�lk+p�1); (4.5)



10 N. HOVHANNISYAN AND S. M�ULLER(ii) if (l; k) 62 FG , but there already exists a 
ux on a higher s
ale, i.e., (j; 2j�lk) 2 FGfor one j 2 fl + 1; : : : ; Lg, then we a

ess to this value, i.e., the 
ux is 
omputed byinje
tion from above �Fnl;k = �Fnj;2j�lk; (4.6)(iii) if neither (4.5) nor (4.6) does apply, then there exists j0 = maxfj j (j; 2j�lk) 2FDg and the 
ux is 
omputed by inje
tion from below�Fnl;k = �Fnj0;2j0�lk = F (wnL;2L�j0k�p; : : : ; wnL;2L�j0k+p�1): (4.7)In this 
ase the de�nition of the 
ux is somewhat arbitrary. In prin
iple, any j0 �maxfj j (j; 2j�lk)g 2 FD is admissible. We only have to make sure that for anyinterfa
e xl;k = xl+1;2k = : : : = xL;2L�lk there is a unique value. Note that the third
ase only be
omes e�e
tive if (l; k) 2 FDnFG , i.e., when performing the evolutionpro
ess (3.2), (3.3) for the multis
ale 
oeÆ
ients.
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Fig. 4.1. Evolution pro
ess on adaptive grid: G indi
ated by 
ell midpoints �, set FG ofinterfa
es � with 
ux 
omputation and set FGnFG of interfa
es Æ with 
ux 
omputation by inje
tion.Sour
es have only to be 
omputed for the 
ells of the adaptive grid determined by G.� � � � � � � � �Æ Æ Æ Æ? ? ? ?� � � � � � � � l = 0l = 1l = 2

� � � � � � � � �ÆÆ Æ Æ ÆÆ Æ Æ ÆÆ Æ ÆÆÆ? ? ? ?? ?6 6 6 6� � � � � � � �� � � � l = 0l = 1l = 2AAAU ���� AAAU �������R ���	 ���R ���	����AAAK ����AAAK�������I �������I

� � � � � � �Æ Æ? ?� � � � � � ll + 1k � 2 k � 1 k k + 1 k + 22k 2k + 1
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Fig. 4.2. Evolution pro
ess of multis
ale 
oeÆ
ients: G indi
ated by 
ell midpoints �, set Dof 
ells with signi�
ant details �, set FG of interfa
es � with 
ux 
omputation and set FDnFG ofinterfa
es Æ with 
ux 
omputation by inje
tion; here s = 1. Sour
es have not only to be 
omputedfor G but are also a

essed for SD n SG . The latter are determined by weighted inje
tion.Approximate sour
e re
onstru
tion. For the sour
e 
omputation we haveto avoid the 
omplexity of the referen
e mesh that is involved in the exa
t sour
ere
onstru
tion (3.5) due to the de�nition of the 
ell averages and the nestedness ofthe grid hierar
hy. To over
ome this obstru
tion we employ some quadrature rulemXi=0 wif(xi) = ZVl;k f(x) dx+Ef (hl) (4.8)determined by the nodes xi 2 Vl;k and the weights wi, i = 0; : : : ;m; depending on 
ellVl;k . The error Ef (hl) is assumed to be bounded up to some 
onstant byjEf (hl)j<� h�+1l supx2Vl;k jf (�)(x)j (4.9)



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 11for some integer � = �(m) � 1, for instan
e one 
an use a Newton-Cotes formula. Thisquadrature formula is then applied to the sliding average Vl;k(x) of the re
onstru
tionpolynomial RNl;k determined byVl;k(x) := 1hL Z x+hL=2x�hL=2RNl;k(z) dz = 1hL �QN+1l;k (x+ hL=2)�QN+1l;k (x� hL=2)� :(4.10)In the 
ourse of the evolution pro
ess (3.1) on the adaptive grid we then 
ompute thesour
es for (l; k) 2 G � SG by�Snl;k = 1hl mXi=0 wi S(Vl;k(xi)): (4.11)In the evolution pro
ess (3.2), (3.3) of the multis
ale 
oeÆ
ients, see Fig. 4.2, wea

ess to the following sour
esSD = [(l;k)2D [r2M1l;kf(l + 1; r)g [ [k2I0f(0; k)g � SG :In
onsistent 
omputation of sour
es Sl�1;bk=2
, Sl;k and Sl+1;2k, Sl+1;2k+1 on di�erentlevels has to be avoided. For this purpose, we distinguish between two 
ases: If therealready exist sour
es on higher s
ales, i.e., (j; 2j�lk) 2 SD for a j 2 fl + 1; : : : ; Lg,then we a

ess to these values. Sin
e we are now dealing with averages instead ofpoint values we have to average these values, i.e.,�Snl;k = 2l�j 2j�l�1Xi=0 �Snj;2j�lk+i: (4.12)Finally, if neither (4.11) nor (4.12) does apply, then there exists j 2 f0; : : : ; l�1g su
hthat (j; bk=2l�j
) 2 G. In this 
ase the sour
e is 
omputed by inje
tion from belowand the exa
t sour
e re
onstru
tion (3.5)�Snl;k = �Snj;bk=2l�j
 � �Snj;bk=2l�j
 + �Sl;k: (4.13)Note that this 
ase is only applied for evolving the multis
ale 
oeÆ
ients. In pra
ti
e,the 
ell averages 
orresponding to the adaptive grid are evolved. We only need this
ase for analyti
al purposes. Note also that we are somewhat free in the de�nition of�Snl;k in this 
ase. We only have to satisfy the 
onstraint2j�l 2l�j�1Xi=0 �Snl;2l�jbk=2l�j
+i = �Snj;bk=2l�j
:Obviously, this 
ondition holds true for our de�nition as 
an be 
on
luded from (3:5).Equivalen
e of evolution step. From Fig. 4.1 and 4.2 we 
on
lude that FG �FG � FD and SG � SD, respe
tively. We have to ensure that the evolution equation(3.1) of the 
ell averages are identi
al to the evolution equations (3.2), (3.3) to whi
hwe apply the inverse MST (2.7). In 
ase of the exa
t 
ux and sour
e re
onstru
tionthe equivalen
e is obvious, be
ause all 
uxes and sour
es are 
omputed on the �nestlevel. To ensure the equivalen
e in 
ase of approximate 
ux and sour
e re
onstru
tion



12 N. HOVHANNISYAN AND S. M�ULLERsome 
uxes in FD are not 
al
ulated from the numeri
al 
ux fun
tion or taken fromhigher s
ales, see "#" in Fig. 4.1, but from lower s
ales, see """ in Fig. 4.2. Similarly,we note that some sour
es in SD are not 
al
ulated from the numeri
al sour
e fun
tionor taken from higher s
ales, see " & " and " . " in Fig. 4.2, but from lower s
ales,see "- " and "% " in Fig. 4.2.Proposition 4.1. The approximate 
ux and sour
e re
onstru
tion strategy (4.5),(4.6), (4.7) and (4.11), (4.12), (4.13) ensure equivalen
e of the evolution steps (3.1)and (3.2), (3.3)), respe
tively.Proof. To prove this equivalen
e we 
on�ne ourselves without loss of generalityto the situation sket
hed in Fig. 4.3. The data of the adaptive grid, here vl+1;2k+i,i = 0; 1, are evolved a

ording to (3.1)vn+1l+1;2k+i = vnl+1;2k+i � �hl+1 (Fnl+1;2k+i+1 �Fnl+1;2k+i)+ � �Snl+1;2k+i; i = 0; 1: (4.14)Alternatively, we evolve vl;r, r 2 G0l;2k+i and dl;r, r 2 G1l;2k+i a

ording to (3.2), (3.3)vn+1l;r = vnl;r � �hl �Fnl;r+1 � Fnl;r�+ � �Snl;r= vnl;r � �hl+1 Xs2M0l;rml;0s;r(Fnl+1;s+1 � Fnl+1;s) + � Xs2M0l;rml;0s;r �Snl+1;s; (4.15)dn+1l;r = dnl;r � �hl+1 Xs2M1l;rml;1s;r(Fnl+1;s+1 � Fnl+1;s) + � Xs2M1l;rml;1s;r �Snl+1;s: (4.16)We then verify that applying the inverse MST (2.7) to (4.15) and (4.16) results in(4.14). This follows immediately from the reversibility of the multis
ale de
omposi-tion.
� � � � � � � � �Æ Æ Æ Æ? ? ? ?� � � � � � � � l = 0l = 1l = 2

� � � � � � � � �ÆÆ Æ Æ ÆÆ Æ Æ ÆÆ Æ ÆÆÆ? ? ? ?? ?6 6 6 6� � � � � � � �� � � � l = 0l = 1l = 2AAAU ���� AAAU �������R ���	 ���R ���	����AAAK ����AAAK�������I �������I

� � � � � � �Æ Æ? ?� � � � � � ll + 1k � 2 k � 1 k k + 1 k + 22k 2k + 1

� � � � � � �Æ ÆÆ Æ Æ Æ? ?6 6� � � � � �� ll + 1k � 2 k � 1 k k + 1 k + 22(k � s) 2k � 1 2k 2k + 1 2k + 2 2(k + s) + 1JJĴ 
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Fig. 4.3. Evolution on adaptive grid G indi
ated by 
ell midpoints �, set FG of interfa
es �with 
ux 
omputation and set FGnFG of interfa
es Æ with 
ux 
omputation by inje
tion.
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Fig. 4.4. Evolution on tree D of 
ells with signi�
ant details � and 
oarse s
ale 
ells, adaptivegrid G indi
ated by 
ell midpoints �, set FG of interfa
es � with 
ux 
omputation and set FDnFGof interfa
es Æ with 
ux 
omputation by inje
tion; here s = 1.5. Error analysis. The obje
tive of the proposed adaptive s
heme is to redu
efor a given FVS 
omputational 
ost and memory requirements while preserving thea

ura
y of the referen
e s
heme. Hen
e, the error has to be 
onsidered for data onthe referen
e mesh rather than on the adaptive grid. To prolongate the data fromthe adaptive grid to the referen
e grid we employ the multis
ale representation (2.10)



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 13where we put the non-signi�
ant details to zero. In order to quantify the error weintrodu
e the averages ûnL of the exa
t solution, the averages vnL determined by theFVS and the prolongated averages vnL of the adaptive s
heme.An ideal strategy would be to pres
ribe an error toleran
e tol. Then the numberof re�nement levels L should be determined during the 
omputation su
h that theerror meets the toleran
e, i.e., kûnL � vnLk � tolfor possibly small L. Here k � k denotes an appropriate norm to be spe
i�ed below.Sin
e no error estimator is available for the adaptive s
heme, we split the error intotwo parts 
orresponding to the dis
retization error �nL := ûnL � vnL of the referen
eFVS and the perturbation error enL := vnL � vnL, i.e.,kûnL � vnLk � k�nLk+ kenLk � tol: (5.1)We now assume that there is an a priori error estimate of the dis
retization error, i.e.,�nL � h�L where hL denotes the spatial step size and � the order of 
onvergen
e. Thenwe ideally would determine the number of re�nement levels L su
h that h�L � tol. Inorder to preserve the a

ura
y of the referen
e FVS we now may admit a perturbationerror whi
h is proportional to the dis
retization error, i.e., kenLk � k�nLk. From thiswe 
on
lude L = L(tol; �) and " = "(L): (5.2)Therefore it remains to verify that the perturbation error 
an be 
ontrolled. Note, thatin ea
h time step we introdu
e an error due to the threshold pro
edure. Obviously,this error a

umulates in ea
h step, i.e., the best we 
an hope for is an estimate ofthe form kenLk � C n":However, the threshold error may be ampli�ed in addition by the evolution step. Inorder to 
ontrol the 
umulative perturbation error we have to prove that the 
onstantC is independent of L, n, � and ". For this purpose we will 
onsider the followingissues in more detail, namely, (i) the uniform boundedness of the perturbation error,(ii) the reliability of the predi
tion pro
edure and (iii) the error of the approximate
ux and sour
e re
onstru
tion.5.1. Perturbation error. In a �rst step we verify the uniform boundedness ofthe perturbation error between the referen
e FVS and the adaptive MR-FVS in theweighted l1-metri
 kvLk := hLPk2IL jvL;kj on the referen
e grid. This metri
 is equalto the L1-norm of a pie
ewise 
onstant fun
tion. Sin
e the s
hemes are de�ned on thereal axis in order to avoid boundary 
onditions, the set IL is 
ountable. To ensureboundedness of the weighted L1-norm we therefore will always 
on�ne ourselves toan arbitrary but �xed 
ompa
t set [a; b℄ and IL is 
hosen su
h that [k2ILVL;k � [a; b℄with NL := #IL < 1. Due to dyadi
 grid re�nement we have Nl = 2Nl�1 = 2lN0and hl = 2hl+1 = 2L�lhL, respe
tively. Con�ning ourselves to a 
ompa
t set isjusti�ed by 
onsidering 
ompa
tly supported initial data u0. Then by the �nite speedof propagation the solution is 
ompa
tly supported too. Moreover, 
onvergen
e of thereferen
e s
heme is typi
ally veri�ed in the L1lo
-norm.In order to investigate the perturbation error we introdu
e the evolution operatorsEL of the referen
e FVS and �EL;D, �EL;D of the adaptive MR-FVS 
orresponding to the



