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Abstract

In this article an unfitted Discontinuous Galerkin Method is proposed to discretize elliptic in-
terface problems. The method is based on the Symmetric Interior Penalty Discontinuous Galerkin
Method and can also be interpreted as a generalization of the method given in [A. Hansbo, P.
Hansbo, An unfitted finite element method based on Nitsche’s method for elliptic interface prob-
lems, Comp. Meth. Appl. Mech. Eng., Vol. 191, (2002), 5537–5552]. We prove the optimal
h-convergence of the method for arbitrary p in energy- and in L2-norm. In fact we present an
hp-error estimate. The analysis includes grids with hanging nodes and the proposed DG Method
is symmetric and inherits the attractive locality property of general Discontinuous Galerkin meth-
ods. A variant of the method is proposed which additionally behaves well with respect to the
pointwise error in the gradient. The behaviour of the methods in numerical experiments is dis-
played.

1 Introduction

This article addresses the use of unfitted grids in conjunction with Discontinuous Galerkin (DG) dis-
cretizations to obtain hp-convergent methods for the elliptic interface problems given in Problem 1.1.

Problem 1.1 (Elliptic Interface Problem) Let a polygonal domain Ω ⊂ IR2 be given which is
decomposed into Ω = Ω+ ∪ Ω−, such that Ω+ and Ω− have a Lipschitz-boundary, and an interface
Γ ≡ Ω+ ∩ Ω−. Furthermore, let a positive diffusion coefficient κ ∈ L∞(Ω) be given, with κ+ ≡
κ|Ω+ ∈ C(Ω+) and κ− ≡ κ|Ω− ∈ C(Ω−), as well as f ∈ L2(Ω), gD ∈ H1/2(∂Ω), jD ∈ H1/2(Γ),
jN ∈ L2(Γ). Find (u+, u−) ∈ H1(Ω+) ×H1(Ω−) such that

−div (κ+∇u+) = f in Ω+, (1)

−div (κ−∇u−) = f in Ω−, (2)

u+ = gD on ∂Ω ∩ ∂Ω+, (3)

u− = gD on ∂Ω ∩ ∂Ω−, (4)

u+ − u− = jD on Γ, (5)

κ+∂n+u+ − κ−∂n+u+ = jN on Γ. (6)

Here ∂n· denotes the directional derivative in direction n ∈ IR2 and n+ denotes the outward normal
of Ω+ on Γ.
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Problem 1.1 occurs in various applications: The case jD = jN = 0 models the stationary thermal
diffusion with a discontinuous conductivity κ across the (material) interface Γ. In Hele-Shaw flow
u is the pressure and jD is the pressure jump across Γ due to surface tension and jN = 0, see [12].
Furthermore, to approach Problem 1.1 with an unfitted grid method is fundamental to the numerical
simulation of multiphase problems. Unfitted grid methods are usually preferred to simulate time
dependent multiphase problems with moving phase fronts, and are often combined with the popular
level set method [17]. The major reason for choosing an unfitted grid method is that it avoids the
expensive remeshing required for fitted grid methods to maintain a good mesh quality. Nethertheless,
tackling multiphase problems with an unfitted grid approach requires special techniques to discretize
the multiphase balance laws at the phase front, where discontinuities of material properties as well
as jump conditions have to be encorporated. In this situtation it is by far more difficult to construct
optimally convergent discretizations of the multiphase balance laws than it is for fitted grid methods.

Various unfitted grid methods for Problem 1.1 have been proposed in the literature, falling mainly
into the class of Finite Element Methods or Finite Difference Methods. Typically a reference method
is adopted to handle the situation at the interface. Here the ultimate goal is to obtain practical
methods which do not loose the stability and convergence order of the reference method due to the
presence of the interface.

Most unfitted Finite Element Methods to solve Problem 1.1 utilize some form of penalization to
impose the jump conditions (5) and (6). A first step in this direction for the case jD = jN = 0 resulted
in a method with suboptimal h-convergence for arbitrary polynomial degree p of the shape functions
[3]. This method was again analyzed in [5] and shown to be optimally h-convergent for p = 1. The
latter work demanded more regularity from the exact solution, but took the approximation of Γ,
which is unavoidable in practize, into account. Employing a different penalization, in [11] optimal
h-convergence for p = 1 was proven in energy norm and in L2-norm for the case jD = 0. The
important thing is that the error estimates obtained are uniform with respect to the relative position
of the interface to the grid. Typically this requires the interface to be smooth and that its geometrical
features are well resolved by the grid, which is similarly required if a fitted grid method is analyzed,
as is the case in [8]. The Finite Element Method given in [10] does not employ a penalization but
constructs extensions of the data jD and gD.

Finite Difference Methods are very popular unfitted grid methods, as they can rely on the use
of cartesian grids, which are very attractive due to their simplicity. One such method is the Im-
mersed Interface Method [14], which is a nonsymmetric method and shows experimentally second
order convergence, employing near the interface a modification of the standard 5-point-stencil. The
immersed interface method, initially designed for Problem 1.1 has been developed further to treat
time dependent mulitphase problems, see [15] and the references therein. A different modification of
the standard centered difference is employed in [16], which results in a symmetric method, and shows
experimentally first order convergence. It is associated with the Ghost Fluid Method [9], and has been
used as a building block for the numerical simulation of multiphase flow problems, see [13]. Various
other Finite Difference Methods have been proposed, see for example [7] and the references therein.

