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Abstract. In this paper a new finite element approach for the discretization of elliptic partial
differential equations on surfaces is treated. The main idea is to use finite element spaces that are
induced by triangulations of an “outer” domain to discretize the partial differential equation on the
surface. The method is particularly suitable for problems in which there is a coupling with a flow
problem in an outer domain that contains the surface, for example, two-phase incompressible flow
problems. We give an analysis that shows that the method has optimal order of convergence both
in the H

1 and in the L
2-norm. Results of numerical experiments are included that confirm this

optimality.
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1. Introduction. Moving hypersurfaces and interfaces appear in many physical
processes, for example in multiphase flows and flows with free surfaces. Certain math-
ematical models involve elliptic partial differential equations posed on such surfaces.
This happens, for example, in multiphase fluids if one takes so-called surface active
agents (surfactants) into account. These surfactants induce tangential surface tension
forces and thus cause Marangoni phenomena [13, 15]. Numerical simulations play an
important role for a better understanding and prediction of processes involving this
or other surface phenomena. In mathematical models surface equations are often cou-
pled with other equations that are formulated in a (fixed) domain which contains the
surface. In such a setting a common approach is to use a splitting scheme that allows
to solve at each time step a sequence of simpler (decoupled) equations. Doing so one
has to solve numerically at each time step an elliptic type of equation on a surface.
The surface may vary from one time step to another and usually only some discrete
approximation of the surface is available. A well-known finite element method for
solving elliptic equations on surfaces, initiated by the paper [7], consists of approxi-
mating the surface by a piecewise polygonal surface and using a finite element space
on a triangulation of this discrete surface, cf. [5, 13]. If the surface is changing in
time, then this approach leads to time-dependent triangulations and time-dependent
finite element spaces. Implementing this requires substantial data handling and pro-
gramming effort. Another approach has recently been introduced in [4]. The method
in that paper applies to cases in which the surface is given implicitly by some level
set function and the key idea is to solve the partial differential equation on a narrow
band around the surface. Unfitted finite element spaces on this narrow band are used
for discretization.

In this paper we introduce a new technique for the numerical solution of an
elliptic equation posed on a hypersurface. The main idea is to use time-independent
finite element spaces that are induced by triangulations of an “outer” domain to
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discretize the partial differential equation on the surface. Our method is particularly
suitable for problems in which the surface is given implicitly by a level set or VOF
function and in which there is a coupling with a flow problem in a fixed outer domain.
If in such problems one uses finite element techniques for the discetization of the
flow equations in the outer domain, this setting immediately results in an easy to
implement discretization method for the surface equation. The new approach does not
require additional surface elements. If the surface varies in time, one has to recompute
the surface stiffness matrix using the same data structures each time. Moreover,
quadrature routines that are needed for these computations are often available already,
since they are needed in other surface related calculations, for example surface tension
forces, cf. section 4. Opposite to the method in [4] we do not use an extension of the
surface partial differential equation but instead use a restriction of the outer finite
element spaces.

We prove that the method has optimal order of convergence in H1 and L2 norms.
The analysis requires shape regularity of the outer triangulation, but does not require
any type of shape regularity for discrete surface elements. The number of unknowns
in the resulting algebraic systems is almost the same as in the approach based on
the surface finite element spaces. All these properties make the new method very
attractive both from the theoretical and the practical (implementation) point of view.

Although our primal objective is to solve efficiently equations on moving and
implicitly defined surfaces, the method is also well suited for problems with steady
and/or explicitly given surfaces.

The remainder of the paper is organized as follows. In section 2 we present
the finite element method for the model example of the Laplace-Beltrami equation.
Section 3 contains the main theoretical results of the paper concerning the approxi-
mation properties of the finite element spaces and discretization error bounds for the
new method. In section 4 we describe a model for two-phase incompressible flows to
illustrate a concrete field of application for the method. Finally, in section 5 results of
numerical experiments are given, which support the theoretical analysis of the paper.

2. Laplace-Beltrami equation and finite element discretization. In our
applications, cf. section 4, the finite element method that is presented in this section
is applied to a convection-diffusion equation on a moving manifold Γ = Γ(t). To sim-
plify the presentation and the analysis, we assume a fixed (but unknown) sufficiently
smooth connected manifold Γ (= Γ(tn)) and instead of a convection-diffusion equation
we consider the pure diffusion (i.e., Laplace-Beltrami) equation.

We assume that Ω is an open subset in R
3 and Γ a connected C2 compact hyper-

surface contained in Ω. For a sufficiently smooth function g : Ω → R the tangential
derivative (along Γ) is defined by

∇Γg = ∇g −∇g · nΓ nΓ. (2.1)

The Laplace-Beltrami operator on Γ is defined by

∆Γg := ∇Γ · ∇Γg.

We consider the Laplace-Beltrami problem in weak form: For given f ∈ L2(Γ) with
∫

Γ fds = 0, determine u ∈ H1(Γ) with
∫

Γ u ds = 0 such that

∫

Γ

∇Γu∇Γv ds =

∫

Γ

fv ds for all v ∈ H1(Γ). (2.2)
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The solution u is unique and satisfies u ∈ H2(Γ) with ‖u‖H2(Γ) ≤ c‖f‖L2(Γ) and a
constant c independent of f , cf. [7].

For the discretization of this problem one needs an approximation Γh of Γ. We
assume that this approximate manifold is constructed as follows. Let {Th}h>0 be a
family of tetrahedral triangulations of a fixed domain Ω ⊂ R

3 that contains Γ. These
triangulations are assumed to be regular, consistent and stable. Take Th ∈ {Th}h>0

and denote the set of tetrahedra that form Th by {S}. We assume that Γh is a closed
manifold such that

• Γh can be decomposed as

Γh = ∪T∈Fh
T, (2.3)

where for each T there is a corresponding tetrahedron ST ∈ Th with T =
ST ∩Γh and meas2(T ) > 0. To avoid technical complications we assume that
this ST is unique, i.e., T does not coincide with a face of a tetrahedron in Th.

• Each T from the decomposition in (2.3) is planar, i.e., either a triangle or a
quadrilateral.

The main new idea of this paper is that for discretization of the problem (2.2) we use

a finite element space induced by the continuous linear finite elements on Th. This is
done as follows. We define a subdomain that contains Γh:

ωh := ∪T∈Fh
ST . (2.4)

This subdomain in R
3 is connected and partitioned in tetrahedra that form a subset

of Th. We introduce the finite element space

Vh := { vh ∈ C(ωh) | v|ST
∈ P1 for all T ∈ Fh }. (2.5)

This space induces the following space on Γh:

V Γ
h := {ψh ∈ H1(Γh) | ∃ vh ∈ Vh : ψh = vh|Γh

}. (2.6)

This space is used for a Galerkin discretization of (2.2): determine uh ∈ V Γ
h with

∫

Γh

uhdsh = 0 such that

∫

Γh

∇Γh
uh∇Γh

ψh dsh =

∫

Γh

fhψh dsh for all ψh ∈ V Γ
h , (2.7)

with fh an extension of f such that
∫

Γh

fhdsh = 0, cf. section 3.3. Due the Lax-
Milgram lemma this problem has a unique solution uh. In section 3 we present a
discretization error analysis of this method that shows that under reasonable as-
sumptions we have optimal error bounds. In section 5 we show results of numerical
experiments that confirm the theoretical analysis. As far as we know this method for
discretization of a partial differential equation on a surface is new. In the remarks
below we give some comments related to this approach.

