ON THE STABILITY OF FULLY ADAPTIVE MULTISCALE
SCHEMES FOR CONSERVATION LAWS USING APPROXIMATE
FLUX AND SOURCE RECONSTRUCTION STRATEGIES*
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Abstract. In order to accelerate finite volume schemes applied to (inhomogeneous) hyperbolic
conservation laws multiresolution based adaptive concepts can be used. The basic idea is to analyze
the local regularity by means of a multiresolution analysis of cell averages. By difference information
between successive refinement levels local grid adaptation is triggered employing threshold techniques.
This leads to a significant gain in computational complexity. The crux is to compute numerical fluxes
and sources on local resolution levels such that the overall accuracy of the reference solution on the
finest discretization is maintained. In the present work a modified approach based on polynomial
reconstruction techniques is introduced and investigated analytically. The efficiency and accuracy of
the adaptive concept is significantly improved, in particular for inhomogeneous equations. This is
confirmed by numerical parameter studies.
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1. Introduction. Nowadays finite volume methods are routinely used for the
discretization of conservation laws as they arise, for instance, in computational fluid
dynamics. Here, due to the inhomogeneity of the solutions, adaptive grid methods can
significantly improve the efficiency by concentrating cells only where they are most
required, while reducing storage requirements as well as the computational time.

For this purpose, numerical schemes have been discussed or are under current
investigation that aim at adapting the spatial grid to the local behavior of the flow
field. In the early 90’s Harten [13] proposed to use multiresolution techniques. The
cell averages on a given highest level of resolution (reference mesh) are represented
as cell averages on some coarse level where the fine scale information is encoded
in arrays of detail coefficients of ascending resolution that reveals insight into the
local behavior of the solution. This multiresolution framework has been extended to
multidimensional problems [3, 1, 10, 8, 20] on Cartesian, curvilinear and unstructured
meshes, respectively.

In Harten’s original approach the multiresolution analysis is used to control a
hybrid flux computation by which computational time for the flux computation can
be saved whereas the overall computational complexity is not reduced but still stays
proportional to the number of cells on the uniformly fine reference mesh. Opposite to
this strategy, threshold techniques are applied to the multiresolution decomposition
in [12, 18, 9, 16, 21] where detail coefficients below a threshold value are discarded.
By means of the remaining significant details a locally refined mesh is determined
whose complexity is significantly reduced in comparison to the underlying reference
mesh. A comparison of Harten’s original framework and the fully adaptive framework
can be found in [6].
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Objective. The central mathematical problem is to verify that the solution com-
puted on the locally adapted mesh provides an accuracy that is of the same order as
the one of the reference scheme on the reference mesh. This has been analytically
investigated in the context of a homogeneous scalar conservation law in one space
dimension, see [18, 9]. The proof relies essentially on (i) the strategy how to predict
significant details at the new time level from the data at the old time level in order
to locally refine the grid before the time evolution and (ii) the interpretation of the
adaptive scheme as the original finite volume scheme on the reference grid (reference
scheme) to which we apply the multiresolution analysis and thresholding. The second
property only holds true provided that the numerical fluxes are computed by data
at the highest spatial level employing a local inverse multiresolution transformation.
This local flux computation strategy is referred to as the exact flux reconstruction
strategy. In higher dimensional applications it will increase the computational com-
plexity. In particular, for inhomogeneous conservation laws taking into account some
source term the ezact strategy requires the computation of all sources on the reference
grid rather than the adaptive grid. This would completely deteriorate the efficiency
of the adaptive scheme.

The main purpose of the present work is to suggest an approzimate flux and source
reconstruction strategy. The basic idea is to compute to each cell in the adaptive grid
a reconstruction polynomial by which we provide the data for the computation of
the local fluxes. Moreover, the local sources are determined by a quadrature rule
applied to the composite of the source function and the reconstruction polynomial.
This strategy does not spoil the computational complexity of the adaptive scheme
even in higher dimensions. We will verify analytically that by the suggested strategy
the accuracy of the reference scheme can be maintained. In particular, we prove that
by the evolution process on the adaptive grid using the approximate reconstruction
strategy we introduce an additional error in comparison to the evolution with exact
reconstruction that is proportional to the threshold value.

Reference scheme. In order to simplify the notation we confine ourselves to the
one-dimensional case although the concepts extend to higher dimensional problems as
well and have been successfully applied to complex configurations in fluid dynamics,
e.g. [4] for the classical fully adaptive finite volume scheme. We therefore consider the
scalar inhomogeneous conservation law

we(t,z) + (f(u(t, ). = s(u(t,z)), t>0,z€R, (1.1)
subject to the initial condition
u(0,z) = up(z), =R (1.2)

If up € L (R) N L'(R) and the flux f : R — R and the source s : R — R are such
that all derivatives up to the second order exist and are bounded, then there exists a
unique entropy solution, see [19, 17].

A conservative finite volume discretization of the initial value problem (1.1), (1.2)
can be written in the form

ot = o - ABpHTSE, A= (1.3)

for the cell averages vi. Here space and time are uniformly discretized by h and T,
respectively. Conservation means that the flux balance B} has the form

By = F(vg_pi1s- - Vksp) = FOr_ps e Vyp1) = Fpio — FY! (1.4)
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where the function F'(uy, ..., usp) is the numerical flux function. The source term is
approximated by the numerical source function S. For simplicity of representation,
we confine ourselves to the first order approximation

SP = S(up) = s(v]). (1.5)

Later on we will specify assumptions on F' and S that will guarantee the convergence
of the scheme.

Outline. In the following we first summarize the multiresolution analysis (MRA)
in Section 2. Then in Section 3 the MRA is employed to compress the set of evolution
equations given by a reference finite volume scheme on the reference grid in order to
reduce the computational costs both in terms of CPU and memory. A new strategy is
introduced in Section 4 for the computation of the local numerical fluxes and sources
on coarser discretization levels that is based on polynomial reconstruction. In Section
5 we verify that by the approximate flux and source reconstruction strategy the ac-
curacy of the reference finite volume scheme can be maintained. Finally, in Section 6,
we perform numerical parameter studies for the inviscid Burgers equation comparing
different strategies for the local computation of the numerical fluxes and sources.

2. Multiresolution analysis. A finite volume discretization is typically work-
ing on a sequence of cell averages. In order to analyze the local regularity behavior
of the data we decompose this sequence into coarse grid information and detail infor-
mation describing the update from low to high resolution. This new data format can
be compressed by thresholding because the details become small when the solution is
locally smooth. By means of the compressed data a locally refined grid is determined.
To provide the MRA of the data one might used either the concept of biorthogo-
nal wavelets [5] or Harten’s discrete framework [14, 2] based on reconstruction and
prediction. These concepts are linked by the convergence of subdivision schemes.

Grid hierarchy. Starting point for the construction of a MRA is a sequence
of nested grids. Here we confine ourselves to 1D dyadic grid refinements. For an
extension to grid hierarchies in higher dimensions we refer to [18]. Let be G :=
Viktken, 1 € Ny, I} = 7Z, a sequence of grids with increasing resolution. These
meshes are composed of the intervals Vi, = [z, 2 k+1] determined by the grid
points z;, = 27"k, k € Z with interval length h; = 27!. Hence, the resulting grid
hierarchy is nested because of the subdivision condition

Vik = Vi1 26 U Vig1 2641, VieNy, k € Z. (2.1)

The dyadic grid refinement is illustrated in Figure 2.1.
Cell averages and details. Relative to the partitions G; we introduce the
averages of a scalar, integrable function u € L'(Q)
1
Vikl Jvi

~

(I udz. (2.2)
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Obviously the nestedness of the grids as well as the linearity of integration imply the
two—scale relation

. [P . 10 A
g = 5(U1+1,2k + U1 2641) = Z m,’y Ui,y (2.3)
reMP

where for later use we introduce the mask coefficients mlr(;c := 0.5 and their support
index M?,k = {2k, 2k + 1}. An error between level [ and [ 4+ 1 can be introduced by

er2k = U126 — Wik,  €12k+1 = Wig1,2k+1 — Ul k-

These are two options for one missing information to recompute the data on higher
scale. To remove the redundancy a linear combination of the errors

1 . .
diy = 3 (e1,2k — €1,2k+1) = E(Ul+1,2k — U1 2k41) (2.4)
can be introduced. Then the system of equations (2.3) and (2.4) is regular and we
obtain the inverse two-scale relation

Uir 2hpi = Wk Fdi g, Qg 2k = U — dig- (2.5)

Cancellation Property. Obviously, the detail vanishes if the underlying func-
tion w is a constant, see also Figure 2.2. This motivates to neglect all sufficiently
small details in order to compress the original data. For general u, it can be shown
that the details become small with increasing refinement level when the underlying
function is smooth. Higher compression rates can be realized if the details vanish
for higher order polynomials up to some degree M — 1 as well because the decay is
proportional to 27/M . This corresponds to higher order vanishing moments in the
wavelet framework, e.g. [7].

Higher vanishing moments. In order to realize higher vanishing moments we
introduce additional parameters in (2.5) by a coarse grid modification, i.e.,

2s

1. . . 11 -
diy = 5(U1+1,2k — U1 2k41) + erul,k—s-i-r = Z M,y Wi (2.6)
r=0 7‘6/\/111’,C

By means of (2.3) the coarse grid averages @y y—s+, can be rewritten in terms of the fine
grid averages 141, characterizing the mask coefficients mlrlk and the support index
/\/Il1 «- These parameters are then chosen such that the details vanish for polynomials
up to degree 2s,i.e., M = 2s+ 1. In the wavelet framework this procedure is referred
to the change of stable completion [5] or second generation wavelets [22]. For some s
the resulting parameters are listed in Table 2.1. In case of s = 0 these correspond to
the Haar wavelet. For our computations we only use s = 1,2; for s = 0 the adaptive

scheme does not work at all. The inverse two-scale relation then reads

s
e ghrs = Qg+ (=1 i + (=1 Y L i

r=—s

1,0 ~ [,1 -
= Z 9y okti Uir + Z 9y okti dir, 1=0,1 (2.7)

0 1
Tegl,2k+i Tegl,2k+i
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TABLE 2.1
Lifting coefficients

lo I I | s s
0
“1/8 0 |1/8
3/128 | -11/64 | 0 | 11/64 | -3/128

N =] O ®»

with mask coefficients gf,’ékﬂ and corresponding support G; oy, € =0, 1.

Multiscale Transformation. Recursively applying the two-scale relations (2.3)
and (2.6) array of cell averages up := (4L )ker, corresponding to a finest uniform
discretization level is transformed successively into a sequence of coarse grid data
ug = (Uo)ker, and details d; := (dyg)rer,, | = 0,...,L — 1. We refer to this
transformation as multiscale transformation determined by the multiscale operator
Mp:ap — (flo,do, RN dL—l) with

~ T ~ T ~
u = Mmul“, dl = Ml71ul+1-

It is reversed by recursively applying the two-scale relation (2.7). The resulting in-
verse multiscale transformation is described by inverse multiscale operator /\/li1 :
(ﬁo, do, - ;dL—l) — uy, with

~ T = T
U1 = leoul + Gl71dl-

Subdivision scheme. By means of the inverse multiscale transformation the
array of cell averages uy can be transformed to

uL_Gloul+ZG]1d _Z‘Plkoulk_'_zqujkldjk? (2.8)

kel j=l kel

for [l =0,. — 1 where the subdivision procedure is determined by the matrices
G/, = Gf 10 Gl oG], e € {0,1}. The vectors ®[ , := Gf4 ,¢; 1 with the
Dlrac vector ¢, = (I, T)re I, denote the k-th column of the subdivision procedure.

These are sparse because of the inverse two-scale relation (2.7). Their supports

ke = supp(¥fy )

are uniformly bounded by

o(L—1 k k — (1 k k
(5w oo S]]
=(L—1 k ! k k

Zg,kyl) = {\‘EJ }, ESZ)I« . C {\‘WJ —S,... {2L lJ +5} (2.9)

for 0 <1 < L — 1. If the subdivision scheme converges then there is a link between
the discrete framework and biorthogonal wavelets summarized in the following
THEOREM 2.1. (Biorthogonal wavelet decompositions) Assume that the piecewise

constant functions ﬁk’e, e € {0,1} defined by

i e(@) = (¥hy ) €V, r ey (2.10)

converge uniformly in L towards a function ;. € L*(Q) in the sup—norm. Then
the limit functions (primal scaling functions (e = 0) resp. wavelets (e = 1)) satisfy
the following properties:
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1.) Any function u € L*(Q) can be uniquely expanded in a series of the primal
wavelet basis, i.e.,

w= 3 (u,or0)r: Yoo+ > O (Ui k1)rz Vjk;

kel JENKEL;
2.) the primal wavelets satisfy the duality relation
(Wjkes Vi e 12 = 84 k), (5 b

3.) the components of the discrete basis vectors coincide with the averages of the
Junction ¥ ., i.e.,

‘I’jl':k,e = (<¢j7k767 &L7T>)T€IL ;

4.) the functions ;i are uniformly bounded in the sup—norm, i.e., there exists
a constant C' > 0 independent of j, k and e such that

V), k,ellLe < C

5.) if the grid is quasi—uniform and the mask matrices Gj . are uniformly banded,
then the functions ;. are compactly supported and, in particular,
|supp ¥ k.| < C279%,
A proof can be found in [7].
Thresholding and approximation. Due to the cancellation property the

details might become negligible small whenever the underlying function is locally
smooth. This gives rise to hard thresholding characterized by the index set

De = {(l,k, 1) : |d17k| > El} U {(0,]9,0) : |’&07k| > 60}.