To the author’s knowledge only h-convergence has been analyzed in the literature concerning
unfitted grid methods for Problem 1.1, where all theoretical results achieving optimal h-convergence
for multi dimensional problems restrict to the case p = 1, i.e. piecewise linear finite element shape
functions or second order finite differences are employed.

In the present article, we propose a DG Method based on the Symmetric Interior Penalty Discon-
tinuous Galerkin Method (SIPG) of [2] with a Nitsche-type penalization at the interface similar to
[11]. We prove the optimal h-convergence of the method for arbitrary p in energy- and in L2-norm.
In fact we present an hp-error estimate. With respect to p the estimate is slightly worse than the best
estimates known for DG Methods for elliptic problems without interface. The analysis includes grids
with hanging nodes and the proposed DG Method is symmetric and inherits the attractive locality
property of general DG methods. In particular the proposed method employs only changes of the
SIPG for grid cells which are cut by the interface and faces belonging to these cells. Actually we
introduce two methods. The first method converges in energy- and L2-norm, but numerical experi-
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ments reveal that the pointwise errors in the gradient are not controlled very well. A second method is
derived from the first by adding another penalty near the interface in order to control pointwise errors
in the gradient. This can be very important when Problem 1.1 is coupled to a transport equation,
as is the case in Hele-Shaw flow, where the transport velocity at the interface is determined from the
normal derivative of u, compare [12].

The key issues of our analysis can be described as follows: Our method is a nonconforming Galerkin
discretization and in particular it is nonconforming at the interface, similar to the method of [11].
When deriving error estimates for nonconforming methods one often utilizes inverse estimates. Em-
ploying an unfitted grid approach, the interface divides regular grid cells into possibly degenerated
subcells. If degenerated subcells occur, standard inverse estimates cannot be applied with uniform
constants. The way out of this dilemma is to weight terms in the Galerkin discretization, such that
the occurrence of degenerated subcells can be compensated for. To find these weights and inverse
estimates and to use them in an hp-error analysis are the major steps in the present article. The
overall framework of the analysis is similar to [18], where the Local DG Method is applied for an
elliptic problem without interface.

The article is organized as follows: In Section 2 we introduce our DG Method, pointing out its
relation to the SIPG and the method in [11]. In Section 3.8 we prove the error estimates, and propose
a variant of our DG Method, introducing an additional penalty near the interface. In Section 4 we
display the behaviour of both methods in numerical experiments. In the Appendices A, B, C we
recapitulate some notations concerning norms, some basic facts about shape-regularity of triangles
and some results from the literature which are needed in the present work.

2 The Discontinuous Galerkin discretization

Before we propose our method for Problem 1.1 we review the SIPG and introduce the DG notation
needed. In particular we consider the SIPG for Problem 2.1 in order to see how Dirichlet and Neumann
boundary conditions are imposed.

2.1 The Symmetric Interior Penalty DG Method (SIPG)

Problem 2.1 (Mixed Problem) Given a polygonal domain Ω ⊂ IR2, the boundary consisting of
two disjoint parts, namely ∂Ω = ∂ΩD ∪ ∂ΩN , and given further κ ∈ C(Ω), f ∈ L2(Ω) and gD ∈
H1/2(∂ΩD), gN ∈ L2(∂ΩN ), find u ∈ H1(Ω) satisfying







−div (κ∇u) = f in Ω,
u = gD on ∂ΩD,

κ ∂nu = gN on ∂ΩN .
(7)

We formulate the SIPG for Problem 2.1: Given a triangulation Th of the domain Ω, and for each
T ∈ Th a polynomial degree pT ∈ {1, 2, 3, ...}, the DG space is

Sp(Th) ≡ {v ∈ L2(Ω) : v|T ∈ P pT (T ) ∀ T ∈ Th} ,
where the p in Sp stands for the array of polynomial degrees pT . For the faces of the triangulation
Th we introduce the sets

E(Th) ≡ {e : e is a face of a triangle T ∈ Th, and either e ⊂ ∂Ω or

there exists another triangle T̃ ∈ Th, T̃ 6= T , such that e = T ∩ T̃},
EI(Th) ≡ {e ∈ E(Th) : e 6⊂ ∂Ω},
ED(Th) ≡ {e ∈ E(Th) : e ⊂ ∂ΩD},
EN(Th) ≡ {e ∈ E(Th) : e ⊂ ∂ΩN}.
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(a)
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nT

T̃

(b)

e e′

e′′Γ Ω+

Ω−

(c)

e
e′

Γ Ω+

Ω−

Figure 1: (a): ω(e) = {T, T̃}. (b), (c): Faces e in the vicinity of the interface.

The neighbourhood of an edge e ∈ E(Th) is

ω(e) ≡
{

{T, T̃ : e = T ∩ T̃ for T, T̃ ∈ Th}, if e ∈ EI(Th),

{T : e = T ∩ ∂Ω for T ∈ Th}, if e ∈ ED(Th) ∪ EN(Th),

which is the shaded region for face e in Fig. 1(a). Finally, for e ∈ EI(Th) with {T, T̃} = ω(e), we
introduce mean value, jump and normal: For T ∈ Th let i(T ) denote the number of the grid cell T ,
then if i(T ) < i(T̃ ), we define

v ≡ 1

2
(v|T + v|T̃ ) and [v] ≡ v|T − v|T̃ , (8)

the unit normal n on e is the outward normal for T .