14 N. HOVHANNISYAN AND S. M�ULLERadaptive grid G(D) with exa
t and approximate 
ux and sour
e re
onstru
tion, respe
-tively. These are determined by (3.6) and (3.9). Note that for analyti
al purposes it is
onvenient to 
onsider the evolution operators in the multis
ale representation (2.8).Then the s
hemes 
an be represented in operator form as vn+1L = ELvnL (referen
eFVS), vn+1L = A" �EL; ~Dn+1A ~Dn+1vnL (adaptive MR-FVS with exa
t re
onstru
tion) and�vn+1L = A" �EL; ~Dn+1A ~Dn+1 �vnL (adaptive MR-FVS with approximate re
onstru
tion).Comparing the evolution operators of the referen
e s
heme and the adaptives
heme with exa
t 
ux and sour
e re
onstru
tion we 
on
lude that the latter 
anbe interpreted as the referen
e s
heme to whi
h we apply the approximation operatorA ~Dn+1 , i.e., �EL; ~Dn+1A ~Dn+1vnL = A ~Dn+1ELvnL (5.3)provided that vnL is the result of the adaptive s
heme based on exa
t 
ux re
on-stru
tion, i.e., A ~Dn+1vnL = A"vnL = vnL and Dn � ~Dn+1. Now we 
an estimate theperturbation error.Theorem 5.1. (Uniform boundedness of perturbation error) Let the followingassumptions hold true:(A1) the approximation error is uniformly bounded, i.e., kuL �A" uLk � C1 ";(A2) 
ux and sour
e re
onstru
tion is a

ura
y preserving, i.e.,kEL; ~Dn+1A ~Dn+1�vnL � �EL; ~Dn+1A ~Dn+1 �vnLk � C2 ";(A3) the referen
e FVS is essentially l1-
ontra
tive, i.e.,kELuL � ELvLk � (1 + C3 �) kuL � vLk;(A4) the predi
tion is reliable in the sense of (3:7), i.e.,kA ~Dn+1EL�vnL�EL�vnLk � C4";(A5) the initial data are 
onsistent, i.e., kv0L � �v0Lk � C5 ".Then the perturbation error is bounded bykenLk = kvnL � �vnLk � C "� (5.4)for n � � T where C is independent of L, n, � and ".Proof. In a �rst step we split the perturbation error into its di�erent 
ontribu-tions 
orresponding to the 
ontra
tion of the referen
e FVS (A3), the reliability ofpredi
tion, the error of the 
ux re
onstru
tion (A2) and the threshold error (A1), i.e.,kenLk � kELvn�1L � EL�vn�1L k+ an�1 + bn�1 + 
n�1withan�1 := kEL�vn�1L �A ~DnEL�vn�1L k; bn�1 := k �EL; ~DnA ~Dn�vn�1L � �EL; ~DnA ~Dn �vn�1L k;
n�1 := k �EL; ~DnA ~Dn �vn�1L �A" �EL; ~DnA ~Dn�vn�1L k:Here we use (5.3), i.e., the adaptive s
heme with exa
t 
ux and sour
e re
onstru
tion
an be interpreted as the referen
e s
heme to whi
h we apply the approximationoperator. This is admissible be
ause A"�vn�1L = �vn�1L a

ording to the de�nition ofthe adaptive s
heme.Then the �rst term is estimated by the 
ontra
tion property of the referen
es
heme (A3); the se
ond term by the approximation property (A4), where we assumethat the predi
tion strategy is reliable; the third term by the a

ura
y preserving
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ux re
onstru
tion and the fourth term by the approximationproperty (A1). Hen
e the perturbation error 
an be further estimated bykenLk � ken�1L k (1 + C3 �) + (C1 + C2 + C4) ":By re
ursion we obtain furtherkenLk � ke0Lk (1 + C3 �)n + " (C1 + C2 + C4) n�1Xi=0(1 + C3 �)i:Setting C := max(C1 + C2; C5) we �nally 
on
ludekenLk � "C (1 + C3 �)n+1 � 1C3 � � "C eC3 (n+1) � � 1C3 �in 
ase of C3 6= 0 and kenLk � "C (n+ 1) ��if the FVS is l1{
ontra
tive, i.e., C3 = 0. Sin
e the maximal number of time steps isbounded by n � T=� for a bounded time interval [0; T ℄, T <1, the assertion follows.A similar result has been proven for the adaptive MR-FVS with exa
t 
ux re
on-stru
tion, 
f. [18℄ (Theorem 5, p. 91) or [9℄. Here the original MR-FVS is only usedas an intermediate value, i.e., in ea
h time step the data of the modi�ed MR-FVSs
heme are used instead of the data of the original MR-FVS from the previous timestep. One might introdu
e the adaptive s
heme with exa
t 
ux approximation wherethe time evolution is always performed on its own data, i.e., �vnL = A" �EL; ~DnA ~Dn�vn�1;where ~Dn = ~Dn(�vn�1L ). Then in the proof of Theorem 5.1 the predi
tion sets for vnLand �vnL would be di�erent be
ause ~Dn(vn�1L ) 6= ~Dn(�vn�1L ).From Theorem 5.1 and (5.1) we immediately 
on
lude that the a

ura
y of thereferen
e FVS is preserved provided that " is 
hosen suÆ
iently small.Corollary 5.2. (Choi
e of threshold parameter) If the dis
retization error ofthe referen
e FVS is bounded by kûnL � vnLk1;L � C 2��L for some � > 0, then thea

ura
y is preserved by the adaptive s
heme provided that " � 2�(1+�)L and the timestep � is limited by a CFL 
onstraint.The usefulness of Theorem 5.1 
ru
ially depends on the veri�
ation of the as-sumptions (A1) | (A5). The 
onvergen
e of the subdivision s
heme implies theboundedness of the approximation error in the weighted l1-metri
. This follows byTheorem 2.1. Furthermore, for s
alar 
onservation laws in 1D there exist (essentially)l1{
ontra
tive s
hemes, 
f. [11℄. Con
erning the 
onsistent dis
retization of the initialdata a natural 
hoi
e is given by the approximation operator, i.e., �v0L := A"v0L. Itremains to verify (i) the reliability 
ondition for the evolution of the adaptive MR-FVS with exa
t re
onstru
tion and (ii) the boundedness of the error between timeevolution using exa
t and approximate re
onstru
tion, respe
tively. These issues willbe addressed in the following two se
tions.5.2. Reliability of Predi
tion. In [9℄ the reliability 
ondition (3.7) was veri-�ed for the adaptive MR-FVS with exa
t 
ux re
onstru
tion in 
ase of a homogeneous
onservation law for a spe
ial predi
tion strategy to be summarized below. It needs



16 N. HOVHANNISYAN AND S. M�ULLERto be slightly modi�ed to take into a

ount sour
e terms via exa
t sour
e re
onstru
-tion. In addition, we have to 
onsider that in ea
h time step the original adaptiveMR-FVS is applied to the data of the modi�ed MR-FVS with approximate 
ux andsour
e re
onstru
tion. For this purpose we �rst have to des
ribe the predi
tion strat-egy developed in [9℄, see Se
. 5.2.1. Then we have to verify the l1-stability of themodi�ed adaptive MR-FVS with approximate re
onstru
tion, see Se
. 5.2.2. Finallywe 
an prove the reliability 
ondition for the original adaptive MR-FVS with exa
tre
onstru
tion applied to the data of the modi�ed s
heme, see Se
. 5.2.3.5.2.1. Predi
tion strategy. For simpli
ity of representation we introdu
e the
onvention dl;k;0 � vl;k and dl;k;1 � dl;k for the averages and the details, respe
tively.The basi
 idea is to determine all 
oeÆ
ients dn+1l0;k0;e0 , e0 2 E, on the new time levelwhi
h are in
uen
ed by a 
oeÆ
ient dnl;k;e, e 2 E, on the old time level. This set isreferred to as the in
uen
e set Dl;k;e. Then we are nesting the 
oeÆ
ients dnl;k;e givenat the old time level and �nally determine the predi
tion set ~Dn+1.In
uen
e set. To determine the set Dl;k;e we �rst have to 
ompute the rangeof in
uen
e �l;k;e of the 
oeÆ
ient dnl;k;e and the domain of dependen
e ~�l0;k0;e0 ofthe 
oeÆ
ient dn+1l0;k0;e0 . In the range of in
uen
e we 
olle
t all averages vnL;r, that arein
uen
ed by the detail dnl;k;e whereas the domain of dependen
e 
ontains all averagesvn+1L;r on whi
h the 
oeÆ
ient dn+1l0;k0;e0 depends. A

ording to the setting in Se
. 2 thesesets turn out to be~�l;k;0 = f2L�lk; : : : ; 2L�l(k + 1)� 1g = �l;k;1;�l;k;0 = f2L�l(k � 2s) + 2s; : : : ; 2L�l(k + 2s+ 1)� (2s+ 1)g; (5.5)~�l;k;1 = f2L�l(k � s); : : : ; 2L�l(k + s+ 1)� 1g:Note that the index sets ~�l0;k0;e0 � IL and �l;k;e � IL 
orrespond to data on thereferen
e mesh but for di�erent time level n+1 and n, respe
tively. By the evolutionpro
ess (3.9) with exa
t re
onstru
tion (3.4) and (3.5) the domain of dependen
ehas to be extended taking into a

ount the sten
il of numeri
al 
ux F and sour
e Sdetermined by (1.4) and (1.5), respe
tively, i.e.,~��l0;k0;e0 := [r2~�l0;k0;e0fr � p; : : : ; r + pg: (5.6)Then the in
uen
e set is determined byDl;k;e = f(l0; k0; e0) 2 D ; ~��l0;k0;e0 \ �l;k;e 6= ;g:Nesting of 
oeÆ
ients. The predi
tion strategy has to take into a

