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Abstract. We consider a standard model for incompressible two-phase flows in which a localized
force at the interface describes the effect of surface tension. If a level set method is applied then the
approximation of the interface is in general not aligned with the triangulation. This causes severe
difficulties w.r.t. the discretization and often results in large spurious velocities. In this paper we
reconsider a (modified) extended finite element method (XFEM), which in previous papers has been
investigated for relatively simple two-phase flow model problems, and apply it to a physically realistic
levitated droplet problem. The results show that due to the extension of the standard FE space one
obtains much better results in particular for large interface tension coefficients. Furthermore, a
certain cut-off technique results in better efficiency without sacrificing accuracy.
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1. Introduction. We consider a standard model for incompressible two-phase
flows in which a localized force at the interface describes the effect of surface tension.
If a level set method is applied then the interface, which is implicitly given by the
zero level of the level set function, is in general not aligned with the triangulation
that is used in the discretization of the flow problem. This non-alignment causes
severe difficulties w.r.t. the discretization of the localized surface tension force and
the discretization of the flow variables. In cases with large surface tension forces the
pressure has a large jump across the interface. In standard finite element spaces, due
to the non-alignment, the functions are continuous across the interface and thus not
appropriate for the approximation of the discontinuous pressure. In many simulations
these effects cause large oscillations of the velocity close to the interface, so-called
spurious velocities.

Extended finite element spaces (XFEM) as presented in [12, 2] allow a much
better (even optimal) approximation of the discontinuous pressure. In the previous
paper [8] we analyzed this XFEM approach for model problems, like for example a
quiescent droplet with surface tension (u = 0 and a piecewise constant pressure). It
was shown both by theoretical analysis and numerical experiments that with an XFEM
discretization the size of spurious velocities can be reduced substantially. In another
paper [16] we derived approximation error bounds for this method and introduced
a variant in which discontinuous basis functions that were originally added in the
extended finite element space are left out if they have a “very small” support. This cut-
off technique leads to a modified XFE space with the same (optimal) approximation
quality as the original XFE space but results in linear systems that are easier to solve.

In the present paper we reconsider this (modified) XFEM approach and apply it
to a physically realistic levitated droplet problem. We do not know of any other liter-
ature in which this type of finite element discretization (with optimal approximation
error properties) is combined with a level set interface capturing technique and applied
in a three-dimensional simulation of a physically realistic two-phase flow problem. The
results presented in the paper lead to the following two main conclusions. Firstly, the
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extension of the standard linear finite element space for the pressure discretization
leads to a significant improvement. This improvement increases for larger interface
tension coefficients. For example, for a toluol-water system we obtain satisfactory
results using the XFE pressure discretization, whereas for the standard linear finite
element pressure space on the same triangulation the simulation does not yield phys-
ically realistic results. Secondly, the use of a cut-off technique in the XFE space, i.e.,
neglecting additional basis functions with “very small” support (as explained below),
significantly improves the converge rates of the iterative solvers used. This cut-off
technique is such that the good (even optimal) discretization quality is maintained.
Thus, we can compute accurate discrete solutions with (much) less computational
costs.

2. Problem formulation. Let Ω ⊂ R
3 be a domain containing two different

immiscible incompressible phases. The time dependent subdomains containing the
two phases are denoted by Ω1(t) and Ω2(t) with Ω̄ = Ω̄1 ∪ Ω̄2 and Ω1 ∩ Ω2 = ∅.
We assume that Ω1 and Ω2 are connected and ∂Ω1 ∩ ∂Ω = ∅ (i. e., Ω1 is completely
contained in Ω). The interface is denoted by Γ(t) = Ω̄1(t)∩Ω̄2(t). The standard model
for describing incompressible two-phase flows consists of the Navier-Stokes equations
in the subdomains with the coupling condition

[σn]Γ = τKn

at the interface, i. e., the surface tension balances the jump of the normal stress on
the interface. We use the notation [v]Γ for the jump of v across Γ, n = nΓ is the unit
normal at the interface Γ (pointing from Ω1 into Ω2), K the curvature of Γ and σ the
stress tensor defined by