For the purpose of stabilizing the method, along e ∈ EI(Th)∪ED(Th), we will make use of the weights

σe ≡ γ · max
T∈ω(e)

p2
T / min

T∈ω(e)
hT . (9)

Now, employing the DG space Vh = Sp(Th), the SIPG for Problem 2.1 is to find uh ∈ Vh such that
for all φ ∈ Vh we have (compare [19])

(f, φ)Ω =
∑

T∈Th

(κ∇uh,∇φ)T

+
∑

e∈EI(Th)

− (κ∂nuh, [φ])e − (κ∂nφ, [uh])e + σe · (κ[uh], [φ])e

+
∑

e∈EN (Th)

− (gN , φ)e +
∑

e∈ED(Th)

− (κ∂nuh, φ)e − (κ∂nφ, uh − gD)e + σe · (κ(uh − gD), φ)e . (10)

For the case ∂Ω = ∂ΩD, a rather elegant error analysis can be found in [18], where the Local Discon-
tinuous Galerkin Method is analyzed. This error analysis carries over to the SIPG, which is actually
a simple consequence of our results in Theorems 3.14, 3.15, and yields the following error estimates
for the case ∂Ω = ∂ΩD: Assuming γ > 0 to be sufficiently large and the exact solution u to satisfy
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Γ
Ω+

Ω−

Th

Figure 2: Domains and grid Th.

u ∈ Hs(Ω), and u|T ∈ HsT (T ) for each T ∈ Th, we have

||u− uh||2h ≤ C
∑

T∈Th

h
2min {pT +1,sT }−2
T

p2sT −3
T

||u||2sT ,T ,

||u− uh||0,Ω ≤ C
hmin {p+1,s}

ps−1
||u||s,Ω .

(11)

Here h = maxT∈Th
hT , p = minT∈Th

pT and the grid dependent energy norm || · ||h is given by

||u||2h =
∑

T∈Th

(κ∇u,∇u)T +
∑

e∈EI(Th)

σe · (κ[u], [u])e +
∑

e∈ED(Th)

σe · (κu, u)e . (12)

2.2 Discretization of Elliptic Interface Problem

Let us first note that Problem 1.1 can be put in a variational form and shown to have a unique
solution. This is done in [10] by lifting the conditions (3), (4) and (5), i.e. by introducing (ũ+, ũ−) ∈
H1(Ω+) × H1(Ω−) which satisfy (3), (4) and (5), and then reducing Problem 1.1 to a variational
equation in H1

0 (Ω).
In order to keep some technicalities, which do not effect the essentials of our result, out of the

presentation, we consider Problem 1.1 under the following assumption:

Assumption 2.2 We assume that κ+ and κ− are constants and that gD = 0 in Problem 1.1.
Furthermore we assume that Ω+ ⊂⊂ Ω, i.e. Γ ∩ ∂Ω = ∅, ∂Ω+ = Γ, ∂Ω− = Γ ∪ ∂Ω.

We introduce the interface dependent DG spaces V +
h and V −

h and further notation neccessary to
define the DG method for Problem 1.1: For e ∈ E(Th) we use the abbreviation e+ ≡ e ∩ Ω+, resp.
e− ≡ e ∩Ω−. Similarly for elements T ∈ Th we set T+ ≡ T ∩Ω+, T− ≡ T ∩ Ω−, T 0 ≡ T ∩ Γ. Then
we define

T +
h ≡

{

T ∈ Th : |T+| > 0
}

, T −
h ≡

{

T ∈ Th : |T−| > 0
}

, T 0
h ≡ T +

h ∩ T −
h ,

E+
h ≡

{

e ∈ E(Th) : |e+| > 0
}

, E−
h ≡

{

e ∈ E(Th) : |e−| > 0
}

, E0
h ≡ E+

h ∩ E−
h ,

V +
h ≡

{

v|Ω+ : v ∈ Sp+

(T +
h )
}

, V −
h ≡

{

v|Ω− : v ∈ Sp−

(T +
h )
}

, Vh ≡ V +
h × V −

h ,

V + ≡ H1(Ω+), V − ≡ H1(Ω−), V ≡ V + × V −.
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T +
h T −

h

Figure 3: Grids T +
h and T −

h .

See Fig. 2 and Fig. 3 for an illustration of Ω±, Th, Th
±. To illustrate E±

h see Fig. 1(b),(c): Although
ω(e) ⊂ Th

0 for face e of Fig. 1(b), we have e ∈ E+
h but e /∈ E−

h . For face e of Fig. 1(c) we have
e ∈ E−

h but e /∈ E+
h .

In Lemmas 3.2, 3.4 we are going to impose conditions on the interface and the grid, which will be
needed in the convergence analysis. These conditions ensure the smoothness of the interface and that
the geometrical features of the interface are captured by the grid. A first condition which addresses
the same issue is given now.

Assumption 2.3 For the geometrical features of the interface to be well resolved by the grid, we
demand that for each T ∈ T 0

h the intersection ∂T ∩ Γ consists of exactly 2 points which lie on
different faces of T . Furthermore, in analogy to Assumption 2.2 we demand that E(T 0

h )∩ED(Th) = ∅.

