
ON THE STABILITY OF FULLY ADAPTIVE MULTISCALESCHEMES FOR CONSERVATION LAWS USING APPROXIMATEFLUX AND SOURCE RECONSTRUCTION STRATEGIES�NUNE HOVHANNISYANy AND SIEGFRIED M�ULLERzAbstrat. In order to aelerate �nite volume shemes applied to (inhomogeneous) hyperbolionservation laws multiresolution based adaptive onepts an be used. The basi idea is to analyzethe loal regularity by means of a multiresolution analysis of ell averages. By di�erene informationbetween suessive re�nement levels loal grid adaptation is triggered employing threshold tehniques.This leads to a signi�ant gain in omputational omplexity. The rux is to ompute numerial uxesand soures on loal resolution levels suh that the overall auray of the referene solution on the�nest disretization is maintained. In the present work a modi�ed approah based on polynomialreonstrution tehniques is introdued and investigated analytially. The eÆieny and auray ofthe adaptive onept is signi�antly improved, in partiular for inhomogeneous equations. This ison�rmed by numerial parameter studies.Key words. onservation laws, �nite volume shemes, grid adaptation, biorthogonal waveletsAMS subjet lassi�ations. 35L65, 65M12, 65M50, 65T60, 74S101. Introdution. Nowadays �nite volume methods are routinely used for thedisretization of onservation laws as they arise, for instane, in omputational uiddynamis. Here, due to the inhomogeneity of the solutions, adaptive grid methods ansigni�antly improve the eÆieny by onentrating ells only where they are mostrequired, while reduing storage requirements as well as the omputational time.For this purpose, numerial shemes have been disussed or are under urrentinvestigation that aim at adapting the spatial grid to the loal behavior of the ow�eld. In the early 90's Harten [13℄ proposed to use multiresolution tehniques. Theell averages on a given highest level of resolution (referene mesh) are representedas ell averages on some oarse level where the �ne sale information is enodedin arrays of detail oeÆients of asending resolution that reveals insight into theloal behavior of the solution. This multiresolution framework has been extended tomultidimensional problems [3, 1, 10, 8, 20℄ on Cartesian, urvilinear and unstruturedmeshes, respetively.In Harten's original approah the multiresolution analysis is used to ontrol ahybrid ux omputation by whih omputational time for the ux omputation anbe saved whereas the overall omputational omplexity is not redued but still staysproportional to the number of ells on the uniformly �ne referene mesh. Opposite tothis strategy, threshold tehniques are applied to the multiresolution deompositionin [12, 18, 9, 16, 21℄ where detail oeÆients below a threshold value are disarded.By means of the remaining signi�ant details a loally re�ned mesh is determinedwhose omplexity is signi�antly redued in omparison to the underlying referenemesh. A omparison of Harten's original framework and the fully adaptive frameworkan be found in [6℄.�This work has been performed with funding by the Deutshe Forshungsgemeinshaft in the Col-laborative Researh Center SFB 401 "Flow Modulation and Fluid-Struture Interation at AirplaneWings" of the RWTH Aahen, University of Tehnology, Aahen, Germany.yInstitut f�ur Geometrie und Praktishe Mathematik, RWTH Aahen, Templergraben 55, D-52056Aahen, Germany (nune�igpm.rwth-aahen.de).zInstitut f�ur Geometrie und Praktishe Mathematik, RWTH Aahen, Templergraben 55, D-52056Aahen, Germany (mueller�igpm.rwth-aahen.de).1



2 N. HOVHANNISYAN AND S. M�ULLERObjetive. The entral mathematial problem is to verify that the solution om-puted on the loally adapted mesh provides an auray that is of the same order asthe one of the referene sheme on the referene mesh. This has been analytiallyinvestigated in the ontext of a homogeneous salar onservation law in one spaedimension, see [18, 9℄. The proof relies essentially on (i) the strategy how to preditsigni�ant details at the new time level from the data at the old time level in orderto loally re�ne the grid before the time evolution and (ii) the interpretation of theadaptive sheme as the original �nite volume sheme on the referene grid (referenesheme) to whih we apply the multiresolution analysis and thresholding. The seondproperty only holds true provided that the numerial uxes are omputed by dataat the highest spatial level employing a loal inverse multiresolution transformation.This loal ux omputation strategy is referred to as the exat ux reonstrutionstrategy. In higher dimensional appliations it will inrease the omputational om-plexity. In partiular, for inhomogeneous onservation laws taking into aount somesoure term the exat strategy requires the omputation of all soures on the referenegrid rather than the adaptive grid. This would ompletely deteriorate the eÆienyof the adaptive sheme.The main purpose of the present work is to suggest an approximate ux and sourereonstrution strategy. The basi idea is to ompute to eah ell in the adaptive grida reonstrution polynomial by whih we provide the data for the omputation ofthe loal uxes. Moreover, the loal soures are determined by a quadrature ruleapplied to the omposite of the soure funtion and the reonstrution polynomial.This strategy does not spoil the omputational omplexity of the adaptive shemeeven in higher dimensions. We will verify analytially that by the suggested strategythe auray of the referene sheme an be maintained. In partiular, we prove thatby the evolution proess on the adaptive grid using the approximate reonstrutionstrategy we introdue an additional error in omparison to the evolution with exatreonstrution that is proportional to the threshold value.Referene sheme. In order to simplify the notation we on�ne ourselves to theone-dimensional ase although the onepts extend to higher dimensional problems aswell and have been suessfully applied to omplex on�gurations in uid dynamis,e.g. [4℄ for the lassial fully adaptive �nite volume sheme. We therefore onsider thesalar inhomogeneous onservation lawut(t; x) + (f(u(t; x)))x = s(u(t; x)); t > 0; x 2 R; (1.1)subjet to the initial onditionu(0; x) = u0(x); x 2 R: (1.2)If u0 2 L1(R) \ L1(R) and the ux f : R ! R and the soure s : R ! R are suhthat all derivatives up to the seond order exist and are bounded, then there exists aunique entropy solution, see [19, 17℄.A onservative �nite volume disretization of the initial value problem (1.1), (1.2)an be written in the formvn+1k = vnk � �Bnk + �Snk ; � := �h (1.3)for the ell averages vk . Here spae and time are uniformly disretized by h and � ,respetively. Conservation means that the ux balane Bnk has the formBnk := F (vnk�p+1; : : : ; vnk+p)� F (vnk�p; : : : ; vnk+p�1) = Fnk+1 � Fnk (1.4)



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 3
k k + 12k 2k + 1 2k + 2 2k + 34k 4k + 1 4k + 2 4k + 3 4k + 4 4k + 5 4k + 6 4k + 7

l = 0l = 1l = 2

�ne = oarse + detail

1

Fig. 2.1. Dyadi grid hierarhy
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Fig. 2.2. Two-sale deompositionwhere the funtion F (u1; : : : ; u2p) is the numerial ux funtion. The soure term isapproximated by the numerial soure funtion S. For simpliity of representation,we on�ne ourselves to the �rst order approximationSnk � S(vnk ) := s(vnk ): (1.5)Later on we will speify assumptions on F and S that will guarantee the onvergeneof the sheme.Outline. In the following we �rst summarize the multiresolution analysis (MRA)in Setion 2. Then in Setion 3 the MRA is employed to ompress the set of evolutionequations given by a referene �nite volume sheme on the referene grid in order toredue the omputational osts both in terms of CPU and memory. A new strategy isintrodued in Setion 4 for the omputation of the loal numerial uxes and soureson oarser disretization levels that is based on polynomial reonstrution. In Setion5 we verify that by the approximate ux and soure reonstrution strategy the a-uray of the referene �nite volume sheme an be maintained. Finally, in Setion 6,we perform numerial parameter studies for the invisid Burgers equation omparingdi�erent strategies for the loal omputation of the numerial uxes and soures.2. Multiresolution analysis. A �nite volume disretization is typially work-ing on a sequene of ell averages. In order to analyze the loal regularity behaviorof the data we deompose this sequene into oarse grid information and detail infor-mation desribing the update from low to high resolution. This new data format anbe ompressed by thresholding beause the details beome small when the solution isloally smooth. By means of the ompressed data a loally re�ned grid is determined.To provide the MRA of the data one might used either the onept of biorthogo-nal wavelets [5℄ or Harten's disrete framework [14, 2℄ based on reonstrution andpredition. These onepts are linked by the onvergene of subdivision shemes.Grid hierarhy. Starting point for the onstrution of a MRA is a sequeneof nested grids. Here we on�ne ourselves to 1D dyadi grid re�nements. For anextension to grid hierarhies in higher dimensions we refer to [18℄. Let be Gl :=fVl;kgk2Il , l 2 N0 , Il = Z, a sequene of grids with inreasing resolution. Thesemeshes are omposed of the intervals Vl;k = [xl;k; xl;k+1℄ determined by the gridpoints xl;k = 2�l k, k 2 Z with interval length hl = 2�l. Hene, the resulting gridhierarhy is nested beause of the subdivision onditionVl;k = Vl+1;2k [ Vl+1;2k+1; 8 l 2 N0 ; k 2 Z: (2.1)The dyadi grid re�nement is illustrated in Figure 2.1.Cell averages and details. Relative to the partitions Gl we introdue theaverages of a salar, integrable funtion u 2 L1(
)ûl;k := 1jVl;k j ZVl;k u dx: (2.2)



4 N. HOVHANNISYAN AND S. M�ULLERObviously the nestedness of the grids as well as the linearity of integration imply thetwo{sale relation̂ul;k = 12(ûl+1;2k + ûl+1;2k+1) =: Xr2M0l;kml;0r;k ûl+1;r (2.3)where for later use we introdue the mask oeÆients ml;0r;k := 0:5 and their supportindex M0l;k = f2k; 2k + 1g. An error between level l and l + 1 an be introdued byel;2k = ûl+1;2k � ûl;k; el;2k+1 = ûl+1;2k+1 � ûl;k:These are two options for one missing information to reompute the data on highersale. To remove the redundany a linear ombination of the errorsdl;k := 12 (el;2k � el;2k+1) = 12(ûl+1;2k � ûl+1;2k+1) (2.4)an be introdued. Then the system of equations (2.3) and (2.4) is regular and weobtain the inverse two-sale relationûl+1;2k+i = ûl;k + dl;k; ûl+1;2k+i = ûl;k � dl;k: (2.5)Canellation Property. Obviously, the detail vanishes if the underlying fun-tion u is a onstant, see also Figure 2.2. This motivates to neglet all suÆientlysmall details in order to ompress the original data. For general u, it an be shownthat the details beome small with inreasing re�nement level when the underlyingfuntion is smooth. Higher ompression rates an be realized if the details vanishfor higher order polynomials up to some degree M � 1 as well beause the deay isproportional to 2�lM . This orresponds to higher order vanishing moments in thewavelet framework, e.g. [7℄.Higher vanishing moments. In order to realize higher vanishing moments weintrodue additional parameters in (2.5) by a oarse grid modi�ation, i.e.,dl;k = 12(ûl+1;2k � ûl+1;2k+1) + 2sXr=0 lrûl;k�s+r = Xr2M1l;kml;1r;k ûl+1;r: (2.6)By means of (2.3) the oarse grid averages ûl;k�s+r an be rewritten in terms of the �negrid averages ûl+1;r haraterizing the mask oeÆients ml;1r;k and the support indexM1l;k. These parameters are then hosen suh that the details vanish for polynomialsup to degree 2s, i.e., M = 2s+1. In the wavelet framework this proedure is referredto the hange of stable ompletion [5℄ or seond generation wavelets [22℄. For some sthe resulting parameters are listed in Table 2.1. In ase of s = 0 these orrespond tothe Haar wavelet. For our omputations we only use s = 1; 2; for s = 0 the adaptivesheme does not work at all. The inverse two-sale relation then readsûl+1;2k+i = ûl;k + (�1)idl;k + (�1)i+1 sXr=�s lr+sûl;k+r=: Xr2G0l;2k+i gl;0r;2k+i ûl;r + Xr2G1l;2k+i gl;1r;2k+i dl;r; i = 0; 1 (2.7)



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 5Table 2.1Lifting oeÆientss l0 l1 l2 l3 l40 01 -1/8 0 1/82 3/128 -11/64 0 11/64 -3/128with mask oeÆients gl;er;2k+i and orresponding support Gel;2k+i, e = 0; 1.Multisale Transformation. Reursively applying the two-sale relations (2.3)and (2.6) array of ell averages uL := (ûL;k)k2IL orresponding to a �nest uniformdisretization level is transformed suessively into a sequene of oarse grid datau0 := (û0;k)k2I0 and details dl := (dl;k)k2Il , l = 0; : : : ; L � 1. We refer to thistransformation as multisale transformation determined by the multisale operatorML : ûL �! (û0;d0; : : : ;dL�1) withûl =MTl;0ûl+1; dl =MTl;1ûl+1:It is reversed by reursively applying the two-sale relation (2.7). The resulting in-verse multisale transformation is desribed by inverse multisale operator M�1L :(û0;d0; : : : ;dL�1) �! ûL witĥul+1 =GTl;0ûl +GTl;1dl:Subdivision sheme. By means of the inverse multisale transformation thearray of ell averages uL an be transformed toûL =GLl;0ûl + L�1Xj=l GLj;1dj = Xk2Il	Ll;k;0ûl;k + L�1Xj=l Xk2Il	Lj;k;1dj;k; (2.8)for l = 0; : : : ; L � 1 where the subdivision proedure is determined by the matriesGLl;e := GTL�1;0 � : : : �GTl+1;0GTl;e, e 2 f0; 1g. The vetors 	Ll;k;e := GLl;1;el;k with theDira vetor l;k = (Æk;r)r2Il denote the k-th olumn of the subdivision proedure.These are sparse beause of the inverse two-sale relation (2.7). Their supports��(l)L;k;e := supp(	Ll;k;e)are uniformly bounded by��(L�1)L;k;0 = ��k2�� s; : : : ;�k2�+ s� ; ��(l)L;k;0 � �� k2L�l�� 2s; : : : ;� k2L�l�+ 2s���(L�1)L;k;1 = ��k2�� ; ��(l)L;k;1 � �� k2L�l�� s; : : : ;� k2L�l�+ s� (2.9)for 0 � l < L � 1. If the subdivision sheme onverges then there is a link betweenthe disrete framework and biorthogonal wavelets summarized in the followingTheorem 2.1. (Biorthogonal wavelet deompositions) Assume that the pieewiseonstant funtions  Lj;k;e; e 2 f0; 1g de�ned by Lj;k;e(x) := (	Lj;k;e)r; x 2 VL;r; r 2 IL (2.10)onverge uniformly in L towards a funtion  j;k;e 2 L1(
) in the sup{norm. Thenthe limit funtions (primal saling funtions (e = 0) resp. wavelets (e = 1)) satisfythe following properties:



6 N. HOVHANNISYAN AND S. M�ULLER1.) Any funtion u 2 L1(
) an be uniquely expanded in a series of the primalwavelet basis, i.e.,u = Pk2I0hu; ~ 0;k;0iL2  0;k;0 + Pj2N Pk2Ijhu; ~ j;k;1iL2  j;k;1;2.) the primal wavelets satisfy the duality relationh j;k;e; ~ j0;k0;e0iL2 = Æ(j;k;e);(j0 ;k0;e0);3.) the omponents of the disrete basis vetors oinide with the averages of thefuntion  j;k;e, i.e., 	Lj;k;e = (h j;k;e; ~�L;ri)r2IL ;4.) the funtions  j;k;e are uniformly bounded in the sup{norm, i.e., there existsa onstant C > 0 independent of j, k and e suh thatk j;k;ekL1 < C;5.) if the grid is quasi{uniform and the mask matries Gj;e are uniformly banded,then the funtions  j;k;e are ompatly supported and, in partiular,j supp  j;k;ej � C 2�jd.A proof an be found in [7℄.Thresholding and approximation. Due to the anellation property thedetails might beome negligible small whenever the underlying funtion is loallysmooth. This gives rise to hard thresholding haraterized by the index setD" := f(l; k; 1) : jdl;k j > "lg [ f(0; k; 0) : jû0;kj > "0g:Here " denotes the vetor of level-dependent threshold values. Then the thresholdoperator TD" : (û0;d0; : : : ;dL�1) �! (~u0; ~d0; : : : ; ~dL�1) is de�ned elementwise by~dl;k := � dl;k ; (l; k; 1) 2 D";0 ; else ~u0;k := � û0;k ; (0; k; 0) 2 D";0 ; else :Later on we will not only perform thresholding by the set D" but by an arbitraryindex set D. Then the approximation error due to thresholding is determined byûL �AD ûL = X(j;k;e)62D	Lj;k;e dj;k;e (2.11)where AD := M�1L TDML and, in partiular for D = D", A" := M�1L TD" ML. Inorder to ontrol the perturbation error we need onvergene of the subdivision shemeat least in the l1{metri, see Theorem 2.1.3. From the referene sheme to an adaptive sheme. We will brieysummarize how to aelerate a �nite volume sheme by means of a MRA and dataompression via thresholding. For this purpose we �rst apply the multisale trans-formation (2.3) and (2.7) to the evolution equations (1.3) on the uniform referenemesh, i.e., k 2 IL. This gives the evolution equations for the ell averagesvn+1l;k = vnl;k � �lBnl;k + � Snl;k (3.1)



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 7and the multisale oeÆients, respetively,vn+10;k = vn0;k � Xr2M00;km0;0r;k �1 Bn1;r + � Xr2M00;km0;0r;kSn1;r; (3.2)dn+1l;k = dnl;k � Xr2M1l;kml;1r;k �l+1 Bnl+1;r + � Xr2M1l;kml;1r;kSnl+1;r: (3.3)Here the numerial uxes Fnl;k , respetively the numerial ux balanes Bnl;k :=Fnl;k+1 � Fnl;k and numerial soures Snl;k are reursively de�ned from �ne to oarsesale viaFnl;k = Fnl+1;2k = : : : = FnL;2L�lk = F (vnL;2L�lk�p; : : : ; vnL;2L�lk+p�1); (3.4)Snl;k = 2�1Xr2M0l;k Snl+1;r = 2l�L 2L�l�1Xi=0 SnL;2L�lk+i = 2l�L 2L�l�1Xi=0 S(vnL;2L�lk+i):(3.5)Note that due to the nestedness of the grid hierarhy and the onservation property ofthe numerial uxes, the oarse-sale ux balanes are only omputed by the �ne-saleuxes orresponding to the edges of the oarse ell, see (3:4). These, in partiular,have to be determined by the �ne sale data. However, the internal uxes aneland, hene, the overall omplexity is redued. The oarse sale soures are omputedsimilarly due to the reursive formulae (3:5). However we have to ompute all soureson the �nest sale. Hene there is no omplexity redution, i.e., we still have theomplexity of the referene grid. We will refer to (3.4) and (3.5) as exat ux andsoure reonstrution, respetively.Adaptive multiresolution FVS. Aording to the subdivision sheme (2.8) thereferene sheme (1.3) an be rewritten asvn+1L = Xk2I0	L0;k;0 vn+10;k + L�1Xl=0 Xk2Il	Ll;k;1 dn+1l;k (3.6)with the multisale oeÆients determined by (3.2) and(3.3). The idea of the adaptiveFVS is to perform the evolution only for signi�ant detailsDn+1 := n(l; k) ; jdn+1l;k j > "l; k 2 Il; l 2 f0; : : : ; L� 1goand to disard all other equations. Sine this set annot be omputed before the dataat time level tn+1 are known, a predition set ~Dn+1 has to be omputed from Dn suhthat the reliability ondition Dn [ Dn+1 � ~Dn+1 (3.7)holds. Then the evolution step of the adaptive sheme onsists of the three steps:Step 1. (Re�nement) Determine the predition set ~Dn+1 and apply the approxima-tion operator A ~Dn+1 to the given data, i.e.,vnL; ~Dn+1 := A ~Dn+1vnL;Dn : (3.8)Step 2. (Evolution) Evolve the multisale oeÆients orresponding to ~Dn+1 in timeaording to (3.2), (3.3), i.e.,vn+1L; ~Dn+1 := Xk2I0	L0;k;0vn+10;k + X(l;k)2 ~Dn+1	Ll;k;1dn+1l;k = EL; ~Dn+1vnL; ~Dn+1 ; (3.9)



8 N. HOVHANNISYAN AND S. M�ULLERStep 3. (Coarsening) Threshold the new data by applying the approximation oper-ator A", i.e.,vn+1L;Dn+1 := A"vn+1L; ~Dn+1 = Xk2I0	L0;k;0vn+10;k + X(l;k)2Dn+1	Ll;k;1 dn+1l;k : (3.10)We emphasize that all operators are applied loally, i.e., the multisale operatorsML,M�1L , the threshold operator TD and the approximation operator AD only workon the set of signi�ant oeÆients. If there is no inhomogeneity, i.e., s = 0, then theomplexity of the resulting algorithm might be signi�antly redued to the ardinalityof #D. However, if there is a soure term and the soures on the loal sales are om-puted by the exat reonstrution strategy (3.5) then the omputational omplexity isstill that of the referene FVS. To some extend this also holds true for the numerialux omputation on loal sales using the exat ux reonstrution strategy (3.4).In higher spatial dimensions the ell edges do not oinide on di�erent levels, but aoarse edge is omposed of several subedges on �ner sales inreasing the omplex-ity by some exponential term. Hene the adaptive sheme with both exat ux andsoure reonstrution is useless for pratial purposes. However we will employ itin our analysis of a modi�ed adaptive sheme based on approximate ux and sourereonstrution desribed below. There the modi�ed adaptive sheme is onsidered asa perturbation of the original adaptive sheme.Adaptive grid. Alternatively to the evolution of the multisale oeÆients wemight evolve the ell averages aording to (3.1) on a loally re�ned grid haraterizedby the index set G � f(l; k) ; k 2 Il; l = 0; : : : ; Lg, i.e., 
 = S(l;k)2G Vl;k whih isomputed from D = ~Dn+1. For this purpose we have to assume that D is a gradedtree of degree q = 1, i.e., the relation(l; k) 2 D ) (l � 1; r) 2 D; r = bk=2 � q; : : : ; bk=2+ q; (3.11)holds for any l 2 f1; : : : ; L � 1g. Then G an be determined reursively. For thispurpose the index set G is initialized by all indies of the oarsest disretization.Then, traversing through the levels from oarse to �ne we proeed as follows: if(l; k) 2 D then the ell Vl;k is loally re�ned, i.e., the index (l; k) is removed from Gand the indies of the subells on the �ner level are added to G. Finally we obtainthe loally adapted grid whih naturally orresponds to the leaves of the graded treeof signi�ant details. However, for analytial purposes it is more onvenient to writethe evolution proess in terms of the multisale oeÆients.4. Approximate ux and soure approximation strategies. In order toimprove the eÆieny of the adaptive sheme we present a new strategy how to om-pute the numerial uxes and soures on loal sales. It is essentially based on poly-nomial reonstrution tehniques as have been introdued in [15℄. Then the basi ideais to ompute missing data on the �nest sale by evaluation of reonstrution poly-nomials instead of loally performing the inverse multisale transformation. Froma pratial point of view, it is suÆient to introdue only the modi�ed uxes andsoures needed to perform the evolution (3.1) of the ell averages orresponding tothe adaptive grid G. However, the error analysis relies on the evolution proess (3.1),(3.3) of the multisale oeÆients orresponding to the set D. In this ase we haveto ompute additional numerial uxes and soures. To ensure equivalene of the twoevolution proesses when applying the inverse MST (2.7) to (3.1), (3.3) we need aonsistent omputation of the uxes and soures.



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 9Polynomial reonstrution. For eah ell Vl;k in the adaptive grid, i.e., (l; k) 2G, we ompute a reonstrution polynomial RNl;k 2 �N of degree N suh that1jVl;r j ZVl;r RNl;k(x) dx = vnl;r; 8r 2 Sl;k; (4.1)where Sl;k � Il denotes the reonstrution stenil to be spei�ed below. From thesepolynomials we an alulate reonstruted averageswnL;2L�lk+r := 1jVL;2L�lk+r j ZVL;2L�lk+r RNl;k(x) dx (4.2)for all ells VL;r � Vl;k, i.e., r 2 f2L�lk; : : : ; 2L�l(k+1)�1g. Note that the reonstru-tion polynomial RNl;k an be omputed by solving the linear system established by thereonstrution onditions (4:1). Alternatively, it an be determined via reonstrutionof the primitive funtion, f. [15℄. For this purpose assume that Sl;k = fk; : : : ; k+Ngwith k � N � k � k. Then determine the interpolation polynomial QN+1l;k of theprimitive funtion by the interpolation onditionQN+1l;k (xl;k0 ) =Wl;k0 ; k0 2 fk; : : : ; k +N + 1g (4.3)where Wl;k0+1 := Wl;k0 + hlvl;k0 ; Wl;k := hlPr<k vl;r. Finally, the reonstrutionpolynomial is determined by RNl;k(x) := ddxQN+1l;k (x): (4.4)Approximate ux reonstrution. Before desribing the new ux omputa-tion we need to determine the ell interfaes where we have to ompute a numerialux. For this purpose, we �rst onsider the evolution proess (3.1) on the adaptivegrid haraterized by the index set G. For eah ell Vl;k ; (l; k) 2 G, the uxes Fnl;kand Fnl;k+1 have to be omputed. The union of these interfaes is determined by theset FG := S(l;k)2Gf(l; k); (l; k+1)g, for an illustration see Fig. 4.1, interfaes markedby � and Æ. Sine xl;k = xl+1;2k , we have to avoid inonsistent omputations of theuxes Fl;k and Fl+1;2k. For this purpose, we put Fl;k = Fl+1;2k, i.e., injetion fromhigher sales. This proedure is motivated by the derivation of the adaptive shemeaording to Setion 3. Hene, only at interfaes related to the setFG := f(l; k) 2 FG j (l + 1; 2k) 62 FGgthe uxes are alulated from the numerial ux funtion F : R2p $ R. In Fig. 4.1these interfaes are marked by �.On the other hand, in the evolution proess (3.2), (3.3) of the multisale oeÆ-ients we aess to the uxes Fnl;k determined by the setFD := [(l;k)2D [r2M1l;kf(l + 1; r); (l + 1; r + 1)g [ [k2I0f(0; k); (0; k + 1)g � FG :For an illustration see Fig. 4.2, interfaes marked by � and Æ. Sine FD � FG , wehave to provide the ux omputation for all indies (l; k) 2 FD. Here we have todistinguish three ases: (i) if (l; k) 2 FG the ux is omputed by the numerial uxfuntion F with respet to the reonstruted averages (4.2), i.e.,�Fnl;k = F (wnL;2L�lk�p; : : : ; wnL;2L�lk+p�1); (4.5)



10 N. HOVHANNISYAN AND S. M�ULLER(ii) if (l; k) 62 FG , but there already exists a ux on a higher sale, i.e., (j; 2j�lk) 2 FGfor one j 2 fl + 1; : : : ; Lg, then we aess to this value, i.e., the ux is omputed byinjetion from above �Fnl;k = �Fnj;2j�lk; (4.6)(iii) if neither (4.5) nor (4.6) does apply, then there exists j0 = maxfj j (j; 2j�lk) 2FDg and the ux is omputed by injetion from below�Fnl;k = �Fnj0;2j0�lk = F (wnL;2L�j0k�p; : : : ; wnL;2L�j0k+p�1): (4.7)In this ase the de�nition of the ux is somewhat arbitrary. In priniple, any j0 �maxfj j (j; 2j�lk)g 2 FD is admissible. We only have to make sure that for anyinterfae xl;k = xl+1;2k = : : : = xL;2L�lk there is a unique value. Note that the thirdase only beomes e�etive if (l; k) 2 FDnFG , i.e., when performing the evolutionproess (3.2), (3.3) for the multisale oeÆients.
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Fig. 4.1. Evolution proess on adaptive grid: G indiated by ell midpoints �, set FG ofinterfaes � with ux omputation and set FGnFG of interfaes Æ with ux omputation by injetion.Soures have only to be omputed for the ells of the adaptive grid determined by G.� � � � � � � � �Æ Æ Æ Æ? ? ? ?� � � � � � � � l = 0l = 1l = 2
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Fig. 4.2. Evolution proess of multisale oeÆients: G indiated by ell midpoints �, set Dof ells with signi�ant details �, set FG of interfaes � with ux omputation and set FDnFG ofinterfaes Æ with ux omputation by injetion; here s = 1. Soures have not only to be omputedfor G but are also aessed for SD n SG . The latter are determined by weighted injetion.Approximate soure reonstrution. For the soure omputation we haveto avoid the omplexity of the referene mesh that is involved in the exat sourereonstrution (3.5) due to the de�nition of the ell averages and the nestedness ofthe grid hierarhy. To overome this obstrution we employ some quadrature rulemXi=0 wif(xi) = ZVl;k f(x) dx+Ef (hl) (4.8)determined by the nodes xi 2 Vl;k and the weights wi, i = 0; : : : ;m; depending on ellVl;k . The error Ef (hl) is assumed to be bounded up to some onstant byjEf (hl)j<� h�+1l supx2Vl;k jf (�)(x)j (4.9)