σ = −pI + µD(u), D(u) = ∇u + (∇u)T ,

with p = p(x, t) the pressure, u = u(x, t) the velocity and µ the viscosity. We assume
continuity of u across the interface. Combined with the conservation laws for mass and
momentum we obtain the following standard model, cf. for example [14, 15, 20, 19],







ρiut − div(µiD(u)) + ρi(u · ∇)u + ∇p = ρig in Ωi × [0, T ]

div u = 0 in Ωi × [0, T ]
for i = 1, 2,

(2.1)

[σn]Γ = τKn, [u]Γ = 0. (2.2)

The constants µi, ρi denote viscosity and density in the subdomain Ωi, i = 1, 2, and
g is an external volume force (gravity). To make this problem well-posed we need
suitable boundary conditions for u and an initial condition u(x, 0).

The location of the interface Γ(t) is in general unknown and is coupled to the
local flow field which transports the interface. Various approaches are used for ap-
proximating the interface. Most of these can be classified as either front-tracking or
front-capturing techniques. In this paper we use a level set method [4, 13, 18] for
capturing the interface.

The two Navier-Stokes equations in Ωi, i = 1, 2, in (2.1) together with the inter-
facial condition (2.2) can be reformulated in one Navier-Stokes equation on the whole
domain Ω with an additional force term localized at the interface, the so called con-
tinuum surface force (CSF) model [3, 4]. Combination of the CSF approach with the
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level set method leads to the following model for the two-phase problem in Ω× [0, T ]:

ρ(φ)
(∂u

∂t
+ (u · ∇)u

)

= −∇p + ρ(φ)g + div(µ(φ)D(u)) + τKδΓnΓ

div u = 0 (2.3)

φt + u · ∇φ = 0.

This model has to be interpreted in a suitable weak sense. Appropriate initial and
boundary conditions have to be added to make it well-posed. This model is used for
the levitated droplet problem in section 5.

3. An extended FE method for pressure discretization. In this section
we briefly recall the extended FE (XFE) space discussed in [8] and a modified space
presented in [16]. The latter space is used for the discretization of the pressure variable
in our two-phase levitated droplet problem in section 5.

Let Th be a triangulation of the domain Ω consisting of tetrahedra and let

Qh = {q ∈ C(Ω) | q|T ∈ P1 for all T ∈ Th}

be the standard finite element space of continuous piecewise linear functions. We
define the index set J = {1, . . . , n}, where n = dimQh is the number of degrees of
freedom. Let B := {qj}n

j=1 be the nodal basis of Qh, i. e. qj(xi) = δi,j for i, j ∈ J

where xi ∈ R
3 denotes the spatial coordinate of the i-th degree of freedom.

The idea of the XFEM method is to enrich the original finite element space Qh

by additional basis functions qX
j for j ∈ J ′ where J ′ ⊂ J is a given index set. An

additional basis function qX
j is constructed by multiplying the original nodal basis

function qj by a so called enrichment function Φj :

qX
j (x) := qj(x)Φj(x). (3.1)

This enrichment yields the extended finite element space

QX
h := span

(

{qj}j∈J ∪ {qX
j }j∈J ′

)

.

This idea was introduced in [12] and further developed in [2] for different kinds of
discontinuities (kinks, jumps), which may also intersect or branch. The choice of the
enrichment function depends on the type of discontinuity. For representing jumps the
Heaviside function is proposed to construct appropriate enrichment functions. Basis
functions with kinks can be obtained by using the distance function as enrichment
function.

In our case the finite element space Qh is enriched by discontinuous basis functions
qX
j for j ∈ J ′ = JΓ := {j ∈ J |meas2(Γ ∩ supp qj) > 0}, as discontinuities in the

pressure only occur at the interface. Let d : Ω → R be the signed distance function (or
an approximation to it) with d negative in Ω1 and positive in Ω2. In our applications
the discretization of the level set function ϕ is used for d. Then by means of the
Heaviside function H we define

HΓ(x) := H(d(x)) =

{

0 x ∈ Ω1 ∪ Γ,

1 x ∈ Ω2.