For e ∈ EI(Th) with {T, T̃} = ω(e), respectively for e ∈ ED(Th) with T = ω(e), we redefine (8) for
v± ∈ V ±

h by

v± ≡ 1

2
(v±|T + v±|T̃ ) on e ∈ E±

h \ ED(Th) if T /∈ T 0
h and T̃ /∈ T 0

h , (13)

v± ≡ λ±e v
±|T + λ̃±e v

±|T̃ on e ∈ E±
h \ ED(Th) if T ∈ T 0

h or T̃ ∈ T 0
h , (14)

v± ≡ v±|T on e ∈ E±
h ∩ ED(Th), (15)

[v±] ≡ v±|T − v±|T̃ on e ∈ E±
h \ ED(Th) if i(T ) < i(T̃ ),

[v±] ≡ v±|T on e ∈ E±
h ∩ ED(Th),

where we have replaced the mean value by convex combinations in the vicinity of the interface, i.e.
the λ should satisfy

0 ≤ λ±e , λ̃
±
e ≤ 1, λ±e + λ̃±e = 1, for e ∈ E±

h \ ED(Th) if T ∈ T 0
h or T̃ ∈ T 0

h .

Note that for the faces indicated in Fig. 1(b) the following definitions for v± apply: Along e ∈ E+
h \E−

h ,

(14) applies for v+ and along e′ ∈ E0
h, (14) applies for v±. Similarly for the faces in Fig. 1(c) we

have: e, e′ ∈ E−
h \ E+

h and (14) applies for v−. The only face, that does not ly on the boundary of
the grid sections shown in Fig. 1(b),(c) and for which (13) applies, is the face e′′ of Fig. 1(b), which
satisfies e′′ ∈ E+

h \ E−
h .
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Let us also introduce weights along interface sections T 0, which will be needed very soon,

0 ≤ λ+
T , λ

−
T ≤ 1, λ+

T + λ−T = 1, for T ∈ T 0
h . (16)

The exact choice of the λ will be given in Lemmas 3.2, 3.4. In order to give an idea about this choice,
for the moment we provide a slightly different choice,

λ±e ≡ |T±|
|T±| + |T̃±|

, λ̃±e ≡ |T̃±|
|T±| + |T̃±|

on e ∈ E±
h \ ED(Th) if T± ∈ T 0

h or T̃± ∈ T 0
h , (17)

λ+
T ≡ |T+|/|T |, λ−T ≡ |T−|/|T | for T ∈ T 0

h . (18)

Finally, in analogy to (9), we introduce

p±e ≡ max
T∈ω(e)

p±T for e ∈ E±
h ,

σ±
e ≡ γ ·

(

p±e )2 · |e±|−1 for e ∈ E±
h ,

p0
T ≡ max {p+

T , p
−
T } for T ∈ T 0

h ,

κ0 ≡ max {κ+, κ−},
σ0

T ≡ γ · (p0
T )2 · (hT )−1 for T ∈ T 0

h .

Now we propose the DG Method to approximate Problem 1.1 with Assumptions 2.2, 2.3:

Find u+
h ∈ V +

h , u−h ∈ V −
h , such that

∑

T∈T +
h

(κ+∇u+
h ,∇φ)T+ +

∑

e∈E+
h

−(κ+∂nu
+
h , [φ])e+ − (κ+∂nφ, [u

+
h ])e+ + σ+

e · (κ+[u+
h ], [φ])e+

+
∑

T∈T 0
h

−λ−T (jN + κ−∂n+u−h , φ)T 0 − λ+
T (κ+∂n+u+

h , φ)T 0 − λ+
T (κ+∂n+φ, u+

h − u−h − jD)T 0

+ σ0
T · (κ0(u+

h − u−h − jD), φ)T 0

= (f, φ)Ω+

for all φ ∈ V +
h (19)

and
∑

T∈T −
h

(κ−∇u−h ,∇φ)T− +
∑

e∈E−
h

−(κ−∂nu
−
h , [φ])e− − (κ−∂nφ, [u

−
h ])e− + σ−

e · (κ−[u−h ], [φ])e−

+
∑

T∈T 0
h

−λ+
T (jN + κ+∂n−u+

h , φ)T 0 − λ−T (κ−∂n−u−h , φ)T 0 − λ−T (κ−∂n−φ, u−h − u+
h + jD)T 0

+ σ0
T · (κ0(u−h − u+

h + jD), φ)T 0

= (f, φ)Ω−

for all φ ∈ V −
h (20)

Equation (19) can be interpreted as derived from (10) by imposing both a Dirichlet condition and a
Neumann condition on T 0 with

gD = jD + u−h ,

gN = jN + κ−∂n+u−h ,
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and in order to ensure consistency, we use a convex combination of the terms from (10):

−λ−T (gN , φ)T 0 − λ+
T (κ∂n+u+

h , φ)T 0 − λ+
T (κ∂n+φ, u+

h − gD)T 0

An analogous interpretation can be given for (20). This treatment together with the penalty terms
σ0

T · (κ0(u+
h − u−h − jD), φ)T 0 is in fact a discretization along the interface already employed in [11].

That this is so, can be read off more clearly from the formulation of the DG Method given below
in (22). Our DG Method employs the unfitted spaces V ±

h ≡ Sp±

(T ±
h ) to approximate Problem 1.1.

If (u+
h , u

−
h ) ∈ Vh is the solution of (19) & (20), then we are actually only interested in u+

h |Ω+ and
u−h |Ω− .

For the purpose of writing the system (19) & (20) compactly as one variational equation, for
v ≡ (v+, v−), w ≡ (w+, w−) ∈ Vh we set

[v] ≡ v+ − v− on T 0 for T ∈ T 0
h

v ≡ λ+
T v

+ + λ−T v
− on T 0 for T ∈ T 0

h (21)

〈v, w〉T ≡ (v+, w+)T+ + (v−, w−)T−

〈v, w〉e ≡ (v+, w+)e+ + (v−, w−)e− .