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 11for some integer � = �(m) � 1, for instane one an use a Newton-Cotes formula. Thisquadrature formula is then applied to the sliding average Vl;k(x) of the reonstrutionpolynomial RNl;k determined byVl;k(x) := 1hL Z x+hL=2x�hL=2RNl;k(z) dz = 1hL �QN+1l;k (x+ hL=2)�QN+1l;k (x� hL=2)� :(4.10)In the ourse of the evolution proess (3.1) on the adaptive grid we then ompute thesoures for (l; k) 2 G � SG by�Snl;k = 1hl mXi=0 wi S(Vl;k(xi)): (4.11)In the evolution proess (3.2), (3.3) of the multisale oeÆients, see Fig. 4.2, weaess to the following souresSD = [(l;k)2D [r2M1l;kf(l + 1; r)g [ [k2I0f(0; k)g � SG :Inonsistent omputation of soures Sl�1;bk=2, Sl;k and Sl+1;2k, Sl+1;2k+1 on di�erentlevels has to be avoided. For this purpose, we distinguish between two ases: If therealready exist soures on higher sales, i.e., (j; 2j�lk) 2 SD for a j 2 fl + 1; : : : ; Lg,then we aess to these values. Sine we are now dealing with averages instead ofpoint values we have to average these values, i.e.,�Snl;k = 2l�j 2j�l�1Xi=0 �Snj;2j�lk+i: (4.12)Finally, if neither (4.11) nor (4.12) does apply, then there exists j 2 f0; : : : ; l�1g suhthat (j; bk=2l�j) 2 G. In this ase the soure is omputed by injetion from belowand the exat soure reonstrution (3.5)�Snl;k = �Snj;bk=2l�j � �Snj;bk=2l�j + �Sl;k: (4.13)Note that this ase is only applied for evolving the multisale oeÆients. In pratie,the ell averages orresponding to the adaptive grid are evolved. We only need thisase for analytial purposes. Note also that we are somewhat free in the de�nition of�Snl;k in this ase. We only have to satisfy the onstraint2j�l 2l�j�1Xi=0 �Snl;2l�jbk=2l�j+i = �Snj;bk=2l�j:Obviously, this ondition holds true for our de�nition as an be onluded from (3:5).Equivalene of evolution step. From Fig. 4.1 and 4.2 we onlude that FG �FG � FD and SG � SD, respetively. We have to ensure that the evolution equation(3.1) of the ell averages are idential to the evolution equations (3.2), (3.3) to whihwe apply the inverse MST (2.7). In ase of the exat ux and soure reonstrutionthe equivalene is obvious, beause all uxes and soures are omputed on the �nestlevel. To ensure the equivalene in ase of approximate ux and soure reonstrution



12 N. HOVHANNISYAN AND S. M�ULLERsome uxes in FD are not alulated from the numerial ux funtion or taken fromhigher sales, see "#" in Fig. 4.1, but from lower sales, see """ in Fig. 4.2. Similarly,we note that some soures in SD are not alulated from the numerial soure funtionor taken from higher sales, see " & " and " . " in Fig. 4.2, but from lower sales,see "- " and "% " in Fig. 4.2.Proposition 4.1. The approximate ux and soure reonstrution strategy (4.5),(4.6), (4.7) and (4.11), (4.12), (4.13) ensure equivalene of the evolution steps (3.1)and (3.2), (3.3)), respetively.Proof. To prove this equivalene we on�ne ourselves without loss of generalityto the situation skethed in Fig. 4.3. The data of the adaptive grid, here vl+1;2k+i,i = 0; 1, are evolved aording to (3.1)vn+1l+1;2k+i = vnl+1;2k+i � �hl+1 (Fnl+1;2k+i+1 �Fnl+1;2k+i)+ � �Snl+1;2k+i; i = 0; 1: (4.14)Alternatively, we evolve vl;r, r 2 G0l;2k+i and dl;r, r 2 G1l;2k+i aording to (3.2), (3.3)vn+1l;r = vnl;r � �hl �Fnl;r+1 � Fnl;r�+ � �Snl;r= vnl;r � �hl+1 Xs2M0l;rml;0s;r(Fnl+1;s+1 � Fnl+1;s) + � Xs2M0l;rml;0s;r �Snl+1;s; (4.15)dn+1l;r = dnl;r � �hl+1 Xs2M1l;rml;1s;r(Fnl+1;s+1 � Fnl+1;s) + � Xs2M1l;rml;1s;r �Snl+1;s: (4.16)We then verify that applying the inverse MST (2.7) to (4.15) and (4.16) results in(4.14). This follows immediately from the reversibility of the multisale deomposi-tion.
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Fig. 4.3. Evolution on adaptive grid G indiated by ell midpoints �, set FG of interfaes �with ux omputation and set FGnFG of interfaes Æ with ux omputation by injetion.
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Fig. 4.4. Evolution on tree D of ells with signi�ant details � and oarse sale ells, adaptivegrid G indiated by ell midpoints �, set FG of interfaes � with ux omputation and set FDnFGof interfaes Æ with ux omputation by injetion; here s = 1.5. Error analysis. The objetive of the proposed adaptive sheme is to reduefor a given FVS omputational ost and memory requirements while preserving theauray of the referene sheme. Hene, the error has to be onsidered for data onthe referene mesh rather than on the adaptive grid. To prolongate the data fromthe adaptive grid to the referene grid we employ the multisale representation (2.10)



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 13where we put the non-signi�ant details to zero. In order to quantify the error weintrodue the averages ûnL of the exat solution, the averages vnL determined by theFVS and the prolongated averages vnL of the adaptive sheme.An ideal strategy would be to presribe an error tolerane tol. Then the numberof re�nement levels L should be determined during the omputation suh that theerror meets the tolerane, i.e., kûnL � vnLk � tolfor possibly small L. Here k � k denotes an appropriate norm to be spei�ed below.Sine no error estimator is available for the adaptive sheme, we split the error intotwo parts orresponding to the disretization error �nL := ûnL � vnL of the refereneFVS and the perturbation error enL := vnL � vnL, i.e.,kûnL � vnLk � k�nLk+ kenLk � tol: (5.1)We now assume that there is an a priori error estimate of the disretization error, i.e.,�nL � h�L where hL denotes the spatial step size and � the order of onvergene. Thenwe ideally would determine the number of re�nement levels L suh that h�L � tol. Inorder to preserve the auray of the referene FVS we now may admit a perturbationerror whih is proportional to the disretization error, i.e., kenLk � k�nLk. From thiswe onlude L = L(tol; �) and " = "(L): (5.2)Therefore it remains to verify that the perturbation error an be ontrolled. Note, thatin eah time step we introdue an error due to the threshold proedure. Obviously,this error aumulates in eah step, i.e., the best we an hope for is an estimate ofthe form kenLk � C n":However, the threshold error may be ampli�ed in addition by the evolution step. Inorder to ontrol the umulative perturbation error we have to prove that the onstantC is independent of L, n, � and ". For this purpose we will onsider the followingissues in more detail, namely, (i) the uniform boundedness of the perturbation error,(ii) the reliability of the predition proedure and (iii) the error of the approximateux and soure reonstrution.5.1. Perturbation error. In a �rst step we verify the uniform boundedness ofthe perturbation error between the referene FVS and the adaptive MR-FVS in theweighted l1-metri kvLk := hLPk2IL jvL;kj on the referene grid. This metri is equalto the L1-norm of a pieewise onstant funtion. Sine the shemes are de�ned on thereal axis in order to avoid boundary onditions, the set IL is ountable. To ensureboundedness of the weighted L1-norm we therefore will always on�ne ourselves toan arbitrary but �xed ompat set [a; b℄ and IL is hosen suh that [k2ILVL;k � [a; b℄with NL := #IL < 1. Due to dyadi grid re�nement we have Nl = 2Nl�1 = 2lN0and hl = 2hl+1 = 2L�lhL, respetively. Con�ning ourselves to a ompat set isjusti�ed by onsidering ompatly supported initial data u0. Then by the �nite speedof propagation the solution is ompatly supported too. Moreover, onvergene of thereferene sheme is typially veri�ed in the L1lo-norm.In order to investigate the perturbation error we introdue the evolution operatorsEL of the referene FVS and �EL;D, �EL;D of the adaptive MR-FVS orresponding to the



14 N. HOVHANNISYAN AND S. M�ULLERadaptive grid G(D) with exat and approximate ux and soure reonstrution, respe-tively. These are determined by (3.6) and (3.9). Note that for analytial purposes it isonvenient to onsider the evolution operators in the multisale representation (2.8).Then the shemes an be represented in operator form as vn+1L = ELvnL (refereneFVS), vn+1L = A" �EL; ~Dn+1A ~Dn+1vnL (adaptive MR-FVS with exat reonstrution) and�vn+1L = A" �EL; ~Dn+1A ~Dn+1 �vnL (adaptive MR-FVS with approximate reonstrution).Comparing the evolution operators of the referene sheme and the adaptivesheme with exat ux and soure reonstrution we onlude that the latter anbe interpreted as the referene sheme to whih we apply the approximation operatorA ~Dn+1 , i.e., �EL; ~Dn+1A ~Dn+1vnL = A ~Dn+1ELvnL (5.3)provided that vnL is the result of the adaptive sheme based on exat ux reon-strution, i.e., A ~Dn+1vnL = A"vnL = vnL and Dn � ~Dn+1. Now we an estimate theperturbation error.Theorem 5.1. (Uniform boundedness of perturbation error) Let the followingassumptions hold true:(A1) the approximation error is uniformly bounded, i.e., kuL �A" uLk � C1 ";(A2) ux and soure reonstrution is auray preserving, i.e.,kEL; ~Dn+1A ~Dn+1�vnL � �EL; ~Dn+1A ~Dn+1 �vnLk � C2 ";(A3) the referene FVS is essentially l1-ontrative, i.e.,kELuL � ELvLk � (1 + C3 �) kuL � vLk;(A4) the predition is reliable in the sense of (3:7), i.e.,kA ~Dn+1EL�vnL�EL�vnLk � C4";(A5) the initial data are onsistent, i.e., kv0L � �v0Lk � C5 ".Then the perturbation error is bounded bykenLk = kvnL � �vnLk � C "� (5.4)for n � � T where C is independent of L, n, � and ".Proof. In a �rst step we split the perturbation error into its di�erent ontribu-tions orresponding to the ontration of the referene FVS (A3), the reliability ofpredition, the error of the ux reonstrution (A2) and the threshold error (A1), i.e.,kenLk � kELvn�1L � EL�vn�1L k+ an�1 + bn�1 + n�1withan�1 := kEL�vn�1L �A ~DnEL�vn�1L k; bn�1 := k �EL; ~DnA ~Dn�vn�1L � �EL; ~DnA ~Dn �vn�1L k;n�1 := k �EL; ~DnA ~Dn �vn�1L �A" �EL; ~DnA ~Dn�vn�1L k:Here we use (5.3), i.e., the adaptive sheme with exat ux and soure reonstrutionan be interpreted as the referene sheme to whih we apply the approximationoperator. This is admissible beause A"�vn�1L = �vn�1L aording to the de�nition ofthe adaptive sheme.Then the �rst term is estimated by the ontration property of the referenesheme (A3); the seond term by the approximation property (A4), where we assumethat the predition strategy is reliable; the third term by the auray preserving



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 15property (A2) of the ux reonstrution and the fourth term by the approximationproperty (A1). Hene the perturbation error an be further estimated bykenLk � ken�1L k (1 + C3 �) + (C1 + C2 + C4) ":By reursion we obtain furtherkenLk � ke0Lk (1 + C3 �)n + " (C1 + C2 + C4) n�1Xi=0(1 + C3 �)i:Setting C := max(C1 + C2; C5) we �nally onludekenLk � "C (1 + C3 �)n+1 � 1C3 � � "C eC3 (n+1) � � 1C3 �in ase of C3 6= 0 and kenLk � "C (n+ 1) ��if the FVS is l1{ontrative, i.e., C3 = 0. Sine the maximal number of time steps isbounded by n � T=� for a bounded time interval [0; T ℄, T <1, the assertion follows.A similar result has been proven for the adaptive MR-FVS with exat ux reon-strution, f. [18℄ (Theorem 5, p. 91) or [9℄. Here the original MR-FVS is only usedas an intermediate value, i.e., in eah time step the data of the modi�ed MR-FVSsheme are used instead of the data of the original MR-FVS from the previous timestep. One might introdue the adaptive sheme with exat ux approximation wherethe time evolution is always performed on its own data, i.e., �vnL = A" �EL; ~DnA ~Dn�vn�1;where ~Dn = ~Dn(�vn�1L ). Then in the proof of Theorem 5.1 the predition sets for vnLand �vnL would be di�erent beause ~Dn(vn�1L ) 6= ~Dn(�vn�1L ).From Theorem 5.1 and (5.1) we immediately onlude that the auray of thereferene FVS is preserved provided that " is hosen suÆiently small.Corollary 5.2. (Choie of threshold parameter) If the disretization error ofthe referene FVS is bounded by kûnL � vnLk1;L � C 2��L for some � > 0, then theauray is preserved by the adaptive sheme provided that " � 2�(1+�)L and the timestep � is limited by a CFL onstraint.The usefulness of Theorem 5.1 ruially depends on the veri�ation of the as-sumptions (A1) | (A5). The onvergene of the subdivision sheme implies theboundedness of the approximation error in the weighted l1-metri. This follows byTheorem 2.1. Furthermore, for salar onservation laws in 1D there exist (essentially)l1{ontrative shemes, f. [11℄. Conerning the onsistent disretization of the initialdata a natural hoie is given by the approximation operator, i.e., �v0L := A"v0L. Itremains to verify (i) the reliability ondition for the evolution of the adaptive MR-FVS with exat reonstrution and (ii) the boundedness of the error between timeevolution using exat and approximate reonstrution, respetively. These issues willbe addressed in the following two setions.5.2. Reliability of Predition. In [9℄ the reliability ondition (3.7) was veri-�ed for the adaptive MR-FVS with exat ux reonstrution in ase of a homogeneousonservation law for a speial predition strategy to be summarized below. It needs