ount thatthe 
oeÆ
ients dnl;k;e may not only 
ause a perturbation in the neighborhood of the
ell Vl;k be
ause of the time evolution but may also in
uen
e 
oeÆ
ients dn+1l0;k0;e0 onhigher s
ales, where l0 > l+ 1 is admissible. Sin
e the additional higher levels in
atethe in
uen
e set, we would like to bound the number of higher levels to a minimumnumber. For this purpose we introdu
e the nesting of details where we �x some� > 1 and assign to ea
h 
oeÆ
ient 
orresponding to (l; k; e) 2 Dn a unique index� = �(l; k; e) su
h that 2�(l;k;e) � "l < jdnl;k;ej � 2(�(l;k;e)+1) � "l: (5.7)
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Fig. 5.1. Illustration of the range of in
uen
e (left) and the range of dependen
e (right) for asigni�
ant detail (l; k) 2 D indi
ated by the 
ell midpoints � with grading parameter q = 1.We will see later on that the parameter � is linked to the smoothness of the primalwavelet fun
tions, see Theorem 2.1. Sin
e the index �(l; k; e) be
omes the smaller thelarger � is, it is 
onvenient to 
hoose � as large as possible.Predi
tion set. From the in
uen
e set Dl;k;e and the nesting of 
oeÆ
ients wedetermine the predi
tion set~Dn+1 := Dn [ [(l;k;e)2Dnf(l0; k0; e0) 2 Dl;k;e ; l0 � l + �(l; k; e)g (5.8)with Dn := Dn [ f(0; k; 0) ; k 2 I0g. For 
omputational but also analyti
al purposeswe in
ate this set additionally where we apply the grading pro
edure (3.11). Forinstan
e, the grading ensures that the lo
al multis
ale transformation (2.3), (2.6)and (2.7), respe
tively, 
an be realized by one sweep through the re�nement levelsprovided the grading parameter q is 
hosen su
h that q � s, see [18℄, p. 36. By thegrading pro
edure a signi�
ant detail (l; k) 2 D will 
ause all details on lower s
alesj = l� 1; : : : ; 1 in the range of in
uen
e �G;(j)l;k � Ij to be put signi�
ant independentof their value. On the other hand, for all non-signi�
ant details (l; k) 62 D the gradingensures that all details on higher s
ales j = l + 1; : : : ; L� 1 in the range of in
uen
e~�G;(j)l;k � Ij 
an not be signi�
ant otherwise (l; k) 2 D. A

ording to our setting inSe
. 2 the range of in
uen
e and dependen
e, respe
tively, 
an be estimated by��G;(j)l;k � f�k=2l�j�� 2l�j�1q; : : : ; �k=2l�j�+ 2l�j�1qg;~�G;(j)l;k � f2j�l(k � q)� (2j�l � 2)q; : : : ; 2j�l(k + q) + (2j�l � 2)q + 2j�l � 1g:Note that the grading will in
ate the predi
tion set but does not deteriorate theoverall 
omplexity.5.2.2. l1-stability of modi�ed adaptive MR-FVS. To prove reliability ofthe predi
tion set ~Dn+1 of the original MR-FVS determined by the data �vnL of themodi�ed MR-FVS we have to verify that �vnL is uniformly bounded in the sup-norm.Therefore we need the reliability of ~D� , � = 0; : : : ; n. This re
ursive proof is initializedby the proper 
omputation of the initial data su
h that ~D0 = D0. We emphasize thatin the 
ourse of the re
ursion all 
onstants have to be uniform, i.e., they do not dependon L, n, � and ", respe
tively.Lemma 5.3. (Boundedness of adaptive FVS in sup{norm) Assume that the fol-lowing 
onditions hold true:(A6) the subdivision s
heme 
onverges uniformly in the sup{norm;(A8) the referen
e FVS is stable in l1, i.e., kEL vLkl1 � (1 + C �) kvLkl1 ;(A9) the error of the initial data approximation 
an be estimated byk�v0L � v0Lkl1 � C "=� and kv0L � û0Lkl1 � C "=� ,where û0L denotes the averages of the initial data;



18 N. HOVHANNISYAN AND S. M�ULLER(A10) the threshold values are determined by "j = 2j�L " with " � 2�(1+�)L for some� > 0;(A11) the CFL 
ondition holds on the �nest resolution level, i.e., � � 2�L.Then the approximation �vnL 
orresponding to the adaptive FVS with approximate 
uxre
onstru
tion is uniformly bounded in the sup{norm, i.e.,k�vnLkl1 � C(T; u0) for n � � T; (5.9)provided that the predi
tion set ~D� satis�es the reliability property (3.7) and the errorof the approximate 
ux and sour
e re
onstru
tion is bounded, i.e.,(A7) k �EL; ~D� A ~D� �v��1L � �EL; ~D� A ~D� �v��1L kl1 � C"for all previous time steps 0 � � � n.Sket
h of proof. A similar result has been proven for the original adaptive MR-FVS with exa
t 
ux re
onstru
tion, 
f. [18℄ (Lemma 8, p. 102) or [9℄. However, thesplitting of the error has to be modi�ed taking into a

ount the additional errorbetween exa
t and approximate 
ux and sour
e re
onstru
tion. Hen
e, we start fromk�vnLkl1 �kA" �EL; ~Dnwn�1L � �EL; ~Dnwn�1L jjl1 + k �EL; ~Dnwn�1L � �EL; ~Dnwn�1L kl1 +k �EL; ~Dnwn�1L � EL �vn�1L kl1 + kEL�vn�1L kl1with wn�1L := A ~Dn�vn�1L . The terms of the right-hand side 
an be estimated by theassumptions and Theorem 2.1 resulting ink�vnLkl1 � (1 + C �) k�vn�1L kl1 + �C":Then the assertion follows by a dis
rete Cronwall inequality and assumption (A9) onthe approximation of the initial data. The details are given in Appendix 7.1.Note that an (essentially) l1� 
ontra
tive and l1-stable s
heme, see (A3) inTheorem 5.1 and (A8) in Lemma 5.3, is known to 
onverge to a weak solution of theinitial value problem (1.1), (1.2), 
f. [11℄.5.2.3. Reliability. Finally we 
an prove the reliability 
ondition for the origi-nal adaptive MR-FVS with exa
t re
onstru
tion applied to the data of the modi�eds
heme and, hen
e, assumption (A4) in Theorem 5.1. The proof is similar to the onepresented in [9℄, [18℄ in 
ase of a homogeneous 
onservation law. We therefore willomit the details of the proof but will summarize the main steps whi
h are neededlater on in Se
. 5.3. Starting point is the observation that we 
an 
on�ne ourselves tothe evolution equations on the referen
e mesh be
ause of the identity (5.3) and thedetails 
an be rewritten in terms of �nite di�eren
es of orderM (number of vanishingmoments) �MK uL;k := MXi=0(�1)i�Mi �uL;k+iK (5.10)with sten
il S(M;K; k) := fk + iK : i = 0; : : :Mg � IL; (5.11)
f. [9℄, [18℄, Lemma 7, p. 99. Then the details 
an be estimated by



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 19Lemma 5.4. (Estimate of details by �nite di�eren
es) Let k 2 Z, l 2 f0; : : : ; L�1g and K := 2L�l�1. Furthermore, let M denote the number of vanishing momentsof the modi�ed box wavelet. Then the details dl;k 
an be estimated byjdl;kj � C supfj�MK uL;rj ; r 2 IL s. t. S(M;K; r) � ~�l;k;1g; (5.12)where the 
onstant C is independent of l and k.For a proof see [18℄, Proposition 4, p. 101.Due to the evolution equation the �nite di�eren
e operator is also applied tothe numeri
al 
ux balan
es and sour
es, respe
tively. These 
an be 
onsidered as
omposite fun
tions G := g Æ u. The derivatives of the 
omposite fun
tion G 
anbe written in a series of derivatives of g and u, respe
tively, su

essively applyingthe 
hain rule. Then the main idea is to derive a dis
rete 
ounterpart by whi
h�nite di�eren
es of the nonlinear fun
tion G are estimated by �nite di�eren
es of theaverages. For this purpose, the following assumption has to hold for G:Assumption 1. Let D � Rp be a bounded domain of admissible states. Then thenonlinear fun
tion G : Rp 7�! R is assumed to be regular in the following sense:1.) G is pie
ewise smooth, i.e., there are open subsets Di � D; i = 1; : : : ;K,with D = SKi=1Di, su
h that G 2 CR(Di);2.) G is lo
ally Lips
hitz{
ontinuous on D;3.) the derivatives of G 
an be extended 
ontinuously to the boundary �Di su
hthat supv2Di �kG�k1v1 � � � �kpvp (v) � Ckfor k =Ppi=1 ki; k 2 f0; : : : ; Rg.This assumption has to hold for the numeri
al 
ux fun
tion F : R2p 7�! R as well asthe numeri
al sour
e fun
tion S : R 7�! R.Lemma 5.5. (Finite di�eren
es for 
omposite fun
tions) Let the assumptions ofLemma 5.3 hold and assume that the nonlinear fun
tion G satis�es Assumption 1.Introdu
ingDN (vL;K;�) := sup �j�NK vL;k0 j ; S(N;K; k0) � �	 andI(R) := �(j;k) ; j 2 f1; : : : ; RgR; k 2 f0; : : : ; RgR; XRr=1 jr kr = R� ; (5.13)we obtainDR(GnL;K; ~�l;k;1) � C sup �YRr=1(Djr (�vnL;K; ~��l;k;1))kr ; (j;k) 2 I(R)� : (5.14)The proof 
an be found in [9℄ or [18℄, Proposition 5, p. 104 in 
ase of the numeri
al
ux balan
es. It 
an also be applied to the numeri
al sour
e fun
tion.In order to further estimate the �nite di�eren
es on the right hand side in (5.12)and (5.14) we need a dis
rete inverse estimate, i.e., we have to estimate the �nitedi�eren
es by details.Lemma 5.6. (Dis
rete inverse estimate) Let K 2 N be an arbitrary step size.Assume that the subdivision s
heme 
onverges uniformly in the sup{norm and the
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orresponding primal wavelets  j;k are in Cr. For N > 0 we obtainj�NK �vnL;k0 j � C L�1Xl=�1minf2�L+l+1K; 1gminfN;rg supfj �dnl;kj ; �l;k \ S(N;K; k0) 6= ;g;(5.15)where �dn�1;k := �vn0;k, ��1;k := �0;k;0 and �l;k := �l;k;1 for l = 0; : : : ; L� 1.The 
onvergen
e of the subdivision s
heme ensures the existen
e of the primal fun
-tions, see Theorem 2.1, and the uniform boundedness of the approximation error(2.11). Due to the dyadi
 grid re�nement the limit fun
tions are re�nable fun
tionsfor whi
h an inverse estimate exists, 
f. [7℄. This is used to prove the assertion. Fordetails, we refer to [9℄ or [18℄, Prop. 4, p. 101.Then the details on the right hand side in (5.15) have to be estimated by thethreshold values. Here the de�nition of the predi
tion set (5.8) enters. For thispurpose, we now have to spe
ify the the parameter � in the nesting (5.7) of thedetails.Assumption 2. Assume that the primal wavelets have Cr H�older smoothness,i.e.,  j;k 2 Cr, and the dual wavelets have M vanishing moments. Then we 
hoosesome � su
h that 1 < � < r + 1 (5.16)and �x the parameters R and � > 0 su
h thatR � 1 < r � R; (5.17)1 + � < � < 1 +R� �: (5.18)The smoothness parameter r is bounded by the number of vanishing moments M ofthe dual wavelets ~ j;k, i.e., r < M , and thus � < M + 1 and R �M .Lemma 5.7. (Stability of �nite di�eren
es) Let the assumptions of Lemma 5.3and 5.6 as well as Assumption 2 hold. Let (l0; k0; e0) 62 ~Dn+1, N > 0, K �CK2L�l0�1 , where CK 2 [1;1) is some 
onstant independent of the levels l0 andL and k su
h that S(N;K; k) � ~��l0;k0;e0 . Then we get the estimatej�NK �vnL;kj � C "minfN=R;1gl0 ; (5.19)where the threshold values are given by "l = 2l�L ". In parti
ular, if N < R then the
onstant C depends on T and u0.For a proof see [9℄ or [18℄, Prop. 7, p. 101.Finally we obtain the reliability result for the original MR-FVS applied to thedata of the modi�ed MR-FVS, i.e., vn+1L := �EL; ~Dn+1A ~Dn+1 �vnL = A ~Dn+1EL�vnL.Theorem 5.8. (Reliability) Let the Assumptions 1, 2 as well as the assumptions(A6) | (A11) of Lemma 5.3 hold true. Then the predi
tion set de�ned by (5.8) ful�llsthe reliability property (3.7).Sket
h of proof. For some (l0; k0; 1) 62 ~Dn+1 we have to verify that the detail dn+1l0;k0
an be estimated up to some 
onstant by the threshold value "l0 . For this purpose,we �rst estimate the detail on time level n by �nite di�eren
es a