Here € denotes the vector of level-dependent threshold values. Then the threshold

operator Tp_ : (G, do,...,d,_1) — (1o, Elo, ce aL,l) is defined elementwise by
J L dl,k 9 (la k; ]-) € DE; i L aO,k 9 (07 k; 0) S De;
LE= 0 , else Ok 0 , else

Later on we will not only perform thresholding by the set D, but by an arbitrary
index set D. Then the approximation error due to thresholding is determined by

uyp —Apuag = Z Ul djke (2.11)
(4.k.e)¢D

where Ap = M;l Tp My, and, in particular for D = D, A := M;l Tp. Mpr. In
order to control the perturbation error we need convergence of the subdivision scheme
at least in the [!-metric, see Theorem 2.1.

3. From the reference scheme to an adaptive scheme. We will briefly
summarize how to accelerate a finite volume scheme by means of a MRA and data
compression via thresholding. For this purpose we first apply the multiscale trans-
formation (2.3) and (2.7) to the evolution equations (1.3) on the uniform reference
mesh, i.e., k € I,. This gives the evolution equations for the cell averages

'Uin:]j_l = 'Ulrfk - )‘lBlek; + TSl’rjlk (31)
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and the multiscale coefficients, respectively,

n+l _ o n 0,0 n 0,0G"
Vg = Vok — Z m, A By, + T E m, kSt (3.2)
reMg remf .
n+1 _ n 1 n l,1gn
de =diy — E myp A1 By +7 E My S, (3.3)
reMj reMj

Here the numerical fluxes £, respectively the numerical flux balances By, :=

. = .
F{%..1 — F, and numerical sources S, ; are recursively defined from fine to coarse
scale via

n _ mn _ _rn _ n n
Fl,k - Fl+1,2k — T S Lp2L-ip T F(,UL72L_lk—p7 s 7’UL72L_lk+p—1)7 (34)
oL—l_q oL—l_q
T _9-1 E n __ 9l—L il __ol—L n
Sl,k =2 Sl+1,T =2 Z SL72L—lk+i =2 Z S(,UL,QL*lk)-‘ri)'(g'S)
rem? i=0 i=0

Note that due to the nestedness of the grid hierarchy and the conservation property of
the numerical fluxes, the coarse-scale flux balances are only computed by the fine-scale
fluxes corresponding to the edges of the coarse cell, see (3.4). These, in particular,
have to be determined by the fine scale data. However, the internal fluxes cancel
and, hence, the overall complexity is reduced. The coarse scale sources are computed
similarly due to the recursive formulae (3.5). However we have to compute all sources
on the finest scale. Hence there is no complexity reduction, i.e., we still have the
complexity of the reference grid. We will refer to (3.4) and (3.5) as exact fluz and
source reconstruction, respectively.

Adaptive multiresolution FVS. According to the subdivision scheme (2.8) the
reference scheme (1.3) can be rewritten as

L—1
n+1 __ L n+1 L m—+1
vp= Z YoroUor + Z Z Wik dy (3.6)
kelo 1=0 kel

with the multiscale coefficients determined by (3.2) and(3.3). The idea of the adaptive
FVS is to perform the evolution only for significant details

prtl .= {(l,k); a7t > e, ke, Le {0,...,L—1}}

and to discard all other equations. Since this set cannot be computed before the data
at time level "1 are known, a prediction set D"*! has to be computed from D" such
that the reliability condition

pryDprtt ¢ prtt (3.7)

holds. Then the evolution step of the adaptive scheme consists of the three steps:
Step 1. (Refinement) Determine the prediction set D" ! and apply the approxima-
tion operator Ags.4+1 to the given data, i.e.,

vz7'ﬁn+1 = Apnt1 VL pn- (3.8)

Step 2. (Evolution) Evolve the multiscale coefficients corresponding to D™*! in time
according to (3.2), (3.3), i.e.,

n+1 N L n+1 L n+1 __ ~ n
VLJ'DnH = E ‘I’o,k,ovoJc + E ‘I’l,k,ldl,k = EL,DnHVL,@nH: (3.9)
kelo (I,k)eDn+1
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Step 3. (Coarsening) Threshold the new data by applying the approximation oper-
ator A, i.e.,

n+1 L n+1 _ L n+1 L m+1
Vi, prtl T AsVLj)nH = E ‘1’071«70%,16 + E ‘1’171«71 dl7k . (3.10)
k€ly (I,k)eDr+1

We emphasize that all operators are applied locally, i.e., the multiscale operators
Mp, M Zl, the threshold operator 7Tp and the approximation operator Ap only work
on the set of significant coefficients. If there is no inhomogeneity, i.e., s = 0, then the
complexity of the resulting algorithm might be significantly reduced to the cardinality
of #D. However, if there is a source term and the sources on the local scales are com-
puted by the exact reconstruction strategy (3.5) then the computational complexity is
still that of the reference FVS. To some extend this also holds true for the numerical
flux computation on local scales using the exact flux reconstruction strategy (3.4).
In higher spatial dimensions the cell edges do not coincide on different levels, but a
coarse edge is composed of several subedges on finer scales increasing the complex-
ity by some exponential term. Hence the adaptive scheme with both exact flux and
source reconstruction is useless for practical purposes. However we will employ it
in our analysis of a modified adaptive scheme based on approximate flux and source
reconstruction described below. There the modified adaptive scheme is considered as
a perturbation of the original adaptive scheme.

Adaptive grid. Alternatively to the evolution of the multiscale coefficients we
might evolve the cell averages according to (3.1) on a locally refined grid characterized
by the index set G C {(I,k); k€ I;, I = 0,...,L}, i.e,, Q = U(M)eg Vi, which is
computed from D = D1 For this purpose we have to assume that D is a graded
tree of degree ¢ = 1, i.e., the relation

LkyeD=(1-1,r)eD,r=|k/2] —q,...,|k/2] +q, (3.11)

holds for any ! € {1,...,L — 1}. Then G can be determined recursively. For this
purpose the index set G is initialized by all indices of the coarsest discretization.
Then, traversing through the levels from coarse to fine we proceed as follows: if
(I,k) € D then the cell V};, is locally refined, i.e., the index (I, k) is removed from G
and the indices of the subcells on the finer level are added to G. Finally we obtain
the locally adapted grid which naturally corresponds to the leaves of the graded tree
of significant details. However, for analytical purposes it is more convenient to write
the evolution process in terms of the multiscale coefficients.

4. Approximate flux and source approximation strategies. In order to
improve the efficiency of the adaptive scheme we present a new strategy how to com-
pute the numerical fluxes and sources on local scales. It is essentially based on poly-
nomial reconstruction techniques as have been introduced in [15]. Then the basic idea
is to compute missing data on the finest scale by evaluation of reconstruction poly-
nomials instead of locally performing the inverse multiscale transformation. From
a practical point of view, it is sufficient to introduce only the modified fluxes and
sources needed to perform the evolution (3.1) of the cell averages corresponding to
the adaptive grid G. However, the error analysis relies on the evolution process (3.1),
(3.3) of the multiscale coefficients corresponding to the set D. In this case we have
to compute additional numerical fluxes and sources. To ensure equivalence of the two
evolution processes when applying the inverse MST (2.7) to (3.1), (3.3) we need a
consistent computation of the fluxes and sources.
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Polynomial reconstruction. For each cell V; ; in the adaptive grid, i.e., (I, k) €

G, we compute a reconstruction polynomial Rf}’k € IIx of degree N such that
1

Virl v,

where S, C I; denotes the reconstruction stencil to be specified below. From these
polynomials we can calculate reconstructed averages

RlNk(x) de = v, Yre Sy, (4.1)

1 N
W} gr—tpy, 1= m/v R () dx (4.2)

L,2L—lp4r

for all cells Vz, . C Vi, i.e., 7 € {2871k, ... 2L=!(k+1)—1}. Note that the reconstruc-
tion polynomial R{Yk can be computed by solving the linear system established by the
reconstruction conditions (4.1). Alternatively, it can be determined via reconstruction
of the primitive function, cf. [15]. For this purpose assume that S;r = {k,...,k+ N}
with kK — N < k < k. Then determine the interpolation polynomial nyk“ of the
primitive function by the interpolation condition

QN (@) =W, K €lk,....k+N+1} (4.3)

where Wi gry1 := Wi + horgr, Wi o= b))
polynomial is determined by

r<p Uir- Finally, the reconstruction

d
Riy (@) = —Qpy ™ (). (4.4)

Approximate flux reconstruction. Before describing the new flux computa-
tion we need to determine the cell interfaces where we have to compute a numerical
flux. For this purpose, we first consider the evolution process (3.1) on the adaptive
grid characterized by the index set G. For each cell Vi x, (I,k) € G, the fluxes F}
and F}" ., have to be computed. The union of these interfaces is determined by the
set Fg := Uwreg{(l k), (I, k+ 1)}, for an illustration see Fig. 4.1, interfaces marked
by e and o. Since x; = z;41,2¢, We have to avoid inconsistent computations of the
fluxes Fj ) and Fjiq ;. For this purpose, we put Fj; = Fjy1 2, i.e., injection from
higher scales. This procedure is motivated by the derivation of the adaptive scheme
according to Section 3. Hence, only at interfaces related to the set

Fg = {(l,k) € .7'g | (l + 1,2](:) €7g}

the fluxes are calculated from the numerical flux function F : R?? < R. In Fig. 4.1
these interfaces are marked by e.

On the other hand, in the evolution process (3.2), (3.3) of the multiscale coeffi-
cients we access to the fluxes F", determined by the set

Fo=|J U {G+1n,0+1r+D}u [J{(0,k),0,k+1)} D Fg.

(Lk)ED reM] k€T

For an illustration see Fig. 4.2, interfaces marked by e and o. Since Fp D Fg, we
have to provide the flux computation for all indices (I,k) € Fp. Here we have to
distinguish three cases: (i) if (I, k) € Fg the flux is computed by the numerical flux
function F' with respect to the reconstructed averages (4.2), i.e.,

Flr,llc = F(wz,zL*lk—pﬂ e 7wz,2L*lk+p71)5 (4.5)
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(i) if (I, k) & Fg, but there already exists a flux on a higher scale, i.e., (j,2/~'k) € Fg
for one j € {l+1,..., L}, then we access to this value, i.e., the flux is computed by
injection from above

Flnk = Fﬁzi—lk; (4.6)

(iii) if neither (4.5) nor (4.6) does apply, then there exists j' = max{j| (4,27 'k) €
Fp} and the flux is computed by injection from below
‘Fl,lc = Fj

’,2-7’7[]6 = F(wZ,Qij’k—Iﬂ [N ,w272L7j7k+p_1). (4:7)

In this case the definition of the flux is somewhat arbitrary. In principle, any j' >
max{j|(j,2°~'k)} € Fp is admissible. We only have to make sure that for any
interface x; ), = w4126 = ... = xp or-1) there is a unique value. Note that the third
case only becomes effective if (I,k) € Fp\Fg, i.e., when performing the evolution
process (3.2), (3.3) for the multiscale coefficients.

| | | | | | s o N N N | | | | | | =2
T T T T T T hd v hd v hd T T T T T T
] I N & I & N I ] l=1
T T hd W T W hd T T
e & I & e [=0
A4 @ T @ A4

FiG. 4.1. Ewolution process on adaptive grid: G indicated by cell midpoints ¢, set Fg of
interfaces ® with flur computation and set Fg\Fg of interfaces O with flur computation by injection.
Sources have only to be computed for the cells of the adaptive grid determined by G.

AR ZVIVINI IR
NI T

F1a. 4.2. Evolution process of multiscale coefficients: G indicated by cell midpoints O, set D
of cells with significant details [, set Fg of interfaces ® with flurz computation and set Fp\Fg of
interfaces O with fluxz computation by injection; here s = 1. Sources have not only to be computed
for G but are also accessed for Sp \ Sg. The latter are determined by weighted injection.