As we are interested in functions with a jump across the interface we define the
enrichment function

ΦH
j (x) := HΓ(x) − HΓ(xj) (3.2)
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Fig. 3.1. Extended finite element basis functions qi, q
Γ

i (dashed) and qj , qΓ

j (solid) for 1D case.

and a corresponding function qX
j := qj ·ΦH

j , j ∈ J ′. The second term in the definition

of ΦH
j is constant and may be omitted (as it does not introduce new functions in the

function space), but ensures the nice property qX
j (xi) = 0, i.e. qX

j vanishes in all
degrees of freedom. As a consequence, we have

supp qX
j ⊂

(

supp qj ∩
⋃

T∈T Γ

h

T
)

, (3.3)

where T Γ
h = {T ∈ Th |meas2(T ∩ Γ) > 0}. Thus qX

j ≡ 0 in all T with T /∈ T Γ
h .

In the following we will use the notation qΓ
j := qj ΦH

j and

QΓ
h := span({qj | j ∈ J } ∪ {qΓ

j | j ∈ JΓ})

to emphasize that the extended finite element space QΓ
h depends on the location of the

interface Γ. In particular the dimension of QΓ
h may change if the interface is moved.

The shape of the extended basis functions for the 1D case is sketched in figure 3.1.
Note that QΓ

h can also be characterized by the following property: q ∈ QΓ
h if and

only if there exist functions q1, q2 ∈ Qh such that q|Ωi
= qi|Ωi

, i = 1, 2.
In [16] we derived optimal approximation error bounds, both in the L2- and H1-

norm, for this XFE space. For example, for p ∈ L2(Ω) with p|Ωi
∈ H1(Ωi), i = 1, 2,

we have

inf
qh∈QΓ

h

‖qh − p‖L2 ≤ ch‖p‖1,Ω1∪Ω2
. (3.4)

In [16] we introduced a modified XFE space as follows. We fix a positive constant ĉ
and define Jγ ⊂ JΓ to be the index set such that j ∈ Jγ iff

‖qΓ
j ‖L2(T ) ≥ ĉh

2 1

2

T for a T ⊂ supp(qj). (3.5)

We define the modified XFE space Qγ
h ⊂ QΓ

h by

Qγ
h := span({qj | j ∈ J } ∪ {qΓ

j | j ∈ Jγ}). (3.6)

Note that in this space discontinuous basis functions qΓ
j ∈ QΓ

h with “very small sup-
port” (as quantified in (3.5)) are deleted. The criterion (3.5) is such that for a fixed
ĉ > 0 the optimal approximation result in (3.4) still holds with the space QΓ

h replaced
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by the smaller space Qγ
h, cf. [16]. Furthermore, note that for ĉ = 0 we have Qγ

h = QΓ
h

and for ĉ → ∞ the space Qγ
h equals the standard space of continuous piecewise linears,

i.e., Qγ
h = Qh. In our experiments we use ĉ = O(1). An important advantage of the

smaller space Qγ
h compared to QΓ

h is that the linear systems induced by Qγ
h turn out

to be easier to solve, cf. section 5.
Remark 1. An interesting (open) problem is the LBB stability of the Vh-QΓ

h

finite element pair (Vh: continuous piecewise quadratics). Numerical experiments
given in [16] indicate that the LBB constant

Ch,LBB = inf
ph∈QΓ

h

sup
v∈Vh

(div vh, ph)L2

‖∇vh‖L2‖ph‖L2

,

is (much) smaller for the standard XFE space QΓ
h as for the modified (smaller) space

Qγ
h with ĉ = O(1). This implies better stability properties for the space Qγ

h than for
the original XFE space QΓ

h. A theoretical analysis of this stability issue is still lacking.