16 N. HOVHANNISYAN AND S. M�ULLERto be slightly modi�ed to take into aount soure terms via exat soure reonstru-tion. In addition, we have to onsider that in eah time step the original adaptiveMR-FVS is applied to the data of the modi�ed MR-FVS with approximate ux andsoure reonstrution. For this purpose we �rst have to desribe the predition strat-egy developed in [9℄, see Se. 5.2.1. Then we have to verify the l1-stability of themodi�ed adaptive MR-FVS with approximate reonstrution, see Se. 5.2.2. Finallywe an prove the reliability ondition for the original adaptive MR-FVS with exatreonstrution applied to the data of the modi�ed sheme, see Se. 5.2.3.5.2.1. Predition strategy. For simpliity of representation we introdue theonvention dl;k;0 � vl;k and dl;k;1 � dl;k for the averages and the details, respetively.The basi idea is to determine all oeÆients dn+1l0;k0;e0 , e0 2 E, on the new time levelwhih are inuened by a oeÆient dnl;k;e, e 2 E, on the old time level. This set isreferred to as the inuene set Dl;k;e. Then we are nesting the oeÆients dnl;k;e givenat the old time level and �nally determine the predition set ~Dn+1.Inuene set. To determine the set Dl;k;e we �rst have to ompute the rangeof inuene �l;k;e of the oeÆient dnl;k;e and the domain of dependene ~�l0;k0;e0 ofthe oeÆient dn+1l0;k0;e0 . In the range of inuene we ollet all averages vnL;r, that areinuened by the detail dnl;k;e whereas the domain of dependene ontains all averagesvn+1L;r on whih the oeÆient dn+1l0;k0;e0 depends. Aording to the setting in Se. 2 thesesets turn out to be~�l;k;0 = f2L�lk; : : : ; 2L�l(k + 1)� 1g = �l;k;1;�l;k;0 = f2L�l(k � 2s) + 2s; : : : ; 2L�l(k + 2s+ 1)� (2s+ 1)g; (5.5)~�l;k;1 = f2L�l(k � s); : : : ; 2L�l(k + s+ 1)� 1g:Note that the index sets ~�l0;k0;e0 � IL and �l;k;e � IL orrespond to data on thereferene mesh but for di�erent time level n+1 and n, respetively. By the evolutionproess (3.9) with exat reonstrution (3.4) and (3.5) the domain of dependenehas to be extended taking into aount the stenil of numerial ux F and soure Sdetermined by (1.4) and (1.5), respetively, i.e.,~��l0;k0;e0 := [r2~�l0;k0;e0fr � p; : : : ; r + pg: (5.6)Then the inuene set is determined byDl;k;e = f(l0; k0; e0) 2 D ; ~��l0;k0;e0 \ �l;k;e 6= ;g:Nesting of oeÆients. The predition strategy has to take into aount thatthe oeÆients dnl;k;e may not only ause a perturbation in the neighborhood of theell Vl;k beause of the time evolution but may also inuene oeÆients dn+1l0;k0;e0 onhigher sales, where l0 > l+ 1 is admissible. Sine the additional higher levels inatethe inuene set, we would like to bound the number of higher levels to a minimumnumber. For this purpose we introdue the nesting of details where we �x some� > 1 and assign to eah oeÆient orresponding to (l; k; e) 2 Dn a unique index� = �(l; k; e) suh that 2�(l;k;e) � "l < jdnl;k;ej � 2(�(l;k;e)+1) � "l: (5.7)
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Fig. 5.1. Illustration of the range of inuene (left) and the range of dependene (right) for asigni�ant detail (l; k) 2 D indiated by the ell midpoints � with grading parameter q = 1.We will see later on that the parameter � is linked to the smoothness of the primalwavelet funtions, see Theorem 2.1. Sine the index �(l; k; e) beomes the smaller thelarger � is, it is onvenient to hoose � as large as possible.Predition set. From the inuene set Dl;k;e and the nesting of oeÆients wedetermine the predition set~Dn+1 := Dn [ [(l;k;e)2Dnf(l0; k0; e0) 2 Dl;k;e ; l0 � l + �(l; k; e)g (5.8)with Dn := Dn [ f(0; k; 0) ; k 2 I0g. For omputational but also analytial purposeswe inate this set additionally where we apply the grading proedure (3.11). Forinstane, the grading ensures that the loal multisale transformation (2.3), (2.6)and (2.7), respetively, an be realized by one sweep through the re�nement levelsprovided the grading parameter q is hosen suh that q � s, see [18℄, p. 36. By thegrading proedure a signi�ant detail (l; k) 2 D will ause all details on lower salesj = l� 1; : : : ; 1 in the range of inuene �G;(j)l;k � Ij to be put signi�ant independentof their value. On the other hand, for all non-signi�ant details (l; k) 62 D the gradingensures that all details on higher sales j = l + 1; : : : ; L� 1 in the range of inuene~�G;(j)l;k � Ij an not be signi�ant otherwise (l; k) 2 D. Aording to our setting inSe. 2 the range of inuene and dependene, respetively, an be estimated by��G;(j)l;k � f�k=2l�j�� 2l�j�1q; : : : ; �k=2l�j�+ 2l�j�1qg;~�G;(j)l;k � f2j�l(k � q)� (2j�l � 2)q; : : : ; 2j�l(k + q) + (2j�l � 2)q + 2j�l � 1g:Note that the grading will inate the predition set but does not deteriorate theoverall omplexity.5.2.2. l1-stability of modi�ed adaptive MR-FVS. To prove reliability ofthe predition set ~Dn+1 of the original MR-FVS determined by the data �vnL of themodi�ed MR-FVS we have to verify that �vnL is uniformly bounded in the sup-norm.Therefore we need the reliability of ~D� , � = 0; : : : ; n. This reursive proof is initializedby the proper omputation of the initial data suh that ~D0 = D0. We emphasize thatin the ourse of the reursion all onstants have to be uniform, i.e., they do not dependon L, n, � and ", respetively.Lemma 5.3. (Boundedness of adaptive FVS in sup{norm) Assume that the fol-lowing onditions hold true:(A6) the subdivision sheme onverges uniformly in the sup{norm;(A8) the referene FVS is stable in l1, i.e., kEL vLkl1 � (1 + C �) kvLkl1 ;(A9) the error of the initial data approximation an be estimated byk�v0L � v0Lkl1 � C "=� and kv0L � û0Lkl1 � C "=� ,where û0L denotes the averages of the initial data;



18 N. HOVHANNISYAN AND S. M�ULLER(A10) the threshold values are determined by "j = 2j�L " with " � 2�(1+�)L for some� > 0;(A11) the CFL ondition holds on the �nest resolution level, i.e., � � 2�L.Then the approximation �vnL orresponding to the adaptive FVS with approximate uxreonstrution is uniformly bounded in the sup{norm, i.e.,k�vnLkl1 � C(T; u0) for n � � T; (5.9)provided that the predition set ~D� satis�es the reliability property (3.7) and the errorof the approximate ux and soure reonstrution is bounded, i.e.,(A7) k �EL; ~D� A ~D� �v��1L � �EL; ~D� A ~D� �v��1L kl1 � C"for all previous time steps 0 � � � n.Sketh of proof. A similar result has been proven for the original adaptive MR-FVS with exat ux reonstrution, f. [18℄ (Lemma 8, p. 102) or [9℄. However, thesplitting of the error has to be modi�ed taking into aount the additional errorbetween exat and approximate ux and soure reonstrution. Hene, we start fromk�vnLkl1 �kA" �EL; ~Dnwn�1L � �EL; ~Dnwn�1L jjl1 + k �EL; ~Dnwn�1L � �EL; ~Dnwn�1L kl1 +k �EL; ~Dnwn�1L � EL �vn�1L kl1 + kEL�vn�1L kl1with wn�1L := A ~Dn�vn�1L . The terms of the right-hand side an be estimated by theassumptions and Theorem 2.1 resulting ink�vnLkl1 � (1 + C �) k�vn�1L kl1 + �C":Then the assertion follows by a disrete Cronwall inequality and assumption (A9) onthe approximation of the initial data. The details are given in Appendix 7.1.Note that an (essentially) l1� ontrative and l1-stable sheme, see (A3) inTheorem 5.1 and (A8) in Lemma 5.3, is known to onverge to a weak solution of theinitial value problem (1.1), (1.2), f. [11℄.5.2.3. Reliability. Finally we an prove the reliability ondition for the origi-nal adaptive MR-FVS with exat reonstrution applied to the data of the modi�edsheme and, hene, assumption (A4) in Theorem 5.1. The proof is similar to the onepresented in [9℄, [18℄ in ase of a homogeneous onservation law. We therefore willomit the details of the proof but will summarize the main steps whih are neededlater on in Se. 5.3. Starting point is the observation that we an on�ne ourselves tothe evolution equations on the referene mesh beause of the identity (5.3) and thedetails an be rewritten in terms of �nite di�erenes of orderM (number of vanishingmoments) �MK uL;k := MXi=0(�1)i�Mi �uL;k+iK (5.10)with stenil S(M;K; k) := fk + iK : i = 0; : : :Mg � IL; (5.11)f. [9℄, [18℄, Lemma 7, p. 99. Then the details an be estimated by



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 19Lemma 5.4. (Estimate of details by �nite di�erenes) Let k 2 Z, l 2 f0; : : : ; L�1g and K := 2L�l�1. Furthermore, let M denote the number of vanishing momentsof the modi�ed box wavelet. Then the details dl;k an be estimated byjdl;kj � C supfj�MK uL;rj ; r 2 IL s. t. S(M;K; r) � ~�l;k;1g; (5.12)where the onstant C is independent of l and k.For a proof see [18℄, Proposition 4, p. 101.Due to the evolution equation the �nite di�erene operator is also applied tothe numerial ux balanes and soures, respetively. These an be onsidered asomposite funtions G := g Æ u. The derivatives of the omposite funtion G anbe written in a series of derivatives of g and u, respetively, suessively applyingthe hain rule. Then the main idea is to derive a disrete ounterpart by whih�nite di�erenes of the nonlinear funtion G are estimated by �nite di�erenes of theaverages. For this purpose, the following assumption has to hold for G:Assumption 1. Let D � Rp be a bounded domain of admissible states. Then thenonlinear funtion G : Rp 7�! R is assumed to be regular in the following sense:1.) G is pieewise smooth, i.e., there are open subsets Di � D; i = 1; : : : ;K,with D = SKi=1Di, suh that G 2 CR(Di);2.) G is loally Lipshitz{ontinuous on D;3.) the derivatives of G an be extended ontinuously to the boundary �Di suhthat supv2Di �kG�k1v1 � � � �kpvp (v) � Ckfor k =Ppi=1 ki; k 2 f0; : : : ; Rg.This assumption has to hold for the numerial ux funtion F : R2p 7�! R as well asthe numerial soure funtion S : R 7�! R.Lemma 5.5. (Finite di�erenes for omposite funtions) Let the assumptions ofLemma 5.3 hold and assume that the nonlinear funtion G satis�es Assumption 1.IntroduingDN (vL;K;�) := sup �j�NK vL;k0 j ; S(N;K; k0) � �	 andI(R) := �(j;k) ; j 2 f1; : : : ; RgR; k 2 f0; : : : ; RgR; XRr=1 jr kr = R� ; (5.13)we obtainDR(GnL;K; ~�l;k;1) � C sup �YRr=1(Djr (�vnL;K; ~��l;k;1))kr ; (j;k) 2 I(R)� : (5.14)The proof an be found in [9℄ or [18℄, Proposition 5, p. 104 in ase of the numerialux balanes. It an also be applied to the numerial soure funtion.In order to further estimate the �nite di�erenes on the right hand side in (5.12)and (5.14) we need a disrete inverse estimate, i.e., we have to estimate the �nitedi�erenes by details.Lemma 5.6. (Disrete inverse estimate) Let K 2 N be an arbitrary step size.Assume that the subdivision sheme onverges uniformly in the sup{norm and the