Remark 1. The family {Th}h>0 is shape-regular but the family {Fh}h>0 in
general is not shape-regular. In our applications, cf. section 4, Fh contains a significant
number of strongly deteriorated triangles that have very small angles. Moreover,
neighboring triangles can have very different areas, cf. Fig. 5.1. As we will prove in
section 3, optimal discretization bounds hold if {Th}h>0 is shape-regular; for {Fh}h>0

shape-regularity is not required.
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Remark 2. Let (ξi)1≤i≤m be the collection of all vertices of all tetrahedra in
ωh and φi the nodal linear finite element basis function corresponding to ξi. Then
V Γ

h is spanned by the functions φi|Γh
, 1 ≤ i ≤ m. These functions, however, are

not necessarily independent. In computations we use this generating system φi|Γh
,

1 ≤ i ≤ m, for solving the discrete problem (2.7). Properties that are of interest for
the numerical solution of the resulting linear system, such as conditioning of the mass
and stiffness matrix are analyzed in a forthcoming paper.

Remark 3. In the implementation of this method one has to compute integrals
of the form

∫

T

∇Γh
φj∇Γh

φi ds,

∫

T

fhφi ds for T ∈ Fh.

The domain T is either a triangle or a quadrilateral. The first integral can be computed
exactly. For the second one standard quadrature rules can be applied.

Remark 4. Each quadrilateral in Fh can be subdivided into two triangles. Let
F̃h be the induced set consisting of only triangles and such that ∪T∈F̃h

T = Γh. Define

WΓ
h := {ψh ∈ C(Γh) | ψh|T ∈ P1 for all T ∈ F̃h }. (2.8)

The space WΓ
h is the space of continuous functions that are piecewise linear on the

triangles of Γh. Clearly V Γ
h ⊂ WΓ

h holds. There are, however, situations in which
V Γ

h 6= WΓ
h . A 2D illustration of this is given in Fig. 2.1.
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Fig. 2.1. Example

In this example ωh consists of 10 triangles (shaded). The nodal basis functions
correponding to these basis functions are denoted by {φi}1≤i≤10. The line segments
of the interface Γh (denoted by - - ) intersect midpoints of edges of the triangles. The
space WΓ

h consists of piecewise linears on Γh and is spanned by the 1D nodal basis
functions at the intersection points labeled by boldface 1, . . . ,10. Clearly dim(WΓ

h ) =
10. In this example we have dim(V Γ

h ) = 9. For the piecewise linear function v =
∑10

i=1 αiφi with αi = −1 for i = 1, 2, 3 and αi = 1 for i = 4, . . . , 10 we have v|Γh
= 0.

The example in remark 4 shows that the finite element space V Γ
h can be smaller

then WΓ
h , and therefore approximation properties of V Γ

h do not follow directly from

those of WΓ
h . Moreover, the triangulations {F̃h}h>0 of Γh are not shape regular, cf.

remark 1 and Fig. 5.1. Thus it is not clear how (optimal) approximation error bounds
for the standard linear finite element space WΓ

h in (2.8) can be derived.
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3. Discretization error analysis. In this section we derive discretization error
bounds, both in the H1- and the L2-norm on Γh. We first collect some preliminaries in
section 3.1, then derive approximation error bounds in section 3.2 and finally present
discretization error bounds in section 3.3.

3.1. Preliminaries. We will need a Poincare type inequality that is given in
the following lemma.

Lemma 3.1. Consider a bounded domain Ω ⊂ R
n and a subdomain S ⊂ Ω.

Assume that Ω is such that the Neumann-Poincare inequality is valid:

‖f‖L2(Ω) ≤ CP |Ω| 1

n ‖∇f‖L2(Ω) for all f ∈ H1(Ω) with

∫

Ω

f dx = 0. (3.1)

Then for any f ∈ H1(Ω) the following estimate holds:

‖f‖2
L2(Ω) ≤

|Ω|
|S|

(

2‖f‖2
L2(S) + 3C2

P |Ω| 2

n ‖∇f‖2
L2(Ω)

)

. (3.2)

Proof. The proof uses a technique developed by Sobolev ([22], Ch.I) for building
equivalent norms on W l

q(Ω) (Sobolev spaces). We consider the simple case with q = 2,
l = 1, i.e. H1(Ω). Introduce the projectors Πk : H1(Ω) → R, k = 1, 2:

Π1f := |Ω|−1

∫

Ω

f dx, Π2f := |S|−1

∫

S

f dx.

Since ‖(I − Π1)f‖2
L2(Ω) = ‖f‖2

L2(Ω) − |Ω||Π1f |2, the Neumann-Poincare inequality

(3.1) can be rewritten in the equivalent form:

‖f‖2
L2(Ω) ≤ |Ω||Π1f |2 + C2

P |Ω| 2

n ‖∇f‖2
L2(Ω) for all f ∈ H1(Ω). (3.3)

For any f ∈ H1(Ω) with Π1f = 0 the Cauchy and Neumann-Poincare inequality
implies

|Π2f | = |S|−1

∣

∣

∣

∣

∫

S

f dx

∣

∣

∣

∣

≤ |S|− 1

2 ‖f‖L2(S)

≤ |S|− 1

2 ‖f‖L2(Ω) ≤ Cp|Ω| 1

n |S|− 1

2 ‖∇f‖L2(Ω).

(3.4)

Define M := CP |Ω| 1

n |S|− 1

2 . Note that for f ∈ H1(Ω) we have Π1(I − Π1)f = 0 and
thus from (3.4) we obtain:

|(Π2 − Π1)f | = |Π2(I − Π1)f | ≤M‖∇(I − Π1)f‖L2(Ω) = M‖∇f‖L2(Ω).

Hence, for any f ∈ H1(Ω) we have

|Π1f |2 +M2‖∇f‖2
L2(Ω) ≤ 2|Π2f |2 + 2|(Π2 − Π1)f |2 +M2‖∇f‖2

L2(Ω)

≤ 2|Π2f |2 + 3M2‖∇f‖2
L2(Ω).