Note that these formulaes are to be understood with priority given to the operations · , [ · ], 〈·, ·〉, e.g.
∂nv = λ+

T ∂nv
+ + λ−T ∂nv

−. Summing (19) and (20) yields our DG Method in the following form:

Find u ≡ (u+
h , u

−
h ) ∈ Vh, such that

∑

T∈Th

〈κ∇u,∇φ〉T +
∑

e∈E(Th)

−〈κ∂nu, [φ]〉e − 〈κ∂nφ, [u]〉e + 〈σe κ [u], [φ]〉e

+
∑

T∈T 0
h

− (κ∂n+u, [φ])T 0 − (κ∂n+φ, [u])T 0 + σ0
T · (κ0[u], [φ])T 0

=
∑

T∈Th

〈f, φ〉T +
∑

T∈T 0
h

λ−T (jN , φ
+)T 0 + λ+

T (jN , φ
−)T 0 − (κ∂n+φ, jD)T 0 + σ0

T · (κ0jD, [φ])T 0

for all φ ≡ (φ+, φ−) ∈ Vh, (22)

where we have used f±(x) ≡ f(x) for x ∈ Ω±. The l.h.s. of (22) defines the bilinear form Bh(u, φ) :
Vh × Vh → IR, whereas the r.h.s defines the linear functional Fh(φ) : Vh → IR. We easily see that
Bh is symmetric. In fact with the choice (18) the method reduces to the method of [11], if we replace
V +

h by V +
h ∩ V + and V −

h by {v ∈ V −
h ∩ V − : v = 0 on ∂Ω} and use p±T = 1 for all T ∈ Th. Taking

jD = 0 as in [11], this reads
∑

T∈Th

〈κ∇u,∇φ〉T +
∑

T∈T 0
h

− (κ∂n+u, [φ])T 0 − (κ∂n+φ, [u])T 0 + σ0
T · (κ0[u], [φ])T 0

=
∑

T∈Th

〈f, φ〉T +
∑

T∈T 0
h

λ−T (jN , φ
+)T 0 + λ+

T (jN , φ
−)T 0 .

In [11] the use of (18) was crucial for proving coercivity of the bilinear form.

3 Convergence analysis

3.1 Assumptions on grid and interface

For the convergence analysis to work, additionally to Assumption 2.3 we will require some more
conditions regarding the smoothness of the interface Γ, the regularity of the grid Th, and we will
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Ω−

Ω−
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Figure 4: (a): T ∈ ω(e) for 6 different e ∈ E(Th). (b): Ω+ locally looks like a tube containing face e.
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Figure 5: Cone condition for Ω+.
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demand that the geometrical features of the interface are resolved by the grid. These conditions are
made precise in Assumption 3.1 below and in Assumption 3.3 later on.

Assumption 3.1 For the smoothness of Γ we require that

Ω+ and Ω− both satisfy the uniform Cm–regularity property, in the sense of [1], page 84. (23)

For the regularity of the grid we assume a constant ̺ ≥ 2 to be given such that

̺ rT ≥ hT ∀ T ∈ Th and each interior angle of each T ∈ Th is ≤ π/2. (24)

For the grading of the polynomial degrees p±T and the grading of the grid we require the existence of
positive constants G1, G2, G3 such that

1

G1
≤ p±T

p±
T̃

≤ G1, if {T, T̃} = ω(e), e ∈ E±
h , (25)

1

G1
≤ p+

T

p−T
≤ G1, if T ∈ T 0

h , (26)

#{e ∈ E(Th) : T ∈ ω(e)} ≤ G2, if T ∈ Th, (27)

hT ≤ G3|e|, if T ∈ ω(e), e ∈ E(Th). (28)

For the geometrical features of the interface to be well resolved by the grid, we require that a constant
M1 > 0 is given, such that whenever (14) applies for v±, i.e. when e ∈ E±

h with {T, T̃} = ω(e) and

T ∈ T 0
h or T̃ ∈ T 0

h , then triangles S± ⊂ T±, S̃± ⊂ T̃± exist, such that e± is a face of both S± and

S̃±, and
|S±| + |S̃±| ≥ |e±|2/M1 . (29)

Here S±, S̃± are allowed to degenerate, i.e. |S±| = 0 or |S̃±| = 0 is allowed.

Condition (23) ensures that we can find smooth extensions of both parts of the solution, namely
of u+ and u−, compare Theorem C.5. The shape regularity in (24) is well-known, the additional
condition that the interior angles are not greater than π/2 is typically met by triangular grids used
in practize, and the condition only serves to avoid the consideration of too many cases in the proofs
of Lemma 3.4, 3.5, 3.6. Condition (25) is well-known for DG Methods, (26) is an obvious analogue at
the interface. Conditions (27) and (28) are typically met in practize. Let us shortly find the constants
in the common case that initially we have a coarse triangulation of Ω without hanging nodes and that
Th is obtained by refinements of the coarse triangulation, where a triangle refinement is performed
by dividing a triangle into four congruent subtriangles. We assume that on each face of T ∈ Th not
more than one hanging node can occur, see Fig. 4(a). Then we have G2 = 6, and making use of (24)
we obtain hT ≤ ̺ rT ≤ ̺ |eT |/2 ≤ ̺ |e|, where eT is the face of T with e ⊂ eT , so that G3 = ̺.