20 N. HOVHANNISYAN AND S. M�ULLERorresponding primal wavelets  j;k are in Cr. For N > 0 we obtainj�NK �vnL;k0 j � C L�1Xl=�1minf2�L+l+1K; 1gminfN;rg supfj �dnl;kj ; �l;k \ S(N;K; k0) 6= ;g;(5.15)where �dn�1;k := �vn0;k, ��1;k := �0;k;0 and �l;k := �l;k;1 for l = 0; : : : ; L� 1.The onvergene of the subdivision sheme ensures the existene of the primal fun-tions, see Theorem 2.1, and the uniform boundedness of the approximation error(2.11). Due to the dyadi grid re�nement the limit funtions are re�nable funtionsfor whih an inverse estimate exists, f. [7℄. This is used to prove the assertion. Fordetails, we refer to [9℄ or [18℄, Prop. 4, p. 101.Then the details on the right hand side in (5.15) have to be estimated by thethreshold values. Here the de�nition of the predition set (5.8) enters. For thispurpose, we now have to speify the the parameter � in the nesting (5.7) of thedetails.Assumption 2. Assume that the primal wavelets have Cr H�older smoothness,i.e.,  j;k 2 Cr, and the dual wavelets have M vanishing moments. Then we hoosesome � suh that 1 < � < r + 1 (5.16)and �x the parameters R and � > 0 suh thatR � 1 < r � R; (5.17)1 + � < � < 1 +R� �: (5.18)The smoothness parameter r is bounded by the number of vanishing moments M ofthe dual wavelets ~ j;k, i.e., r < M , and thus � < M + 1 and R �M .Lemma 5.7. (Stability of �nite di�erenes) Let the assumptions of Lemma 5.3and 5.6 as well as Assumption 2 hold. Let (l0; k0; e0) 62 ~Dn+1, N > 0, K �CK2L�l0�1 , where CK 2 [1;1) is some onstant independent of the levels l0 andL and k suh that S(N;K; k) � ~��l0;k0;e0 . Then we get the estimatej�NK �vnL;kj � C "minfN=R;1gl0 ; (5.19)where the threshold values are given by "l = 2l�L ". In partiular, if N < R then theonstant C depends on T and u0.For a proof see [9℄ or [18℄, Prop. 7, p. 101.Finally we obtain the reliability result for the original MR-FVS applied to thedata of the modi�ed MR-FVS, i.e., vn+1L := �EL; ~Dn+1A ~Dn+1 �vnL = A ~Dn+1EL�vnL.Theorem 5.8. (Reliability) Let the Assumptions 1, 2 as well as the assumptions(A6) | (A11) of Lemma 5.3 hold true. Then the predition set de�ned by (5.8) ful�llsthe reliability property (3.7).Sketh of proof. For some (l0; k0; 1) 62 ~Dn+1 we have to verify that the detail dn+1l0;k0an be estimated up to some onstant by the threshold value "l0 . For this purpose,we �rst estimate the detail on time level n by �nite di�erenes aording to Lemma5.4. Then we apply the �nite di�erene operator �MK to the evolution equations (3.1)with the numerial uxes (3.4) and numerial soures (3.5) for level l = L. Finallywe have to estimate the �nite di�erenes �MK �vnL;r and �MKBnL;r, �MK SnL;r by Lemma



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 215.7 and 5.5, respetively. Details on the proof an be found in [9℄ or [18℄, Theorem 7,p. 110.For the predition strategy developed in [9℄ this ould be veri�ed under the sameassumptions. There it was proven only for homogeneous onservation laws. However,the proof will also work in ase of inhomogeneous equations where we have to replaein the proof BL;k by BL;k � � SL;k with exat soure reonstrution.5.3. Error of approximate reonstrution. It remains to verify assumption(A2) in Theorem 5.1. For this purpose, we �rst derive suÆient onditions whih areveri�ed to hold for the approximate ux and soure reonstrution (4.5), (4.6), (4.7)and (4.11), (4.12), (4.13), respetively.Theorem 5.9. (SuÆient ondition) The above assumptions hold true. Assumethat in partiular for the CFL-ondition we have�hL maxjuj�C(T;u0) jf 0(u)j � C < 1 (5.20)with C(T; u0) given by (5.9) in Lemma 5.3. Then the approximate ux and sourereonstrution is auray preserving, i.e., (A2) holds true, provided thatj �Fnl;k � �Fnl;k j<� "; 8(l; k) 2 F( ~Dn+1); (5.21)and j �Snl;k � �Snl;kj<� 2l"; 8(l; k) 2 S( ~Dn+1): (5.22)Proof. Let be �wn+1L := �EL; ~Dn+1 �wnL, �wn+1L := �EL; ~Dn+1 �wnL. Then we may representthe error of the subdivision sheme (3.9) as�wn+1L � �wn+1L = X(l;k;e)2 ~Dn+1	Ll;r;e( �dn+1l;r;e � �dn+1l;r;e);whih an be estimated byk �wn+1L � �wn+1L k � X(l;r;e)2 ~Dn+1 k	Ll;r;ek j �dn+1l;r;e � �dn+1l;r;e j:The norm of the disrete basis vetors an be represented ask	Ll;k;ek = Xr2�Ll;k;e jVL;rj j(	Ll;k;e)rjwhere �Ll;k;e � IL is the support of 	Ll;k;e. Next we onlude from Theorem 2.1j(	Ll;k;e)rj = jh l;k;e; ~�L;rij � k l;k;ekL1 <� 1and ����[r2�Ll;k;e VL;r���� = j supp  l;k;ej<� 2�l:Hene the error an be further estimated byk �wn+1L � �wn+1L k<� X(l;r;e)2 ~Dn+1 2�lj �dn+1l;r;e � �dn+1l;r;e j:



22 N. HOVHANNISYAN AND S. M�ULLERFrom the evolution equations (3.2) and (3.3) together with exat and approximateux and soure reonstrution as well as the identity (2.7), we obtain for the di�ereneof the detailsj �dn+1l;r;e � �dn+1l;r;e j = ������ Xs2Mel;rml;es;r�l+1;s( �Bnl+1;s � �Bnl+1;s) + � Xs2Mel;r � �Snl+1;s � �Snl+1;s������� <�maxs2Mel;r �l+1;s �� �Bnl+1;s � �Bnl+1;s��+ � maxs2Mel;r �� �Snl+1;s � �Snl+1;s�� (5.23)beause the supportsMel;r and the mask oeÆients ml;es;r are uniformly bounded, see(2.3) and (2.6).From the de�nition of the ux balanes as well as the soures we infer fromassumption (5.21) and (5.22)k �wn+1L � �wn+1L k<� X(l;r;e)2 ~Dn+1 �hl+1 2�l "+ X(l;r;e)2 ~Dn+1 �":The number of signi�ant details is bounded by that of all possible oeÆients# ~Dn+1 � #I0 + L�1Xl=0 #Il = N0 +N0 L�1Xl=0 2l = N0 2L:Sine hl = 2L�lhL and hL = 2�Lh0, respetively, and the CFL-ondition (5.20)holds we �nally obtaink �wn+1L � �wn+1L k<� X(l;r;e)2 ~Dn+1 �hL 2l+1�L 2�l "+ X(l;r;e)2 ~Dn+1 �"<�N0 2L �2 � 2�L + h0 2�L maxjuj�C(T;u0) jf 0(u)j� "<� ":5.3.1. Approximate ux reonstrution. In order to verify the suÆientondition (5.21) for the approximate ux reonstrution we proeed in several steps.First of all, we have to estimate the error introdued by polynomial reonstrution.Lemma 5.10. (Error of polynomial reonstrution) Let xk = kh, h > 0, k 2 Z,be a uniform disretization of the real line and vk be data to the ell [xk; xk+1℄. Let k be�xed, RNk 2 �N denotes the reonstrution polynomial to the stenil Sk := fk; : : : ; kgfor some k 2 fk �N; : : : ; kg and k = k +N withP̂k0 := 1h Z xk0+1xk0 RNk (x) dx = vk0 8k0 2 Sk : (5.24)Then the error between the reonstruted ell average P̂k0 and the ell average vk0 iseither zero, i.e., vk0 = P̂k0 , k0 2 Sk, or an be represented as a linear ombination of�nite di�erenes of order N + 1, i.e.,vk0 � P̂k0 =8>>>>><>>>>>: k�k0�1Pj=0 �k0;j�N+11 vk0+j ; k0 < k;k0�k�1Pj=0 �k0;j�N+11 vk0�N�j�1; k < k0;



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 23where the oeÆients �k0;j only depend on N .Sketh of proof. For k0 2 Sk the reonstrution ondition (4.1) holds, i.e., theerror vanishes. For k0 62 Sk the proof follows by indution starting at k0 = k �1 and k0 = k + 1, respetively. Here we make use of the representation (4.4) ofthe reonstrution polynomial via the interpolation polynomial (4.3) of the primitivefuntion. In partiular, we employ that (N + 1)-st order �nite di�erenes of theinterpolation polynomial QN+1k are onstant and, hene, �N+11 P̂r = 0. The ompleteproof is given in Appendix 7.2.Next we rewrite �nite di�erenes on level l by those on higher levels with largerstep size.Lemma 5.11. For �nite di�erenes of order N 2 N the two-sale relation�N1 vl;k = 12 N+1Xi=0 �N + 1i ��N1 vl+1;2k+i (5.25)holds. Alternatively, �nite di�erenes an be represented by a sum of �nite di�ereneson level L with step size 2L�l, i.e.,�N1 vl;k = 2l�L 2L�l�1X�=0 �N2L�lvL;2L�lk+� : (5.26)Sketh of proof. The proof is elementary. Relation (5.25) follows by indution us-ing the addition theorem for binomial oeÆients whereas (5.26) is a straight-forwardalulation employing the enoding (2.3) and the de�nition (5.10) of the �nite di�er-ene. Details an be found in the Appendix 7.3.Similar to Lemma 5.7 we an now estimate the �nite di�erenes on level l insteadof level L.Lemma 5.12. Assume that the dual wavelets have M = 2s + 1 � N + 1 van-ishing moments. Given a sequene of averages vL with multisale deompositionfdj;k;eg(j;k;e)2D. Let G = G(D) be the adaptive grid orresponding to the set of sig-ni�ant details D that is graded of degree q � d 3s2 e. Then for any (l; k) 2 G wehave j�N+11 vl;k0 j<� "min(N+1R ;1)l ; 8k0 2 fk � 2s; : : : ; k + 2s�N � 1gprovided that the assumptions of Lemma 5.7 hold true.Sketh of proof. The basi idea is to rewrite the �nite di�erene �N+11 vl;k0 onlevel l in a series of �nite di�erenes �N+12L�l�1vL;2L�l�1(2k0+i)+�, i = 0; : : : ; N + 2,� = 0; : : : ; 2L�l�1 � 1 on level L �rst applying (5.25) and then (5.26). For eah ofthese di�erenes we have to verify that its stenil is inluded in a bakward inueneset ~��l+1;2k+q0 ;1 de�ned by (5.6) for some q0 suh that (l+1; 2k+q0) 62 D. It turns outthat q0 2 f�3s; : : : ; 3s+1g. On the other hand we dedue from the grading proedureand the assumption (l; k) 2 G, i.e., (l; k) =2 D, that the range of dependene for (l; k)on level l+1 is determined by ~�G;(l+1)l;k = f2(k� q); : : : ; 2(k+ q) + 1g. Then hoosingthe grading parameter suÆiently large ensures that 2k + q0 2 ~�G;(l+1)l;k . Finally, wemay apply Lemma 5.7 and the assertion follows. For a detailed proof see Appendix7.4. Note that in Lemma 5.12 the order N of the �nite di�erene is not yet limited tothe degree of the reonstrution polynomial. In partiular, it might be the starting



24 N. HOVHANNISYAN AND S. M�ULLERpoint to onstrut an hp-version of the adaptive multisale sheme. The idea wouldbe to look for the smallest N suh thatj�N+11 vl;k0 j<� "lholds. This would implyjhRNl;k; ~'L;ri � vL;rj<� "l; 8r 2 f2L�lk; : : : ; 2L�l(k + 1)� 1gin Lemma 5.13 and in the proof of Theorem 5.14 below.Next we estimate the error between the averages and the reonstruted averages.Lemma 5.13. Assume that the dual wavelets have M = 2s+1 � N +1 vanishingmoments, where N is the degree of the reonstrution polynomial. Given a sequeneof averages vL with multisale deomposition fdj;k;eg(j;k;e)2D. Let G = G(D) be theadaptive grid orresponding to the set of signi�ant details D that is graded of degreeq � d 3s2 e. Then for any (l; k) 2 G we havejhRNl;k; ~'L;ri � vL;rj<� max�"min(N+1R ;1)l ; "l� ; r 2 f2L�lk; : : : ; 2L�l(k + 1)� 1gprovided that (i) the subdivision sheme onverges uniformly in the sup-norm, (ii)the reonstrution stenil SL;k is lying inside the support S2L�l(k+1)�1r=2L�lk ��(l)L;r;0 of thesubdivision sheme and (iii) the assumptions of Lemma 5.7 hold true.Sketh of proof. The basi idea is to apply the subdivision sheme (2:8) to thereonstruted averages P̂L;r := hRNl;k; ~'L;ri and the ell averages vL;r, respetively,and to estimate the di�erene of both series: (i) Sine the number of vanishing mo-ments M is larger than the degree N of the reonstrution polynomial, the detailsorresponding to the multisale deomposition of the reonstrution polynomial van-ish. (ii) Assuming that the grading parameter satis�es q � s we onlude that thesupport of the wavelets ��(j)L;r;1 is inluded in the range of dependene ~�G;(j)l;k for allr 2 f2L�lk; : : : ; 2L�l(k + 1) � 1g and j = l + 1; : : : ; L � 1. Hene , the details dj;k0 ,k0 2 ~�G;(j)l;k , orresponding to the ell averages are not signi�ant. On the other hand,the remaining details dl;k0 , k0 2 ��(l)L;r;1 � fk � s; : : : ; k + sg an be estimated byjdl;k0 j � 2�"l due to the de�nition of the predition set (5:8) where � is a onstantwhih is �xed in Assumption 2. (iii) The di�erenes between the ell averages vl;k0and Pl;k0 for k0 2 ��(l)L;r;0 an be estimated by Lemma 5.10 and 5.12. The details ofthe proof are given in Appendix 7.5.Finally we an verify the suÆient ondition (5.21) in ase of approximate uxreonstrution.Theorem 5.14. Assume that the primal wavelets have H�older regularity Cr,0 < r � N + 1; and the parameters R and � are hosen aording to Assumption 2.Furthermore the adaptive grid is assumed to be graded of degree q � d 3s2 e and the dualwavelets have M = 2s+ 1 � N + 1 � R vanishing moments where N is the degree ofthe polynomial reonstrution and R is the parameter hosen in Assumption 2. Thenthe error between exat and approximate ux reonstrution strategy determined by(3.4) and (4.5), (4.6), (4.7), respetively, an be estimated byj �Fnl;k � �Fnl;k j<� "; (l; k) 2 F ~Dn+1 : (5.27)