Let M be the mass matrix in the space QΓ
h w.r.t. {qj | j ∈ J } ∪ {qΓ

j | j ∈ JΓ} and

D = diag(M). In [16] it is proved that the spectral condition number of D−1M is
uniformly bounded with respect to both h and the supports of the basis functions qΓ

j .
This immediately implies a similar result for Qγ

h.

4. Computational scheme. The main topic of this paper is the use of the
modified XFE space Qγ

h for the discretization of the discontinuous pressure variable in
two-phase incompressible flow problems. In this section we outline other components
of our solver.

Spatial discretization. The spatial discretization is based on a hierarchy of tetra-
hedral grids. These grids are constructed in such a way that they are consistent (no
hanging nodes) and that the hierarchy of triangulations is stable, [7]. An important
property is that local refinement and coarsening are easy to realize. The finite ele-
ment pair Vh −Qγ

h, with Vh the space of continuous piecewise quadratics, is used for
velocity and pressure discretization. For discretization of the level set equation we use
piecewise quadratic finite elements combined with streamline-diffusion stabilization.

Laplace-Beltrami discretization of fΓ. In the weak form the localized surface
tension force in (2.3) takes the form

fΓ(v) = τ

∫

Γ

KnΓ · v ds, v ∈ (H1(Ω))3. (4.1)

An accurate discretization of this force functional is crucial for the quality of the
solver. We use a technique based on a Laplace-Beltrami representation of the cur-
vature K. Here we outline the main idea, further details can be found in [9]. For
the discretization of the functional in (4.1) we make an approximate reconstruction
of the implicitly given zero level of the discrete level set function φh. The latter is
a piecewise quadratic function on Th. We introduce one further regular refinement
of Th, resulting in T ′

h. Let I(φh) be the continuous piecewise linear function on T ′
h

which interpolates φh at all vertices of all tetrahedra in T ′
h. The approximation of the

interface Γ is defined by

Γh := {x ∈ Ω | I(φh)(x) = 0 } (4.2)

and consists of piecewise planar segments, which are either triangles or quadrilaterals.
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Let ∇Γ (∇Γh
) be the tangential gradient along Γ (Γh) and ∆Γ := ∇Γ ·∇Γ the Laplace-

Beltrami operator. From differential geometry we have

∫

Γ

KnΓ · v ds = −

∫

Γ

(∆Γ idΓ) · v ds =

∫

Γ

∇Γ idΓ ·∇Γv ds, (4.3)

with idΓ the identity Γ → R
3, i.e., the coordinate vector on Γ. The scalar product

on the right-hand side denotes the row-wise scalar product followed by summation as
made precise in (4.4) below. Define

ñh(x) :=
∇φh(x)

‖∇φh(x)‖
, P̃h(x) := I − ñh(x)ñh(x)T , x ∈ Γh, x not on an edge.

Based on the result in (4.3) the discrete surface tension functional is given by

f̃Γh
(vh) = τ

3
∑

i=1

∫

Γh

P̃h(x)ei · ∇Γh
(vh)i ds, vh ∈ Vh, (4.4)

with ei the i-th basis vector in R
3 and (vh)i the i-th component of vh. The imple-

mentation of this functional requires (numerical) integration of smooth functions over
the planar segments (triangles or quadrilaterals) of Γh. Note that in this approach
there is no numerical regularization (or smoothing) parameter and thus it can be
classified as a “sharp interface” technique. An error analysis for this surface tension
discretization method is given in [9].

Time discretization. For the time discretization we apply an implicit one-step
scheme to the coupled system (2.3). We use a simple θ-scheme (θ = 1: implicit Euler;
θ = 1

2 : Crank-Nicolson). Per time step an iterative fixed point strategy decouples
the discrete system for the level set unknowns from the discrete Navier-Stokes flow
problem.

Reparametrization. For numerical and algorithmic purposes it is advantageous to
keep the level set function close to a signed distance function during the time evolution.
To realize this a reparametrization technique is needed. We apply a variant of the
fast marching method [11, 18].