Finally we explain why (29) is a plausible assumption, if (23), (24) hold and the geometrical
features of the interface are resolved by the grid: Assume first that Γ intersects e, x = Γ ∩ e.
Condition (23) yields the cone condition, see [1], page 84, valid from both sides of Γ. Let C be
the corresponding cone in Ω+ with its tip at x and denote by Ĉ the largest cone contained in
Ω+ which has tip and tip angle in common with C, compare Fig. 5(a). Let hĈ be the diameter

of Ĉ. Then we can say that the geometrical features of the interface are resolved by the grid, if
|e| ≤ hĈ , i.e. |e+| ≤ hĈ . Obviously, |Ĉ| ≥ h2

Ĉ
M ′

1, where M ′
1 depends on the tip angle. Similarly,

|Ĉ ∩ (T+ ∪ T̃+)| = |Ĉ ∩ T+| + |Ĉ ∩ T̃+| ≥ |e+|2/M1 for a constant M1 depending on the tip angle
and ̺. This yields (29) since we can choose S+ and S̃+ such that S+ ⊃ Ĉ ∩ T+ and S̃+ ⊃ Ĉ ∩ T̃+.
In the case that Γ does not intersect e, as in Fig. 4(b) or Fig. 5(b), we can define d ≡ dist(T 0, T̃ 0).
Now either we need |e| to be on the scale of d as in Fig. 4(b) and so again (29) follows. Or d≪ |e|
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and Γ gets very close to an end point of e as in Fig. 5(b), and |e| is on the scale of Ĉ. Here C and
Ĉ are as above but with their tip in the end point of e. This implies (29) again.

These comments on Assumption 3.1 reveal two important observations: First (23)–(29) allow Γ
to pass through the grid by getting arbitrarily close to grid vertices and by cutting faces at arbitrarily
small angles. In this sense the constructed method is stable with respect to the relative position of
the interface to the grid. We require only that Γ is smooth and that its geometrical features are
resolved by the grid. Secondly, if an interface fitted grid was used, good quality meshes also require
that we resolve the geometrical features of Γ. If the fitted mesh is on the scale of our unfitted meshes
as shown in Fig. 4(b) and Fig. 5, then the cone angles will also enter the convergence analysis of the
fitted method.

3.2 Inverse estimate at the interface

In the following lemma we redefine (17) by replacing T±, T̃± by S±, S̃± from Assumption 3.1. In
Section 4 we employ a simple approximation of the sets S±, S̃±. How to find more sophisticated
approximations will be detailed elsewhere.

Lemma 3.2 (Inverse estimates at the interface) For e ∈ E±
h let {T, T̃} = ω(e) and let corre-

sponding S±, S̃± exist as in Assumption 3.1 and such that (29) holds. Then, setting

λ±e =
|S±|

|S±| + |S̃±|
,

we have

λ±e ||v||20,e± ≤ C(3.2)
p2

|e±| ||v||
2
0,T± ∀ v ∈ P p(T ),

where C(3.2) = M1C(66).

Proof:

λ±e ||v||20,e± ≤ M1|S±|
|e±|2 ||v||20,e± ≤ M1C(66) p

2

|e±| ||v||20,S± ≤ M1C(66) p
2

|e±| ||v||20,T± �

Next we explore how a similar estimate can be derived for λ±T ||v||20,T 0 . For this purpose, we choose

local coordinates in T±. In the following steps we point out, how to choose these coordinates, based
on a few decisions concerning the relative position of T 0 within T . We refer to Fig. 6–8 for an
illustration.

• Let T 0
1 denote the straight interface approximation of T 0, which is obtained by connecting the

two intersection points of Γ and ∂T by a straight line, see Fig. 6.

• T 0
1 divides T into a triangle, denoted by T△

1 , and a quadrilateral, denoted by T�
1 . Similarly,

T 0 divides T into a triangle with a curved side, denoted by T△, and a quadrilateral with a
curved side, denoted by T�. In each case, the curved side is T 0, see Fig. 7 and Fig. 8(a). We
have T± = T△ ⇔ T∓ = T�. In Fig. 6–8 we display points lying on Γ by a circular symbol,
whereas points which do not belong to Γ, but do belong to T△, respectively T�, are displayed
with a triangular symbol, respectively a square symbol.

• Angle condition: Find the face that is closest to being parallel to T 0
1 , i.e. find the face that

creates the smallest angle with T 0
1 ; the smallest angle is α in Fig. 6. Denote this face by e∗.

Denote by N∗ the node opposite to e∗.
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(a)

T 0
1

α

N∗

T�
1

T△
1

e∗

(b)

T 0
1

α

N∗

T�
1

T△
1

e∗

Figure 6: Straight interface approximation T 0
1 and angle condition.

(a)

T 0

N∗

T�

T△ M∗

(b)

T 0

M∗

N∗

N1

N2

T�

T△

Figure 7: (a): Case (A). (b): Case (B)-(C).
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(a)

T 0

e∗

N∗

N1

N2

T�

T△

(b)

S

N∗

N1

N2

e∗

Figure 8: (a): Case (B)-(D). (b): The domain S ⊂ T� defined in (D).

• Choice of local coordinates:

(A) If N∗ ∈ T�
1 , denote by M∗ the node of T , such that M∗ ∈ T△

1 . Use polar coordinates in
T� with center N∗, and polar coordinates in T△ with center M∗, see Fig. 7(a).

(B) Else, i.e. if N∗ ∈ T△
1 , denote by M∗ the midpoint of e∗. Use polar coordinates in T△

with center N∗, see Fig. 7(b) and 8(a).

(C) If (T 0 \ T 0
1 ) ∩ T�

1 = ∅, use polar coordinates in T� with center M∗, see Fig. 7(b).