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 25Proof. Let (l; k) 2 F ~Gn+1 ; l 2 f0; : : : ; L � 1g. Sine F is assumed to be loallyLipshitz-ontinuous with onstant LF , see Assumption 1, we an estimate the errorbetween the exat and approximate ux reonstrution (3.4) and (4.5), respetively,byj �Fl;k � �Fl;k j = jF (vL;2L�lk�p; : : : ; vL;2L�lk+p�1)� F (wl;2L�lk�p; : : : ; wl;2L�lk+p�1)j �LF p�1Xi=�p jvL;2L�lk+i � wl;2L�lk+ij: (5.28)For simpliity of representation we suppress the time index.Here the values wL;k0 , k0 2 f2L�lk � p; : : : ; 2L�lk + p � 1g are determined bypolynomial reonstrution aording to (4.1) and (4.2), i.e.,wL;k0 = 1jVL;k0 j ZVL;k0 RNl0;r0(x) dx:Note that in the neighborhood of a ell Vl;k the neighboring ells in the adaptivegrid G are not neessarily sitting on the same level. Therefore the average wL;k0 isomputed by the reonstrution polynomial RNl0;r0 on level l0 = l0(k0) related to theell Vl0;r0 � VL;k0 with r0 = r0(k0) where (l0; r0) 2 ~Gn+1, see Fig. 5.2.
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l � 1ll + 1l + 2 = L
RNl�1;bk=2�1 RNl;k RNl+1;2k+2

�F2L�lk?

xl�1;bk=2�1 = xl;k = xL;2L�lk6

1

Fig. 5.2. Illustration of approximate ux reonstrution at the interfae xl;k in ase of p = 5.The loally adapted grid is indiated by the ell midpoints �. For the ux omputation the data onlevel L indiated by Æ have to be omputed by the reonstrution polynomials RNl�1;bk=2�1, RNl;kand RNl+1;2k+2, respetively.Sine the grid is assumed to be graded, the number of di�erent levels is uniformlybounded, i.e., jl0 � lj � Cwith C only depending on s and p. Hene, we an estimate the di�erene on theright-hand side in (5:28) by Lemma 5.13jvL;k0 � wL;k0 j = jvL;k0 � hRNl0;k0 ; ~'L;k0ij<� "minfN+1R ;1gl0 <� "minfN+1R ;1gl = "l; (5.29)



26 N. HOVHANNISYAN AND S. M�ULLERbeause (N + 1)=R � 1 due to assumption. Then the assertion follows by the hoieof "l = 2l�L".In the seond ase (4.6) where (l; k) 62 F ~Gn+1 and there exists j 2 fl + 1; : : : ; Lgsuh that (l0; k0) := (j; 2j�lk) 2 F ~Gn+1 the numerial uxes are determined by�Fl;k = �Fj;2j�lk = �FL;2L�l0k0 = F (vL;2L�l0k0�p; : : : ; vL;2L�l0k0+p�1);�Fl;k = �Fj;2j�lk = �Fl0;k0 = F (vl0;k0�p; : : : ; vl0;k0+p�1):Then (5.29) also holds true with "l0 instead of "l where we apply the above analysisto (l0; k0) instead of (l; k).In the last ase (4.7), where there is no j 2 f0; : : : ; Lg, suh that (j; 2j�l) 2F ~Gn+1 , but there is j0 = maxfj j (j; 2j�lk) 2 F ~Dn+1g; we apply the above analysis to(l0; k0) := (j0; 2j0�l).5.3.2. Approximate soure reonstrution. For veri�ation of the suÆientondition (5.22) for the approximate soure reonstrution we an not diretly applyLemma 5.13 beause of the omposition of the soure funtion and the sliding averageof the reonstrution polynomial. Here we have �rst to estimate the di�erenes of theomposite funtion similar to Lemma 5.5Lemma 5.15. (Boundedness of derivatives of omposite funtion) Let the assump-tions of Lemma 5.3 hold true. Furthermore the soure funtion S satis�es Assumption1. Let V be the sliding average of the reonstrution polynomial RNl;k to ell Vl;k and(l; k) 2 G(D). Then the R-th derivative of the omposite funtion G = SÆV is boundedby supx2Vl;k jG(R)(x)j<� h2�Rl "lfor 0 � R � N .Sketh of proof. The proof is similar to the one for Lemma 5.5 that an be foundin [9℄ or [18℄, Proposition 5, p. 104. The basi idea is to estimate the R-th derivative ofthe omposite funtion G by means of �nite di�erenes �j1vl;k0 of order j = 0; : : : ; R.For this purpose, we have to estimate the j-th derivative of the sliding average V .Aording to (4.10) the latter is de�ned by the interpolation polynomial QN+1l;k that isdetermined by the interpolation onditions (4.3). Hene, we have to estimate the j-thderivative of QN+1l;k . Here it is most onvenient to onsider the Newton representationbeause therein the �nite di�erenes naturally our. Finally, the �nite di�erenesan be estimated by Lemma 5.12. Details of the proof are given in Appendix 7.6.Finally we an verify the suÆient ondition (5.22) in ase of approximate sourereonstrution.Theorem 5.16. Assume that the primal wavelets have H�older regularity Cr,0 < r � N + 1; and the parameters R and � are hosen aording to Assumption2. Furthermore the adaptive grid is assumed to be graded of degree q � d 3s2 e and thedual wavelets have M = 2s + 1 � N + 1 � R vanishing moments where N is thedegree of the polynomial reonstrution and R is the parameter hosen in Assumption2. Then the error between the exat and approximate soure reonstrution strategydetermined by (3.5) and (4.11), (4.12), (4.13), respetively, an be estimated byj �Snl;k � �Snl;kj<� "; (l; k) 2 S ~Dn+1 : (5.30)



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 27Proof. First of all we onsider (l; k) 2 ~Gn+1 � S ~Dn+1 . Due to (3.5) the exatsoure reonstrution in ell Vl;k is given by�Sl;k = 2l�L 2L�l�1Xi=0 �SL;2L�lk+i = 2l�L 2L�l�1Xi=0 S(vL;2L�lk+i):We now introdue the approximation~Sl;k := 2l�L 2L�l�1Xi=0 S(V(x̂L;2L�lk+i)) = 1hl 2L�l�1Xi=0 hLS(P̂L;2L�lk+i);where V is the sliding average determined by the polynomial reonstrution RNl;kto ell Vl;k, P̂L;2L�lk+i is the ell average of RNl;k in ell VL;2L�lk+i and x̂L;2L�lk+i =xL;2L�lk+i+hL2 is the midpoint of ell VL;2L�lk+i. Note that V(x̂L;2L�lk+i) = P̂L;2L�lk+ibeause of the onstrution of the reonstrution polynomial (4.3), (4.4) and the def-inition of the sliding average (4.10). Obviously, ~Sl;k is the midpoint quadrature ruleapplied to the subintervals VL;2L�lk+i, i = 0; : : : ; 2L�l� 1, approximating the integralIl;k := 1hl ZVl;k G(x) dx = 1hl 2L�l�1Xi=0 ZVL;2L�lk+i G(x) dx (5.31)with the omposite funtion G = S Æ V .Note that hL = 2l�Lhl. The error an be estimated byjIl;k � ~Sl;kj � 124h2L supx2Vl;k jG(2)(x)j: (5.32)On the other hand, the approximate reonstrution of the soure in ell Vl;k aordingto the strategy is given by some quadrature rule applied to the integral (5.31), i.e.,�Sl;k = 1hl mXi=0 wiS(V(xi)) = 1hl mXi=0 wiG(xi)for some nodes xi 2 Vl;k and some weights wi, i = 0; : : : ;m.Assume that the error an be estimated byjIl;k � �Sl;kj<� h�l supx2Vl;k jG(�)(x)j (5.33)for some integer � = �(m).The error between exat and approximate soure reonstrution an now be splitinto two parts j �Sl;k � �Sl;kj � j �Sl;k � ~Sl;kj+ j ~Sl;k � �Sl;kj: (5.34)The �rst term an now be estimatedj �Sl;k � ~Sl;kj � Ls maxi=0;:::;2L�l�1 jvL;2L�lk+i � P̂L;2L�lk+ij<� max�"min( (N+1)R ;1)l ; "l�(5.35)



28 N. HOVHANNISYAN AND S. M�ULLERdue to the loal Lipshitz ontinuity of S and Lemma 5.13.The seond term in (5:34) is again split into two parts aounting for the integra-tion error, i.e., j ~Sl;k � �Sl;kj � j ~Sl;k � Il;kj+ jIl;k � �Sl;kj:From Lemma 5.15 the errors (5.32) and (5.33) are bounded up to some onstantj ~Sl;k � �Sl;kj<� h2L"l + h�l h2��l "l <� "l: (5.36)Sine (N +1)=R � 1 the assertion follows from (5.34), (5.35) and (5.36) by the hoieof "l = 2l�L".In the seond ase when (l; k) =2 ~Gn+1 but there exists j 2 fl+1; : : : ; Lg suh that(j; 2j�lk) 2 ~Gn+1 we infer from (3.5) and (4.12)j �Snl;k� �Snl;kj � 2j�l�1Xi=0 2l�j j �Snj;2j�lk+i� �Snj;2j�lk+ij � maxi=0;:::;2j�l�1 j �Snj;2j�lk+i� �Snj;2j�lk+ij:Then (5.30) holds true with "j instead of "l.In the last ase where there j 2 f0; : : : ; l�1g exists suh that (l0; k0) := (j; bk=2l�j) 2~Gn+1 we infer from (4.13)�Snl;k � �Snl;k = �Snl;k � �Snl0;k0 + �Snl0;k0 � �Snl;k = �Snl0;k0 � �Snl0;k0 :We now apply again the above analysis to (l0; k0).Note that the estimate (5.30) an be proven for any � in the quadrature error(4.9) and (5.33), respetively. Therefore, we may use the midpoint rule, i.e. m = 0.Hene only one funtion evaluation is required in ase of (4.11).6. Numerial results. The analytial results are now to be veri�ed by numer-ial omputations. For this purpose we onsider the inhomogeneous, invisid Burgersequation, i.e., f(u) = 0:5u2 with soure s(u) = u (u � 0:5) (u � 1) and initial datau0(x) = sin(2� x).The omputational domain 
 = [0; 1℄ is disretized by N0 = 10 ells on theoarsest level, i.e., h0 = 0:1. Hene the resolution for higher re�nement levels isNl = 2lN0 and hl = 2�l h0. At the boundaries we use periodi boundary onditions.For the time disretization we have to respet the CFL ondition. Here we hoose�0 = 0:016 and the �nal integration time is T = 0:24. Sine we perform a globaltime stepping the CFL ondition has to hold for the smallest ells orresponding tothe highest re�nement level L, i.e., � = 2�L �0. For the multisale analysis we usewavelets with M = 2 s + 1 = 3 vanishing moments, see Table 2.1, and the gradingparameter is hosen as q = 2s = 2. Instead of using the predition strategy aordingto Setion 5.2.1 we apply Harten's original strategy although this has not yet beenproven to be reliable but is always used in pratie, f. [4℄.The referene FVS (1.3) is determined by the Godunov ux Fk = FG(vLk ; vRk ) =F (vk�2; : : : ; vk+1). In order to improve spatial and temporal auray we employ apieewise linear ENO reonstrution, f. [15℄. For a non-equidistant grid this readsvLk = vk�1 +m (� vk;� vk�1) (hk�1 � � f 0(vk�1 +m (� vk;� vk�1) hk�1))vRk = vk �m (� vk+1;� vk) (hk + � f 0(vk �m (� vk+1;� vk) hk))



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 29with the divided di�erenes � vi := (vi � vi�1)=(hi + hi�1) and the minmod funtionm de�ned by m(a; b) := a if jaj � jbj and m(a; b) := b elsewhere. Note that the termorresponding to the time disretization � guarantees seond order in time. For thesoure term we apply the �rst order approximation (1.5).Computations have been performed for varying threshold values " and di�erentux and soure reonstrution strategies: (i) ux and soure omputation on unstru-tured meshes using only loal data orresponding to the adaptive grid as is frequentlyused in appliations, f. [4℄, (ii) approximate reonstrution strategy aording to(4.5), (4.6) and (4.11), (4.12) using the midpoint rule and reonstrution polynomialsof degree N = 2 s = 2 with entral stenil Sl;k = fk � s; : : : ; k + sg, and (iii) exatreonstrution strategy aording to (3.4) and (3.5). These are referred to RM=1,2,3in Figures 6:4, 6:5, 6:3 and 6:2.The solution is developing a shok at time t = 1=� in position x = 0:5 whih isis moving at negative speed due to the inhomogeneity. In Figure 6.1 we present theadaptive solution for L = 10, " = 10�3 by points at the ell enter of the adaptivegrid and the exat solution omputed by the referene sheme on a uniform gridorresponding to L = 14.
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Fig. 6.1. Comparison of adaptive solution (L = 10, " = 10�3) and exat solution (L = 14, " = 0)To investigate the inuene of the di�erent ux and soure reonstrution strate-gies on the eÆieny of the adaptive sheme we have to onsider the omputationale�ort (memory and CPU) and the auray (disretization and perturbation error)for varying threshold values. All adaptive omputations are performed with L = 10re�nement levels.Aording to the ideal strategy in Setion 5 the threshold value " has to behosen suh that the disretization error �L = ûL � vL of the referene shemeand the perturbation error eL = vL � vL are balaned. For L = 10 we obtaink�Lk = 5:8� 10�4 where the \exat " solution is obtained by the FVS on a uniformmesh orresponding to L = 14 re�nement levels.First we onsider the perturbation error due to thresholding plotted in Figure