Approximate source reconstruction. For the source computation we have
to avoid the complexity of the reference mesh that is involved in the exact source
reconstruction (3.5) due to the definition of the cell averages and the nestedness of
the grid hierarchy. To overcome this obstruction we employ some quadrature rule

> wif(w) = g (z) dz + Ey () (4.8)
i—0 Lk

determined by the nodes x; € V; 1, and the weights w;, i =0, ..., m, depending on cell
Vi,k- The error Ef(hy) is assumed to be bounded up to some constant by

B ()| S sup £ ()] (4.9)

z€Vik



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 11

for some integer « = a(m) > 1, for instance one can use a Newton-Cotes formula. This
quadrature formula is then applied to the sliding average V; 1, () of the reconstruction
polynomial R{Yk determined by

1 ac+hL/2 1
Vik(z) = H/ ) /2R{Yk(z) dz = m ( o @+ hp/2) — QN (e — hL/Q)) .
(4.10)

In the course of the evolution process (3.1) on the adaptive grid we then compute the
sources for (I, k) € G = Sg by

n 1 &
Stk = T > wi S(Vik(s))- (4.11)
i=0

In the evolution process (3.2), (3.3) of the multiscale coefficients, see Fig. 4.2, we
access to the following sources

Sp=|J U {t+1mu (J10,k)} D Ss.

(LLE)ED reM; kelo

Inconsistent computation of sources S;_1 /2], Stk and Si41,2k, Si+1,2k+1 on different
levels has to be avoided. For this purpose, we distinguish between two cases: If there
already exist sources on higher scales, i.e., (j,2/7'k) € Sp fora j € {I+1,...,L},
then we access to these values. Since we are now dealing with averages instead of
point values we have to average these values, i.e.,

20-t_1

Sﬁk = 2l7'j Z SZQj,lkH_i. (4:].2)
i=0

Finally, if neither (4.11) nor (4.12) does apply, then there exists j € {0,...,{—1} such
that (4, [k/2'"7]) € G. In this case the source is computed by injection from below
and the exact source reconstruction (3.5)

)

Stk = S 1kjz-1 = S k-3 ) + St (4.13)

Note that this case is only applied for evolving the multiscale coefficients. In practice,
the cell averages corresponding to the adaptive grid are evolved. We only need this
case for analytical purposes. Note also that we are somewhat free in the definition of

S/ in this case. We only have to satisfy the constraint

2l=7

y . )
PTD 0 St = Sy

i=0

Obviously, this condition holds true for our definition as can be concluded from (3.5).

Equivalence of evolution step. From Fig. 4.1 and 4.2 we conclude that Fg C
Fg C Fp and Sg C Sp, respectively. We have to ensure that the evolution equation
(3.1) of the cell averages are identical to the evolution equations (3.2), (3.3) to which
we apply the inverse MST (2.7). In case of the exact flux and source reconstruction
the equivalence is obvious, because all fluxes and sources are computed on the finest
level. To ensure the equivalence in case of approximate flux and source reconstruction
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some fluxes in Fp are not calculated from the numerical flux function or taken from
higher scales, see ”]” in Fig. 4.1, but from lower scales, see ”1” in Fig. 4.2. Similarly,
we note that some sources in Sp are not calculated from the numerical source function
or taken from higher scales, see 7 \,” and ” /7 in Fig. 4.2, but from lower scales,
see 7N 7 and 7 7 in Fig. 4.2.

PROPOSITION 4.1. The approzimate flux and source reconstruction strategy (4.5),
(4.6), (4.7) and (4.11), (4.12), (4.13) ensure equivalence of the evolution steps (3.1)
and (3.2), (3.3)), respectively.

Proof. To prove this equivalence we confine ourselves without loss of generality
to the situation sketched in Fig. 4.3. The data of the adaptive grid, here v;41 2541,
i =0,1, are evolved according to (3.1)

n+1 _..n T n n qn .
V1t ok4i — Vi1 2k+i — i (B4 2kvivr — Flb1 ki) T 7S 26400 0= 0,1, (4.14)

Alternatively, we evolve vy, r € QR%H and d;,, T € QZ{MH according to (3.2), (3.3)

n+l _ n T n n an
Vi = Ur— 3 (Fl,r—i-l - ‘Fl,r) + TSl,r

i T hl
T _
— 1,0 n n 1,0 gn
- Ulﬂ‘ - hl+1 § : ms7r(‘Fl+1,s+1 - ‘FlJrl,s) +7 § : ms7rSl+1,s7 (415)
seM? SEMY
n+l _ n T 1,1 n n 1,1 gn
dlﬂ‘ - dl,r - hl Z ms,r(ﬂ+17s+1 - F}+17s) +7 Z ms,rSl+17s' (416)
+ sEM] sEM]

We then verify that applying the inverse MST (2.7) to (4.15) and (4.16) results in
(4.14). This follows immediately from the reversibility of the multiscale decomposi-
tion. O

1 I | | [+1

¢ ~—— ¢
R 2
-+

R 2
&

k—2 k—1 k k+1 k+2

Fic. 4.3. Ewvolution on adaptive grid G indicated by cell midpoints ¢, set Fg of interfaces ®
with flur computation and set Fg\Fg of interfaces O with flur computation by injection.

2(k —s) 2k—1 2k 2k+1 2k+2 2(k+s)+1 I
| | ¢ b + + + b b : :
R EALVARE Y
A4 Ad A4 T A A A
k—2 k—1 k k+1 k+2

F1a. 4.4. Evolution on tree D of cells with significant details | and coarse scale cells, adaptive
grid G indicated by cell midpoints O, set Fg of interfaces ® with fluz computation and set Fp\Fg
of interfaces O with flux computation by injection; here s = 1.

5. Error analysis. The objective of the proposed adaptive scheme is to reduce
for a given FVS computational cost and memory requirements while preserving the
accuracy of the reference scheme. Hence, the error has to be considered for data on
the reference mesh rather than on the adaptive grid. To prolongate the data from
the adaptive grid to the reference grid we employ the multiscale representation (2.10)
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where we put the non-significant details to zero. In order to quantify the error we
introduce the averages u} of the exact solution, the averages v} determined by the
FVS and the prolongated averages v} of the adaptive scheme.

An ideal strategy would be to prescribe an error tolerance tol. Then the number
of refinement levels L should be determined during the computation such that the
error meets the tolerance, i.e.,

[af, = Vil < tol

for possibly small L. Here || - || denotes an appropriate norm to be specified below.
Since no error estimator is available for the adaptive scheme, we split the error into
two parts corresponding to the discretization error T3} := 4} — v} of the reference
FVS and the perturbation error e} := v} —V7p, ie.,

[af = vzl < [ITEI + [[eZ]l < tol. (5.1)

We now assume that there is an a priori error estimate of the discretization error, i.e.,
T} ~ h{ where hy, denotes the spatial step size and a the order of convergence. Then
we ideally would determine the number of refinement levels L such that hf ~ tol. In
order to preserve the accuracy of the reference FVS we now may admit a perturbation
error which is proportional to the discretization error, i.e., ||e}|| ~ ||77|]. From this
we conclude

L=L(tol,a) and & =¢(L). (5.2)

Therefore it remains to verify that the perturbation error can be controlled. Note, that
in each time step we introduce an error due to the threshold procedure. Obviously,
this error accumulates in each step, i.e., the best we can hope for is an estimate of
the form

lezll < Cne.

However, the threshold error may be amplified in addition by the evolution step. In
order to control the cumulative perturbation error we have to prove that the constant
C is independent of L, n, 7 and €. For this purpose we will consider the following
issues in more detail, namely, (i) the uniform boundedness of the perturbation error,
(ii) the reliability of the prediction procedure and (iii) the error of the approximate
flux and source reconstruction.

5.1. Perturbation error. In a first step we verify the uniform boundedness of
the perturbation error between the reference FVS and the adaptive MR-FVS in the
weighted [i-metric ||vp|| :=hr D _pc;, |vrk| on the reference grid. This metric is equal
to the Li-norm of a piecewise constant function. Since the schemes are defined on the
real axis in order to avoid boundary conditions, the set I; is countable. To ensure
boundedness of the weighted L'-norm we therefore will always confine ourselves to
an arbitrary but fixed compact set [a, b] and Iy, is chosen such that Uger, Vi i C [a,b]
with Ny := #I; < oo. Due to dyadic grid refinement we have N; = 2N;_; = 2! N
and hy = 2h;y; = 2Y7'hy, respectively. Confining ourselves to a compact set is
justified by considering compactly supported initial data ug. Then by the finite speed
of propagation the solution is compactly supported too. Moreover, convergence of the
reference scheme is typically verified in the L, -norm.

In order to investigate the perturbation error we introduce the evolution operators
&r, of the reference FVS and gL,D, E];D of the adaptive MR-FVS corresponding to the
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adaptive grid G(D) with exact and approximate flux and source reconstruction, respec-
tively. These are determined by (3.6) and (3.9). Note that for analytical purposes it is
convenient to consider the evolution operators in the multiscale representation (2.8).
Then the schemes can be represented in operator form as VZH = &Epvy (reference
FVS), vit! = A65L75n+1 Apn1VE (adaptive MR-FVS with exact reconstruction) and
VZ“ = A€ L Dnt1 Apn1 V] (adaptive MR-FVS with approximate reconstruction).

Comparing the evolution operators of the reference scheme and the adaptive
scheme with exact flux and source reconstruction we conclude that the latter can
be interpreted as the reference scheme to which we apply the approximation operator
Apnir, Le.,

EL7’ﬁn+1A’ﬁn+1vz = Aﬁn+1gva (53)
provided that v is the result of the adaptive scheme based on exact flux recon-
struction, i.e., Ap.1V} = AV} = ¥} and D" C D!, Now we can estimate the
perturbation error.

THEOREM 5.1. (Uniform boundedness of perturbation error) Let the following

assumptions hold true:
(A1) the approzimation error is uniformly bounded, i.e., |lurp — A-ur|| < Cy &

(A2) flux and source reconstruction is accuracy preserving, i.e.,
1€ pnt1 Apns1VE = € psrApnia VEI| < Coe;
(A3) the reference FVS is essentially Iy -contractive, i.e.,
|Erur —ELvi|| K (L +Cs7) |lug — vil|;
(A4) the prediction is reliable in the sense of (3.7), i.e. || Apnt: ELVE —ELVE|| < Cae;
(A5) the initial data are consistent, i.e., |[v) — V9| < Cse.
Then the perturbation error is bounded by

n n 7 €
lezll =lvi —vill< €~ (5.4)

for nT < T where C is independent of L, n, T and €.

Proof. In a first step we split the perturbation error into its different contribu-
tions corresponding to the contraction of the reference FVS (A3), the reliability of
prediction, the error of the flux reconstruction (A2) and the threshold error (A1), i.e.,

llef |l S N1ELvE™ = ELvE ™ I + an—1 + by + s

with
tno1 =160V = Ap £V Ml by = 11E paApa Vit = Ep e Apa vy,
eno1 = €0 pn Apn VETH = Al pu ApaVETH.

Here we use (5.3), i.e., the adaptive scheme with exact flux and source reconstruction
can be interpreted as the reference scheme to which we apply the approximation
operator. This is admissible because A. ¥} ' = ¥} according to the definition of
the adaptive scheme.

Then the first term is estimated by the contraction property of the reference
scheme (A3); the second term by the approximation property (A4), where we assume

that the prediction strategy is reliable; the third term by the accuracy preserving
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property (A2) of the flux reconstruction and the fourth term by the approximation
property (Al). Hence the perturbation error can be further estimated by

leZll < llei | (1 + Cs7) + (C1 + C2 + Ca) e,

By recursion we obtain further

|
—

n

leZll < lleZll (1 +Cs 7)™ +e(CL+Ce+Ca) Y (L+C37)"

=0
Setting C' := max(C; + C3, Cs) we finally conclude
—(14+Cyr)mtt -1  _efsntr
llezll <eC Car <eC Gt
in case of C3 # 0 and
— 1
gl < T AT
-

if the FVS is [!-contractive, i.e., Cs = 0. Since the maximal number of time steps is
bounded by n < T'/7 for a bounded time interval [0, 7], T' < oo, the assertion follows.
a

A similar result has been proven for the adaptive MR-FVS with ezact flux recon-
struction, cf. [18] (Theorem 5, p. 91) or [9]. Here the original MR-FVS is only used
as an intermediate value, i.e., in each time step the data of the modified MR-FVS
scheme are used instead of the data of the original MR-FVS from the previous time
step. One might introduce the adaptive scheme with exact flux approximation where

. . . . . — _ = — _1
the time evolution is always performed on its own data, i.e., V] = A€ 5a Ap. V"7,

where D" = D"(v#~!). Then in the proof of Theorem 5.1 the prediction sets for ¥}
and v would be different because D" (¥} 1) # D*(v71).