(D) Else, use e∗ and the inward normal on e∗ as coordinate system in T�, see Fig. 8(a).

Note, that the steps above uniquely determine the local coordinate system and that exactly one of the
three cases (A), (B)-(C), (B)-(D) occurs. In (A), (B), (C) polar coordinates are used, thereas in (D)
cartesian coordinates are used. We consider the two different types of coordinate systems separately:

Polar coordinates (A), (B), (C): Let S be T△ or T� and assume that S is star-shaped with
respect to Z, where Z = N∗ if N∗ ∈ S and Z = M∗ if M∗ ∈ S.

We define polar coordinates,

ψ(θ, r) = Z + r ·
(

cos (θ)
sin (θ)

)

, 0 ≤ r ≤ R(θ), θ ∈ [θ1, θ2], (30)

where R(θ) ∈ C1[θ1, θ2] is such that

T 0 ⊂ {ψ(θ,R(θ)) : θ ∈ [θ1, θ2]} ,
S = {ψ(θ, r) : 0 ≤ r ≤ R(θ), θ ∈ [θ1, θ2]}.

Introducing the intervals Iθ := (0, R(θ)) and using Theorem C.2, we find for arbitrary v ∈ P p(T )
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that

R(θ)2v(ψ(θ,R(θ)))2 =

∫

Iθ

∂

∂r

(

r2v(ψ(θ, r))2
)

dr

≤ 2

∥

∥

∥

∥

∂

∂r
(rv)

∥

∥

∥

∥

0,Iθ

‖rv‖0,Iθ

≤ 2C(64)
(p+ 1)2

R(θ)
‖rv‖2

0,Iθ

≤ 8C(64) p
2

∫

Iθ

r v(ψ(θ, r))2 dr .

Here we have used that, for constant θ, r v(ψ(θ, r)) is a polynomial in r, which is of degree ≤ p+ 1.
Introducing Rmin and assuming constants M2,M3 > 0 to exist, such that

Rmin := min
θ∈[θ1,θ2]

R(θ) (31)

|R′(θ)| ≤ M2 · hT (32)

Rmin ≥ hT /M3, (33)

we obtain

‖v‖2
0,T 0 ≤

∫ θ2

θ1

v(ψ(θ,R(θ)))2
∥

∥

∥

∥

∂

∂θ
ψ(θ,R(θ))

∥

∥

∥

∥

2

dθ

=

∫ θ2

θ1

v(ψ(θ,R(θ)))2
√

R′(θ)2 +R(θ)2 dθ

≤
√

M2
2 + 1

∫ θ2

θ1

hT v(ψ(θ,R(θ)))2dθ (34)

≤ 8C(64)

√

M2
2 + 1

p2hT

R2
min

∫ θ2

θ1

∫

Iθ

r v(ψ(θ, r))2dr dθ .

Thus our final result for (A), (B), (C) is that if (32) and (33) are satisfied, then

‖v‖2
0,T 0 ≤ C(35)

p2

hT
‖v‖2

0,S ∀ v ∈ P p(T ), (35)

where C(35) = 8C(64)M
2
3

√

M2
2 + 1.

Cartesian coordinates (D): Let N1, N2 be nodes of T , such that e∗ = N1N2 and let n be the
inward pointing unit normal on the face e∗ of T . We define the local coordinates (s, r) by

ψ(s, r) = N1 + s (N2 −N1) + r n,

and we assume that R ∈ C1[s1, s2], [s1, s2] ⊂ [0, 1], such that

T 0 = {ψ(s,R(s)) : s ∈ [s1, s2]} ,
S := {ψ(s, r) : s ∈ [s1, s2], r ∈ [0, R(s)]} ⊂ T�,

compare Fig. 8(b). Introducing Is := (0, R(s)), similar to our treatment for polar coordinates, we can
estimate

R(s)2v(ψ(s,R(s)))2 =

∫

Is

∂

∂r

(

r2v(ψ(s, r))2
)

dr

≤ 2C(64) (p+ 1)2
∫

Is

r v(ψ(s, r))2 dr

≤ 8C(64) p
2R(s)

∫

Is

v(ψ(s, r))2 dr.
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Similar to (31), we define

Rmin = min
s∈[s1,s2]

R(s)

and assuming again (32), (33), we obtain

v(ψ(s,R(s)))2 ≤ 8C(64)M3 p
2

hT

∫

Is

v(ψ(s, r))2 dr ∀ s ∈ [0, 1].

We have
∇ψ = (N2 −N1, n ) , |det∇ψ| = ||N2 −N1||2

and assuming further (24) to hold, we estimate

‖v‖2
0,T 0 =

∫ s2

s1

v(ψ(s,R(s)))2 ||ψs + ψr R
′||2 ds

≤
∫ s2

s1

v(ψ(s,R(s)))2 (1 +M2)hT ds (36)

≤ 8C(64)M3 (1 +M2) p
2

||N2 −N1||2

∫ s2

s1

∫

Is

v(ψ(s, r))2 |det∇ψ| dr ds,

≤ 8C(64)M3 (1 +M2) p
2

2 rT
‖v‖2

0,S ,

which yields

‖v‖2
0,T 0 ≤ C(37)

p2

hT
‖v‖2

0,T � ∀ v ∈ P p(T ) , (37)

where C(37) = 4 ̺C(64)M3 (1 +M2).