Iterative solvers. In each time step a discrete Navier-Stokes problem and a discrete
level set equation must be solved. For the latter we use the GMRES method with a
Gauss-Seidel preconditioner. The discrete Navier-Stokes equation are linearized using
a relaxed defect correction algorithm given in [21]. This linearization results in Oseen
problems of the form

(

A BT

B 0

) (

v

q

)

=

(

r1

r2

)

.

For the iterative solution of these Oseen equations we apply the preconditioned gen-
eralized conjugate residual method (GCR), cf. [17]. This Krylov subspace method
allows the use of a variable preconditioner. We use a block-preconditioner of the form

P =

(

QA 0
B QS

)

where QA is a preconditioner of the A-block and QS a preconditioner for the Schur
complement S := BA−1BT . For QA we use one standard multigrid V -cycle iteration
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Fig. 5.1. Measuring cell with levitated toluol droplet in downward flowing water

5.5 mm 7.2 mm

8 mm 21.5 mm
50 mm

Fig. 5.2. Dimensions of the measuring cell

for the discrete diffusion-convection-reaction equations in the A-block. For QS we
use the scaled BFBT -preconditioner

Q−1
S = M

−1/2
Q (B̃B̃T )−1B̃ÃB̃T (B̃B̃T )−1M

−1/2
Q

as described in [6, 5], with MV and MQ the diagonals of the velocity- and pressure-

mass-matrix, respectively, and B̃ = M
−1/2
Q BM

−1/2
V , Ã = M

−1/2
V AM

−1/2
V .

5. Numerical results. In this section we present results of numerical experi-
ments with the methods described above applied to a realistic two-phase flow problem
modeled by (2.3). We consider a butanol-water and a toluol-water levitated droplet
system. The geometry of the measuring cell in which the droplet is levitated in a
downward going water flow is illustrated in Fig. 5.1. Its dimensions and the initial
triangulation are shown in the figures 5.2 and 5.3, respectively. The z-axis is the
symmetry axis, the {z = 0}-plane is located 25 mm from either end. In Figure 5.4
a cross-section of a triangulation in the {y = 0}-plane is shown. We use adaptive
refinement near the interface.

The material properties are given in Table 5.1. The viscosity and density values
in the left table correspond to a butanol (in Ω1)-water (in Ω2) system under standard
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Fig. 5.3. Measuring cell with initial triangulation

Fig. 5.4. tetrahedra, which are cut by the y = 0-plane, τ = 32.6e-3 N/m; blue: droplet

conditions. On the right, the properties of the toluol-water system are shown. The
smallest surface tension coefficient in the lower table is for the butanol-water system.
The largest surface tension coefficient in that table corresponds to a toluol-water sys-
tem. Larger surface tension coefficients induce larger localized surface tension forces
which are harder to treat numerically. For all three values of the surface tension

coefficient we keep the same viscosity and density values as given in the left table of

Table 5.1. This in order to limit the number of different parameter values. In numer-
ical experiments we observed that the variation of density and viscosity between the
butanol-water and toluol-water system has only negligible effect on the performance
of the numerical methods used.

The initial and boundary conditions are as follows. On the water inflow boundary
(i.e. on the top) a quadratic velocity-profile with maximal velocity -40e-3m/s is
prescribed. For τ = 1.63e-3 N/m we use -35 mm/s. Otherwise, the droplet drifts
out of the cell. At the water outflow boundary (z = -25 mm) natural boundary-
conditions are applied. On the remaining part of the boundary no-slip conditions for
velocity are prescribed. In all experiments the initial velocity field u(x, 0) is a priori
computed by solving a stationary Navier-Stokes problem with a fixed spherical droplet
of radius 1 mm located at z = -6.2 mm. For τ = 1.63e-3N/m the droplet is located
at z = -10 mm. The initial triangulation, cf. Fig. 5.3, contains 4635 tetrahedra. In
the proximity of the interface local refinement is applied to obtain a local meshsize
hΓ = 0.148 mm. The triangulation is changed and adapted to the moving interface
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butanol-water
µ[Pa · s] ρ[kg/m3]