From Theorem 5.1 and (5.1) we immediately conclude that the accuracy of the
reference F'VS is preserved provided that € is chosen sufficiently small.

COROLLARY 5.2. (Choice of threshold parameter) If the discretization error of
the reference FVS is bounded by ||} — v?#|l1, < C2°*L for some a > 0, then the
accuracy is preserved by the adaptive scheme provided that ¢ ~ 2=+ L and the time
step T is limited by a CFL constraint.

The usefulness of Theorem 5.1 crucially depends on the verification of the as-
sumptions (A1) — (A5). The convergence of the subdivision scheme implies the
boundedness of the approximation error in the weighted [y-metric. This follows by
Theorem 2.1. Furthermore, for scalar conservation laws in 1D there exist (essentially)
['—contractive schemes, cf. [11]. Concerning the consistent discretization of the initial
data a natural choice is given by the approximation operator, i.e., V9 = A.v2. It
remains to verify (i) the reliability condition for the evolution of the adaptive MR-
FVS with ezact reconstruction and (ii) the boundedness of the error between time
evolution using exact and approximate reconstruction, respectively. These issues will
be addressed in the following two sections.

5.2. Reliability of Prediction. In [9] the reliability condition (3.7) was veri-
fied for the adaptive MR-FVS with ezact flux reconstruction in case of a homogeneous
conservation law for a special prediction strategy to be summarized below. It needs
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to be slightly modified to take into account source terms via exact source reconstruc-
tion. In addition, we have to consider that in each time step the original adaptive
MR-FVS is applied to the data of the modified MR-FVS with approximate flux and
source reconstruction. For this purpose we first have to describe the prediction strat-
egy developed in [9], see Sec. 5.2.1. Then we have to verify the [°°-stability of the
modified adaptive MR-FVS with approximate reconstruction, see Sec. 5.2.2. Finally
we can prove the reliability condition for the original adaptive MR-FVS with exact
reconstruction applied to the data of the modified scheme, see Sec. 5.2.3.

5.2.1. Prediction strategy. For simplicity of representation we introduce the
convention dy 0 = v and dy k1 = dj 1, for the averages and the details, respectively.
The basic idea is to determine all coefficients dﬁﬁ;,ew e’ € E, on the new time level
which are influenced by a coefficient dj'; ., e € E, on the old time level. This set is
referred to as the influence set D; .. Then we are nesting the coefficients dl’fk’e given
at the old time level and finally determine the prediction set D™*1.

Influence set. To determine the set D, . we first have to compute the range
of influence Xy, . of the coeflicient dl’fk’e and the domain of dependence ilr,kz7e/ of
the coefficient dﬁ"ﬁ o~ In the range of influence we collect all averages vy ., that are
influenced by the detail di'y,  whereas the domain of dependence contains all averages
vﬂtl on which the coefficient dﬁﬁ - depends. According to the setting in Sec. 2 these
sets turn out to be

Siko = {25k, 28 (k1) =1} = B4,
Yiko= {2870k —28) + 2s,.. ., 28 Mk + 25 +1) — (25 + 1)}, (5.5)
iz,m =2k —s),... 2L Nk +s4+1) -1}

Note that the index sets ill7kr’er C Iy, and X4, C Ip, correspond to data on the
reference mesh but for different time level n + 1 and n, respectively. By the evolution
process (3.9) with exact reconstruction (3.4) and (3.5) the domain of dependence
has to be extended taking into account the stencil of numerical flux F' and source S
determined by (1.4) and (1.5), respectively, i.e.,

il_,’k,ﬁ, = U {r—p,...,r +p}. (5.6)

’I‘Gilr'kr’e/
Then the influence set is determined by
Dl,k,e = {(l’7k;’7e’) cD ; i;,k’,e’ N El,k,e ?é @}

Nesting of coefficients. The prediction strategy has to take into account that
the coefficients dj', , may not only cause a perturbation in the neighborhood of the
cell V;;, because of the time evolution but may also influence coefficients d?ﬁie' on
higher scales, where I’ > [ + 1 is admissible. Since the additional higher levels inflate
the influence set, we would like to bound the number of higher levels to a minimum
number. For this purpose we introduce the nesting of details where we fix some
o > 1 and assign to each coefficient corresponding to (I,k,e) € D™ a unique index
v =v(l,k,e) such that

21/(l,k,8) o g < |d;fk7e| S 2(1/(l7k76)+1)0' €. (57)
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Fic. 5.1. Illustration of the range of influence (left) and the range of dependence (right) for a
significant detail (1, k) € D indicated by the cell midpoints & with grading parameter ¢ = 1.

We will see later on that the parameter ¢ is linked to the smoothness of the primal
wavelet functions, see Theorem 2.1. Since the index v(l, k, e) becomes the smaller the
larger o is, it is convenient to choose o as large as possible.

Prediction set. From the influence set D; ;. and the nesting of coefficients we
determine the prediction set

Dh=D "y | AWK, €) €D ; I U+l ke)} (5.8)
(1,k,e)eD™

with D" := D" U {(0,k,0) ; k € I}. For computational but also analytical purposes
we inflate this set additionally where we apply the grading procedure (3.11). For
instance, the grading ensures that the local multiscale transformation (2.3), (2.6)
and (2.7), respectively, can be realized by one sweep through the refinement levels
provided the grading parameter ¢ is chosen such that ¢ > s, see [18], p. 36. By the
grading procedure a significant detail (I, k) € D will cause all details on lower scales
j=1—1,...,1in the range of influence Elcf,;(j) C I to be put significant independent
of their value. On the other hand, for all non-significant details (I, k) € D the grading
ensures that all details on higher scales j =1+ 1,..., L — 1 in the range of influence
Sf];(]) C I; can not be significant otherwise (I,k) € D. According to our setting in
Sec. 2 the range of influence and dependence, respectively, can be estimated by

SV k2] -2t g, (k2 2 g,

S {27 k- q) — (277 = 2)q,..., 2 (k+q) + (27— 2)g + 277 — 1)
Note that the grading will inflate the prediction set but does not deteriorate the
overall complexity.

5.2.2. [*-stability of modified adaptive MR-FVS. To prove reliability of
the prediction set D"*! of the original MR-FVS determined by the data v} of the
modified MR-FVS we have to verify that v} is uniformly bounded in the sup-norm.
Therefore we need the reliability of D”, v = 0,...,n. This recursive proof is initialized
by the proper computation of the initial data such that D° = D°. We emphasize that
in the course of the recursion all constants have to be uniform, i.e., they do not depend
on L, n, 7 and ¢, respectively.

LeEMMA 5.3. (Boundedness of adaptive FVS in sup-norm) Assume that the fol-
lowing conditions hold true:

(A6) the subdivision scheme converges uniformly in the sup-norm;
(A8) the reference FVS is stable in 1°°, i.e., ||EL vilie < (14 C7)||vLie;
(A9) the error of the initial data approximation can be estimated by

V9 = V8 li= < Ce/r and V5, — 6 = < Ce/r,

where 4} denotes the averages of the initial data;
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(A10) the threshold values are determined by e; = 20~ & with e ~ 2= (4L for some
a>0;

(A11) the CFL condition holds on the finest resolution level, i.e., T ~ 27F,
Then the approzimation v} corresponding to the adaptive F'VS with approzimate flux
reconstruction is uniformly bounded in the sup—norm, i.e.,

||‘V’z||l°° < C(Ta UO) for nrt < T: (59)

provided that the prediction set D” satisfies the reliability property (3.7) and the error
of the approximate flux and source reconstruction is bounded, i.e.,

(A7) ||5VL7@,, Ag. \7271 — ng),, Ap. \71";1||loo < Ce

for all previous time steps 0 < v < n.

Sketch of proof. A similar result has been proven for the original adaptive MR-
FVS with ezact flux reconstruction, cf. [18] (Lemma 8, p. 102) or [9]. However, the
splitting of the error has to be modified taking into account the additional error
between exact and approximate flux and source reconstruction. Hence, we start from

1VE e <IA € pn Wi =& pn Wi e + 1€ 50 W =& pn Wi i +

160,50 Wi = ELVE e + IELVE i

with w} ' := Az.¥7 ', The terms of the right-hand side can be estimated by the
assumptions and Theorem 2.1 resulting in

Wl < (14 C ) [NE i + Ce.

Then the assertion follows by a discrete Cronwall inequality and assumption (A9) on
the approximation of the initial data. The details are given in Appendix 7.1. O

Note that an (essentially) {;— contractive and [*°-stable scheme, see (A3) in
Theorem 5.1 and (A8) in Lemma 5.3, is known to converge to a weak solution of the
initial value problem (1.1), (1.2), cf. [11].

5.2.3. Reliability. Finally we can prove the reliability condition for the origi-
nal adaptive MR-FVS with exact reconstruction applied to the data of the modified
scheme and, hence, assumption (A4) in Theorem 5.1. The proof is similar to the one
presented in [9], [18] in case of a homogeneous conservation law. We therefore will
omit the details of the proof but will summarize the main steps which are needed
later on in Sec. 5.3. Starting point is the observation that we can confine ourselves to
the evolution equations on the reference mesh because of the identity (5.3) and the
details can be rewritten in terms of finite differences of order M (number of vanishing
moments)

M M
AR up g = Z(—l)l< ; >UL,k+iK (5.10)
i—0
with stencil
S(M, K, k) := {k+iK : i=0,...M}C Iy, (5.11)

cf. [9], [18], Lemma 7, p. 99. Then the details can be estimated by
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LEMMA 5.4. (Estimate of details by finite differences) Let k € Z,1 € {0,...,L —
1} and K = 2L=1=1 Furthermore, let M denote the number of vanishing moments
of the modified box wavelet. Then the details d; ;, can be estimated by

|dix]| < C sup{|A% upy| s reln s. t. S(M,K,r) C 2171«71}7 (5.12)

where the constant C is independent of I and k.
For a proof see [18], Proposition 4, p. 101.

Due to the evolution equation the finite difference operator is also applied to
the numerical flux balances and sources, respectively. These can be considered as
composite functions G := g o u. The derivatives of the composite function G can
be written in a series of derivatives of g and u, respectively, successively applying
the chain rule. Then the main idea is to derive a discrete counterpart by which
finite differences of the nonlinear function G are estimated by finite differences of the
averages. For this purpose, the following assumption has to hold for G

ASSUMPTION 1. Let D C RP be a bounded domain of admissible states. Then the
nonlinear function G : RP — R is assumed to be reqular in the following sense:

1.) G is piecewise smooth, i.e., there are open subsets D, C D, i = 1,..., K,

with D = Uf; D;, such that G € CE(D;);

2.) G is locally Lipschitz—continuous on D;

3.) the derivatives of G can be extended continuously to the boundary 0D; such
that

ok G
Vs:ﬁp v 6,%_)(v) < Cp
for k=" ki, ke{0,...,R}.

This assumption has to hold for the numerical flux function F : R?? — R as well as
the numerical source function S : R — R.

LEMMA 5.5. (Finite differences for composite functions) Let the assumptions of
Lemma 5.3 hold and assume that the nonlinear function G satisfies Assumption 1.
Introducing

Dn(vp, K,X) :=sup {|A% viwl; S(IN,K,k') CX}  and

I(R) := {(j k);je{l,...,R}¥ ke{o,... R}, ZlekaT :R},(5.13)

we obtain

R ~

DA K, Snan) < Csup { T (0,61 K500 5 Gl € 1)) (519

r=1

The proof can be found in [9] or [18], Proposition 5, p. 104 in case of the numerical
flux balances. It can also be applied to the numerical source function.

In order to further estimate the finite differences on the right hand side in (5.12)
and (5.14) we need a discrete inverse estimate, i.e., we have to estimate the finite
differences by details.

LEMMA 5.6. (Discrete inverse estimate) Let K € N be an arbitrary step size.
Assume that the subdivision scheme converges uniformly in the sup—norm and the
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corresponding primal wavelets 1; ;, are in C". For N > 0 we obtain

L—1
AR O o] <C Y min{2 PR 1N sup || 5 S0 SN, KR # 03,
[=—1
(5.15)
where dﬁLk =00 g 21,k 2= Xo,k,0 and Xy =Xy forl=0,...,L—1.
The convergence of the subdivision scheme ensures the existence of the primal func-
tions, see Theorem 2.1, and the uniform boundedness of the approximation error
(2.11). Due to the dyadic grid refinement the limit functions are refinable functions
for which an inverse estimate exists, cf. [7]. This is used to prove the assertion. For
details, we refer to [9] or [18], Prop. 4, p. 101.

Then the details on the right hand side in (5.15) have to be estimated by the
threshold values. Here the definition of the prediction set (5.8) enters. For this
purpose, we now have to specify the the parameter o in the nesting (5.7) of the
details.