(3.5)

5



Estimates (3.3) and (3.5) imply:

‖f‖2
L2(Ω) ≤ max{|Ω|, C2

P |Ω| 2

nM−2}
(

|Π1f |2 +M2‖∇f‖2
L2(Ω)

)

= |Ω|
(

|Π1f |2 +M2‖∇f‖2
L2(Ω)

)

≤ |Ω|
(

2|Π2f |2 + 3M2‖∇f‖2
L2(Ω)

)

≤ |Ω|
(

2|S|−1‖f‖2
L2(S) + 3M2‖∇f‖2

L2(Ω)

)

= |Ω||S|−1
(

2‖f‖2
L2(S) + 3C2

P |Ω| 2

n ‖∇f‖2
L2(Ω)

)

,

which proves the inequality in (3.2).

Remark 5. It is well known that the constant CF from the Friedrichs-Poincare
inequality

‖f‖L2(Ω) ≤ CF |Ω| 1

n ‖∇f‖L2(Ω) for f ∈ H1
0 (Ω),

depends only on the space dimension n. For the constant CP in (3.1) this is not
true. Bounds for CP that are available in the literature depend on the geometry of
the domain Ω. Results from [3] for domains with piecewise smooth boundaries ensure
that in the cases that we consider in this paper CP can be uniformly bounded.

We define a neighborhood of Γ:

U = {x ∈ R
3 | dist(x,Γ) < c },

with c sufficiently small and assume that Γh ⊂ U . Let d : U → R be the signed
distance function, |d(x)| := dist(x,Γ) for all x ∈ U . Thus Γ is the zero level set of d.
We assume d < 0 on the interior of Γ and d > 0 on the exterior. Note that nΓ = ∇d
on Γ. We define n(x) := ∇d(x) for all x ∈ U . Thus n = nΓ on Γ and ‖n(x)‖ = 1 for
all x ∈ U . Here and in the remainder ‖ · ‖ denotes the Euclidean norm. The Hessian
of d is denoted by H:

H(x) = D2d(x) ∈ R
3×3 for all x ∈ U. (3.6)

The eigenvalues of H(x) are denoted by κ1(x), κ2(x) and 0. For x ∈ Γ the eigenvalues
κi(x), i = 1, 2, are the principal curvatures.

We will need the orthogonal projection

P(x) = I − n(x)n(x)T for x ∈ U.

Note that the tangential derivative can be written as ∇Γg(x) = P∇g(x) for x ∈ Γ. We
introduce a locally orthogonal coordinate system by using the projection p : U → Γ:

p(x) = x− d(x)n(x) for all x ∈ U.

We assume that the decomposition x = p(x)+d(x)n(x) is unique for all x ∈ U . Note
that

n(x) = n(p(x)) for all x ∈ U.
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We use an extension operator defined as follows. For a function v on Γ we define

ve(x) := v(x − d(x)n(x)) = v(p(x)) for all x ∈ U,

i.e., v is extended along normals on Γ. We define a discrete analogon of the orthogonal
projection P:

Ph(x) := I − nh(x)nh(x)T for x ∈ Γh, x not on an edge.

Here nh(x) denotes the (outward pointing) normal at x ∈ Γh (x not on an edge). The
tangential derivative along Γh can be written as ∇Γh

g(x) = Ph(x)∇g(x) for x ∈ Γh

(not on an edge).
In the analysis we use techniques from [5, 7]. For example, the formula

∇ue(x) = (I − d(x)H(x))∇Γu(p(x)) a.e. on U (3.7)

(cf. section 2.3 in [5]), which implies,

∇Γh
ve(x) = Ph(x)

(

I − d(x)H(x)
)

∇Γv(p(x)) a.e. on Γh. (3.8)

Furthermore, for u sufficiently smooth and |µ| = 2, the inequality

|Dµue(x)| ≤ c(
∑

|µ|=2

|Dµ
Γu(p(x))| + ‖∇Γu(p(x))‖) a.e. on U (3.9)

holds, cf. lemma 3 in [7]. We define an h-neighborhood of Γ:

Uh = {x ∈ R
3 | dist(x,Γ) < c1h }

and assume that h is sufficiently small, such that ωh ⊂ Uh ⊂ U and

4c1h <
(

max
i=1,2

‖κi‖L∞(Γ)

)−1
. (3.10)

From (2.5) in [5] we have the following formula for the principal curvatures κi:

κi(x) =
κi(p(x))

1 + d(x)κi(p(x))
, for x ∈ U. (3.11)

Hence, from (3.10) and (3.11) it follows that

‖d‖L∞(Uh) max
i=1,2

‖κi‖L∞(Uh) ≤
1

4
(3.12)

holds. In the remainder we assume that

ess sup
x∈Γh

|d(x)| ≤ c0h
2, (3.13)

ess sup
x∈Γh

‖n(x) − nh(x)‖ ≤ c̃0h, (3.14)

holds. .
Lemma 3.2. There are constants c1 > 0 and c2 independent of h such that for

all u ∈ H2(Γ) the following inequalities hold:

c1‖ue‖L2(Uh) ≤
√
h‖u‖L2(Γ) ≤ c2‖ue‖L2(Uh), (3.15)

c1‖∇ue‖L2(Uh) ≤
√
h‖∇Γu‖L2(Γ) ≤ c2‖∇ue‖L2(Uh), (3.16)

‖Dµue‖L2(Uh) ≤ c2
√
h‖u‖H2(Γ), |µ| = 2. (3.17)

7



Proof. Note that u ∈ H2(Γ) is continuous and thus ue is well-defined. Define

µ(x) :=
(

1 − d(x)κ1(x)
)(

1 − d(x)κ2(x)
)

, x ∈ Uh.

From (2.20), (2.23) in [5] we have

µ(x)dx = drds(p(x)), x ∈ U,

where dx is the measure in Uh, ds the surface measure on Γ and r the local coordinate
at x ∈ Γ in the direction n(p(x)) = n(x). Using (3.12) we get

9

16
≤ µ(x) ≤ 25

16
for all x ∈ Uh. (3.18)

Using the local coordinate representation x = (p(x), r), for x ∈ U , we have

∫

Uh

ue(x)2µ(x) dx =

∫ c1h

−c1h

∫

Γ

[ue(p(x), r)]2 ds(p(x))dr

=

∫ c1h

−c1h

∫

Γ

[u(p(x), 0)]
2

ds(p(x)) = 2c1h‖u‖2
L2(Γ).

Combining this with (3.18) yields the result in (3.15).
From (3.7) we have that ue ∈ H1(Uh). Note that

∫

Uh

[∇ue(x)]
2
µ(x) dx =

∫ c1h

−c1h

∫

Γ

[

(I − d(x)H(x))∇Γu(p(x))
]2

ds(p(x)) dr.

Using this in combination with ‖d(x)H(x)‖ ≤ 1
4 for all x ∈ Uh (cf. (3.12)) and the

bounds in (3.18) we obtain the result in (3.16). Finally, using similar arguments and
the bound in (3.9) one can derive the bound in (3.17).