ording to Lemma5.4. Then we apply the �nite di�eren
e operator �MK to the evolution equations (3.1)with the numeri
al 
uxes (3.4) and numeri
al sour
es (3.5) for level l = L. Finallywe have to estimate the �nite di�eren
es �MK �vnL;r and �MKBnL;r, �MK SnL;r by Lemma
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tively. Details on the proof 
an be found in [9℄ or [18℄, Theorem 7,p. 110.For the predi
tion strategy developed in [9℄ this 
ould be veri�ed under the sameassumptions. There it was proven only for homogeneous 
onservation laws. However,the proof will also work in 
ase of inhomogeneous equations where we have to repla
ein the proof BL;k by BL;k � � SL;k with exa
t sour
e re
onstru
tion.5.3. Error of approximate re
onstru
tion. It remains to verify assumption(A2) in Theorem 5.1. For this purpose, we �rst derive suÆ
ient 
onditions whi
h areveri�ed to hold for the approximate 
ux and sour
e re
onstru
tion (4.5), (4.6), (4.7)and (4.11), (4.12), (4.13), respe
tively.Theorem 5.9. (SuÆ
ient 
ondition) The above assumptions hold true. Assumethat in parti
ular for the CFL-
ondition we have�hL maxjuj�C(T;u0) jf 0(u)j � C < 1 (5.20)with C(T; u0) given by (5.9) in Lemma 5.3. Then the approximate 
ux and sour
ere
onstru
tion is a

ura
y preserving, i.e., (A2) holds true, provided thatj �Fnl;k � �Fnl;k j<� "; 8(l; k) 2 F( ~Dn+1); (5.21)and j �Snl;k � �Snl;kj<� 2l"; 8(l; k) 2 S( ~Dn+1): (5.22)Proof. Let be �wn+1L := �EL; ~Dn+1 �wnL, �wn+1L := �EL; ~Dn+1 �wnL. Then we may representthe error of the subdivision s
heme (3.9) as�wn+1L � �wn+1L = X(l;k;e)2 ~Dn+1	Ll;r;e( �dn+1l;r;e � �dn+1l;r;e);whi
h 
an be estimated byk �wn+1L � �wn+1L k � X(l;r;e)2 ~Dn+1 k	Ll;r;ek j �dn+1l;r;e � �dn+1l;r;e j:The norm of the dis
rete basis ve
tors 
an be represented ask	Ll;k;ek = Xr2�Ll;k;e jVL;rj j(	Ll;k;e)rjwhere �Ll;k;e � IL is the support of 	Ll;k;e. Next we 
on
lude from Theorem 2.1j(	Ll;k;e)rj = jh l;k;e; ~�L;rij � k l;k;ekL1 <� 1and ����[r2�Ll;k;e VL;r���� = j supp  l;k;ej<� 2�l:Hen
e the error 
an be further estimated byk �wn+1L � �wn+1L k<� X(l;r;e)2 ~Dn+1 2�lj �dn+1l;r;e � �dn+1l;r;e j:



22 N. HOVHANNISYAN AND S. M�ULLERFrom the evolution equations (3.2) and (3.3) together with exa
t and approximate
ux and sour
e re
onstru
tion as well as the identity (2.7), we obtain for the di�eren
eof the detailsj �dn+1l;r;e � �dn+1l;r;e j = ������ Xs2Mel;rml;es;r�l+1;s( �Bnl+1;s � �Bnl+1;s) + � Xs2Mel;r � �Snl+1;s � �Snl+1;s������� <�maxs2Mel;r �l+1;s �� �Bnl+1;s � �Bnl+1;s��+ � maxs2Mel;r �� �Snl+1;s � �Snl+1;s�� (5.23)be
ause the supportsMel;r and the mask 
oeÆ
ients ml;es;r are uniformly bounded, see(2.3) and (2.6).From the de�nition of the 
ux balan
es as well as the sour
es we infer fromassumption (5.21) and (5.22)k �wn+1L � �wn+1L k<� X(l;r;e)2 ~Dn+1 �hl+1 2�l "+ X(l;r;e)2 ~Dn+1 �":The number of signi�
ant details is bounded by that of all possible 
oeÆ
ients# ~Dn+1 � #I0 + L�1Xl=0 #Il = N0 +N0 L�1Xl=0 2l = N0 2L:Sin
e hl = 2L�lhL and hL = 2�Lh0, respe
tively, and the CFL-
ondition (5.20)holds we �nally obtaink �wn+1L � �wn+1L k<� X(l;r;e)2 ~Dn+1 �hL 2l+1�L 2�l "+ X(l;r;e)2 ~Dn+1 �"<�N0 2L �2 � 2�L + h0 2�L maxjuj�C(T;u0) jf 0(u)j� "<� ":5.3.1. Approximate 
ux re
onstru
tion. In order to verify the suÆ
ient
ondition (5.21) for the approximate 
ux re
onstru
tion we pro
eed in several steps.First of all, we have to estimate the error introdu
ed by polynomial re
onstru
tion.Lemma 5.10. (Error of polynomial re
onstru
tion) Let xk = kh, h > 0, k 2 Z,be a uniform dis
retization of the real line and vk be data to the 
ell [xk; xk+1℄. Let k be�xed, RNk 2 �N denotes the re
onstru
tion polynomial to the sten
il Sk := fk; : : : ; kgfor some k 2 fk �N; : : : ; kg and k = k +N withP̂k0 := 1h Z xk0+1xk0 RNk (x) dx = vk0 8k0 2 Sk : (5.24)Then the error between the re
onstru
ted 
ell average P̂k0 and the 
ell average vk0 iseither zero, i.e., vk0 = P̂k0 , k0 2 Sk, or 
an be represented as a linear 
ombination of�nite di�eren
es of order N + 1, i.e.,vk0 � P̂k0 =8>>>>><>>>>>: k�k0�1Pj=0 �k0;j�N+11 vk0+j ; k0 < k;k0�k�1Pj=0 �k0;j�N+11 vk0�N�j�1; k < k0;
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oeÆ
ients �k0;j only depend on N .Sket
h of proof. For k0 2 Sk the re
onstru
tion 
ondition (4.1) holds, i.e., theerror vanishes. For k0 62 Sk the proof follows by indu
tion starting at k0 = k �1 and k0 = k + 1, respe
tively. Here we make use of the representation (4.4) ofthe re
onstru
tion polynomial via the interpolation polynomial (4.3) of the primitivefun
tion. In parti
ular, we employ that (N + 1)-st order �nite di�eren
es of theinterpolation polynomial QN+1k are 
onstant and, hen
e, �N+11 P̂r = 0. The 
ompleteproof is given in Appendix 7.2.Next we rewrite �nite di�eren
es on level l by those on higher levels with largerstep size.Lemma 5.11. For �nite di�eren
es of order N 2 N the two-s
ale relation�N1 vl;k = 12 N+1Xi=0 �N + 1i ��N1 vl+1;2k+i (5.25)holds. Alternatively, �nite di�eren
es 
an be represented by a sum of �nite di�eren
eson level L with step size 2L�l, i.e.,�N1 vl;k = 2l�L 2L�l�1X�=0 �N2L�lvL;2L�lk+� : (5.26)Sket
h of proof. The proof is elementary. Relation (5.25) follows by indu
tion us-ing the addition theorem for binomial 
oeÆ
ients whereas (5.26) is a straight-forward
al
ulation employing the en
oding (2.3) and the de�nition (5.10) of the �nite di�er-en
e. Details 
an be found in the Appendix 7.3.Similar to Lemma 5.7 we 
an now estimate the �nite di�eren
es on level l insteadof level L.Lemma 5.12. Assume that the dual wavelets have M = 2s + 1 � N + 1 van-ishing moments. Given a sequen
e of averages vL with multis
ale de
ompositionfdj;k;eg(j;k;e)2D. Let G = G(D) be the adaptive grid 
orresponding to the set of sig-ni�
ant details D that is graded of degree q � d 3s2 e. Then for any (l; k) 2 G wehave j�N+11 vl;k0 j<� "min(N+1R ;1)l ; 8k0 2 fk � 2s; : : : ; k + 2s�N � 1gprovided that the assumptions of Lemma 5.7 hold true.Sket
h of proof. The basi
 idea is to rewrite the �nite di�eren
e �N+11 vl;k0 onlevel l in a series of �nite di�eren
es �N+12L�l�1vL;2L�l�1(2k0+i)+�, i = 0; : : : ; N + 2,� = 0; : : : ; 2L�l�1 � 1 on level L �rst applying (5.25) and then (5.26). For ea
h ofthese di�eren
es we have to verify that its sten
il is in
luded in a ba
kward in
uen
eset ~��l+1;2k+q0 ;1 de�ned by (5.6) for some q0 su
h that (l+1; 2k+q0) 62 D. It turns outthat q0 2 f�3s; : : : ; 3s+1g. On the other hand we dedu
e from the grading pro
edureand the assumption (l; k) 2 G, i.e., (l; k) =2 D, that the range of dependen
e for (l; k)on level l+1 is determined by ~�G;(l+1)l;k = f2(k� q); : : : ; 2(k+ q) + 1g. Then 
hoosingthe grading parameter suÆ
iently large ensures that 2k + q0 2 ~�G;(l+1)l;k . Finally, wemay apply Lemma 5.7 and the assertion follows. For a detailed proof see Appendix7.4. Note that in Lemma 5.12 the order N of the �nite di�eren
e is not yet limited tothe degree of the re
onstru
tion polynomial. In parti
ular, it might be the starting



24 N. HOVHANNISYAN AND S. M�ULLERpoint to 
onstru
t an hp-version of the adaptive multis
ale s
heme. The idea wouldbe to look for the smallest N su
h thatj�N+11 vl;k0 j<� "lholds. This would implyjhRNl;k; ~'L;ri � vL;rj<� "l; 8r 2 f2L�lk; : : : ; 2L�l(k + 1)� 1gin Lemma 5.13 and in the proof of Theorem 5.14 below.Next we estimate the error between the averages and the re
onstru
ted averages.Lemma 5.13. Assume that the dual wavelets have M = 2s+1 � N +1 vanishingmoments, where N is the degree of the re
onstru
tion polynomial. Given a sequen
eof averages vL with multis
ale de
omposition fdj;k;eg(j;k;e)2D. Let G = G(D) be theadaptive grid 
orresponding to the set of signi�
ant details D that is graded of degreeq � d 3s2 e. Then for any (l; k) 2 G we havejhRNl;k; ~'L;ri � vL;rj<� max�"min(N+1R ;1)l ; "l� ; r 2 f2L�lk; : : : ; 2L�l(k + 1)� 1gprovided that (i) the subdivision s
heme 
onverges uniformly in the sup-norm, (ii)the re
onstru
tion sten
il SL;k is lying inside the support S2L�l(k+1)�1r=2L�lk ��(l)L;r;0 of thesubdivision s
heme and (iii) the assumptions of Lemma 5.7 hold true.Sket
h of proof. The basi
 idea is to apply the subdivision s
heme (2:8) to there
onstru
ted averages P̂L;r := hRNl;k; ~'L;ri and the 
ell averages vL;r, respe
tively,and to estimate the di�eren
e of both series: (i) Sin
e the number of vanishing mo-ments M is larger than the degree N of the re
onstru
tion polynomial, the details
orresponding to the multis
ale de
omposition of the re
onstru
tion polynomial van-ish. (ii) Assuming that the grading parameter satis�es q � s we 
on
lude that thesupport of the wavelets ��(j)L;r;1 is in
luded in the range of dependen
e ~�G;(j)l;k for allr 2 f2L�lk; : : : ; 2L�l(k + 1) � 1g and j = l + 1; : : : ; L � 1. Hen
e , the details dj;k0 ,k0 2 ~�G;(j)l;k , 
orresponding to the 
ell averages are not signi�
ant. On the other hand,the remaining details dl;k0 , k0 2 ��(l)L;r;1 � fk � s; : : : ; k + sg 
an be estimated byjdl;k0 j � 2�"l due to the de�nition of the predi
tion set (5:8) where � is a 
onstantwhi
h is �xed in Assumption 2. (iii) The di�eren
es between the 
ell averages vl;k0and Pl;k0 for k0 2 ��(l)L;r;0 
an be estimated by Lemma 5.10 and 5.12. The details ofthe proof are given in Appendix 7.5.Finally we 
an verify the suÆ
ient 
ondition (5.21) in 
ase of approximate 
uxre
onstru
tion.Theorem 5.14. Assume that the primal wavelets have H�older regularity Cr,0 < r � N + 1; and the parameters R and � are 
hosen a

ording to Assumption 2.Furthermore the adaptive grid is assumed to be graded of degree q � d 3s2 e and the dualwavelets have M = 2s+ 1 � N + 1 � R vanishing moments where N is the degree ofthe polynomial re
onstru
tion and R is the parameter 
hosen in Assumption 2. Thenthe error between exa
t and approximate 
ux re
onstru
tion strategy determined by(3.4) and (4.5), (4.6), (4.7), respe
tively, 
an be estimated byj �Fnl;k � �Fnl;k j<� "; (l; k) 2 F ~Dn+1 : (5.27)