ASSUMPTION 2. Assume that the primal wavelets have C” Holder smoothness,
i.e., Y € C7, and the dual wavelets have M wanishing moments. Then we choose
some o such that

l<o<r+1 (5.16)
and fix the parameters R and 8 > 0 such that

R—-1<r<R, (5.17)
1+<o<1+R-p. (5.18)

The smoothness parameter r is bounded by the number of vanishing moments M of
the dual wavelets @ijyk, ie,r<M,and thuso <M +1and R< M.

LEMMA 5.7. (Stability of finite differences) Let the assumptions of Lemma 5.8
and 5.6 as well as Assumption 2 hold. Let (I',k'.¢') ¢ D', N > 0, K <
Cr2E=U'=1 where Cx € [1,00) is some constant independent of the levels I' and
L and k such that S(N, K, k) C ZNDZ_,’,C,ﬁ,. Then we get the estimate

AR o7 | < C etV (5.19)

where the threshold values are given by gy = 21~ ¢. In particular, if N < R then the
constant C' depends on T and uy.
For a proof see [9] or [18], Prop. 7, p. 101.
Finally we obtain the reliability result for the original MR-FVS applied to the
data of the modified MR-FVS, i.e., Vi™h:= &, 51 Apuii Vi = Apui ELV].
THEOREM 5.8. (Reliability) Let the Assumptions 1, 2 as well as the assumptions
(A6) — (A11) of Lemma 5.3 hold true. Then the prediction set defined by (5.8) fulfills
the reliability property (3.7).

Sketch of proof. For some (I',k',1) & D"! we have to verify that the detail EZJ;;
can be estimated up to some constant by the threshold value ¢;;. For this purpose,
we first estimate the detail on time level n by finite differences according to Lemma
5.4. Then we apply the finite difference operator A¥ to the evolution equations (3.1)
with the numerical fluxes (3.4) and numerical sources (3.5) for level [ = L. Finally
we have to estimate the finite differences A%WL‘J and A%BZJ,, A%Sﬁr by Lemma
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5.7 and 5.5, respectively. Details on the proof can be found in [9] or [18], Theorem 7,
p. 110. O

For the prediction strategy developed in [9] this could be verified under the same
assumptions. There it was proven only for homogeneous conservation laws. However,
the proof will also work in case of inhomogeneous equations where we have to replace
in the proof By by Br i — 7S, with ezact source reconstruction.

5.3. Error of approximate reconstruction. It remains to verify assumption
(A2) in Theorem 5.1. For this purpose, we first derive sufficient conditions which are
verified to hold for the approximate flux and source reconstruction (4.5), (4.6), (4.7)
and (4.11), (4.12), (4.13), respectively.

THEOREM 5.9. (Sufficient condition) The above assumptions hold true. Assume
that in particular for the CFL-condition we have

T !
— <C<1 5.20
hp e Il < (5.20)
with C(T,up) given by (5.9) in Lemma 5.3. Then the approzimate flux and source
reconstruction is accuracy preserving, i.e., (A2) holds true, provided that

\F — FySe, V(I k) € F(D"H, (5.21)

and
S7y = Sl S2'e, V(1K) € S(D™H). (5.22)
Proof. Let be v’vz+1 = 7L’@n+1vvvz, WZH = 5L7Z3n+1 w7 . Then we may represent

the error of the subdivision scheme (3.9) as

Wit -wpt= ) W@ - A,
(I,k,e)eDn+1
which can be estimated by
Wit =Wt < Y Il =

(I,r.e)eDn+1

The norm of the discrete basis vectors can be represented as

1¥Eeell = D Vel 1(®h o)l

L
reEl)k‘e

where %3, . C I, is the support of ¥}, . Next we conclude from Theorem 2.1

(T )l = 1 (Wikes Sr.ed)l < [ pell= S 1

and

= |supp Yrpe| 527"

Vv,
‘UreEfk‘e Ly

Hence the error can be further estimated by

Hv—szrl _ vaerl || f Z 2—l|d_n+1 _ d%+1

l,re lrel”
(I,r,e)€Dn+1
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From the evolution equations (3.2) and (3.3) together with exact and approximate
flux and source reconstruction as well as the identity (2.7), we obtain for the difference
of the details

n+1 m+1l) Le nn »31) qn qn <
|dl,r,e - dl,r,e| - Z ms7r)‘l+17S(Bl+17s - Bl+1,s) +7 Z (SlJrl,s - Sl+17s) ~
sEMY sEM

max AlJrlyS |Bln+175 - Banrl,s| + Tsén/a}e( |5lrrfk1,s - Sln+17s| (523)
lr

sEMT |

Le “are uniformly bounded, see

S7

because the supports Mir and the mask coefficients m
(2.3) and (2.6).

From the definition of the flux balances as well as the sources we infer from
assumption (5.21) and (5.22)

ot —wpt s S erter Y e

hi :
(re)ebrtt T (1,re)eDn+1

The number of significant details is bounded by that of all possible coefficients

L—1 L—-1
#D™ < I+ L =No+ No Y 2' = Ny 2k,
=0 =0

Since hy = 2V7'hy and hy = 27 Fhy, respectively, and the CFL-condition (5.20)
holds we finally obtain

_n+l  cntl) < T ol4+1—L -1
(Wi = Wi S E . 2 2 "e+ E TE
(I,re)eDn+1 (l,re)eDn+?

SN2k (2-27 L +ho2t  max  |f'(u)|)ele.
|u| <C(T',uo0)

O

5.3.1. Approximate flux reconstruction. In order to verify the sufficient
condition (5.21) for the approximate flux reconstruction we proceed in several steps.
First of all, we have to estimate the error introduced by polynomial reconstruction.

LemMA 5.10.  (Error of polynomial reconstruction) Let xy, = kh, h >0, k € Z,
be a uniform discretization of the real line and vy, be data to the cell [z}, xyy1]. Let k be
fized, RY € Il denotes the reconstruction polynomial to the stencil Sy, := {k, ... kY
for some k€ {k—N,...,k} and k =k + N with

N 1 [%k'+1
Py = E/ RN (x)dx = vy VE € S. (5.24)
€T

k!

Then the error between the reconstructed cell average Py and the cell average Vg 1S
either zero, i.e., vpr = Py, k' € Sy, or can be represented as a linear combination of
finite differences of order N + 1, i.e.,

kE—k —1
> aw AV Moy, k' <k,
i =
’Uk/ — Pk’ =
E —k—1 _
>k Ao N, k<K,
j=0
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where the coefficients ay: ; only depend on N.

Sketch of proof. For k' € Sj the reconstruction condition (4.1) holds, i.e., the
error vanishes. For k' ¢ S the proof follows by induction starting at k' = k —
1 and k' = k + 1, respectively. Here we make use of the representation (4.4) of
the reconstruction polynomial via the interpolation polynomial (4.3) of the primitive
function. In particular, we employ that (N + 1)-st order finite differences of the

interpolation polynomial chv +1 are constant and, hence, A{V +1 P, = 0. The complete
proof is given in Appendix 7.2. O

Next we rewrite finite differences on level I by those on higher levels with larger
step size.
LeMMA 5.11. For finite differences of order N € N the two-scale relation

N+1

1 N+1

A{V’l}hk = 5 Z ( i )Aivvl+1,2k+i (525)
=0

holds. Alternatively, finite differences can be represented by a sum of finite differences

on level L with step size 2871, i.e.,

oL-l_1

Ao =25 3" AN opsr-ipi. (5.26)
v=0

Sketch of proof. The proof is elementary. Relation (5.25) follows by induction us-
ing the addition theorem for binomial coefficients whereas (5.26) is a straight-forward
calculation employing the encoding (2.3) and the definition (5.10) of the finite differ-
ence. Details can be found in the Appendix 7.3. O

Similar to Lemma 5.7 we can now estimate the finite differences on level [ instead
of level L.

LEMMA 5.12. Assume that the dual wavelets have M = 2s +1 > N + 1 van-
ishing moments. Given a sequence of averages vy with multiscale decomposition
{djk.e}(jreyep- Let G = G(D) be the adaptive grid corresponding to the set of sig-
nificant details D that is graded of degree q > [%] Then for any (I,k) € G we
have

N+1 < min(%&) ,
[A] 'Ul,k’|~5l , VE e{k—-2s,....,k+2s— N -1}
provided that the assumptions of Lemma 5.7 hold true.

Sketch of proof. The basic idea is to rewrite the finite difference Af“'lvl,k/ on
level [ in a series of finite differences Aé\it}_l'UL72L—Z—1(2kr+l')+l“ 1t =0,...,N + 2,
p=0,...,2871=1 — 1 on level L first applying (5.25) and then (5.26). For each of
these differences we have to verify that its stencil is included in a backward influence
set Sljrl,2k+q’,1 defined by (5.6) for some ¢' such that (I+1,2k+¢') ¢ D. It turns out
that ¢" € {—3s,...,3s+1}. On the other hand we deduce from the grading procedure
and the assumption (I, k) € G, i.e., (I,k) ¢ D, that the range of dependence for (I, k)
on level [ + 1 is determined by f]lgjc(lﬂ) ={2(k—q),...,2(k+¢q) +1}. Then choosing

the grading parameter sufficiently large ensures that 2k + ¢’ € f]f}c(lﬂ). Finally, we

may apply Lemma 5.7 and the assertion follows. For a detailed p7roof see Appendix
7.4. O

Note that in Lemma 5.12 the order N of the finite difference is not yet limited to
the degree of the reconstruction polynomial. In particular, it might be the starting
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point to construct an hp-version of the adaptive multiscale scheme. The idea would
be to look for the smallest N such that

ANy p | S e
holds. This would imply
|<Rl]Yk7 ¢L7r> - 'UL7r| f, €1, Vr e {2Lilk7 LN 2Lil(k + 1) - 1}

in Lemma 5.13 and in the proof of Theorem 5.14 below.
Next we estimate the error between the averages and the reconstructed averages.
LEMMA 5.13. Assume that the dual wavelets have M = 2s+1 > N + 1 vanishing
moments, where N is the degree of the reconstruction polynomial. Given a sequence
of averages v, with multiscale decomposition {djg.c}(jk,c)ep- Let G = G(D) be the
adaptive grid corresponding to the set of significant details D that is graded of degree
q > [%]. Then for any (I,k) € G we have

s (N41
(RS B1r) — vp0] S max (s?““( A

’1),gl> , ore {2l 2k (k1) — 1)

provided that (i) the subdivision scheme converges uniformly in the sup-norm, (ii)
the reconstruction stencil Sg, 1, is lying inside the support Ui;;(f,—;l)_l E(Ll?m of the
subdivision scheme and (#i) the assumptions of Lemma 5.7 hold true.

Sketch of proof. The basic idea is to apply the subdivision scheme (2.8) to the
reconstructed averages Z3L,T = <Rl]Yk795L,T) and the cell averages vy ,, respectively,
and to estimate the difference of both series: (i) Since the number of vanishing mo-
ments M is larger than the degree N of the reconstruction polynomial, the details
corresponding to the multiscale decomposition of the reconstruction polynomial van-
ish. (ii) Assuming that the grading parameter satisfies ¢ > s we conclude that the
support of the wavelets E(Lj’)m is included in the range of dependence f]lg,;e(j ) for all
re {27k, ... 2"k +1) -1} and j =1+ 1,...,L — 1. Hence , the details d; ,
IS if};] ), corresponding to the cell averages are not significant. On the other hand,

the remaining details dj, k' € Z_](Ll?m C {k—s,...,k + s} can be estimated by
|diir| < 2%¢; due to the definition of the prediction set (5.8) where o is a constant
which is fixed in Assumption 2. (iii) The differences between the cell averages vy g

and Py for k' € E(Ll?m can be estimated by Lemma 5.10 and 5.12. The details of
the proof are given in Appendix 7.5. O

Finally we can verify the sufficient condition (5.21) in case of approximate flux
reconstruction.

THEOREM 5.14. Assume that the primal wavelets have Hélder reqularity C”,
0 <r <N +1, and the parameters R and 3 are chosen according to Assumption 2.
Furthermore the adaptive grid is assumed to be graded of degree q > f%] and the dual
wavelets have M = 2s+1 > N + 1 > R vanishing moments where N is the degree of
the polynomial reconstruction and R is the parameter chosen in Assumption 2. Then
the error between exact and approximate fluz reconstruction strateqy determined by

(8.4) and (4.5), (4.6), (4.7), respectively, can be estimated by

|Flrfk - Fl?k| e, (I,k) € Fpnia- (5.27)
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Proof. Let (I,k) € Fgnr, I € {0,...,L —1}. Since F' is assumed to be locally
Lipschitz-continuous with constant Ly, see Assumption 1, we can estimate the error
between the exact and approximate flux reconstruction (3.4) and (4.5), respectively,
by

|Flk - Flk| = |[F(vp gr-th—py -, VL o0=1hip1) — FWror-tpp, s wigz-ippp 1)| <
p—1

Lp Z VL 2r-thqi — Wi —tgyil- (5.28)
i=—p

For simplicity of representation we suppress the time index.
Here the values wy, , k' € {217k — p,..., 27"k + p — 1} are determined by
polynomial reconstruction according to (4.1) and (4.2), i.e.,

1

= — RY ,(x)dz.
|VL7kI| VL,kI ll7rl( )

Wy, k!