3.2. Approximation error bounds. Let Ih : C(ωh) → Vh be the nodal in-
terpolation operator. We use the approximation property of the linear finite element
space Vh: For v ∈ H2(ωh)

‖v − Ihv‖Hk(ωh) ≤ C h2−k‖v‖H2(ωh), k = 0, 1. (3.19)

A consequence of this approximation result is given in the following lemma.
Lemma 3.3. For u ∈ H2(Γ) and k = 0, 1 we have

‖ue − Ihu
e‖Hk(ωh) ≤ C h

5

2
−k‖u‖H2(Γ). (3.20)

Proof. From (3.19) and (3.16) we obtain

‖ue − Ihu
e‖Hk(ωh) ≤ C h2−k‖ue‖H2(ωh) ≤ C h2−k‖ue‖H2(Uh) ≤ C h

5

2
−k‖u‖H2(Γ),

which proves the result.
The following two lemmas play a crucial role in the analysis. In both lemmas we

use a “pull back” strategy based on lemma 3.1. For this we introduce a special local
coordinate system as follows. For a subdomain ω ⊂ R

n let ρ(ω) be the diameter of
the largest ball that is contained in ω. Take an arbitrary planar segment T of Γh,
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i.e., T ∈ Fh. Let ST ∈ Th be the tetrahedron such that Γh ∩ ST = T . There exists a
planar extension T e of T such that T e ⊂ U , p(T e) = p(ST ) and

diam(T e) ≃ ρ(T e) ≃ h, (3.21)

cf. remark 6. This extension T e is used to define a coordinate system in the neighbor-
hood NT := {x ∈ U | p(x) ∈ p(ST ) = p(T e) }. Note that ST ⊂ NT . Every x ∈ NT

has a unique decomposition of the form

x = s + d̃(x)n(x), with s ∈ T e, d̃(x) := ±‖s− x‖. (3.22)

On which side of the plane T e the point x lies determines the sign of d̃(x). Note
that d̃ is a signed distance, along the normal n(x), to the planar segment T e. The
representation in this coordinate system is denoted by Φ, i.e., Φ(x) = (s(x), d̃(x)).
This coordinate system is illustrated, for the 2D case, in Fig. 3.1.

A

B
P

Q

TST
s

x = (s,d̃(x))

d̃

Γ

PQ : p(ST )

AB : T
e

Fig. 3.1. 2D Illustration of coordinate system

For x ∈ T e we thus have Φ(x) = (s(x), 0). Due to the shape-regularity of Th there
exists, in the Φ-coordinate system, a cylinder BT that has the following properties:

BT = T e
b × [d0, d1] ⊂ ST , T e

b ⊂ T e, |T e
b | ≃ h2, d1 − d0 ≃ h. (3.23)

This coordinate system and the cylinder BT ⊂ ST are used in the analysis below.
Remark 6. The following shows that an extension T e of T with the properties

described above exists. Take a fixed x0 ∈ T . Let WΓ be the tangent plane at p(x0).
The normal vector of WΓ is n(x0). There is a subdomain wΓ of this plane such
that p(wΓ) = p(ST ). Due to shape regularity of Th this subdomain is such that
diam(wΓ) ≃ ρ(wΓ) ≃ h holds. Let wx0

be a planar subdomain that is parallel to wΓ,
contains x0 and such that p(wΓ) = p(wx0

). Using assumption (3.13) it follows that
diam(wx0

) ≃ ρ(wx0
) ≃ h holds. The point x0 belongs to the planar subdomains wx0

and T , which have normals n(x0) and nh(x0), respectively. Due to assumption (3.14)
the angle between these normals is bounded by ch and thus there exists a planar
extension T e of T such that T e ⊂ U and p(T e) = p(wx0

). This T e has the property
(3.21).

Lemma 3.4. Let vh be a linear function on NT and u ∈ H2(Γ). There exists a

constant c independent of vh, u and T such that the following inequality holds:

‖∇Γh
(ue − vh)‖L2(T e) ≤ ch−

1

2 ‖∇(ue − vh)‖L2(ST ) + h‖u‖H2(p(ST )). (3.24)
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Here ∇Γh
denotes the projection of the gradient on T e.

Proof. Using lemma 3.1 and (3.9) we obtain

‖∇Γh
(ue − vh)‖L2(T e) ≤ c‖∇Γh

(ue − vh)‖L2(T e

b
) + ch2‖∇2

Γh
ue‖2

L2(T e)

≤ c‖∇Γh
(ue − vh)‖L2(T e

b
) + ch2‖u‖2

H2(p(ST )). (3.25)

We consider the first term in (3.25). We write ∇vh =: cT and use the notation
x = (s(x), d̃(x)) =: (s, y) in the Φ-coordinate system. From (3.7) we have

∇Γu(p(x)) = ∇ue(s, y) + d(x)H(x)∇Γu(p(x)).

Using this and (3.8) we obtain

‖∇Γh
(ue − vh)‖2

L2(T e

b
) = ‖∇Γh

ue − PhcT ‖2
L2(T e

b
)

≤ 2‖Ph(∇Γu) ◦ p− PhcT ‖2
L2(T e

b
) + 2‖dH(∇Γu) ◦ p‖2

L2(T e

b
)

≤ c‖(∇Γu) ◦ p− cT ‖2
L2(T e

b
) + ch2‖u‖2

H1(p(ST ))

= c

∫

T e

b

‖∇Γu(p(s, 0)) − cT ‖2 ds + ch2‖u‖2
H1(p(ST ))

≤ ch−1

∫ d1

d0

∫

T e

b

‖∇Γu(p(s, 0)) − cT ‖2 dsdy + ch2‖u‖2
H1(p(ST ))

≤ ch−1

∫ d1

d0

∫

T e

b

‖∇ue(p(s, y)) − cT ‖2 dsdy + ch2‖u‖2
H1(p(ST ))

≤ ch−1‖∇(ue − vh)‖2
L2(BT ) + ch2‖u‖2

H1(p(ST ))

≤ ch−1‖∇(ue − vh)‖2
L2(ST ) + ch2‖u‖2

H1(p(ST )).

Combination of this result with the one in (3.25) completes the proof.

Lemma 3.5. There are constants ci independent of h such that for all u ∈ H2(Γ)
and all vh ∈ Vh the following inequality holds:

‖ue−vh‖L2(Γh) ≤ c1h
− 1

2 ‖ue−vh‖L2(ωh)+c2h
1

2 ‖ue−vh‖H1(ωh)+c3h
2‖u‖H2(Γ). (3.26)

Proof. We consider an arbitrary element T ∈ Γh. Let T e be its extension as
defined above. Take vh ∈ Vh. The extension of vh to a linear function on T e is
denoted by vh, too. Using lemma 3.1 we get:

‖ue − vh‖2
L2(T ) ≤ ‖ue − vh‖2

L2(T e) =

∫

T e

(ue(s, 0) − vh(s, 0))2 ds

≤ c

∫

T e

b

(ue(s, 0) − vh(s, 0))2 ds

+ ch2

∫

T e

‖∇Γh

(

ue(s, 0) − vh(s, 0)
)

‖2 ds.