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 25Proof. Let (l; k) 2 F ~Gn+1 ; l 2 f0; : : : ; L � 1g. Sin
e F is assumed to be lo
allyLips
hitz-
ontinuous with 
onstant LF , see Assumption 1, we 
an estimate the errorbetween the exa
t and approximate 
ux re
onstru
tion (3.4) and (4.5), respe
tively,byj �Fl;k � �Fl;k j = jF (vL;2L�lk�p; : : : ; vL;2L�lk+p�1)� F (wl;2L�lk�p; : : : ; wl;2L�lk+p�1)j �LF p�1Xi=�p jvL;2L�lk+i � wl;2L�lk+ij: (5.28)For simpli
ity of representation we suppress the time index.Here the values wL;k0 , k0 2 f2L�lk � p; : : : ; 2L�lk + p � 1g are determined bypolynomial re
onstru
tion a

ording to (4.1) and (4.2), i.e.,wL;k0 = 1jVL;k0 j ZVL;k0 RNl0;r0(x) dx:Note that in the neighborhood of a 
ell Vl;k the neighboring 
ells in the adaptivegrid G are not ne
essarily sitting on the same level. Therefore the average wL;k0 is
omputed by the re
onstru
tion polynomial RNl0;r0 on level l0 = l0(k0) related to the
ell Vl0;r0 � VL;k0 with r0 = r0(k0) where (l0; r0) 2 ~Gn+1, see Fig. 5.2.
� � �Æ Æ Æ Æ Æ Æ Æ Æ Æ Æ

l � 1ll + 1l + 2 = L
RNl�1;bk=2
�1 RNl;k RNl+1;2k+2

�F2L�lk?

xl�1;bk=2
�1 = xl;k = xL;2L�lk6

1

Fig. 5.2. Illustration of approximate 
ux re
onstru
tion at the interfa
e xl;k in 
ase of p = 5.The lo
ally adapted grid is indi
ated by the 
ell midpoints �. For the 
ux 
omputation the data onlevel L indi
ated by Æ have to be 
omputed by the re
onstru
tion polynomials RNl�1;bk=2
�1, RNl;kand RNl+1;2k+2, respe
tively.Sin
e the grid is assumed to be graded, the number of di�erent levels is uniformlybounded, i.e., jl0 � lj � Cwith C only depending on s and p. Hen
e, we 
an estimate the di�eren
e on theright-hand side in (5:28) by Lemma 5.13jvL;k0 � wL;k0 j = jvL;k0 � hRNl0;k0 ; ~'L;k0ij<� "minfN+1R ;1gl0 <� "minfN+1R ;1gl = "l; (5.29)



26 N. HOVHANNISYAN AND S. M�ULLERbe
ause (N + 1)=R � 1 due to assumption. Then the assertion follows by the 
hoi
eof "l = 2l�L".In the se
ond 
ase (4.6) where (l; k) 62 F ~Gn+1 and there exists j 2 fl + 1; : : : ; Lgsu
h that (l0; k0) := (j; 2j�lk) 2 F ~Gn+1 the numeri
al 
uxes are determined by�Fl;k = �Fj;2j�lk = �FL;2L�l0k0 = F (vL;2L�l0k0�p; : : : ; vL;2L�l0k0+p�1);�Fl;k = �Fj;2j�lk = �Fl0;k0 = F (vl0;k0�p; : : : ; vl0;k0+p�1):Then (5.29) also holds true with "l0 instead of "l where we apply the above analysisto (l0; k0) instead of (l; k).In the last 
ase (4.7), where there is no j 2 f0; : : : ; Lg, su
h that (j; 2j�l) 2F ~Gn+1 , but there is j0 = maxfj j (j; 2j�lk) 2 F ~Dn+1g; we apply the above analysis to(l0; k0) := (j0; 2j0�l).5.3.2. Approximate sour
e re
onstru
tion. For veri�
ation of the suÆ
ient
ondition (5.22) for the approximate sour
e re
onstru
tion we 
an not dire
tly applyLemma 5.13 be
ause of the 
omposition of the sour
e fun
tion and the sliding averageof the re
onstru
tion polynomial. Here we have �rst to estimate the di�eren
es of the
omposite fun
tion similar to Lemma 5.5Lemma 5.15. (Boundedness of derivatives of 
omposite fun
tion) Let the assump-tions of Lemma 5.3 hold true. Furthermore the sour
e fun
tion S satis�es Assumption1. Let V be the sliding average of the re
onstru
tion polynomial RNl;k to 
ell Vl;k and(l; k) 2 G(D). Then the R-th derivative of the 
omposite fun
tion G = SÆV is boundedby supx2Vl;k jG(R)(x)j<� h2�Rl "lfor 0 � R � N .Sket
h of proof. The proof is similar to the one for Lemma 5.5 that 
an be foundin [9℄ or [18℄, Proposition 5, p. 104. The basi
 idea is to estimate the R-th derivative ofthe 
omposite fun
tion G by means of �nite di�eren
es �j1vl;k0 of order j = 0; : : : ; R.For this purpose, we have to estimate the j-th derivative of the sliding average V .A

ording to (4.10) the latter is de�ned by the interpolation polynomial QN+1l;k that isdetermined by the interpolation 
onditions (4.3). Hen
e, we have to estimate the j-thderivative of QN+1l;k . Here it is most 
onvenient to 
onsider the Newton representationbe
ause therein the �nite di�eren
es naturally o

ur. Finally, the �nite di�eren
es
an be estimated by Lemma 5.12. Details of the proof are given in Appendix 7.6.Finally we 
an verify the suÆ
ient 
ondition (5.22) in 
ase of approximate sour
ere
onstru
tion.Theorem 5.16. Assume that the primal wavelets have H�older regularity Cr,0 < r � N + 1; and the parameters R and � are 
hosen a

ording to Assumption2. Furthermore the adaptive grid is assumed to be graded of degree q � d 3s2 e and thedual wavelets have M = 2s + 1 � N + 1 � R vanishing moments where N is thedegree of the polynomial re
onstru
tion and R is the parameter 
hosen in Assumption2. Then the error between the exa
t and approximate sour
e re
onstru
tion strategydetermined by (3.5) and (4.11), (4.12), (4.13), respe
tively, 
an be estimated byj �Snl;k � �Snl;kj<� "; (l; k) 2 S ~Dn+1 : (5.30)
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onsider (l; k) 2 ~Gn+1 � S ~Dn+1 . Due to (3.5) the exa
tsour
e re
onstru
tion in 
ell Vl;k is given by�Sl;k = 2l�L 2L�l�1Xi=0 �SL;2L�lk+i = 2l�L 2L�l�1Xi=0 S(vL;2L�lk+i):We now introdu
e the approximation~Sl;k := 2l�L 2L�l�1Xi=0 S(V(x̂L;2L�lk+i)) = 1hl 2L�l�1Xi=0 hLS(P̂L;2L�lk+i);where V is the sliding average determined by the polynomial re
onstru
tion RNl;kto 
ell Vl;k, P̂L;2L�lk+i is the 
ell average of RNl;k in 
ell VL;2L�lk+i and x̂L;2L�lk+i =xL;2L�lk+i+hL2 is the midpoint of 
ell VL;2L�lk+i. Note that V(x̂L;2L�lk+i) = P̂L;2L�lk+ibe
ause of the 
onstru
tion of the re
onstru
tion polynomial (4.3), (4.4) and the def-inition of the sliding average (4.10). Obviously, ~Sl;k is the midpoint quadrature ruleapplied to the subintervals VL;2L�lk+i, i = 0; : : : ; 2L�l� 1, approximating the integralIl;k := 1hl ZVl;k G(x) dx = 1hl 2L�l�1Xi=0 ZVL;2L�lk+i G(x) dx (5.31)with the 
omposite fun
tion G = S Æ V .Note that hL = 2l�Lhl. The error 
an be estimated byjIl;k � ~Sl;kj � 124h2L supx2Vl;k jG(2)(x)j: (5.32)On the other hand, the approximate re
onstru
tion of the sour
e in 
ell Vl;k a

ordingto the strategy is given by some quadrature rule applied to the integral (5.31), i.e.,�Sl;k = 1hl mXi=0 wiS(V(xi)) = 1hl mXi=0 wiG(xi)for some nodes xi 2 Vl;k and some weights wi, i = 0; : : : ;m.Assume that the error 
an be estimated byjIl;k � �Sl;kj<� h�l supx2Vl;k jG(�)(x)j (5.33)for some integer � = �(m).The error between exa
t and approximate sour
e re
onstru
tion 
an now be splitinto two parts j �Sl;k � �Sl;kj � j �Sl;k � ~Sl;kj+ j ~Sl;k � �Sl;kj: (5.34)The �rst term 
an now be estimatedj �Sl;k � ~Sl;kj � Ls maxi=0;:::;2L�l�1 jvL;2L�lk+i � P̂L;2L�lk+ij<� max�"min( (N+1)R ;1)l ; "l�(5.35)