Note that in the neighborhood of a cell V;; the neighboring cells in the adaptive
grid G are not necessarily sitting on the same level. Therefore the average wp, s is
computed by the reconstruction polynomial R{Y, . on level I' = I'(k'") related to the

cell Vi v C Vi g with 7/ = 7' (k') where (I',r') € G"1, see Fig. 5.2.

FQL*I]C
f f } eo—+-o—+o+o+o+t+ot+otototod } } f [+2=1L
f f f f f f f f f [+1
R\ ko
: : : : : I
’ , I j -1
Rﬁl,tkﬂjq T

Ti—1,|k/2) -1 = Tk = Tp oLk

F1G. 5.2. Illustration of approzimate fluz reconstruction at the interface x; . in case of p = 5.
The locally adapted grid is indicated by the cell midpoints (. For the flux computation the data on
level L indicated by O have to be computed by the reconstruction polynomials Rll\il Lk/2]—1° Rka
and Rﬁ1,2k+2f respectively.

Since the grid is assumed to be graded, the number of different levels is uniformly
bounded, i.e.,

-1 <cC

with C' only depending on s and p. Hence, we can estimate the difference on the
right-hand side in (5.28) by Lemma 5.13

- in{ 21 in{ 5.1
|’UL7Ic’ — wL7k’| = |'UL7Ic’ — (Rl]y,kH‘PL,k’M E&?m{ i }i{f;mn{ i } = £}, (529)
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because (N 4+ 1)/R > 1 due to assumption. Then the assertion follows by the choice
of gg = 2! Te.

In the second case (4.6) where (I,k) ¢ Fgni1 and there exists j € {{+1,...,L}
such that (I', k') := (4,297 'k) € Fgn+1 the numerical fluxes are determined by

Flw=Fjpimip =Fpor—vy = F0por—trjy_py ooy Vot ip_1),

Fi g = Fjoi-1p = Fy o = F(or g —ps -« 500 k' 4p—1)-

Then (5.29) also holds true with &;/ instead of ; where we apply the above analysis
to (I', k") instead of (I, k).

In the last case (4.7), where there is no j € {0,...,L}, such that (j,2/7!) €
Fgni1, but there is j' = max{j| (4, 207'k) € Fpus1}, we apply the above analysis to
('K == (', 27 ). O

5.3.2. Approximate source reconstruction. For verification of the sufficient
condition (5.22) for the approximate source reconstruction we can not directly apply
Lemma 5.13 because of the composition of the source function and the sliding average
of the reconstruction polynomial. Here we have first to estimate the differences of the
composite function similar to Lemma 5.5

LEMMA 5.15. (Boundedness of derivatives of composite function) Let the assump-
tions of Lemma 5.3 hold true. Furthermore the source function S satisfies Assumption
1. Let V be the sliding average of the reconstruction polynomial R{Yk to cell Vi i, and
(I,k) € G(D). Then the R-th derivative of the composite function G = SoV is bounded
by

sup |G (2)| S hi e
€Vl k

for0 < R<N.

Sketch of proof. The proof is similar to the one for Lemma 5.5 that can be found
in [9] or [18], Proposition 5, p. 104. The basic idea is to estimate the R-th derivative of
the composite function G' by means of finite differences Ajv; jr of order j = 0,..., R.
For this purpose, we have to estimate the j-th derivative of the sliding average V.
According to (4.10) the latter is defined by the interpolation polynomial Q%jl that is
determined by the interpolation conditions (4.3). Hence, we have to estimate the j-th
derivative of ny,fl. Here it is most convenient to consider the Newton representation
because therein the finite differences naturally occur. Finally, the finite differences
can be estimated by Lemma 5.12. Details of the proof are given in Appendix 7.6. O

Finally we can verify the sufficient condition (5.22) in case of approximate source
reconstruction.

THEOREM 5.16. Assume that the primal wavelets have Hélder reqularity C”,
0 <r < N +1, and the parameters R and 3 are chosen according to Assumption
2. Furthermore the adaptive grid is assumed to be graded of degree q > f%] and the
dual wavelets have M = 2s+1 > N + 1 > R vanishing moments where N is the
degree of the polynomial reconstruction and R is the parameter chosen in Assumption
2. Then the error between the exact and approximate source reconstruction strategy
determined by (3.5) and (4.11), (4.12), (4.13), respectively, can be estimated by

|5’l’r:/k) - S’l’r:/k)| ff €, (la k) € Sﬁn+1- (530)
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Proof. First of all we consider (I,k) € G"'' C Sz.i1. Due to (3.5) the exact
source reconstruction in cell V; ; is given by

2L7l_1 2L7l_1
g _ol-L S _ol-L
Stk =2 E Sppt-tgri =2 E S(up ar-1kyi)-
i—0 i—0

We now introduce the approximation

oL—1_ 1 oL—1_q
=2l=F Z SV(@par-tkyi)) = h_l > hiS(Ppoi-ipss),
i=0

where V is the sliding average determined by the polynomial reconstruction R{Yk
to cell Vi, PL oL—1p1; is the cell average of RlNk in cell Vi or—1py; and Ty, or—1pq; =

T oL— zk+l+ is the midpoint of cell Vi, or—154;. Note that V(2 or—1y4;) = ]SL,ZL*lk+i
because of the construction of the reconstruction polynomial (4.3), (4.4) and the def-
inition of the sliding average (4.10). Obviously, S;  is the midpoint quadrature rule

applied to the subintervals Vi or—ijy;, 71 =0,..., 2L=t 1, approximating the integral
1 2L 1
I o= — G(x) Z / () dx (5.31)
hl Vik L 2L—lp4i

with the composite function G = S o V.
Note that hy = 2!=Lh;. The error can be estimated by

|[l,lc —517k| < hL sup |G ( )| (532)
zEVI K

On the other hand, the approximate reconstruction of the source in cell V; ;, according
to the strategy is given by some quadrature rule applied to the integral (5.31), i.e

. 1 — 1 —
Stk =1 > wiS(V(w:)) = W > wiG(z;)
! i=0 ! =0
for some nodes z; € V;;, and some weights w;, ¢ =0,...,m.

Assume that the error can be estimated by

Ik — Siel ShY sup |G ()] (5.33)
€V K

for some integer o = a(m).
The error between exact and approximate source reconstruction can now be split
into two parts

1Sk = Stel < S0k — Skl + 1Stk — Sigl- (5.34)
The first term can now be estimated

min(

_ ~ ~ (N+1) 1)
< R
|Sl,k — Sl,k| < L o m;}zc - |'UL72L—lk+l' — PL72L—lk+i ~ max <8l ,8[)
1=0,..., =

(5.35)
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due to the local Lipschitz continuity of S and Lemma 5.13.
The second term in (5.34) is again split into two parts accounting for the integra-
tion error, i.e.,

Stk = Skl < IStk = Tkl + [Tk — Stkl-
From Lemma 5.15 the errors (5.32) and (5.33) are bounded up to some constant
1Stk — Skl Shier +hhi e Sey. (5.36)

Since (N +1)/R > 1 the assertion follows from (5.34), (5.35) and (5.36) by the choice
of gy =20 e,

In the second case when (I, k) ¢ G"! but there exists j € {{+1,..., L} such that
(4,277'k) € G"t! we infer from (3.5) and (4.12)

20—t

an _ on § [—j|qn _an an _on
|Sl,lc Sl,k| < 2 |Sj,21'—lk+i Sj721—lk+i| < i—0 mg]?gl_l |Sj,21—lk+i Sj721—lk+i .
— =0,...,

Then (5.30) holds true with ¢; instead of ;.
_ Inthelast case where there j € {0,...,l—1} exists such that (I', k') := (j, |k/2179)) €
g™t we infer from (4.13)

S;?k - S;?k - S;?k - SlT/L7kr + Slrrl’k/ - S;?k - SlT/L7kr - Slrrl’k/-

We now apply again the above analysis to (I, k). O

Note that the estimate (5.30) can be proven for any a in the quadrature error
(4.9) and (5.33), respectively. Therefore, we may use the midpoint rule, i.e. m = 0.
Hence only one function evaluation is required in case of (4.11).

6. Numerical results. The analytical results are now to be verified by numer-
ical computations. For this purpose we consider the inhomogeneous, inviscid Burgers
equation, i.e., f(u) = 0.5u® with source s(u) = u (u — 0.5) (u — 1) and initial data
uo(x) = sin(2 7 x).

The computational domain Q = [0,1] is discretized by Ny = 10 cells on the
coarsest level, i.e., hy = 0.1. Hence the resolution for higher refinement levels is
N; = 2' Ny and h; = 27" hy. At the boundaries we use periodic boundary conditions.
For the time discretization we have to respect the CFL condition. Here we choose
7o = 0.016 and the final integration time is 7" = 0.24. Since we perform a global
time stepping the CFL condition has to hold for the smallest cells corresponding to
the highest refinement level L, i.e., 7 = 27 % 75. For the multiscale analysis we use
wavelets with M = 2s + 1 = 3 vanishing moments, see Table 2.1, and the grading
parameter is chosen as ¢ = 2s = 2. Instead of using the prediction strategy according
to Section 5.2.1 we apply Harten’s original strategy although this has not yet been
proven to be reliable but is always used in practice, cf. [4].

The reference FVS (1.3) is determined by the Godunov flux Fj, = FY vk, vf) =
F(vg—2,...,vk+1). In order to improve spatial and temporal accuracy we employ a
piecewise linear ENO reconstruction, cf. [15]. For a non-equidistant grid this reads

of = vk—1 + M (Avg, Avg_1) (hg—1 — 7 f'(vg—1 + T (A v, Avg_1) hi—1))
’U,{? = Vg —W(A UkJrl,Avk) (hk -f—Tf’(’Uk —W(A UkJrl,Avk) hk))
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with the divided differences A v; := (v; —v;—1)/(h; + h;j—1) and the minmod function
m defined by m(a,b) := a if |a| < |b|] and m(a,b) := b elsewhere. Note that the term
corresponding to the time discretization 7 guarantees second order in time. For the
source term we apply the first order approximation (1.5).

Computations have been performed for varying threshold values € and different
flux and source reconstruction strategies: (i) flux and source computation on unstruc-
tured meshes using only local data corresponding to the adaptive grid as is frequently
used in applications, cf. [4], (ii) approximate reconstruction strategy according to
(4.5), (4.6) and (4.11), (4.12) using the midpoint rule and reconstruction polynomials
of degree N = 2s = 2 with central stencil S;, = {k —s,...,k + s}, and (iii) exact
reconstruction strategy according to (3.4) and (3.5). These are referred to RM=1,2,3
in Figures 6.4, 6.5, 6.3 and 6.2.

The solution is developing a shock at time ¢ = 1/7 in position # = 0.5 which is
is moving at negative speed due to the inhomogeneity. In Figure 6.1 we present the
adaptive solution for L = 10, ¢ = 10~? by points at the cell center of the adaptive
grid and the ezact solution computed by the reference scheme on a uniform grid
corresponding to L = 14.

l T T T
0
-1 F
]
2+
-3+
exact
4+ adaptive  + |
0 0.2 0.4 0.6 0.8 1

F1G. 6.1. Comparison of adaptive solution (L = 10, e = 1073) and exact solution (L = 14, ¢ =0)

To investigate the influence of the different flux and source reconstruction strate-
gies on the efficiency of the adaptive scheme we have to consider the computational
effort (memory and CPU) and the accuracy (discretization and perturbation error)
for varying threshold values. All adaptive computations are performed with L = 10
refinement levels.

According to the ideal strategy in Section 5 the threshold value € has to be
chosen such that the discretization error 7;, = u; — vy of the reference scheme
and the perturbation error e, = vy — vy are balanced. For L = 10 we obtain
2]l = 5.8 x 10~* where the “exact ” solution is obtained by the FVS on a uniform
mesh corresponding to L = 14 refinement levels.

First we consider the perturbation error due to thresholding plotted in Figure
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6.2 for varying threshold parameters. Obviously, the perturbation error is decreasing
with smaller threshold values. In particular, |lep|| — 0 for e — 0T, i.e., the adaptive
scheme is converging to the reference solution obtained on the reference grid with L
refinement levels. Of course, we do not gain in accuracy when choosing a too small
threshold value because the discretization error is fixed by the number of refinement
levels.