(3.27)

We consider the first term on the right handside of (3.27). For this we need an
elementary result from calculus. Let f be a scalar linear function with f(0) = 1. An
elementary computation yields that for δ < 1 the inequalities

1

1 − δ

∫ 1

δ

f(t)2 dt ≥ 1

6

(

f(δ)2 + f(1)2
)

≥ 1

12
(1 − δ)2

10



hold. Thus for an arbitrary scalar linear function g and δ < 1 we have

g(0)2 ≤ 12(1 − δ)−3

∫ 1

δ

g(t)2 dt.

Using a variable transformation we obtain that for δ0, δ1 with 0 ≤ δ0 < δ1 or δ0 <
δ1 ≤ 0 and for an arbitrary scalar linear function g we have

g(0)2 ≤ 12
(max{|δ0|, |δ1|}

δ1 − δ0

)2 1

δ1 − δ0

∫ δ1

δ0

g(t)2 dt. (3.28)

Without loss of generality we can assume that d0, d1 from (3.23) satisfy d0 < d1 ≤ 0

or 0 ≤ d0 < d1. Furthermore, we have |di|
d1−d0

≤ c for i = 1, 2, with c independent of
h. Using this and the result in (3.28) applied to the linear function y → c + vh(s, y)
we obtain

∫

T e

b

(ue(s, 0) − vh(s, 0))2 ds ≤ ch−1

∫

T e

b

∫ d1

d0

(ue(s, 0) − vh(s, y))2 dyds

= ch−1

∫

T e

b

∫ d1

d0

(ue(s, y) − vh(s, y))2 dy ds = ch−1‖ue − vh‖2
L2(BT )

≤ ch−1‖ue − vh‖2
L2(ST ).

(3.29)

For the second term on right handside of (3.27) we can apply lemma 3.4 and thus we
get

‖ue − vh‖2
L2(T ) ≤ ch−1‖ue − vh‖2

L2(ST ) + ch‖∇(ue − vh)‖2
L2(ST ) + ch4‖u‖2

H2(p(ST )).

Summation over all triangles in T ∈ Fh gives (3.26).

Lemma 3.6. There are constants c1, c2 independent of h such that for all u ∈
H2(Γ) and all vh ∈ Vh the following inequality holds:

‖ue − vh‖H1(Γh) ≤ c1h
− 1

2 ‖ue − vh‖H1(ωh) + c2h‖u‖H2(Γ). (3.30)

Proof. Take u ∈ H2(Γ) and vh ∈ Vh. By definition of the H1-norm on Γh we get

‖ue − vh‖2
H1(Γh) = ‖ue − vh‖2

L2(Γh) + ‖∇Γh
(ue − vh)‖2

L2(Γh).

For the first term on the right handside we can apply lemma 3.5 and use

h−
1

2 ‖ue − vh‖L2(ωh) + c2h
1

2 ‖ue − vh‖H1(ωh) ≤ ch−
1

2 ‖ue − vh‖H1(ωh).

We now consider the second term

‖∇Γh

(

ue − vh

)

‖2
L2(Γh) =

∑

T∈Fh

‖∇Γh

(

ue − vh

)

‖2
L2(T ).

Take a T ∈ Fh and extend vh linearly outside T . This extension is denoted by vh,
too. Using lemma 3.4 we get

‖∇Γh

(

ue − vh

)

‖2
L2(T ) ≤ ‖∇Γh

(

ue − vh

)

‖2
L2(T e)

≤ ch−1‖∇(ue − vh)‖2
L2(ST ) + h2‖u‖2

H2(p(ST )).
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Summation over T ∈ Fh yields

‖∇Γh
(ue − vh)‖2

L2(Γh) ≤ c h−1‖ue − vh‖2
H1(ωh) + ch2‖u‖2

H2(Γ)

and thus the proof is completed.

As a direct consequence of the previous two lemmas we obtain the following main
theorem.

Theorem 3.7. For each u ∈ H2(Γ) the following holds

inf
vh∈V Γ

h

‖ue − vh‖L2(Γh) ≤ ‖ue − (Ihu
e)|Γh

‖L2(Γh) ≤ C h2‖u‖H2(Γ), (3.31)

inf
vh∈V Γ

h

‖ue − vh‖H1(Γh) ≤ ‖ue − (Ihu
e)|Γh

‖H1(Γh) ≤ C h‖u‖H2(Γ), (3.32)

with a constant C independent of u and h.
Proof. Combine the results in the lemmas 3.5 and 3.6 with the result in lemma 3.3.

3.3. Finite element error bounds. . In this section we prove optimal dis-
cretization error bounds both in the H1(Γh) and the L2(Γh) norm. The arguments
are very close to those in [7]. A difference is that in [7] the convergence results are
derived in the H1(Γ) and the L2(Γ) norms by lifting the discrete solutions from Γh

on Γ, whereas we consider the error between the finite element solution uh ∈ V Γ
h and

the extension ue of the continuous solution to the discrete interface.

In the analysis we need a few results from [5]. For x ∈ Γh define P̃h(x) = I −
nh(x)n(x)T /(nh(x)T n(x)). In (2.19) in [5] the following representation of the surface
gradient of u ∈ H1(Γ) in terms of ∇Γh

ue is given:

∇Γu(p(x)) =
(

I− d(x)H(x)
)−1

P̃h(x)∇Γh
ue(x) a.e. on Γh. (3.33)

For x ∈ Γh define

µh(x) = (1 − d(x)κ1(x))(1 − d(x)κ1(x))n(x)T nh(x).

The integral transformation formula

µh(x)dsh(x) = ds(p(x)), x ∈ Γh, (3.34)

holds, where dsh(x) and ds(p(x)) are the surface measures on Γh and Γ, respectively
(cf. (2.20) in [5]). From

‖n(x) − nh(x)‖2 = 2
(

1 − n(x)T nh(x)
)

,

assumption (3.14) and |d(x)| ≤ ch2, |κi(x)| ≤ c we obtain

ess sup
x∈Γh

|1 − µh(x)| ≤ ch2, (3.35)

with a constant c independent of h.
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Theorem 3.8. Let u ∈ H2(Γ) be the solution of (2.2) and uh ∈ V Γ
h the solution

of (2.7) with fh = fe − cf , where cf is such that
∫

Γh

fh ds = 0. The following

discretization error bound holds

‖∇Γh
(ue − uh)‖L2(Γh) ≤ c h ‖f‖L2(Γ) (3.36)

with a constant c independent of f and h.
Proof. Using (3.35) we obtain |1 − 1

µh(x) | ≤ ch2 on Γh. Define

cf :=

∫

Γh

fe dsh, δf := (1 − µh)fe − cf .