Ω1 3.28e-3 845
Ω2 1.39e-3 987

toluol-water
µ[Pa · s] ρ[kg/m3]

Ω1 5.96e-4 867
Ω2 1.03e-3 999

butanol toluol
τ 1.63e-3 8.15e-3 32.6e-3

Table 5.1

Material properties

every ten timesteps.
In our solver we set parameters as follows. In the implicit Euler time discretiza-

tion we use in each time step a weak coupling such that we only have to solve the
discrete Navier-Stokes equations and the level set equation once per time step. The
preconditioned GMRES iteration for the discrete level set equation is stopped if the
relative error of the preconditioned residual is less than 1e-10. The relaxed defect
correction method applied for linearization of the Navier-Stokes equations is stopped,
if the Euclidean norm of the defect is reduced by a factor of 1e5. For the precondi-
tioned GCR method for solving the Oseen equations we use a stopping criterion of
0.1 relative to the Euclidean norm of the defect in the Navier-Stokes solver.

Using these initializations and parameter choices we computed the dynamics of
three levitated droplet systems with material properties given in Table 5.1. We used
both the standard linear finite element space Qh and the modified XFE space Qγ

h. In
the latter we used the value ĉ = 0.1, cf. (3.5). Results are shown in Fig. 5.5.

We comment on some features of the computed solutions. For τ = 1.63e-3N/m we
obtain a droplet in equilibrium position with both finite-element types as depicted in
the top row of figure 5.5. The surface of the droplet is visibly smoother for the Vh-Qγ

h

pair. Figure 5.6 shows the vertical position of the barycenter of the droplet plotted
over time. After similar behavior in the first 0.1 s the droplets evolve differently. The
Qh-droplet stabilizes at a vertical position of -7.5 mm, whereas the Qγ

h-droplet ascends
and stabilizes around -6.35 mm. Currently, there are no experimental data to verify
which position is closer to reality.

For the two higher interfacial tensions we obtain equilibrium positions only with
the Vh − Qγ

h pair. These are shown in the right column in figure 5.5. Note the
smooth appearance of the droplet surface and the symmetry of the velocity field
around the droplet. The Vh-Qh droplets develop spikes and are transported out of
the measuring cells due to (very) large spurious velocities. For τ = 32.6e-3 N/m the
flow field is severely disturbed. Typical numerical solutions are shown in the left
column in Figure 5.5.

For the case τ = 8.15e-3 N/m the velocity field inside the droplet is shown in
Fig. 5.7.

Stable equilibria are observed in experiments with the toluol-water system, e. g.
[1, 10], where deuterated water was used. The Vh-Qγ

h simulations match the exper-
imental results (much) better than the Vh-Qh simulations. On the left of Fig. 5.8
the velocity-distribution in the {y = 0}-plane of a levitated toluol-droplet is shown
as measured by a fast NMR-technique, cf. [1]. The inflow velocity is 94 mm/s. On
the right, the simulation of this droplet using the Vh-Qγ

h-pair is shown. The inflow
velocity is 88 mm/s. The droplet are ellipsoidal. In the {y = 0}-plane we determined
the lengths, denoted by a and b, of the principal axes and computed the eccentricity
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Computed droplets Vh-Qh Computed droplets Vh-Qγ
h

Fig. 5.5. From top to bottom: interfacial tension τ = 1.63e-3N/m, 8.15e-3N/m, 32.6e-3N/m

measure ǫ =
√

1 − (b/a)2. The values are ǫ = 0.424 in the NMR-image and ǫ = 0.412
in the simulation. The position of the droplet in the measuring-cell is not known for
the NMR-experiment and therefore we can not compare the locations of the stationary
droplets. Note the presence of a so-called stagnant cap with very low velocities at the
bottom of the NMR-image. This is caused by surface-active agents (surfactants) in
the experimental setup. Surfactants lower the interfacial tension value. To account for
the significant effect of this phenomenon a variable surface tension coefficient τ is used
in the model (2.3). An appropriate model for this variable surface tension coefficient
is not known and therefore it is chosen in simple ad-hoc manner: The stagnant cap
covers the lower 10 percent of the droplet’s height and the value of the surface tension
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-0.0076