B

K+

log(error)
A
X
.

X+

_7 1 1 1 1 1 1 1
1 2 3 4 5 6 7 8 9

-log(eps)

FiG. 6.2. Perturbation error of adaptive solution (L = 10, warying threshold value €) and
reference solution (L =10, e = 0) on reference grid (L = 10)

To determine the optimal threshold value we plot the error |[G, — ¥|| of the
adaptive scheme (5.1) for different threshold values, see Figure 6.3. From this we
conclude that an optimal choice would be £, € [107°,107*] because the error of the
adaptive scheme is decreasing with decreasing threshold value € as long as € > eopt
whereas it stalls for ¢ < e,,:. Hence, for € > g+ the perturbation error due to
thresholding is dominating whereas for € < €,,; the discretization error is dominating.

The above observations concerning the discretization and perturbation error hold
true independent of the flux and source reconstruction strategy. However, for a thresh-
old value €, in the optimal range we depict from Figures 6.2 and 6.3 that the highest
accuracy is obtained with the exact strategy (RM=3). For the approximate strategy
(RM=2) we are loosing a bit in accuracy, but for the local strategy (RM=1) the loss
is much more severe.

To conclude on the efficiency of the different strategies we have to consider the
computational costs. First we discuss the size of the adaptive grids that determine
the memory requirements, see Figure 6.4. We note that the minimal grid size is
usually obtained for the exact strategy (RM=3) whereas for the local (RM=1) and
the approximate (RM=2) strategy we need more cells. This might be caused by small
oscillations induced by the reconstruction error. This becomes more severe in case of
the local strategy (RM=1) if the threshold value is chosen too small, i.e., € < gp;.

Finally, we consider the computational time presented in Figure 6.5. We note
that the CPU time needed for the exact strategy (RM=3) is much higher as long as
the threshold value is not too small. This is caused by the source term computation
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Fia. 6.3. Error of adaptive solution with L = 10 and varying threshold value ¢.
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F1a. 6.4. Number of cells: Adaptive computations with L = 10 and varying threshold value .

on the uniform reference grid dominating the overall costs for grid adaptation and
time evolution. In case of the local (RM=1) and approximate (RM=2) strategy the
adaptive grid becomes more dense with decreasing threshold values, i.e., more cells
are refined, and the costs are approaching the costs of the reference computation on
the reference grid. This behaviour can be typically expected for any adaptive scheme.

To summarize the above observations we conclude that for an optimal threshold
value €,,+ the exact strategy is most accurate but at the costs of the reference com-
putation, i.e., there is no gain at all. For the local strategy we observe a severe loss
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Fia. 6.5. Computational time: Adaptive computations with L = 10 and varying threshold value €.

in accuracy at lower computational costs in comparison to the approximate strategy.
This loss can only be compensated by a smaller threshold value at higher computa-
tional costs. From this point of view the approximate strategy is more efficient when
fixing the target accuracy by the discretization error, i.e., log(||7r||) = —3.24, see
Figure 6.6.

Finally, we point out that in practice the optimal threshold value €,,; can only be
roughly estimated and, hence, the use of the local strategy can not be recommended
because we either (i) are loosing significant in accuracy if € > eop, see Figures
6.3, or (ii) the computational costs (memory requirements) are significantly higher
due to instabilities triggered by the increasing influence of the reconstruction error if
€ K €opt, see Figure 6.4.
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7. Appendix.
7.1. Proof of Lemma 5.3.

Proof. In order to estimate the extrema by the time evolution we consider

192 i < A€ pn Apn Vi = €L n Apn Vi i +
1€, Bn Apn Vit = Ep pn Apa Vi i +

160 50 ApeVE™ = EL VT e + €LV [l (7.1)

By the definition of the approximation error the first term can be estimated according
to (2.11) by

L—1

o ~n—1 o ~n—1 n—1 L
1A gL,ﬁn Apa¥i _ELj)n Apa Vil < Z E dl,k Wik )
1=0 keJ,

[>®

where J;". indicates the non-significant details on level [. It should be noted that D>

is computed from the data of the modified adaptive scheme at the old time step, i.e.,

\71”;1. Reliability then means

| Apy ELV] i < Ce.

From assumption (A6) and Theorem 2.1 we conclude that the supports of the discrete
basis vectors \IllLJc overlap only at a fixed number of positions independent of  and k.
This implies

Yo e < osup AP ([eh] . < Ce (7.2)
keI, ket

[>®

where we employ that the prediction set is reliable in the sense of (3.7). Thus the
first term can be estimated by

L—1
1A= €y n Apn Vit = Ep o Apn Vi i <D &1 < Ce.
=0

The second term is estimated according to the assumption (A7). Due to (5.3) the
third term can be rewritten

ELI)" Aﬁn - A@n SL.

Then the difference can be estimated by the approximation property as above

€L pn A@n{fz_l —EL VI e = | Apn EviTh =& v i <6, (7.3)

where we employ the reliability of D".
The fourth term can be estimated according to (A8) by

NELVE o < (L +C 1) V7 lieo
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From (7.1) we finally obtain the recursive estimate

Wl < (14 C ) WLl + Ce.

Applying this estimate recursively, we obtain

n—1

V2l < (L+C7)" [Vl +Ce Y (1+Cr)"

i=0

By the geometric sum we finally end up with

1+Cr)" -1 5 =
er) BHOD" =L T (159 | + /).

v oo C_'a
Vi lliee + o <

VTl <€
The initial data can be further estimated
¥ lliee < N0Z 1l + 199 — v lliee + [IVE, — 0] [l < [luollz> +2C /7.

From assumption (A10) and (A1l) we conclude that the ratio /7 is small in compar-
ison to ||ug||r=. Consequently, we can estimate the supremum of v} by a constant
only depending on 7" and the supremum of the initial data wup. O

7.2. Proof of Lemma 5.10.

Proof. The average of the reconstruction polynomial is determined by
p=1 / LN @) de = - QY @) = Q) (w)
h /).  dx k h k

for any r € Z. Then Af’ 1P, can be interpreted as the difference of finite differences
of the interpolation polynomial ch\H-l, ie.,

N+1
. (N + 1Y\ -
A¥eE = 3 (V) =
i=0 t
N+1
1 (N +1
h Z(_l)z< i > (@1 @rin) — QF T (2r40) =
1=0
1
h (AiV—H ch+1($T+1) - AfH_l ;C\H_l(xr)) .
Since chv e IIn41 the finite difference satisfies

N+1,N+1 RN gN N+1
Aj k (x):mm k (¢) = const, CE[%JUEH],

therefore
ANTIp =0, Vrel. (7.4)

We will use these considerations in the following.

In order to verify that the difference vy — Py for k' € Si can be written in the
form of a finite sum of finite differences of order N + 1 we use the induction principle
for k' < k.
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First, we consider the case k' = k — 1. According to the reconstruction condition

(5.24) we obtain

N
. N+1 - -
R (—1)T< r )vk—1+T_PE—1 = AT Mo AV Py

r=1
Taking into account (7.4) we have got
V-1 — 13&_1 = Aiv+1’l}k_1.

Therefore our assertion is true for &' = k—1. Let it be true for k' € {k— N, ..., k—1},
Ns; > 1. We now prove it for &' — 1 and N + 1, respectively. For this purpose we
expand the difference as

» N+1 N+1p pany N+1 r >
Vg1 — P = A7 Top o1 — AT Py — Z ., (=1)"(vpr =140 — Prr—14+),
r=1

where we employ the definition of the finite difference. For k' — 1 + r € Sy the
differences in the sum of the right-hand side vanish, i.e., only the differences for
re{l,...,min(N + 1,k — k')} give a contribution.

Since the (N 4 1)-th finite difference of P vanishes according to (7.4) and by the
induction assumption

k—k —r
5 _ N+1
Vg —14r — Prr 140 = E Qg 14r AL T V1t (7.5)
j=0

forr € {1,...,min(N + 1,k — k')} we then conclude

Vo1 — P =
min(N+1,k—k") k—k'—r

N+1
Aiv‘i‘l’uk/,l + Z ( , )(—1)7‘+1 Z ak’71+r,inv+l'Uk’fl+r+j'
=0

r=1
Since k' —1+r+j € {k',..., k — 1} the right-hand side can be reenumerated, i.e.,

k—Fk'

A N+1
vio1 = Poor = ) apo1 jAY Mgy
Jj=0

Hence we obtain the assertion for k' < k.

We now prove the other case where k' is to the right of ;. Again, we first
consider the case k' = k + 1. According to (5.24) and (7.4) we have

N
~ - N +1 .
Vg1 — Ppp = (_1)N+1Aiv+1“£ — (=)t Z(_l) ( - >UE+T - Py
r=0
= ()N (Afr“% - MVHP@) = ()N ANy

Therefore our assertion is true for k' = k+1. Let it be true for &' € {k+1,...,k+N,},
1 < Ns;. We now prove it for k' + 1 and N + 1, respectively. For this purpose we
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expand the difference as

Vpry1 — Prryr =

N
A N+1 .
(=N <(Aiv+1“k’—N - A{VHP’“’—N) -2 ( r >(_1)T(”k’—N+r - Pkr—N+")>
r=0

where we again employ the definition of the finite difference. For k' — N +r € S
the differences in the sum of the right-hand side vanish, i.e., only the differences for
r € {max(0,k — k' + N +1),..., N} give a contribution. Since the (N + 1)-st finite
difference of P vanishes according to (7.4) and by the induction assumption

B —N+4r—k—-1

5 _ Nt1
V' —Ntr — Pr_Nngr = E Q' —N4rjAL T U —aNfr—j—1,
=0

for r € {max(0,k — k' + N + 1),..., N} we then conclude

U/ 41 — Zsk’-i-l = (—1)N+1 (Aiv—i_lvkz_N +

E —N+r—k—1
N+1
1 N+1
E ( . (-1t E Q- Ngr A U aNfr o1
r:max(07E7k’+N+l) j=0

Since k' —2N +r —j—1¢€ {k—N,...,k' — N — 1} the right-hand side can be
reenumerated, i.e.,

E —k
5 N4+1
vk — Por = D o AN Top_n
=0
O
7.3. Proof of Lemma 5.11.
Proof. For N =1 we obtain by the two-scale relation (2.3)
1
Ajvp g = Uk — Ukl = 5(”l+1,2k + U412k +1 — Ul 2k42 — Ul41,2k43) =
1
5(”l+1,2k — U1 2541 + 2(0141 2641 — Vi1 2k+2) F Vi1 2642 — Vi1 2k43) =
1 1< (2
1 1 1 1
§(A1'Ul+172k + 2A70141 2641 + AU 2k42) = 3 Z <i>A1'Ul+1,2k+i- (7.6)
1=0

Assume now that the assertion (5.25) holds for N. To prove it for N + 1 we first note
that by the standard recursive definition of finite differences

AY Mo = Aok — Al vk (7.7)
holds. Then we obtain by the induction assumption

N+1 N+1
1 N+1 N +1
A{VHUZ,I@ = 5 (Z < i >Aivvl+1,2k+z‘ - Z ( i )Aivvl+1,2k+2+i> .

i=0 =0
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Adding and subtracting ANv;41 2x+: and applying (7.7) for (I + 1,2k + i) and (I +
1,2k + 1+ 1) yields

N+1

1 N+1

ANy = 3 (E < ; >(Afvvl+172k+i — AN Vg1 2k14)
=0

N+1
N+1
Z ( ; )(A{V'I}l+1,2k+1+i —A{V'I}l+1,2k+2+i)>
=0

N+1 N+1
1 N+1 N +1
2 (Z < { >Aiv+1vl+l’2k+i + Z ( i )Aiv+lvl+1,2k+l+i> .

i=0 i=0

Similar to (7.6) we verify by means of the addition theorem for binomial coefficients

N+1 _
Al Ul7k =

N+1
1 N+1 N+1
2 (A{VHWH’% 22 (( i > i (l -1 >> AY ook + Aiv+lvl+1,2k+N+2>

i=1
N+2

1 N +2
=52 < ; >Aiv+1vl+1,2k+i-
i=0

This proves (5.25). To verify (5.26) we only have to do a straight-forward calculation
using the encoding (2.3) and the definition (5.10) of the finite difference, i.e.,

N N 2L—l_1
A{VUM (5;0) Z (7) (—1)ivz,k+i (2:3) Z (7) (_1)i2l7L Z UL 2L=(k+i)4+v —
i=0 i=0 v=0
L 2b=t_1 N N . (5.10) 2b=t_1
2 Z <i>(_1)va,2L’k+u+2Lli = 2t Z AQVL*”)LQL’”“'"
v=0 =0 v=0

7.4. Proof of Lemma 5.12.

Proof. By means of (5.25) the finite differences are represented by those on one
higher level with step size 1, i.e.,

N+2
1 N +2
AN Ty = 2 2 ( i )Afmvm,%'w (7.8)
=0

and then the finite differences on the right-hand side are represented by those on level

L with step size 217!~ using (5.26), i.e.,

oL—l-1_4

N+1 _ ol+1-L N+1
AV T v ok i = 2 Z AszlflUL,2L*Z*1(2k’+i)+u' (7.9)
pn=0

Note that we cannot directly apply (5.26) to Af“'lvl,k/ because the step size 217! will
be too large and we are running into trouble when want to apply Lemma 5.7.
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In view of Lemma 5.7 we now have to verify for each finite difference on the
right-hand side of (7.8) that its stencil (5.11)
S (N + 17 2L—l—17 2L_l_1(2kl + Z) + ,U) _
L@k i) 4 py .. 28 YK i + N+ 1) 4 p} (7.10)
is included in a backward influence set (5.6)
S iokegn =128 @k +d —s) —p,. 2V 2k + ¢ s+ 1) — 1+ p} (7.10)
for some ¢' such that (I + 1,2k +¢') € D, i.e.,

S(N+1,28 7728 2K i) + 1) €2 siign (7.12)

holds for any p € {0,...,2¢7=1 —1}. In fact, ¢’ is related to the grading parameter in
the grading procedure (3.11). To verify the inclusion (7.12) the following conditions
have to hold according to (7.10) and (7.11)

2k+ql _s_p2l+17L S 2kl+i+2l+17Lu,
2k +i+ N+ 1+2 Ly <2k ¢ +s+1-2F1-L(1—p).