Note that fh = fe − cf and due to
∫

Γ
f ds = 0 we get

|cf | =
∣

∣

∫

Γh

fe dsh

∣

∣ =
∣

∣

∫

Γ

f(
1

µh
− 1) ds

∣

∣ ≤ ch2‖f‖L2(Γ).

Furthermore,

‖δf‖L2(Γh) ≤ ess sup
x∈Γh

|1 − µh(x)|‖fe‖L2(Γh) + |Γh|
1

2 |cf | ≤ ch2‖f‖L2(Γ). (3.37)

Using relation (3.33) and (3.34) we obtain
∫

Γ

∇Γu∇Γv ds =

∫

Γh

Ah∇Γh
ue∇Γh

ve dsh for all v ∈ H1(Γ), (3.38)

with Ah(x) = µh(x)P̃h(x)(I − d(x)H(x))−2P̃h(x). Any ψh ∈ H1(Γh) can be lifted
on Γ by defining ψl

h(p(x)) := ψh(x). Then ψl
h ∈ H1(Γ) holds. From the definition of

the discrete solution uh in (2.7) we get, for arbitrary ψh ∈ V Γ
h :

∫

Γh

∇Γh
uh∇Γh

ψh dsh =

∫

Γh

fhψh dsh =

∫

Γ

(f − cf )µh(x)−1ψl
h ds

=

∫

Γ

fψl
h ds +

∫

Γh

δfψh dsh

=

∫

Γ

∇Γu∇Γψ
l
h ds +

∫

Γh

δfψh dsh

=

∫

Γh

Ah∇Γh
ue∇Γh

ψh dsh +

∫

Γh

δfψh dsh.

Using this we obtain, for arbitrary ψh ∈ V Γ
h ,

∫

Γh

∇Γh
(ue − uh)∇Γh

ψh dsh =

∫

Γh

(I − Ah)∇Γh
ue∇Γh

ψh dsh −
∫

Γh

δfψh dsh

=

∫

Γh

Ph(I − Ah)∇Γh
ue∇Γh

ψh dsh −
∫

Γh

δfψh dsh.

(3.39)

Therefore we get

‖∇Γh
(ue − uh)‖2

L2(Γh) =

∫

Γh

∇Γh
(ue − uh)∇Γh

(ue − ψh) dsh

+

∫

Γh

Ph(I − Ah)∇Γh
ue∇Γh

(ψh − uh) dsh

−
∫

Γh

δf (ψh − uh) dsh.
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From ‖P̃h − Ah‖ ≤ ch2 a.e. on Γh and PhP̃h = Ph we obtain, for x ∈ Γh,

‖Ph(x)(I − Ah(x))‖ = ‖Ph(x)(P̃h(x) − Ah(x))‖ ≤ ch2. (3.40)

Furthermore, using (3.8) we get

‖∇Γh
ue‖L2(Γh) ≤ ess sup

x∈Γh

‖Ph(x)(I − dH(x))‖‖∇Γu‖L2(Γ) ≤ c‖f‖L2(Γ). (3.41)

Introduce the notation Eh := ‖∇Γh
(ue − uh)‖L2(Γh). The Cauchy inequality and

‖∇Γh
(uh−ψh)‖L2(Γh) ≤ Eh +‖∇Γh

(ue−ψh)‖L2(Γh), in combination with the approx-
imation result (3.32) leads to

E2
h ≤ Ehch‖f‖L2(Γ) + ch2‖f‖L2(Γ)

(

Eh + ch‖f‖L2(Γ)

)

≤ 1

2
E2

h + ch2‖f‖2
L2(Γ).

This yields the bound in (3.36).
We now apply a duality argument to obtain an L2(Γh)-error bound.

Theorem 3.9. Let u and uh be as in theorem 3.8. The following error bound

holds

‖ue − uh‖L2(Γh) ≤ c h2 ‖f‖L2(Γ) (3.42)

with a constant c independent of f and h.
Proof. Denote eh := (ue−uh)|Γh

and let el
h be the lift of eh on Γ and ce :=

∫

Γ e
l
h ds.

Consider the problem: Find w ∈ H1(Γ) with
∫

Γ
w ds = 0 such that

∫

Γ

∇Γw∇Γv dσ =

∫

Γ

(el
h − ce)v ds for all v ∈ H1(Γ). (3.43)

The solution w satisfies w ∈ H2(Γ) and ‖w‖H2(Γ) ≤ c‖el
h‖L2(Γ)/R with ‖el

h‖L2(Γ)/R :=

‖el
h − ce‖L2(Γ). Furthermore, ‖∇Γh

we‖L2(Γh) ≤ c‖el
h‖L2(Γ)/R and ‖we‖L2(Γh) ≤

c‖w‖L2(Γ) ≤ c‖∇Γw‖L2(Γ) ≤ c‖el
h‖L2(Γ)/R. Due to (3.43) and (3.39) we have, for

any ψh ∈ V Γ
h ,

‖el
h‖2

L2(Γ)/R
=

∫

Γ

∇Γw∇Γ(el
h − ce) ds =

∫

Γ

∇Γw∇Γe
l
h ds =

∫

Γh

Ah∇Γh
eh∇Γh

we dsh

=

∫

Γh

∇Γh
eh∇Γh

(we − ψh) dsh +

∫

Γh

Ph(Ah − I)∇Γh
eh∇Γh

we dsh

+

∫

Γh

Ph(I − Ah)∇Γh
ue∇Γh

ψh dsh −
∫

Γh

δfψh dsh.

Introduce Eh := ‖el
h‖L2(Γ)/R. Thanks to the approximation property (3.32) one can

choose ψh such that ‖∇Γh
(we − ψh)‖L2(Γh) ≤ ch‖w‖H2(Γ) ≤ chEh. Using Cauchy-

Schwarz and triangle inequalities and the bounds in (3.37), (3.40) we get

E2
h ≤ ‖∇Γh

eh‖L2(Γh)chEh + ch2‖∇Γh
eh‖L2(Γh)‖∇Γh

we‖L2(Γh)

+ ch2‖∇Γh
ue‖L2(Γh)

(

‖∇Γh
we‖L2(Γh) + chEh

)

+ ch2‖f‖L2(Γ)

(

‖we‖L2(Γh) + chEh

)

≤ ch2‖f‖L2(Γ)Eh + ch2‖f‖L2(Γ)

(

Eh + chEh

)

.
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Hence, Eh ≤ ch2‖f‖L2(Γ) holds. We have

|ce| =
∣

∣

∫

Γ

u− ue
h ds

∣

∣ =
∣

∣

∫

Γ

ue
h ds

∣

∣ =
∣

∣

∫

Γh

(µh − 1)ue
h dsh

∣

∣ ≤ ch2‖f‖L2(Γ),

and thus

‖eh‖L2(Γh) ≤ c‖µ− 1

2

h eh‖2
L2(Γh) = c‖el

h‖L2(Γ) ≤ c(Eh + |ce|) ≤ ch2‖f‖L2(Γ),

which completes the proof.