-0.0074

-0.0072

-0.007

-0.0068
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-0.0064

-0.0062

-0.006
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Vh-Qh

Vh-Q
γ

h

Fig. 5.6. vertical position [mm] of droplet-barycenter over time [s] for τ = 1.63e-3 N/m

Fig. 5.7. velocity field, y = 0-plane, τ = 8.15e-3 N/m; left: Vh-Qh, right: Vh-Qγ
h

coefficient is decreased by 5 percent in this area. The numerical simulation of the
model yields the result shown on right in Fig. 5.8. Note the good agreement between
measurement and simulation both in the values for the eccentricity measure ǫ and in
the flow field pattern. The results are obtained using the modified XFE space Qγ

h.
We were not able to produce reasonable results (on a grid with the same resolution)
when the standard linear finite element space Qh is used for pressure discretization.

We now address the effect of the different discretization methods on the behaviour
of the iterative solvers. In table 5.2 the iteration numbers of the relaxed defect
correction linearization method for the Navier-Stokes equations (NS linearization)
and of the preconditioned GCR method used for the Oseen equations are listed. For
all interfacial tensions the iteration numbers of the linearization method are smaller for
XFE than for the standard finite elements. The iteration numbers of the Oseen-solver
are smaller for XFE elements with the exception of the middle interfacial tension,
where they are of comparable size. We conclude, that the iterative solvers are robust
with regard to the type of finite elements used for the pressure and that the better
discretization method leads to lower iteration counts of the iterative solvers. For both
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Fig. 5.8. velocity field, y = 0-plane, toluol-droplet in water left: NMR-image, right: Vh-Qγ
h

-
simulation

pressure-FE τ NS linearization Precond. GCR
1.63e-3 3.7 16.3

Qh 8.15e-3 4.2 20.6
32.6e-3 6.9 52.4
1.63e-3 3.0 12.0

Qγ
h 8.15e-3 3.6 21.6

32.6e-3 4.1 33.2
Table 5.2

average iterations per time step (over 10 time steps at the end of the computation)

finite-element types there is a dependence on the interfacial tension: Larger values of
τ make the problem more difficult for the iterative solvers.

To demonstrate the effect of the cut-off parameter ĉ from (3.5), we compare the
iteration numbers of the relaxed defect correction linearization method and of the
preconditioned GCR method for different values of ĉ for the toluol-water system in
Table 5.3. For ĉ = O(1) the iteration numbers remain constant. For ĉ below 1e-2
the iteration numbers increase rapidly. The quality of the discrete solution, however,
remains about the same for ĉ ∈ [0, 0.1].

Conclusions. Based on these experiments for a physically realistic two-phase lev-
itated droplet problem we draw the following two main conclusions. Firstly, the
extension of the standard linear finite element space for the pressure discretization
leads to a significant improvement. This improvement increases for larger interface
tension coefficients. For example, for a toluol-water system we obtain satisfactory
results using the XFE pressure discretization, whereas for the standard linear finite
element pressure space on the same triangulation the simulation does not yield phys-
ically realistic results. Secondly, the use of a cut-off technique in the XFE space, i.e.,
neglecting additional basis functions with “very small” support (as explained above),
significantly improves the converge rates of the iterative solvers used. This cut-off
technique is such that the good (even optimal) discretization quality is maintained.
Thus we can compute accurate discrete solutions with much lower computational
costs.
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ĉ NS linearization Precond. GCR
1e-0 4.2 44.1
1e-1 4.3 45.7
1e-2 4.2 45.2
1e-3 5.5 106.0
1e-4 6.5 169.9

Table 5.3

toluol/water: average iterations per time step (over 10 time steps at the beginning of the
computation)
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