28 N. HOVHANNISYAN AND S. M�ULLERdue to the lo
al Lips
hitz 
ontinuity of S and Lemma 5.13.The se
ond term in (5:34) is again split into two parts a

ounting for the integra-tion error, i.e., j ~Sl;k � �Sl;kj � j ~Sl;k � Il;kj+ jIl;k � �Sl;kj:From Lemma 5.15 the errors (5.32) and (5.33) are bounded up to some 
onstantj ~Sl;k � �Sl;kj<� h2L"l + h�l h2��l "l <� "l: (5.36)Sin
e (N +1)=R � 1 the assertion follows from (5.34), (5.35) and (5.36) by the 
hoi
eof "l = 2l�L".In the se
ond 
ase when (l; k) =2 ~Gn+1 but there exists j 2 fl+1; : : : ; Lg su
h that(j; 2j�lk) 2 ~Gn+1 we infer from (3.5) and (4.12)j �Snl;k� �Snl;kj � 2j�l�1Xi=0 2l�j j �Snj;2j�lk+i� �Snj;2j�lk+ij � maxi=0;:::;2j�l�1 j �Snj;2j�lk+i� �Snj;2j�lk+ij:Then (5.30) holds true with "j instead of "l.In the last 
ase where there j 2 f0; : : : ; l�1g exists su
h that (l0; k0) := (j; bk=2l�j
) 2~Gn+1 we infer from (4.13)�Snl;k � �Snl;k = �Snl;k � �Snl0;k0 + �Snl0;k0 � �Snl;k = �Snl0;k0 � �Snl0;k0 :We now apply again the above analysis to (l0; k0).Note that the estimate (5.30) 
an be proven for any � in the quadrature error(4.9) and (5.33), respe
tively. Therefore, we may use the midpoint rule, i.e. m = 0.Hen
e only one fun
tion evaluation is required in 
ase of (4.11).6. Numeri
al results. The analyti
al results are now to be veri�ed by numer-i
al 
omputations. For this purpose we 
onsider the inhomogeneous, invis
id Burgersequation, i.e., f(u) = 0:5u2 with sour
e s(u) = u (u � 0:5) (u � 1) and initial datau0(x) = sin(2� x).The 
omputational domain 
 = [0; 1℄ is dis
retized by N0 = 10 
ells on the
oarsest level, i.e., h0 = 0:1. Hen
e the resolution for higher re�nement levels isNl = 2lN0 and hl = 2�l h0. At the boundaries we use periodi
 boundary 
onditions.For the time dis
retization we have to respe
t the CFL 
ondition. Here we 
hoose�0 = 0:016 and the �nal integration time is T = 0:24. Sin
e we perform a globaltime stepping the CFL 
ondition has to hold for the smallest 
ells 
orresponding tothe highest re�nement level L, i.e., � = 2�L �0. For the multis
ale analysis we usewavelets with M = 2 s + 1 = 3 vanishing moments, see Table 2.1, and the gradingparameter is 
hosen as q = 2s = 2. Instead of using the predi
tion strategy a

ordingto Se
tion 5.2.1 we apply Harten's original strategy although this has not yet beenproven to be reliable but is always used in pra
ti
e, 
f. [4℄.The referen
e FVS (1.3) is determined by the Godunov 
ux Fk = FG(vLk ; vRk ) =F (vk�2; : : : ; vk+1). In order to improve spatial and temporal a

ura
y we employ apie
ewise linear ENO re
onstru
tion, 
f. [15℄. For a non-equidistant grid this readsvLk = vk�1 +m (� vk;� vk�1) (hk�1 � � f 0(vk�1 +m (� vk;� vk�1) hk�1))vRk = vk �m (� vk+1;� vk) (hk + � f 0(vk �m (� vk+1;� vk) hk))
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es � vi := (vi � vi�1)=(hi + hi�1) and the minmod fun
tionm de�ned by m(a; b) := a if jaj � jbj and m(a; b) := b elsewhere. Note that the term
orresponding to the time dis
retization � guarantees se
ond order in time. For thesour
e term we apply the �rst order approximation (1.5).Computations have been performed for varying threshold values " and di�erent
ux and sour
e re
onstru
tion strategies: (i) 
ux and sour
e 
omputation on unstru
-tured meshes using only lo
al data 
orresponding to the adaptive grid as is frequentlyused in appli
ations, 
f. [4℄, (ii) approximate re
onstru
tion strategy a

ording to(4.5), (4.6) and (4.11), (4.12) using the midpoint rule and re
onstru
tion polynomialsof degree N = 2 s = 2 with 
entral sten
il Sl;k = fk � s; : : : ; k + sg, and (iii) exa
tre
onstru
tion strategy a

ording to (3.4) and (3.5). These are referred to RM=1,2,3in Figures 6:4, 6:5, 6:3 and 6:2.The solution is developing a sho
k at time t = 1=� in position x = 0:5 whi
h isis moving at negative speed due to the inhomogeneity. In Figure 6.1 we present theadaptive solution for L = 10, " = 10�3 by points at the 
ell 
enter of the adaptivegrid and the exa
t solution 
omputed by the referen
e s
heme on a uniform grid
orresponding to L = 14.
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Fig. 6.1. Comparison of adaptive solution (L = 10, " = 10�3) and exa
t solution (L = 14, " = 0)To investigate the in
uen
e of the di�erent 
ux and sour
e re
onstru
tion strate-gies on the eÆ
ien
y of the adaptive s
heme we have to 
onsider the 
omputationale�ort (memory and CPU) and the a

ura
y (dis
retization and perturbation error)for varying threshold values. All adaptive 
omputations are performed with L = 10re�nement levels.A

ording to the ideal strategy in Se
tion 5 the threshold value " has to be
hosen su
h that the dis
retization error �L = ûL � vL of the referen
e s
hemeand the perturbation error eL = vL � vL are balan
ed. For L = 10 we obtaink�Lk = 5:8� 10�4 where the \exa
t " solution is obtained by the FVS on a uniformmesh 
orresponding to L = 14 re�nement levels.First we 
onsider the perturbation error due to thresholding plotted in Figure



30 N. HOVHANNISYAN AND S. M�ULLER6.2 for varying threshold parameters. Obviously, the perturbation error is de
reasingwith smaller threshold values. In parti
ular, keLk ! 0 for "! 0+, i.e., the adaptives
heme is 
onverging to the referen
e solution obtained on the referen
e grid with Lre�nement levels. Of 
ourse, we do not gain in a

ura
y when 
hoosing a too smallthreshold value be
ause the dis
retization error is �xed by the number of re�nementlevels.
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Fig. 6.2. Perturbation error of adaptive solution (L = 10, varying threshold value ") andreferen
e solution (L = 10, " = 0) on referen
e grid (L = 10)To determine the optimal threshold value we plot the error kûL � vLk of theadaptive s
heme (5.1) for di�erent threshold values, see Figure 6.3. From this we
on
lude that an optimal 
hoi
e would be "opt 2 [10�5; 10�4℄ be
ause the error of theadaptive s
heme is de
reasing with de
reasing threshold value " as long as " > "optwhereas it stalls for " < "opt. Hen
e, for " > "opt the perturbation error due tothresholding is dominating whereas for " < "opt the dis
retization error is dominating.The above observations 
on
erning the dis
retization and perturbation error holdtrue independent of the 
ux and sour
e re
onstru
tion strategy. However, for a thresh-old value "opt in the optimal range we depi
t from Figures 6.2 and 6.3 that the highesta

ura
y is obtained with the exa
t strategy (RM=3). For the approximate strategy(RM=2) we are loosing a bit in a

ura
y, but for the lo
al strategy (RM=1) the lossis mu
h more severe.To 
on
lude on the eÆ
ien
y of the di�erent strategies we have to 
onsider the
omputational 
osts. First we dis
uss the size of the adaptive grids that determinethe memory requirements, see Figure 6.4. We note that the minimal grid size isusually obtained for the exa
t strategy (RM=3) whereas for the lo
al (RM=1) andthe approximate (RM=2) strategy we need more 
ells. This might be 
aused by smallos
illations indu
ed by the re
onstru
tion error. This be
omes more severe in 
ase ofthe lo
al strategy (RM=1) if the threshold value is 
hosen too small, i.e., " < "opt.Finally, we 
onsider the 
omputational time presented in Figure 6.5. We notethat the CPU time needed for the exa
t strategy (RM=3) is mu
h higher as long asthe threshold value is not too small. This is 
aused by the sour
e term 
omputation
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Fig. 6.3. Error of adaptive solution with L = 10 and varying threshold value ".
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Fig. 6.4. Number of 
ells: Adaptive 
omputations with L = 10 and varying threshold value ".on the uniform referen
e grid dominating the overall 
osts for grid adaptation andtime evolution. In 
ase of the lo
al (RM=1) and approximate (RM=2) strategy theadaptive grid be
omes more dense with de
reasing threshold values, i.e., more 
ellsare re�ned, and the 
osts are approa
hing the 
osts of the referen
e 
omputation onthe referen
e grid. This behaviour 
an be typi
ally expe
ted for any adaptive s
heme.To summarize the above observations we 
on
lude that for an optimal thresholdvalue "opt the exa
t strategy is most a

urate but at the 
osts of the referen
e 
om-putation, i.e., there is no gain at all. For the lo
al strategy we observe a severe loss
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RM=3Fig. 6.5. Computational time: Adaptive 
omputations with L = 10 and varying threshold value ".in a

ura
y at lower 
omputational 
osts in 
omparison to the approximate strategy.This loss 
an only be 
ompensated by a smaller threshold value at higher 
omputa-tional 
osts. From this point of view the approximate strategy is more eÆ
ient when�xing the target a

ura
y by the dis
retization error, i.e., log(k�Lk) = �3:24, seeFigure 6.6.Finally, we point out that in pra
ti
e the optimal threshold value "opt 
an only beroughly estimated and, hen
e, the use of the lo
al strategy 
an not be re
ommendedbe
ause we either (i) are loosing signi�
ant in a

ura
y if " � "opt, see Figures6.3, or (ii) the 
omputational 
osts (memory requirements) are signi�
antly higherdue to instabilities triggered by the in
reasing in
uen
e of the re
onstru
tion error if"� "opt, see Figure 6.4.A
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34 N. HOVHANNISYAN AND S. M�ULLER7. Appendix.7.1. Proof of Lemma 5.3.Proof. In order to estimate the extrema by the time evolution we 
onsiderk�vnLkl1 � kA" �EL; ~Dn A ~Dn �vn�1L � �EL; ~Dn A ~Dn�vn�1L jjl1 +k �EL; ~Dn A ~Dn�vn�1L � �EL; ~Dn A ~Dn �vn�1L kl1 +k �EL; ~Dn A ~Dn�vn�1L � EL �vn�1L kl1 + kEL�vn�1L kl1 (7.1)By the de�nition of the approximation error the �rst term 
an be estimated a

ordingto (2.11) bykA" �EL; ~Dn A ~Dn �vn�1L � �EL; ~Dn A ~Dn �vn�1L jjl1 � 





L�1Xl=0 Xk2J nl;" �dn�1l;k 	Ll;k





l1 ;where J nl;" indi
ates the non-signi�
ant details on level l. It should be noted that ~D�is 
omputed from the data of the modi�ed adaptive s
heme at the old time step, i.e.,�v��1L . Reliability then means kA ~D� EL �v��1L kl1 � C":From assumption (A6) and Theorem 2.1 we 
on
lude that the supports of the dis
retebasis ve
tors 	Ll;k overlap only at a �xed number of positions independent of l and k.This implies 





 Xk2Jnl;" �dn�1l;k 	Ll;k





l1 � supk2Jnl;" j �dn�1l;k j 

 Ll;k

L1 � C "l; (7.2)where we employ that the predi
tion set is reliable in the sense of (3:7). Thus the�rst term 
an be estimated bykA" �EL; ~Dn A ~Dn �vn�1L � �EL; ~Dn A ~Dn �vn�1L kl1 � L�1Xl=0 "l � C ":The se
ond term is estimated a

ording to the assumption (A7). Due to (5.3) thethird term 
an be rewritten �EL; ~Dn A ~Dn = A ~Dn EL:Then the di�eren
e 
an be estimated by the approximation property as abovek �EL; ~DnA ~Dn �vn�1L � EL �vn�1L kl1 = kA ~Dn EL�vn�1L � EL �vn�1L kl1 � "; (7.3)where we employ the reliability of ~Dn.The fourth term 
an be estimated a

ording to (A8) bykEL �vn�1L kl1 � (1 + C �) k�vn�1L kl1 :



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 35From (7:1) we �nally obtain the re
ursive estimatek�vnLkl1 � (1 + C �) k�vn�1L kl1 + �C":Applying this estimate re
ursively, we obtaink�vnLkl1 � (1 + C �)n k�v0Lkl1 + �C " n�1Xi=0 (1 + C �)i:By the geometri
 sum we �nally end up withk�vnLkl1 � eC T k�v0Lkl1 + �C " (1 + C �)n � 1C � � eC T (k�v0Lkl1 + ��C "=�):The initial data 
an be further estimatedk�v0Lkl1 � kû0Lkl1 + k�v0L � v0Lkl1 + kv0L � û0Lkl1 � ku0kL1 + 2 �C "=�:From assumption (A10) and (A11) we 
on
lude that the ratio "=� is small in 
ompar-ison to ku0kL1 . Consequently, we 
an estimate the supremum of �vnL by a 
onstantonly depending on T and the supremum of the initial data u0.7.2. Proof of Lemma 5.10.Proof. The average of the re
onstru
tion polynomial is determined byP̂r = 1h Z xr+1xr ddxQN+1k (x) dx = 1h �QN+1k (xr+1)�QN+1k (xr)�for any r 2 Z: Then �N+11 P̂r 
an be interpreted as the di�eren
e of �nite di�eren
esof the interpolation polynomial QN+1k , i.e.,�N+11 P̂r = N+1Xi=0 (�1)i�N + 1i �P̂r+i =1h N+1Xi=0 (�1)i�N + 1i ��QN+1k (xr+i+1)�QN+1k (xr+i)� =1h ��N+11 QN+1k (xr+1)��N+11 QN+1k (xr)� :Sin
e QN+1k 2 �N+1 the �nite di�eren
e satis�es�N+11 QN+1k (x) = hN+1(N + 1)! dN+1dxN+1QN+1k (�) = 
onst; � 2 [xk; xk+1℄;therefore �N+11 P̂r = 0; 8r 2 Z: (7.4)We will use these 
onsiderations in the following.In order to verify that the di�eren
e vk0 � P̂k0 for k0 62 Sk 
an be written in theform of a �nite sum of �nite di�eren
es of order N +1 we use the indu
tion prin
iplefor k0 < k.