4. Application to two-phase incompressible flows with surfactants. We
consider a standard Navier-Stokes model for incompressible two-phase flows in which
a localized force at the interface describes the effect of surface tension. Surfactant
concentration at the interface is modeled by a scalar convection-diffusion equation at
the interface. In section 4.1 we desribe a model for this two-phase flow problem and
in section 4.2 a few discretization issues are discussed.

4.1. A model for two-phase incompressible flow with surfactants. Let
Ω ⊂ R

3 be a polyhedral domain containing two different immiscible incompressible
phases. The time dependent subdomains containing the two phases are denoted by
Ω1(t) and Ω2(t) with Ω̄ = Ω̄1 ∪ Ω̄2 and Ω1 ∩ Ω2 = ∅. We assume that Ω1 and Ω2 are
connected and ∂Ω1 ∩ ∂Ω = ∅ (i. e., Ω1 is completely contained in Ω). The interface
is denoted by Γ(t) = Ω̄1(t) ∩ Ω̄2(t). A typical example is a rising air bubble or liquid
droplet in a surrounding fluid. The standard model for describing incompressible
two-phase flows consists of the Navier-Stokes equations in the subdomains with the
coupling condition

[σn]Γ = τKn (4.1)

at the interface, i. e., the surface tension balances the jump of the normal stress at
the interface. The surface tension coefficient τ is assumed to be constant. We use the
notation [v]Γ for the jump of v across Γ, n = nΓ is the unit normal at the interface
Γ (pointing from Ω1 into Ω2), K the curvature of Γ and σ the stress tensor defined
by σ = −pI + µD(u) with D(u) = ∇u + (∇u)T . Furthermore p = p(x, t) denotes
the pressure, u = u(x, t) the velocity and µ the viscosity. We assume continuity of u

across the interface. Based on the conservation laws for mass and momentum the fluid
dynamics is modeled by the Navier-Stokes equations in the two subdomains combined
with [u]Γ = 0 and the coupling condition in (4.1), cf. for example [17, 18, 24, 23].
A level set method can be used for capturing the unknown interface, cf. [16, 20, 21].
The level set function, denoted by φ = φ(x, t) is a scalar function with φ(x, 0) < 0 for
x ∈ Ω1(0), φ(x, 0) > 0 for x ∈ Ω2(0), φ(x, 0) = 0 for x ∈ Γ(0). It is desirable to have
the level set function at t = 0 as an approximate signed distance function.

The evolution of the interface is given by the linear hyperbolic partial differential
equation φt + u · ∇φ = 0 for t ≥ 0 and x ∈ Ω.

The jumps in the coefficients ρ and µ can be described using the level set function
(which has its zero level set precisely at the interface Γ) in combination with the
Heaviside function H . We define

ρ(φ) := ρ1 + (ρ2 − ρ1)H(φ),

µ(φ) := µ1 + (µ2 − µ1)H(φ).
(4.2)

The effect of the surface tension can be expressed in terms of a localized force at the
interface, cf. the so-called continuum surface force (CSF) model [2, 16]. Combination
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of the CSF approach with the level set method leads to the following model for the
two-phase problem in Ω × [0, T ]

ρ(φ)
(∂u

∂t
+ (u · ∇)u

)

= −∇p+ ρ(φ)g + div(µ(φ)D(u)) + τKδΓnΓ (4.3)

div u = 0 (4.4)

φt + u · ∇φ = 0 (4.5)

together with suitable initial and boundary conditions for u and φ. This is the con-
tinuous problem that we use to model our two-phase flow problem. It is also used in,
for example, [16, 12, 14, 16, 24, 23, 26].

We treat this problem using finite element techniques. Thus we need an appropri-
ate weak formulation. We do not discuss this subject here, but refer to the literature,
for example, [8, 25, 26, 27, 28]. We only briefly address the weak formulation of
the localized surface tension force. The surface tension term in (4.3) results in the
functional

fΓ(v) := τ

∫

Γ

KnΓ · v ds, v ∈ V := H1
0 (Ω)3. (4.6)

For Γ sufficiently smooth we have sup
x∈Γ |K(x)| ≤ c <∞ and

|fΓ(v)| ≤ c τ

∫

Γ

|nΓ · v| ds ≤ c ‖v‖L2(Γ) ≤ c‖v‖H1

0
(Ω) for all v ∈ V. (4.7)

Thus fΓ ∈ V′ holds.
In many two-phase flow systems surface active agents (surfactants) are present

as impurities or added to the bulk fluid. To describe the effect of such surfactants a
convection-diffusion equation at the interface is added to the fluid dynamics model
(4.3)-(4.5). Let the velocity field u be decomposed in a tangential and normal compo-
nent: u = uΓ + u⊥n. Let DΓ > 0 be a given diffusion coefficient of Γ. The following
type of transport equation for the surfactant concentration c = cΓ can be found in
the literature, cf. [1, 13]:

∂t,nc−DΓ∆Γc+ ∇Γ · (cuΓ) −Ku⊥c = 0, (4.8)

where ∂t,nc denotes the derivative of c along a purely normal path. In case of a soluble
surfactant a source term is added that describes the process of ad- and desorption
of the surfactant. The flow field u results from the fluid dynamics model (4.3)-(4.5).
In most two-phase flow models that take transport of surfactants into account there
also is a dependence of the flow equations (4.3)-(4.5) on the concentration c, namely
a dependence of the surface tension coefficient τ on c, i.e., τ = τ(c), cf. [1, 13].

4.2. Discretization of the two-phase flow problem. We outline the main
ideas of the discretization methods used for the two-phase flow problem (4.3)-(4.5) (in
weak formulation). For further information we refer to the literature [9, 11, 10]. The
finite element spaces are based on a hierarchy of multilevel tetrahedral meshes {T }h>0

that is constructed using red/green refinement strategies. These triangulations are
regular, consistent and stable. In our applications the triangulations are locally refined
close to the interface. For discretization of the Navier-Stokes equations we use either
the Hood-Taylor P2-P1 pair, or a pair consisting of continuous piecewise quadratics
for velocity (i.e., P2) and an extended linear finite element space for the pressure. The
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T ′
h
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Fig. 4.1. Construction of approximate interface for 2D case.

latter space is much better suited for the approximation of the discontinuous pressure
function than the standard P1 finite element space, cf. [10, 19]. The linear hyperbolic
level set equation is approximated using quadratic finite element combined with a
standard streamline diffusion stablilization. For time discretization we use a variant
of the θ-scheme.