30 N. HOVHANNISYAN AND S. M�ULLER6.2 for varying threshold parameters. Obviously, the perturbation error is dereasingwith smaller threshold values. In partiular, keLk ! 0 for "! 0+, i.e., the adaptivesheme is onverging to the referene solution obtained on the referene grid with Lre�nement levels. Of ourse, we do not gain in auray when hoosing a too smallthreshold value beause the disretization error is �xed by the number of re�nementlevels.
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Fig. 6.2. Perturbation error of adaptive solution (L = 10, varying threshold value ") andreferene solution (L = 10, " = 0) on referene grid (L = 10)To determine the optimal threshold value we plot the error kûL � vLk of theadaptive sheme (5.1) for di�erent threshold values, see Figure 6.3. From this weonlude that an optimal hoie would be "opt 2 [10�5; 10�4℄ beause the error of theadaptive sheme is dereasing with dereasing threshold value " as long as " > "optwhereas it stalls for " < "opt. Hene, for " > "opt the perturbation error due tothresholding is dominating whereas for " < "opt the disretization error is dominating.The above observations onerning the disretization and perturbation error holdtrue independent of the ux and soure reonstrution strategy. However, for a thresh-old value "opt in the optimal range we depit from Figures 6.2 and 6.3 that the highestauray is obtained with the exat strategy (RM=3). For the approximate strategy(RM=2) we are loosing a bit in auray, but for the loal strategy (RM=1) the lossis muh more severe.To onlude on the eÆieny of the di�erent strategies we have to onsider theomputational osts. First we disuss the size of the adaptive grids that determinethe memory requirements, see Figure 6.4. We note that the minimal grid size isusually obtained for the exat strategy (RM=3) whereas for the loal (RM=1) andthe approximate (RM=2) strategy we need more ells. This might be aused by smallosillations indued by the reonstrution error. This beomes more severe in ase ofthe loal strategy (RM=1) if the threshold value is hosen too small, i.e., " < "opt.Finally, we onsider the omputational time presented in Figure 6.5. We notethat the CPU time needed for the exat strategy (RM=3) is muh higher as long asthe threshold value is not too small. This is aused by the soure term omputation
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Fig. 6.3. Error of adaptive solution with L = 10 and varying threshold value ".
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Fig. 6.4. Number of ells: Adaptive omputations with L = 10 and varying threshold value ".on the uniform referene grid dominating the overall osts for grid adaptation andtime evolution. In ase of the loal (RM=1) and approximate (RM=2) strategy theadaptive grid beomes more dense with dereasing threshold values, i.e., more ellsare re�ned, and the osts are approahing the osts of the referene omputation onthe referene grid. This behaviour an be typially expeted for any adaptive sheme.To summarize the above observations we onlude that for an optimal thresholdvalue "opt the exat strategy is most aurate but at the osts of the referene om-putation, i.e., there is no gain at all. For the loal strategy we observe a severe loss
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34 N. HOVHANNISYAN AND S. M�ULLER7. Appendix.7.1. Proof of Lemma 5.3.Proof. In order to estimate the extrema by the time evolution we onsiderk�vnLkl1 � kA" �EL; ~Dn A ~Dn �vn�1L � �EL; ~Dn A ~Dn�vn�1L jjl1 +k �EL; ~Dn A ~Dn�vn�1L � �EL; ~Dn A ~Dn �vn�1L kl1 +k �EL; ~Dn A ~Dn�vn�1L � EL �vn�1L kl1 + kEL�vn�1L kl1 (7.1)By the de�nition of the approximation error the �rst term an be estimated aordingto (2.11) bykA" �EL; ~Dn A ~Dn �vn�1L � �EL; ~Dn A ~Dn �vn�1L jjl1 � L�1Xl=0 Xk2J nl;" �dn�1l;k 	Ll;kl1 ;where J nl;" indiates the non-signi�ant details on level l. It should be noted that ~D�is omputed from the data of the modi�ed adaptive sheme at the old time step, i.e.,�v��1L . Reliability then means kA ~D� EL �v��1L kl1 � C":From assumption (A6) and Theorem 2.1 we onlude that the supports of the disretebasis vetors 	Ll;k overlap only at a �xed number of positions independent of l and k.This implies  Xk2Jnl;" �dn�1l;k 	Ll;kl1 � supk2Jnl;" j �dn�1l;k j  Ll;kL1 � C "l; (7.2)where we employ that the predition set is reliable in the sense of (3:7). Thus the�rst term an be estimated bykA" �EL; ~Dn A ~Dn �vn�1L � �EL; ~Dn A ~Dn �vn�1L kl1 � L�1Xl=0 "l � C ":The seond term is estimated aording to the assumption (A7). Due to (5.3) thethird term an be rewritten �EL; ~Dn A ~Dn = A ~Dn EL:Then the di�erene an be estimated by the approximation property as abovek �EL; ~DnA ~Dn �vn�1L � EL �vn�1L kl1 = kA ~Dn EL�vn�1L � EL �vn�1L kl1 � "; (7.3)where we employ the reliability of ~Dn.The fourth term an be estimated aording to (A8) bykEL �vn�1L kl1 � (1 + C �) k�vn�1L kl1 :



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 35From (7:1) we �nally obtain the reursive estimatek�vnLkl1 � (1 + C �) k�vn�1L kl1 + �C":Applying this estimate reursively, we obtaink�vnLkl1 � (1 + C �)n k�v0Lkl1 + �C " n�1Xi=0 (1 + C �)i:By the geometri sum we �nally end up withk�vnLkl1 � eC T k�v0Lkl1 + �C " (1 + C �)n � 1C � � eC T (k�v0Lkl1 + ��C "=�):The initial data an be further estimatedk�v0Lkl1 � kû0Lkl1 + k�v0L � v0Lkl1 + kv0L � û0Lkl1 � ku0kL1 + 2 �C "=�:From assumption (A10) and (A11) we onlude that the ratio "=� is small in ompar-ison to ku0kL1 . Consequently, we an estimate the supremum of �vnL by a onstantonly depending on T and the supremum of the initial data u0.7.2. Proof of Lemma 5.10.Proof. The average of the reonstrution polynomial is determined byP̂r = 1h Z xr+1xr ddxQN+1k (x) dx = 1h �QN+1k (xr+1)�QN+1k (xr)�for any r 2 Z: Then �N+11 P̂r an be interpreted as the di�erene of �nite di�erenesof the interpolation polynomial QN+1k , i.e.,�N+11 P̂r = N+1Xi=0 (�1)i�N + 1i �P̂r+i =1h N+1Xi=0 (�1)i�N + 1i ��QN+1k (xr+i+1)�QN+1k (xr+i)� =1h ��N+11 QN+1k (xr+1)��N+11 QN+1k (xr)� :Sine QN+1k 2 �N+1 the �nite di�erene satis�es�N+11 QN+1k (x) = hN+1(N + 1)! dN+1dxN+1QN+1k (�) = onst; � 2 [xk; xk+1℄;therefore �N+11 P̂r = 0; 8r 2 Z: (7.4)We will use these onsiderations in the following.In order to verify that the di�erene vk0 � P̂k0 for k0 62 Sk an be written in theform of a �nite sum of �nite di�erenes of order N +1 we use the indution priniplefor k0 < k.



36 N. HOVHANNISYAN AND S. M�ULLERFirst, we onsider the ase k0 = k� 1. Aording to the reonstrution ondition(5.24) we obtainvk�1�P̂k�1 = �N+11 vk�1� NXr=1(�1)r�N + 1r �vk�1+r�P̂k�1 = �N+11 vk�1��N+11 P̂k�1:Taking into aount (7.4) we have gotvk�1 � P̂k�1 = �N+11 vk�1:Therefore our assertion is true for k0 = k�1. Let it be true for k0 2 fk�Ns; : : : ; k�1g,Ns � 1. We now prove it for k0 � 1 and Ns + 1, respetively. For this purpose weexpand the di�erene asvk0�1 � P̂k0�1 = �N+11 vk0�1 ��N+11 P̂k0�1 � N+1Xr=1 �N + 1r �(�1)r(vk0�1+r � P̂k0�1+r);where we employ the de�nition of the �nite di�erene. For k0 � 1 + r 2 Sk thedi�erenes in the sum of the right-hand side vanish, i.e., only the di�erenes forr 2 f1; : : : ;min(N + 1; k � k0)g give a ontribution.Sine the (N + 1)-th �nite di�erene of P̂ vanishes aording to (7.4) and by theindution assumptionvk0�1+r � P̂k0�1+r = k�k0�rXj=0 �k0�1+r;j�N+11 vk0�1+r+j (7.5)for r 2 f1; : : : ;min(N + 1; k � k0)g we then onludevk0�1 � P̂k0�1 =�N+11 vk0�1 + min(N+1;k�k0)Xr=1 �N + 1r �(�1)r+1 k�k0�rXj=0 �k0�1+r;j�N+11 vk0�1+r+j :Sine k0 � 1 + r + j 2 fk0; : : : ; k � 1g the right-hand side an be reenumerated, i.e.,vk0�1 � P̂k0�1 = k�k0Xj=0 �k0�1;j�N+11 vk0�1+j :Hene we obtain the assertion for k0 < k.We now prove the other ase where k0 is to the right of Sl;k . Again, we �rstonsider the ase k0 = k + 1. Aording to (5.24) and (7.4) we havevk+1 � P̂k+1 = (�1)N+1�N+11 vk � (�1)N+1 NXr=0(�1)r�N + 1r �vk+r � P̂k+1= (�1)N+1 ��N+11 vk ��N+11 P̂k� = (�1)N+1�N+11 vk:Therefore our assertion is true for k0 = k+1. Let it be true for k0 2 fk+1; : : : ; k+Nsg,1 � Ns. We now prove it for k0 + 1 and Ns + 1, respetively. For this purpose we



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 37expand the di�erene asvk0+1 � P̂k0+1 =(�1)N+1 ��N+11 vk0�N ��N+11 P̂k0�N�� NXr=0�N + 1r �(�1)r(vk0�N+r � P̂k0�N+r)!where we again employ the de�nition of the �nite di�erene. For k0 � N + r 2 Skthe di�erenes in the sum of the right-hand side vanish, i.e., only the di�erenes forr 2 fmax(0; k � k0 +N + 1); : : : ; Ng give a ontribution. Sine the (N + 1)-st �nitedi�erene of P̂ vanishes aording to (7.4) and by the indution assumptionvk0�N+r � P̂k0�N+r = k0�N+r�k�1Xj=0 �k0�N+r;j�N+11 vk0�2N+r�j�1;for r 2 fmax(0; k � k0 +N + 1); : : : ; Ng we then onludevk0+1 � P̂k0+1 = (�1)N+1 �N+11 vk0�N +NXr=max(0;k�k0+N+1)�N + 1r �(�1)r+1 k0�N+r�k�1Xj=0 �k0�N+r;j�N+11 vk0�2N+r�j�11A :Sine k0 � 2N + r � j � 1 2 fk �N; : : : ; k0 �N � 1g the right-hand side an bereenumerated, i.e., vk0+1 � P̂k0+1 = k0�kXj=0 �k0+1;j�N+11 vk0�N�j :7.3. Proof of Lemma 5.11.Proof. For N = 1 we obtain by the two-sale relation (2.3)�11vl;k = vl;k � vl;k+1 = 12(vl+1;2k + vl+1;2k+1 � vl+1;2k+2 � vl+1;2k+3) =12(vl+1;2k � vl+1;2k+1 + 2(vl+1;2k+1 � vl+1;2k+2) + vl+1;2k+2 � vl+1;2k+3) =12(�11vl+1;2k + 2�11vl+1;2k+1 +�11vl+1;2k+2) = 12 2Xi=0 �2i��11vl+1;2k+i: (7.6)Assume now that the assertion (5.25) holds for N . To prove it for N +1 we �rst notethat by the standard reursive de�nition of �nite di�erenes�N+11 vl;k = �N1 vl;k ��N1 vl;k+1 (7.7)holds. Then we obtain by the indution assumption�N+11 vl;k = 12  N+1Xi=0 �N + 1i ��N1 vl+1;2k+i � N+1Xi=0 �N + 1i ��N1 vl+1;2k+2+i! :



38 N. HOVHANNISYAN AND S. M�ULLERAdding and subtrating �N1 vl+1;2k+i and applying (7.7) for (l + 1; 2k + i) and (l +1; 2k + 1 + i) yields�N+11 vl;k = 12  N+1Xi=0 �N + 1i �(�N1 vl+1;2k+i ��N1 vl+1;2k+1+i)+N+1Xi=0 �N + 1i �(�N1 vl+1;2k+1+i ��N1 vl+1;2k+2+i)!= 12  N+1Xi=0 �N + 1i ��N+11 vl+1;2k+i + N+1Xi=0 �N + 1i ��N+11 vl+1;2k+1+i! :Similar to (7.6) we verify by means of the addition theorem for binomial oeÆients�N+11 vl;k =12  �N+11 vl+1;2k + N+1Xi=1 ��N + 1i �+�N + 1i� 1 ���N+11 vl+1;2k+i +�N+11 vl+1;2k+N+2!= 12 N+2Xi=0 �N + 2i ��N+11 vl+1;2k+i:This proves (5.25). To verify (5.26) we only have to do a straight-forward alulationusing the enoding (2.3) and the de�nition (5.10) of the �nite di�erene, i.e.,�N1 vl;k (5:10)= NXi=0 �Ni �(�1)ivl;k+i (2:3)= NXi=0 �Ni �(�1)i2l�L 2L�l�1X�=0 vL;2L�l(k+i)+� =2l�L 2L�l�1X�=0 NXi=0 �Ni �(�1)ivL;2L�lk+�+2L�li (5:10)= 2l�L 2L�l�1X�=0 �N2L�lvL;2L�lk+� :7.4. Proof of Lemma 5.12.Proof. By means of (5.25) the �nite di�erenes are represented by those on onehigher level with step size 1, i.e.,�N+11 vl;k0 = 12 N+2Xi=0 �N + 2i ��N+11 vl+1;2k0+i (7.8)and then the �nite di�erenes on the right-hand side are represented by those on levelL with step size 2L�l�1 using (5.26), i.e.,�N+11 vl+1;2k0+i = 2l+1�L 2L�l�1�1X�=0 �N+12L�l�1vL;2L�l�1(2k0+i)+�: (7.9)Note that we annot diretly apply (5.26) to �N+11 vl;k0 beause the step size 2L�l willbe too large and we are running into trouble when want to apply Lemma 5.7.