This is equivalent to
2K —k)+i+N—s+2F " L(u+1—p)<g<20k' —k)+i+s+2"L(u+p).
Obviously this inequality holds true for

b 2K —k)+i4s+p2tL, k' e{k—2s,....k—1},
T=V 2k —k)+i+N—s+p2H-L K e{k—N,... k+2s—N—1},

because N < 2s and p > 1. Since i € {0,...,N +2}, p € {0,...,2L7"=1 — 1} and
k—k e{l,...,2s} for k' e {k—2s,...,k—1} and k' —k € {—N,...,2s = N — 1}
for ¥ e {k—N,...,k+2s— N — 1} we conclude

q €{-3s,...,3s+1}

and, hence,

3 3 1
2k+qle{2k—3s,...,2k+3s+1}:{2<k__5>7_'_72<k+ s+ )}

2 2

On the other hand we know by the grading procedure and the assumption (I, k) € G,
ie., (I,k) ¢ D, that all details corresponding to the range of dependence given by

S = 27k~ ). 2k g+ 1)~ 1), j=1+1,..., L1,

are non-significant. In particular, for j =+ 1 we obtain the range of dependence for
(I,k) on level [ + 1

ST = {2(k - q),...,2(k + q) + 1},

To ensure that 2k + ¢’ € ig;jlﬂ) we have to choose the grading parameter ¢ such

that

1
<2 (b 2) w2642 <o o
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Obviously it holds by assumption.
Since for any i € {0,...,N +2} and p € {0,...,2L7!=1 — 1} there exists ¢’ such
that (I + 1,2k + ¢') ¢ D and (7.12) holds true, we may apply Lemma 5.7, i.e.,

(N1
|AN+1 v 5l <5mm(T71)
oL—1—1VL 2L =1=1(2k/ +i)+p| ~ S(+1

Together with (7.9) this implies

. N+ 1
|AN v op 44 iéillf( )

Finally we conclude from (7.8)

min w,l
ANy | S,
Note that ;41 = 2¢; and Zf:gZ (Nj'2) = 2¥*2 i5 independent of the level. O

7.5. Proof of Lemma 5.13.
Proof. First of all we introduce the fine-scale cell averages of the reconstruction
polynomial R{Yk, ie.,

- 1

L = vl RN (x)dx = (R}, @r.), 1EIL.
T L,r

Since M > N + 1 the corresponding details vanish, i.e.,
df = (R}, ¥jr) =0, j=0,....L—1,r€l
Applying the subdivision scheme (2.8) to PLW we obtain for r € I,

P, = Z (‘I’lL,k',o),‘pl,k’ = Z (‘I’lL,k',o),Ulvk’ + Z (‘I’lL,k',o),‘pl,k’-

wes) WESL wes! \Si

(7.13)
On the other hand we may write the data vy by the subdivision scheme (2.8) as

L—-1
vie = O (Tluo) v+ > (Thay) di. (7.14)

kesd J=t pres® |

We now confine ourselves to r € {217k, ... 2L7I(k+ 1) — 1}. Then we obtain for the
support of the subdivision scheme (2.8) the inclusion

SO /2 T s, /2 4 s}
forj=1,...,L — 1. Hence
SO {2 k-5, 2k +s), j=1,...,L-1

On the other hand, (I,k) € G according to assumption and therefore (I, k) ¢ D, i.e.,
di, = 0, otherwise V;;, would have been refined by the grid refinement procedure.
Then all details in the range of dependence

Slg,;c(j) ={2 Y k—-q),...., 27 (k4+q+1) -1}, j=1+1,...,L—1, (7.15)
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are not significant either, otherwise (I, k) would be put significant by the grading
procedure.
Assuming that ¢ > s we conclude that the support of the wavelets Z_](Ljv)m is

included in the range of dependence Egk(j) for all r € {287k, ... 28 (k + 1) — 1}
and j=1+1,...,L —1, see Fig. 7.1. Then (7.14) reduces to

_ L L
7/,‘ - 9 y ? 9 9 ? ° °
UL, E (¥ 0),, vk + E (T 1)T dy i (7.16)

klei(Ll,)r,o klEE(Ll,)ml\{k}

R A R R PR R PR 1+3=L

T O 17N 17N P I I 1N 1. I I I O N |
LN B B B B B B BV VA8 I IS I 8 I v/ V0 S B B B B B B | l+2

| | | | | L | | 1+1

F1Gc. 7.1. Ilustration of the cell averages (O and O) and the details (O) involved in the sub-
division scheme of any cell average vy, ., T = 2L’lk,...,2L’l(k + 1) — 1 with s = 2. The range of
dependence for the detail corresponding to cell (1, k) is bounded by the oblique lines. Here we assume
that the set of significant details is a graded tree of degree q = (375] =3 with s = 2.

Now consider the remaining details d; ;- for k' € E(Ll?m C{k—s,....k + s}

The details on the higher levels dj11 2544, ¢ = 0,1 can not be significant. Otherwise,
(I,k) € D due to the grading and ¢ > s. According to the definition of the prediction
set (5.8) we infer that v(l,k') = 0. Hence we can estimate the details due to the
nesting of (5.7) by

|dipr| < 2%¢, (7.17)

where ¢ is a constant which is fixed in Assumption 2.
Next we have to estimate the differences of the cell averages v and P for

k' e E(Ll?m \ St . For this purpose we will apply Lemmas 5.10 and 5.11. First of all,

we note that the support E(Ll?no can be estimated according to (2.9) by

S o lr/2 Y 28, [r/25 7 + 28} C {k — 2s,... Kk + 25} (7.18)

for all r € {287k, ..., 28 (b + 1) — 1}.
The reconstruction stencil is chosen according to Lemma 5.10, i.e.,

Sik=1k,....k} ={k,....,k+ N} (7.19)
for some k € {k — N,...,k}. Then we obtain by (7.18) and (7.19) the inclusion

=0 o\Sik=1{k—2s,....k—1}U{k+1,...,k+2s} === UZ".
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According to Lemma 5.10 the difference of the averages can be estimated by a linear
combination of finite differences of degree N + 1, i.e.,

. maxk—:k’7...,k71{|AN+1'UZ7I«— |} , kKeX™
vk = P | S { B ' (7.20)

manJr:EfN,...,k’fol{|Aiv+1vl7k+|} , kext

because the coeflicients ay ; only depend on N and the number of summands is
uniformly bounded by k — k' <k — (k —2s) =2sfor k' € ¥~ and k' —k < k + 25 —
(k— N+ N) =2s for k' € 1, respectively.

Since N < 2s and k* € {k —2s,...,k+2s — N — 1} for k¥ € X% we may now
apply Lemma 5.12; i.e.,

|Aiv+lvz ki| < E?’in(%vl)

Finally, we obtain with (7.20)

N+1 71)

< i (7.21)

"Ul,k’ — Py

for k' € Sg?ﬁo \Sl,k-
Then we conclude from (7.13), (7.16), (7.17) and (7.21)

. (N41
min ,1
+¢; < max <5l (%7 ),sl>

Py — o

|<Rl17vk’7§5l,r> - 'UL,T| f, “max
k’EE(Ll.)r-.o\sl,k

provided that the subdivision scheme converges, i.e., Theorem 2.1 holds. O

7.6. Proof of Lemma 5.15.

Proof. We want to estimate the R-th derivative of the composite function G by
means of finite differences of possibly lower order. For this purpose we first note that
by the chain rule for differentiation the derivative can be represented as

R m
G () =Y S™V(a)) > cm [[ VY (@).

m=1 JE{L,...,R—mt1}m

Here we need the smoothness of the source function S according to Assumption 1. If
V(x) € 0D;, then we consider the one-sided continuous extension of the derivatives.
Then we can estimate the R-th derivative by

R
sup |GP(2)| < sup {H|v<fu><x>|’“u; G.K) ef(R)}, (7.22)
rEVLk e€Vie | p=1

up to a constant depending only on the coeflicients c¢; ,,, and R, respectively, and the
bounds sup,¢y; , |S(™) (V(x))|. The set I(R) is defined in (5.13). From the defini-
tion of the sliding average V and the Lagrangian representation of the interpolation

polynomials QlNk"'1 we conclude that there exists a uniform bound such that

sup V()] SIIVE [lie-
zeVik
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According to Lemma 5.3 we know that the modified adaptive scheme is uniformly
bounded in the sup-norm. Hence the constants only depend on 7 and ||u||f=.

We now consider the Newton representation of the interpolation polynomial ) Lk 'H,
ie.,

N+1 v—1
N+1 Z W ,E‘FV] H(w_xl,k+i)-
i=0

Here Wk, ...,k + v] denotes the v-th divided difference of the primitive function W
to cell V; . It is converted to the v-th finite difference of the cell averages by

v—1

1 v—1 .
Wkt = o 3 ("7 ) 0¥ @tk - Weargsnmjon) =
v—1 1 v—1Av—1
V'hu -1 Z ( ) Ul ktv—j—1 = I/!h;’__l (_1) Al UL,k - (723)

Since the ]—th derivative of the interpolation polynomial is determined by
d () N+1 N+1 d (7)) fr—1
<%> Z Wik,... . k+v] (@) g(fﬂ—ﬂ?umi)

the j-th derivative of the shdmg average is

) Nz+:1 zthe/2 g g\ U+ 'ﬁ
VO (g) = — ..,E+V]/ (—) ( (z—xl,b_i)) dz.
v=j+1 z—hr/2 dz i—0
The integral of the right-hand side can be estimated by
z+hr /2 d (j-1) [v—1 i1
sup / <—> (z — @y pvq) | dz Shph 77T
z€Vi K [Jo—hr /2 dz @1}) ’ !
Together with (7.23) we obtain
NHL
sup [V (z)| < AV Ly p|n I < 2 ma AV Lokl
zeVIl),k | (z)] V§+1 e —T|AT vkl l V:j+17__>_fN+1| 1 ULkl

(7.24)
By means of induction and using the addition theorem for binomial coefficients we
notice that

v

A’ll+jvl7E = Z <V> (—].)iA{Ul7E+i, 14 Z 0.

i=0 L
Then we deduce from (7.24)

sup [V (z)] 5h‘l27j ma |A U ktil, J<R. (7.25)
TEV K i=0,.. ’N

Combining (7.22) and (7.25) we obtain

::]:u

k“ . -
sup |G(R < sup { ( B2 ]M|A]“Ul7h+yu|) ; ,k) € I(R), v e I(R,J)} ,
z€VI zEVI =

(7.26)
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where I(R,j) := {v; v, € {0,...,N — j,}*.

It now remains to estimate the finite differences on the right-hand side of (7.26) by
means of Lemma 5.12. For this purpose we verify that k+v € {k—2s,...,k+2s—j}
forv € {0,...,N—j}. Obviously, this holds trueif 1 < N < 2sand k € {k—N,...,k}.
Then we infer from Lemma 5.12

Ao | S

We now employ this in (7.26) and obtain

R "
j k./R
H |A{HUE+V}L |1€u i 5?/@:1 Juku/ — g (727)

p=1

On the other hand, we have

i (2—4)k 20 k= Gk
T w77 =y e e e e < (7.28)
pn=1

because Y1 juk, = Rand Y1 k, > 1. Inserting (7.27) and (7.28) in (7.26) yields
the assertion. O