The polyhedral approximation Γh of Γ is constructed as follows.
The level set equation for φ (signed distance function) is discretized with con-

tinuous piecewise quadratic finite elements on the tetrahedral triangulation Th. The
piecewise quadratic finite element approximation of φ on Th is denoted by φh. We
now introduce one further regular refinement of Th, resulting in T ′

h = Th

2

. Let I(φh)

be the continuous piecewise linear function on T ′
h which interpolates φh at all vertices

of all tetrahedra in T ′
h. The approximation of the interface Γ is defined by

Γh := {x ∈ Ω | I(φh)(x) = 0 }. (4.9)

and consists of piecewise planar segments. The mesh size parameter h is the maximal
diameter of these segments. This maximal diameter is approximately the maximal
diameter of the tetrahedra in T ′

h that contain the discrete interface, i.e., h = hΓ is
approximately the maximal diameter of the tetrahedra in T ′

h that are close to the
interface. In Figure 4.1 we illustrate this construction for the two-dimensional case.

Each of the planar segments of Γh is either a triangle or a quadrilateral. Note
that this construction of Γh satisfies the assumptions made in section 2.

If we assume |I(φh)(x) − φ(x)| ≤ c h2
Γ for all x in a neighbourhood of Γ, which is

reasonable for a smooth φ and piecewise quadratic φh, then we have

max
x∈Γh

|φ(x) − φh(x)| = max
x∈Γh

|φ(x)| = max
x∈Γh

|φ(x) − I(φh)(x)| ≤ c h2
Γ, (4.10)

cf. assumption (3.13).
The approximation of the localized surface tension force in (4.6) is based on the

following Laplace-Beltrami characterization of the curvature. Let idΓ : Γ → R
3 be the

identity on Γ and K = κ1 +κ2 the sum of the principal curvatures. For all sufficiently
smooth vector functions v on Γ the following holds, cf. (4.6):

fΓ(v) =

∫

Γ

KnΓ · v ds = −
∫

Γ

(∆Γ idΓ) · v ds =

∫

Γ

∇Γ idΓ ·∇Γv ds. (4.11)

In [11] we introduced and analyzed the following discretization method for the surface
tension force. Define

ñh(x) :=
∇φh(x)

‖∇φh(x)‖ , P̃h(x) := I− ñh(x)ñh(x)T , x ∈ Γh, x not on an edge.
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The discrete surface tension force is given by

fΓh
(vh) = τ

3
∑

i=1

∫

Γh

P̃h(x)ei · ∇Γh
(vh)i ds, (4.12)

with ei the i-th basis vector in R
3 and (vh)i the i-th component of vh.

Remark 7. The implementation of this functional requires the numerical inte-
gration over the triangulated surface Γh = ∪T∈Fh

T of functions that are smooth on
the planar segments T this triangulation. If methods for this are implemented then

these can also be used for the realization of the finite element discretization method

introduced in section 2, cf. remark 2.

We now turn to the discretization of a transport equation as in (4.8) on a moving
sufficiently smooth surface Γ = Γ(t). The flow problem (4.3)-(4.5) coupled with
the transport equation (4.8) is typically handled using an implicit time integration
method and an iterative decoupling procedure to solve, in each time step, the coupled
system. In such an approach for a fixed t = tn and given finite element velocity field
uh(x), pressure finite element function ph(x) and level set finite element function
φh(x) (which induces an approximate interface Γh(tn)) one has to solve a stationary
convection-diffusion equation of the form

−DΓ∆Γc+ ∇Γ · (cuΓ) − Ec = 0

for the surfactant concentration c at the approximate interface Γh(tn). For this the
method described in section 2 can be used. For the outer finite element space we then
use the continuous piecewise linears on the triangulation Th

2

. The data structure for

this space is already available in the solver for the two-phase flow problem (4.3)-(4.5).
Furthermore, for the treatment of surface tension, routines for numerical integration
over Γh are available that can be used for the finite element discretization at the
interface as well, cf. remark 7. Thus in this setting we need only very little additional

implementation effort to extend the solver for the two-phase flow problem (4.3)-(4.5)
such that it can deal with a surfactant convection-diffusion equation at the interface.

5. Numerical experiments. In this section we present results of a numerical
experiment. As a test problem we consider the Laplace-Beltrami equation

−∆Γu+ u = f on Γ,

with Γ = {x ∈ R
3 | ‖x‖2 = 1} and Ω = (−2, 2)3 + b with b = (29−1, 31−1, 37−1)T .

This example is taken from [4]. The shift over b is introduced for the following
technical reason. The grids we use are obtained by regular (local) refinement as
explained below. For the case b = 0 there are grid points of the outer triangulation
that lie exactly on Γ. It turns out that for this case it can happen that the iterative
method (in our case CG) for solving the discrete problem does not converge.

The zero order term is added to guarantee a unique solution. The source term f
is taken such that the solution is given by

u(x) = a
‖x‖2

12 + ‖x‖2

(

3x2
1x2 − x3

2

)

, x = (x1, x2, x3) ∈ Ω,

with a = − 13
8

√

35
π . A family {Tl}l≥0 of tetrahedral triangulations of Ω is constructed

as follows. We triangulate Ω by starting with a uniform subdivision into 48 tetrahedra
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Fig. 5.1. Detail of the induced triangulation of Γh.

with mesh size h0 =
√

3. Then we apply an adaptive red-green refinement-algorithm
(implemented in the software package DROPS [6]) in which in each refinement step
the tetrahedra that contain Γ are refined such that on level l = 1, 2, . . . we have

hT ≤
√

3 2−l for all T ∈ Tl with T ∩ Γ 6= ∅.
The family {Tl}l≥0 is consistent and shape-regular. The interface Γ is the zero-level
of ϕ(x) := ‖x‖2 − 1. Let ϕh := I(ϕ) where I is the standard nodal interpolation
operator on Tl. The discrete interface is given by Γhl

:= {x ∈ Ω | I(φh)(x) = 0 }, cf.
(4.9). Let {φi}1≤i≤m be the nodal basis functions corresponding to the vertices of the
tetrahedra in ωh, as explained in remark 1. The entries

∫

Γh

∇Γh
φi · ∇Γh

φj + φiφjds
of the stiffness matrix are computed within machine accuracy. For the right-handside
we use a quadrature-rule that is exact up to order five. The discrete problem is solved
using a standard CG method with symmetric Gauss-Seidel preconditioner to a relative
tolerance of 10−6. The number of iterations needed on level l = 1, 2, . . . , 7, is 14, 26,
53, 104, 201, 435, 849, respectively.
The discretization errors in the L2(Γh)-norm are given in table 5.1.

level l ‖u− uh‖L2(Γh) factor
1 0.1124 –
2 0.03244 3.47
3 0.008843 3.67
4 0.002186 4.05
5 0.0005483 3.99
6 0.0001365 4.02
7 3.411e-05 4.00

Table 5.1

Discretization errors and error reduction.

These results clearly show the h2 behaviour as predicted by our theoretical anal-
ysis. To illustrate the fact that in this approach the triangulation of the approximate
manifold Γh is strongly shape-irregular we show a part of this triangulation in Fig-
ure 5.1. The discrete solution is visualized in Fig. 5.2.
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Fig. 5.2. Level lines of the discrete solution uh
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