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 39In view of Lemma 5.7 we now have to verify for eah �nite di�erene on theright-hand side of (7.8) that its stenil (5.11)S �N + 1; 2L�l�1; 2L�l�1(2k0 + i) + �� =f2L�l�1(2k0 + i) + �; : : : ; 2L�l�1(2k0 + i+N + 1) + �g (7.10)is inluded in a bakward inuene set (5.6)~��l+1;2k+q0;1 = f2L�l�1(2k + q0 � s)� p; : : : ; 2L�l�1(2k + q0 + s+ 1)� 1 + pg (7.11)for some q0 suh that (l + 1; 2k + q0) 62 D, i.e.,S �N + 1; 2L�l�1; 2L�l�1(2k0 + i) + �� � ~��l+1;2k+q0 ;1 (7.12)holds for any � 2 f0; : : : ; 2L�l�1�1g. In fat, q0 is related to the grading parameter inthe grading proedure (3.11). To verify the inlusion (7.12) the following onditionshave to hold aording to (7.10) and (7.11)2k + q0 � s� p 2l+1�L � 2k0 + i+ 2l+1�L�;2k0 + i+N + 1+ 2l+1�L� � 2k + q0 + s+ 1� 2l+1�L(1� p):This is equivalent to2(k0 � k) + i+N � s+ 2l+1�L(�+ 1� p) � q � 2(k0 � k) + i+ s+ 2l+1�L(�+ p):Obviously this inequality holds true forq0 := � 2(k0 � k) + i+ s+ �2l+1�L; k0 2 fk � 2s; : : : ; k � 1g;2(k0 � k) + i+N � s+ �2l+1�L; k0 2 fk �N; : : : ; k + 2s�N � 1g;beause N � 2s and p � 1. Sine i 2 f0; : : : ; N + 2g, � 2 f0; : : : ; 2L�l�1 � 1g andk � k0 2 f1; : : : ; 2sg for k0 2 fk � 2s; : : : ; k � 1g and k0 � k 2 f�N; : : : ; 2s�N � 1gfor k0 2 fk �N; : : : ; k + 2s�N � 1g we onludeq0 2 f�3s; : : : ; 3s+ 1gand, hene,2k + q0 2 f2k � 3s; : : : ; 2k + 3s+ 1g = �2�k � 3s2 � ; : : : ; 2�k + 3s+ 12 �� :On the other hand we know by the grading proedure and the assumption (l; k) 2 G,i.e., (l; k) =2 D, that all details orresponding to the range of dependene given by~�G;(j)l;k = f2j�l(k � q); : : : ; 2j�l(k + q + 1)� 1g; j = l + 1; : : : ; L� 1;are non-signi�ant. In partiular, for j = l+1 we obtain the range of dependene for(l; k) on level l + 1 ~�G;(l+1)l;k = f2(k � q); : : : ; 2(k + q) + 1g:To ensure that 2k + q0 2 ~�G;(l+1)l;k we have to hoose the grading parameter q suhthat 2(k � q) � 2�k � 3s2 � and 2�k + 3s+ 12 � � 2(k + q) + 1:



40 N. HOVHANNISYAN AND S. M�ULLERObviously it holds by assumption.Sine for any i 2 f0; : : : ; N + 2g and � 2 f0; : : : ; 2L�l�1 � 1g there exists q0 suhthat (l + 1; 2k + q0) =2 D and (7.12) holds true, we may apply Lemma 5.7, i.e.,���N+12L�l�1vL;2L�l�1(2k0+i)+��� <� "min(N+1R ;1)l+1 :Together with (7.9) this implies���N+11 vl+1;2k0+i�� <� "min(N+1R ;1)l+1 :Finally we onlude from (7.8)���N+11 vl;k0 �� <� "min(N+1R ;1)l :Note that "l+1 = 2"l and PN+2i=0 �N+2i � = 2N+2 is independent of the level.7.5. Proof of Lemma 5.13.Proof. First of all we introdue the �ne-sale ell averages of the reonstrutionpolynomial RNl;k, i.e.,P̂L;r := 1jVL;rj ZVL;r RNl;k(x) dx = hRNl;k; ~'L;ri; r 2 IL:Sine M � N + 1 the orresponding details vanish, i.e.,dPj;r := hRNl;k; ~ j;ri = 0; j = 0; : : : ; L� 1; r 2 Ij :Applying the subdivision sheme (2:8) to P̂L;r we obtain for r 2 ILP̂L;r = Xk02��(l)L;r;0 �	Ll;k0 ;0�r P̂l;k0 = Xk02Sl;k �	Ll;k0 ;0�r vl;k0 + Xk02��(l)L;r;0nSl;k �	Ll;k0;0�r P̂l;k0 :(7.13)On the other hand we may write the data vL by the subdivision sheme (2.8) asvL;r = Xk02��(l)L;r;0 �	Ll;k0;0�r vl;k0 + L�1Xj=l Xk02��(j)L;r;1 �	Lj;k0;1�r dj;k0 : (7.14)We now on�ne ourselves to r 2 f2L�lk; : : : ; 2L�l(k+1)�1g. Then we obtain for thesupport of the subdivision sheme (2.8) the inlusion��(j)L;r;1 � fbr=2L�j � s; : : : ; br=2l�j+ sgfor j = l; : : : ; L� 1. Hene��(j)L;r;1 � f2j�lk � s; : : : ; 2j�lk + sg; j = l; : : : ; L� 1:On the other hand, (l; k) 2 G aording to assumption and therefore (l; k) 62 D, i.e.,dlk = 0, otherwise Vl;k would have been re�ned by the grid re�nement proedure.Then all details in the range of dependene~�G;(j)l;k = f2j�l(k � q); : : : ; 2j�l(k + q + 1)� 1g; j = l + 1; : : : ; L� 1; (7.15)



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 41are not signi�ant either, otherwise (l; k) would be put signi�ant by the gradingproedure.Assuming that q � s we onlude that the support of the wavelets ��(j)L;r;1 isinluded in the range of dependene ~�G;(j)l;k for all r 2 f2L�lk; : : : ; 2L�l(k + 1) � 1gand j = l + 1; : : : ; L� 1, see Fig. 7.1. Then (7:14) redues tovL;r = Xk02��(l)L;r;0 �	Ll;k0;0�r vl;k0 + Xk02��(l)L;r;1nfkg �	Ll;k0 ;1�r dl;k0 : (7.16)
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Fig. 7.1. Illustration of the ell averages (� and Æ) and the details (Æ) involved in the sub-division sheme of any ell average vL;r , r = 2L�lk; : : : ; 2L�l(k + 1) � 1 with s = 2. The range ofdependene for the detail orresponding to ell (l; k) is bounded by the oblique lines. Here we assumethat the set of signi�ant details is a graded tree of degree q = d 3s2 e = 3 with s = 2.Now onsider the remaining details dl;k0 for k0 2 ��(l)L;r;1 � fk � s; : : : ; k + sg.The details on the higher levels dl+1;2k0+i, i = 0; 1 an not be signi�ant. Otherwise,(l; k) 2 D due to the grading and q � s. Aording to the de�nition of the preditionset (5:8) we infer that �(l; k0) = 0. Hene we an estimate the details due to thenesting of (5:7) by jdl;k0 j � 2�"l; (7.17)where � is a onstant whih is �xed in Assumption 2.Next we have to estimate the di�erenes of the ell averages vl;k0 and P̂l;k0 fork0 2 ��(l)L;r;0 n Sl;k. For this purpose we will apply Lemmas 5.10 and 5.11. First of all,we note that the support ��(l)L;r;0 an be estimated aording to (2.9) by��(l)L;r;0 � fbr=2L�l � 2s; : : : ; br=2L�l+ 2sg � fk � 2s; : : : ; k + 2sg (7.18)for all r 2 f2L�lk; : : : ; 2L�l(k + 1)� 1g.The reonstrution stenil is hosen aording to Lemma 5.10, i.e.,Sl;k = fk; : : : ; kg = fk; : : : ; k +Ng (7.19)for some k 2 fk �N; : : : ; kg. Then we obtain by (7.18) and (7.19) the inlusion��(l)L;r;0 n Sl;k = fk � 2s; : : : ; k � 1g [ fk + 1; : : : ; k + 2sg =: �� [ �+:



42 N. HOVHANNISYAN AND S. M�ULLERAording to Lemma 5.10 the di�erene of the averages an be estimated by a linearombination of �nite di�erenes of degree N + 1, i.e.,jvl;k0 � P̂l;k0 j<� ( maxk�=k0;:::;k�1fj�N+11 vl;k� jg ; k0 2 ��maxk+=k�N;:::;k0�N�1fj�N+11 vl;k+ jg ; k0 2 �+ (7.20)beause the oeÆients �k0;j only depend on N and the number of summands isuniformly bounded by k � k0 � k � (k � 2s) = 2s for k0 2 �� and k0 � k � k + 2s�(k �N +N) = 2s for k0 2 �+, respetively.Sine N � 2s and k� 2 fk � 2s; : : : ; k + 2s �N � 1g for k� 2 �� we may nowapply Lemma 5.12, i.e., ���N+11 vl;k� �� <� "min(N+1R ;1)l :Finally, we obtain with (7.20)���vl;k0 � P̂l;k0 ��� <� "min(N+1R ;1)l (7.21)for k0 2 ~�(l)L;r;0 n Sl;k.Then we onlude from (7.13), (7.16), (7.17) and (7.21)��hRNl;k0 ; ~'l;ri � vL;r�� <� maxk02��(l)L;r;0nSl;k ���P̂l;k0 � vl;k0 ���+ "l <� max�"min(N+1R ;1)l ; "l�provided that the subdivision sheme onverges, i.e., Theorem 2.1 holds.7.6. Proof of Lemma 5.15.Proof. We want to estimate the R-th derivative of the omposite funtion G bymeans of �nite di�erenes of possibly lower order. For this purpose we �rst note thatby the hain rule for di�erentiation the derivative an be represented asG(R)(x) = RXm=1S(m)(V(x)) Xj2f1;:::;R�m+1gmj1+:::+jm=R j;m mYi=1V(ji)(x):Here we need the smoothness of the soure funtion S aording to Assumption 1. IfV(x) 2 �Di, then we onsider the one-sided ontinuous extension of the derivatives.Then we an estimate the R-th derivative bysupx2Vl;k jG(R)(x)j<� supx2Vl;k( RY�=1 jV(j�)(x)jk� ; (j;k) 2 I(R)) ; (7.22)up to a onstant depending only on the oeÆients j;m and R, respetively, and thebounds supx2Vl;k jS(m)(V(x))j. The set I(R) is de�ned in (5.13). From the de�ni-tion of the sliding average V and the Lagrangian representation of the interpolationpolynomials QN+1l;k we onlude that there exists a uniform bound suh thatsupx2Vl;k jV(x)j<� k�vnLkl1 :



STABILITY OF FULLY ADAPTIVE MULTISCALE FINITE VOLUME SCHEMES 43Aording to Lemma 5.3 we know that the modi�ed adaptive sheme is uniformlybounded in the sup-norm. Hene the onstants only depend on � and kukL1.We now onsider the Newton representation of the interpolation polynomialQN+1l;k ,i.e., QN+1l;k (x) = N+1X�=0 W [k; : : : ; k + �℄ ��1Yi=0(x� xl;k+i):Here W [k; : : : ; k + �℄ denotes the �-th divided di�erene of the primitive funtion Wto ell Vl;k . It is onverted to the �-th �nite di�erene of the ell averages byW [k; : : : ; k + �℄ = 1�!h�l ��1Xj=0�� � 1j �(�1)j �W (xl;k+��j)�W (xl;k+��j�1)� =1�!h��1l ��1Xj=0 �� � 1j �(�1)jvl;k+��j�1 = 1�!h��1l (�1)��1���11 vl;k : (7.23)Sine the j-th derivative of the interpolation polynomial is determined by� ddx�(j)QN+1l;k (x) = N+1X�=j W [k; : : : ; k + �℄� ddx�(j) ��1Yi=0(x� xl;k+i)!the j-th derivative of the sliding average isV(j)(x) = 1hL N+1X�=j+1W [k; : : : ; k + �℄ Z x+hL=2x�hL=2 � ddz�(j+1) ��1Yi=0(z � xl;k+i)! dz:The integral of the right-hand side an be estimated bysupx2Vl;k �����Z x+hL=2x�hL=2 � ddz�(j�1) ��1Yi=0(z � xl;k+i)! dz����� <� hLh��j+1l :Together with (7.23) we obtainsupx2Vl;k jV(j)(x)j<� N+1X�=j+1 1�! 1h��1l j���11 vl;kjh��j+1l <� h2�jl max�=j+1;:::;N+1 j���11 vl;kj:(7.24)By means of indution and using the addition theorem for binomial oeÆients wenotie that ��+j1 vl;k = �Xi=0 ��i�(�1)i�j1vl;k+i; � � 0:Then we dedue from (7.24)supx2Vl;k jV(j)(x)j<� h2�jl maxi=0;:::;N�j j�j1vl;k+ij; j � R: (7.25)Combining (7.22) and (7.25) we obtainsupx2Vl;k jG(R)(x)j<� supx2Vl;k( RY�=1�h2�j�l j�j�1 vl;k+�� j�k� ; (j; k) 2 I(R); � 2 I(R; j)) ;(7.26)



44 N. HOVHANNISYAN AND S. M�ULLERwhere I(R; j) := f�; �� 2 f0; : : : ; N � j�gR:It now remains to estimate the �nite di�erenes on the right-hand side of (7.26) bymeans of Lemma 5.12. For this purpose we verify that k+� 2 fk�2s; : : : ; k+2s� jgfor � 2 f0; : : : ; N�jg. Obviously, this holds true if 1 � N � 2s and k 2 fk�N; : : : ; kg.Then we infer from Lemma 5.12j�j1vl;k+� j<� "min(j=R;1)l :We now employ this in (7.26) and obtainRY�=1 j�j�1 vk+�� jk� <� "PR�=1 j�k�=Rl = "l: (7.27)On the other hand, we haveRY�=1h(2�j�)k�l = h2PR�=1 k��PR�=1 j�k�l � h2�Rl ; (7.28)beausePR�=1 j�k� = R andPR�=1 k� � 1. Inserting (7.27) and (7.28) in (7.26) yieldsthe assertion.