36 N. HOVHANNISYAN AND S. M�ULLERFirst, we 
onsider the 
ase k0 = k� 1. A

ording to the re
onstru
tion 
ondition(5.24) we obtainvk�1�P̂k�1 = �N+11 vk�1� NXr=1(�1)r�N + 1r �vk�1+r�P̂k�1 = �N+11 vk�1��N+11 P̂k�1:Taking into a

ount (7.4) we have gotvk�1 � P̂k�1 = �N+11 vk�1:Therefore our assertion is true for k0 = k�1. Let it be true for k0 2 fk�Ns; : : : ; k�1g,Ns � 1. We now prove it for k0 � 1 and Ns + 1, respe
tively. For this purpose weexpand the di�eren
e asvk0�1 � P̂k0�1 = �N+11 vk0�1 ��N+11 P̂k0�1 � N+1Xr=1 �N + 1r �(�1)r(vk0�1+r � P̂k0�1+r);where we employ the de�nition of the �nite di�eren
e. For k0 � 1 + r 2 Sk thedi�eren
es in the sum of the right-hand side vanish, i.e., only the di�eren
es forr 2 f1; : : : ;min(N + 1; k � k0)g give a 
ontribution.Sin
e the (N + 1)-th �nite di�eren
e of P̂ vanishes a

ording to (7.4) and by theindu
tion assumptionvk0�1+r � P̂k0�1+r = k�k0�rXj=0 �k0�1+r;j�N+11 vk0�1+r+j (7.5)for r 2 f1; : : : ;min(N + 1; k � k0)g we then 
on
ludevk0�1 � P̂k0�1 =�N+11 vk0�1 + min(N+1;k�k0)Xr=1 �N + 1r �(�1)r+1 k�k0�rXj=0 �k0�1+r;j�N+11 vk0�1+r+j :Sin
e k0 � 1 + r + j 2 fk0; : : : ; k � 1g the right-hand side 
an be reenumerated, i.e.,vk0�1 � P̂k0�1 = k�k0Xj=0 �k0�1;j�N+11 vk0�1+j :Hen
e we obtain the assertion for k0 < k.We now prove the other 
ase where k0 is to the right of Sl;k . Again, we �rst
onsider the 
ase k0 = k + 1. A

ording to (5.24) and (7.4) we havevk+1 � P̂k+1 = (�1)N+1�N+11 vk � (�1)N+1 NXr=0(�1)r�N + 1r �vk+r � P̂k+1= (�1)N+1 ��N+11 vk ��N+11 P̂k� = (�1)N+1�N+11 vk:Therefore our assertion is true for k0 = k+1. Let it be true for k0 2 fk+1; : : : ; k+Nsg,1 � Ns. We now prove it for k0 + 1 and Ns + 1, respe
tively. For this purpose we
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e asvk0+1 � P̂k0+1 =(�1)N+1 ��N+11 vk0�N ��N+11 P̂k0�N�� NXr=0�N + 1r �(�1)r(vk0�N+r � P̂k0�N+r)!where we again employ the de�nition of the �nite di�eren
e. For k0 � N + r 2 Skthe di�eren
es in the sum of the right-hand side vanish, i.e., only the di�eren
es forr 2 fmax(0; k � k0 +N + 1); : : : ; Ng give a 
ontribution. Sin
e the (N + 1)-st �nitedi�eren
e of P̂ vanishes a

ording to (7.4) and by the indu
tion assumptionvk0�N+r � P̂k0�N+r = k0�N+r�k�1Xj=0 �k0�N+r;j�N+11 vk0�2N+r�j�1;for r 2 fmax(0; k � k0 +N + 1); : : : ; Ng we then 
on
ludevk0+1 � P̂k0+1 = (�1)N+1 �N+11 vk0�N +NXr=max(0;k�k0+N+1)�N + 1r �(�1)r+1 k0�N+r�k�1Xj=0 �k0�N+r;j�N+11 vk0�2N+r�j�11A :Sin
e k0 � 2N + r � j � 1 2 fk �N; : : : ; k0 �N � 1g the right-hand side 
an bereenumerated, i.e., vk0+1 � P̂k0+1 = k0�kXj=0 �k0+1;j�N+11 vk0�N�j :7.3. Proof of Lemma 5.11.Proof. For N = 1 we obtain by the two-s
ale relation (2.3)�11vl;k = vl;k � vl;k+1 = 12(vl+1;2k + vl+1;2k+1 � vl+1;2k+2 � vl+1;2k+3) =12(vl+1;2k � vl+1;2k+1 + 2(vl+1;2k+1 � vl+1;2k+2) + vl+1;2k+2 � vl+1;2k+3) =12(�11vl+1;2k + 2�11vl+1;2k+1 +�11vl+1;2k+2) = 12 2Xi=0 �2i��11vl+1;2k+i: (7.6)Assume now that the assertion (5.25) holds for N . To prove it for N +1 we �rst notethat by the standard re
ursive de�nition of �nite di�eren
es�N+11 vl;k = �N1 vl;k ��N1 vl;k+1 (7.7)holds. Then we obtain by the indu
tion assumption�N+11 vl;k = 12  N+1Xi=0 �N + 1i ��N1 vl+1;2k+i � N+1Xi=0 �N + 1i ��N1 vl+1;2k+2+i! :



38 N. HOVHANNISYAN AND S. M�ULLERAdding and subtra
ting �N1 vl+1;2k+i and applying (7.7) for (l + 1; 2k + i) and (l +1; 2k + 1 + i) yields�N+11 vl;k = 12  N+1Xi=0 �N + 1i �(�N1 vl+1;2k+i ��N1 vl+1;2k+1+i)+N+1Xi=0 �N + 1i �(�N1 vl+1;2k+1+i ��N1 vl+1;2k+2+i)!= 12  N+1Xi=0 �N + 1i ��N+11 vl+1;2k+i + N+1Xi=0 �N + 1i ��N+11 vl+1;2k+1+i! :Similar to (7.6) we verify by means of the addition theorem for binomial 
oeÆ
ients�N+11 vl;k =12  �N+11 vl+1;2k + N+1Xi=1 ��N + 1i �+�N + 1i� 1 ���N+11 vl+1;2k+i +�N+11 vl+1;2k+N+2!= 12 N+2Xi=0 �N + 2i ��N+11 vl+1;2k+i:This proves (5.25). To verify (5.26) we only have to do a straight-forward 
al
ulationusing the en
oding (2.3) and the de�nition (5.10) of the �nite di�eren
e, i.e.,�N1 vl;k (5:10)= NXi=0 �Ni �(�1)ivl;k+i (2:3)= NXi=0 �Ni �(�1)i2l�L 2L�l�1X�=0 vL;2L�l(k+i)+� =2l�L 2L�l�1X�=0 NXi=0 �Ni �(�1)ivL;2L�lk+�+2L�li (5:10)= 2l�L 2L�l�1X�=0 �N2L�lvL;2L�lk+� :7.4. Proof of Lemma 5.12.Proof. By means of (5.25) the �nite di�eren
es are represented by those on onehigher level with step size 1, i.e.,�N+11 vl;k0 = 12 N+2Xi=0 �N + 2i ��N+11 vl+1;2k0+i (7.8)and then the �nite di�eren
es on the right-hand side are represented by those on levelL with step size 2L�l�1 using (5.26), i.e.,�N+11 vl+1;2k0+i = 2l+1�L 2L�l�1�1X�=0 �N+12L�l�1vL;2L�l�1(2k0+i)+�: (7.9)Note that we 
annot dire
tly apply (5.26) to �N+11 vl;k0 be
ause the step size 2L�l willbe too large and we are running into trouble when want to apply Lemma 5.7.
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h �nite di�eren
e on theright-hand side of (7.8) that its sten
il (5.11)S �N + 1; 2L�l�1; 2L�l�1(2k0 + i) + �� =f2L�l�1(2k0 + i) + �; : : : ; 2L�l�1(2k0 + i+N + 1) + �g (7.10)is in
luded in a ba
kward in
uen
e set (5.6)~��l+1;2k+q0;1 = f2L�l�1(2k + q0 � s)� p; : : : ; 2L�l�1(2k + q0 + s+ 1)� 1 + pg (7.11)for some q0 su
h that (l + 1; 2k + q0) 62 D, i.e.,S �N + 1; 2L�l�1; 2L�l�1(2k0 + i) + �� � ~��l+1;2k+q0 ;1 (7.12)holds for any � 2 f0; : : : ; 2L�l�1�1g. In fa
t, q0 is related to the grading parameter inthe grading pro
edure (3.11). To verify the in
lusion (7.12) the following 
onditionshave to hold a

ording to (7.10) and (7.11)2k + q0 � s� p 2l+1�L � 2k0 + i+ 2l+1�L�;2k0 + i+N + 1+ 2l+1�L� � 2k + q0 + s+ 1� 2l+1�L(1� p):This is equivalent to2(k0 � k) + i+N � s+ 2l+1�L(�+ 1� p) � q � 2(k0 � k) + i+ s+ 2l+1�L(�+ p):Obviously this inequality holds true forq0 := � 2(k0 � k) + i+ s+ �2l+1�L; k0 2 fk � 2s; : : : ; k � 1g;2(k0 � k) + i+N � s+ �2l+1�L; k0 2 fk �N; : : : ; k + 2s�N � 1g;be
ause N � 2s and p � 1. Sin
e i 2 f0; : : : ; N + 2g, � 2 f0; : : : ; 2L�l�1 � 1g andk � k0 2 f1; : : : ; 2sg for k0 2 fk � 2s; : : : ; k � 1g and k0 � k 2 f�N; : : : ; 2s�N � 1gfor k0 2 fk �N; : : : ; k + 2s�N � 1g we 
on
ludeq0 2 f�3s; : : : ; 3s+ 1gand, hen
e,2k + q0 2 f2k � 3s; : : : ; 2k + 3s+ 1g = �2�k � 3s2 � ; : : : ; 2�k + 3s+ 12 �� :On the other hand we know by the grading pro
edure and the assumption (l; k) 2 G,i.e., (l; k) =2 D, that all details 
orresponding to the range of dependen
e given by~�G;(j)l;k = f2j�l(k � q); : : : ; 2j�l(k + q + 1)� 1g; j = l + 1; : : : ; L� 1;are non-signi�
ant. In parti
ular, for j = l+1 we obtain the range of dependen
e for(l; k) on level l + 1 ~�G;(l+1)l;k = f2(k � q); : : : ; 2(k + q) + 1g:To ensure that 2k + q0 2 ~�G;(l+1)l;k we have to 
hoose the grading parameter q su
hthat 2(k � q) � 2�k � 3s2 � and 2�k + 3s+ 12 � � 2(k + q) + 1:



40 N. HOVHANNISYAN AND S. M�ULLERObviously it holds by assumption.Sin
e for any i 2 f0; : : : ; N + 2g and � 2 f0; : : : ; 2L�l�1 � 1g there exists q0 su
hthat (l + 1; 2k + q0) =2 D and (7.12) holds true, we may apply Lemma 5.7, i.e.,���N+12L�l�1vL;2L�l�1(2k0+i)+��� <� "min(N+1R ;1)l+1 :Together with (7.9) this implies���N+11 vl+1;2k0+i�� <� "min(N+1R ;1)l+1 :Finally we 
on
lude from (7.8)���N+11 vl;k0 �� <� "min(N+1R ;1)l :Note that "l+1 = 2"l and PN+2i=0 �N+2i � = 2N+2 is independent of the level.7.5. Proof of Lemma 5.13.Proof. First of all we introdu
e the �ne-s
ale 
ell averages of the re
onstru
tionpolynomial RNl;k, i.e.,P̂L;r := 1jVL;rj ZVL;r RNl;k(x) dx = hRNl;k; ~'L;ri; r 2 IL:Sin
e M � N + 1 the 
orresponding details vanish, i.e.,dPj;r := hRNl;k; ~ j;ri = 0; j = 0; : : : ; L� 1; r 2 Ij :Applying the subdivision s
heme (2:8) to P̂L;r we obtain for r 2 ILP̂L;r = Xk02��(l)L;r;0 �	Ll;k0 ;0�r P̂l;k0 = Xk02Sl;k �	Ll;k0 ;0�r vl;k0 + Xk02��(l)L;r;0nSl;k �	Ll;k0;0�r P̂l;k0 :(7.13)On the other hand we may write the data vL by the subdivision s
heme (2.8) asvL;r = Xk02��(l)L;r;0 �	Ll;k0;0�r vl;k0 + L�1Xj=l Xk02��(j)L;r;1 �	Lj;k0;1�r dj;k0 : (7.14)We now 
on�ne ourselves to r 2 f2L�lk; : : : ; 2L�l(k+1)�1g. Then we obtain for thesupport of the subdivision s
heme (2.8) the in
lusion��(j)L;r;1 � fbr=2L�j
 � s; : : : ; br=2l�j
+ sgfor j = l; : : : ; L� 1. Hen
e��(j)L;r;1 � f2j�lk � s; : : : ; 2j�lk + sg; j = l; : : : ; L� 1:On the other hand, (l; k) 2 G a

ording to assumption and therefore (l; k) 62 D, i.e.,dlk = 0, otherwise Vl;k would have been re�ned by the grid re�nement pro
edure.Then all details in the range of dependen
e~�G;(j)l;k = f2j�l(k � q); : : : ; 2j�l(k + q + 1)� 1g; j = l + 1; : : : ; L� 1; (7.15)
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ant either, otherwise (l; k) would be put signi�
ant by the gradingpro
edure.Assuming that q � s we 
on
lude that the support of the wavelets ��(j)L;r;1 isin
luded in the range of dependen
e ~�G;(j)l;k for all r 2 f2L�lk; : : : ; 2L�l(k + 1) � 1gand j = l + 1; : : : ; L� 1, see Fig. 7.1. Then (7:14) redu
es tovL;r = Xk02��(l)L;r;0 �	Ll;k0;0�r vl;k0 + Xk02��(l)L;r;1nfkg �	Ll;k0 ;1�r dl;k0 : (7.16)

�� Æ Æ Æ Æ Æ � �� � Æ Æ Æ Æ � �� � Æ Æ Æ Æ � �
ll + 1l + 2l + 3 = L

k � 4 k � 2 k k + 2 k + 4

2L�lk 2L�l(k + 1)� 1? ?
PPPPPPPPPPPPPP ��������������QQQQQQQ �������

1

Fig. 7.1. Illustration of the 
ell averages (� and Æ) and the details (Æ) involved in the sub-division s
heme of any 
ell average vL;r , r = 2L�lk; : : : ; 2L�l(k + 1) � 1 with s = 2. The range ofdependen
e for the detail 
orresponding to 
ell (l; k) is bounded by the oblique lines. Here we assumethat the set of signi�
ant details is a graded tree of degree q = d 3s2 e = 3 with s = 2.Now 
onsider the remaining details dl;k0 for k0 2 ��(l)L;r;1 � fk � s; : : : ; k + sg.The details on the higher levels dl+1;2k0+i, i = 0; 1 
an not be signi�
ant. Otherwise,(l; k) 2 D due to the grading and q � s. A

ording to the de�nition of the predi
tionset (5:8) we infer that �(l; k0) = 0. Hen
e we 
an estimate the details due to thenesting of (5:7) by jdl;k0 j � 2�"l; (7.17)where � is a 
onstant whi
h is �xed in Assumption 2.Next we have to estimate the di�eren
es of the 
ell averages vl;k0 and P̂l;k0 fork0 2 ��(l)L;r;0 n Sl;k. For this purpose we will apply Lemmas 5.10 and 5.11. First of all,we note that the support ��(l)L;r;0 
an be estimated a

ording to (2.9) by��(l)L;r;0 � fbr=2L�l
 � 2s; : : : ; br=2L�l
+ 2sg � fk � 2s; : : : ; k + 2sg (7.18)for all r 2 f2L�lk; : : : ; 2L�l(k + 1)� 1g.The re
onstru
tion sten
il is 
hosen a

ording to Lemma 5.10, i.e.,Sl;k = fk; : : : ; kg = fk; : : : ; k +Ng (7.19)for some k 2 fk �N; : : : ; kg. Then we obtain by (7.18) and (7.19) the in
lusion��(l)L;r;0 n Sl;k = fk � 2s; : : : ; k � 1g [ fk + 1; : : : ; k + 2sg =: �� [ �+:
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ording to Lemma 5.10 the di�eren
e of the averages 
an be estimated by a linear
ombination of �nite di�eren
es of degree N + 1, i.e.,jvl;k0 � P̂l;k0 j<� ( maxk�=k0;:::;k�1fj�N+11 vl;k� jg ; k0 2 ��maxk+=k�N;:::;k0�N�1fj�N+11 vl;k+ jg ; k0 2 �+ (7.20)be
ause the 
oeÆ
ients �k0;j only depend on N and the number of summands isuniformly bounded by k � k0 � k � (k � 2s) = 2s for k0 2 �� and k0 � k � k + 2s�(k �N +N) = 2s for k0 2 �+, respe
tively.Sin
e N � 2s and k� 2 fk � 2s; : : : ; k + 2s �N � 1g for k� 2 �� we may nowapply Lemma 5.12, i.e., ���N+11 vl;k� �� <� "min(N+1R ;1)l :Finally, we obtain with (7.20)���vl;k0 � P̂l;k0 ��� <� "min(N+1R ;1)l (7.21)for k0 2 ~�(l)L;r;0 n Sl;k.Then we 
on
lude from (7.13), (7.16), (7.17) and (7.21)��hRNl;k0 ; ~'l;ri � vL;r�� <� maxk02��(l)L;r;0nSl;k ���P̂l;k0 � vl;k0 ���+ "l <� max�"min(N+1R ;1)l ; "l�provided that the subdivision s
heme 
onverges, i.e., Theorem 2.1 holds.7.6. Proof of Lemma 5.15.Proof. We want to estimate the R-th derivative of the 
omposite fun
tion G bymeans of �nite di�eren
es of possibly lower order. For this purpose we �rst note thatby the 
hain rule for di�erentiation the derivative 
an be represented asG(R)(x) = RXm=1S(m)(V(x)) Xj2f1;:::;R�m+1gmj1+:::+jm=R 
j;m mYi=1V(ji)(x):Here we need the smoothness of the sour
e fun
tion S a

ording to Assumption 1. IfV(x) 2 �Di, then we 
onsider the one-sided 
ontinuous extension of the derivatives.Then we 
an estimate the R-th derivative bysupx2Vl;k jG(R)(x)j<� supx2Vl;k( RY�=1 jV(j�)(x)jk� ; (j;k) 2 I(R)) ; (7.22)up to a 
onstant depending only on the 
oeÆ
ients 
j;m and R, respe
tively, and thebounds supx2Vl;k jS(m)(V(x))j. The set I(R) is de�ned in (5.13). From the de�ni-tion of the sliding average V and the Lagrangian representation of the interpolationpolynomials QN+1l;k we 
on
lude that there exists a uniform bound su
h thatsupx2Vl;k jV(x)j<� k�vnLkl1 :
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ording to Lemma 5.3 we know that the modi�ed adaptive s
heme is uniformlybounded in the sup-norm. Hen
e the 
onstants only depend on � and kukL1.We now 
onsider the Newton representation of the interpolation polynomialQN+1l;k ,i.e., QN+1l;k (x) = N+1X�=0 W [k; : : : ; k + �℄ ��1Yi=0(x� xl;k+i):Here W [k; : : : ; k + �℄ denotes the �-th divided di�eren
e of the primitive fun
tion Wto 
ell Vl;k . It is 
onverted to the �-th �nite di�eren
e of the 
ell averages byW [k; : : : ; k + �℄ = 1�!h�l ��1Xj=0�� � 1j �(�1)j �W (xl;k+��j)�W (xl;k+��j�1)� =1�!h��1l ��1Xj=0 �� � 1j �(�1)jvl;k+��j�1 = 1�!h��1l (�1)��1���11 vl;k : (7.23)Sin
e the j-th derivative of the interpolation polynomial is determined by� ddx�(j)QN+1l;k (x) = N+1X�=j W [k; : : : ; k + �℄� ddx�(j) ��1Yi=0(x� xl;k+i)!the j-th derivative of the sliding average isV(j)(x) = 1hL N+1X�=j+1W [k; : : : ; k + �℄ Z x+hL=2x�hL=2 � ddz�(j+1) ��1Yi=0(z � xl;k+i)! dz:The integral of the right-hand side 
an be estimated bysupx2Vl;k �����Z x+hL=2x�hL=2 � ddz�(j�1) ��1Yi=0(z � xl;k+i)! dz����� <� hLh��j+1l :Together with (7.23) we obtainsupx2Vl;k jV(j)(x)j<� N+1X�=j+1 1�! 1h��1l j���11 vl;kjh��j+1l <� h2�jl max�=j+1;:::;N+1 j���11 vl;kj:(7.24)By means of indu
tion and using the addition theorem for binomial 
oeÆ
ients wenoti
e that ��+j1 vl;k = �Xi=0 ��i�(�1)i�j1vl;k+i; � � 0:Then we dedu
e from (7.24)supx2Vl;k jV(j)(x)j<� h2�jl maxi=0;:::;N�j j�j1vl;k+ij; j � R: (7.25)Combining (7.22) and (7.25) we obtainsupx2Vl;k jG(R)(x)j<� supx2Vl;k( RY�=1�h2�j�l j�j�1 vl;k+�� j�k� ; (j; k) 2 I(R); � 2 I(R; j)) ;(7.26)



44 N. HOVHANNISYAN AND S. M�ULLERwhere I(R; j) := f�; �� 2 f0; : : : ; N � j�gR:It now remains to estimate the �nite di�eren
es on the right-hand side of (7.26) bymeans of Lemma 5.12. For this purpose we verify that k+� 2 fk�2s; : : : ; k+2s� jgfor � 2 f0; : : : ; N�jg. Obviously, this holds true if 1 � N � 2s and k 2 fk�N; : : : ; kg.Then we infer from Lemma 5.12j�j1vl;k+� j<� "min(j=R;1)l :We now employ this in (7.26) and obtainRY�=1 j�j�1 vk+�� jk� <� "PR�=1 j�k�=Rl = "l: (7.27)On the other hand, we haveRY�=1h(2�j�)k�l = h2PR�=1 k��PR�=1 j�k�l � h2�Rl ; (7.28)be
ausePR�=1 j�k� = R andPR�=1 k� � 1. Inserting (7.27) and (7.28) in (7.26) yieldsthe assertion.