The reason for introducing the two cases (B)-(C) and (B)-(D) for T�, and not just to stick to only
one of the two cases, is the following: In Fig. 9 we have two harmless looking interface sections, with
moderate curvatures. If we used case (B)-(D) for T� given in Fig. 9(a), then (33) would be violated,
since T 0 gets very close to N2 . If we used case (B)-(C) for T� given in Fig. 9(b), then (32) would
be violated, since T 0 is tangential to a line of constant polar angle.

The above analysis reveals the assumptions under which we can obtain the inverse estimate (35),
respectively (37). We will see that it suffices that the inverse estimate holds either for T△ or for T�.
Thus we demand:

Assumption 3.3 For the geometrical features of the interface to be well resolved by the grid, we
require that positive constants M2, M3 are given, such that for each T ∈ T 0

h according to the choice
of local coordinates, i.e. case (A), (B)-(C) or (B)-(D), we have that for T△ or for T� the local
coordinates are well-defined and both (32) and (33) hold.

As a consistency check for Assumption 3.3 we determine in Lemma 3.6 the constants M2, M3 for
the case that T 0 is a straight line that cuts arbitrarily through T . Note that the better we resolve
Γ, the less T 0 deviates from T 0

1 , which is a straight line approximation for T 0. The constants M2,
M3 given in Lemma 3.6 may also be valuable for an implementation of the method, namely we may
choose M2, M3 as given in Lemma 3.6, or larger, then check approximately if the conditions (32)
and (33) are satisfied for T△ or for T�, and if the conditions are not satisfied for both subsets of T ,
then we refine T .

But first, we formulate what results from (35) and (37) in Lemma 3.4, and deduce a local trace
inequality in Lemma 3.5, which is proved with techniques similar to the ones used for Lemma 3.4.
Note that in Lemma 3.4, the choice λ±T = |T±|/|T | is of no significance. It merely constitutes a
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(a)

T 0

M∗

N∗

N1

N2

T�

(b)

T 0

M∗

N∗

N1

N2

T�

Figure 9: Neccessity for introducing the two cases (B)-(C) and (B)-(D).

smooth transition between the extreme cases λ±T = 0 and λ±T = 1. In [11] only λ±T = |T±|/|T |
was used, since there it was sufficient to prove the inverse estimate λ±T ||v||20,T 0 ≤ C

hT
||v||20,T± for

v ∈ P 0(T ).

Lemma 3.4 (Inverse estimates at the interface) Let Assumption 3.3 hold and let T ∈ T 0
h sat-

isfy (24). Then setting

λ±T =







|T±|/|T | if (32) and (33) hold for both T± and T∓

1 if (32) and (33) hold only for T±

0 if (32) and (33) hold only for T∓,

we have

λ±T ||v||20,T 0 ≤ C(3.4)
p2

hT
||v||20,T± ∀ v ∈ P p(T ),

where C(3.4) = max{8C(64)M
2
3

√

M2
2 + 1, 4 ̺C(64)M3 (1 +M2)}.

Proof: The lemma is an immediate consequence of the estimates (35) and (37). �

Lemma 3.5 (Local trace inequality at the interface) Let Assumption 3.3 hold and let T ∈ T 0
h

satisfy (24). Then, using λ±T as in Lemma 3.4, we have

λ±T ||v||20,T 0 ≤ C(3.5)

(

p

hT
||v||20,T± +

hT

p
|v|21,T±

)

∀ p ≥ 1, v ∈ H1(T±),

where C(3.5) = max{4M2
3

√

M2
2 + 1, 2 ̺M3(1 +M2)}.
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Proof: We consider again (A), (B), (C) together, using the polar coordinates (30), but now we estimate

R(θ)2v(ψ(θ,R(θ)))2 =

∫

Iθ

∂

∂r

(

r2v(ψ(θ, r))2
)

dr

= 2

∫

Iθ

r2 v
∂v

∂r
+ r v2 dr

= 2

∫

Iθ

r2 v∇v · (cos(θ), sin(θ))T + r v2 dr

≤ 2

∫

Iθ

r2 |v| ||∇v||2 + r v2 dr

≤ 2

∫

Iθ

r (hT |v| ||∇v||2 + v2) dr .

Assuming (32), (33) to hold, from (34) we continue estimating

‖v‖2
0,T 0 ≤ 2

√

M2
2 + 1

hT

R2
min

∫ θ2

θ1

∫

Iθ

r (hT |v| ||∇v||2 + v2) dr dθ

≤ 2
√

M2
2 + 1

hT

R2
min

(

hT ‖v‖0,S |v|1,S + ‖v‖2
0,S

)

≤ 2
√

M2
2 + 1

h2
T

R2
min

(

p

hT
‖v‖2

0,S +
hT

p
|v|21,S +

1

hT
‖v‖2

0,S

)

≤ 4M2
3

√

M2
2 + 1

(

p

hT
‖v‖2

0,S +
hT

p
|v|21,S

)

.

For (D) we have

R(s)2v(ψ(s,R(s)))2 = 2

∫

Is

r2 v∇v · n + r v2 dr

≤ 2R(s)

∫

Is

hT |v| ||∇v||2 + v2 dr ,

and assuming (32), (33) to hold, from (36) we continue estimating

‖v‖2
0,T 0 ≤ (1 +M2)hT

||N2 −N1||2

∫ s2

s1

∫

Is

v(ψ(s, r))2 |det∇ψ| dr ds

≤ 2 (1 +M2)hT

||N2 −N1||2 Rmin

∫ s2

s1

∫

Is

(hT |v| ||∇v||2 + v2) |det∇ψ| dr ds

≤ 4 (1 +M2)h
2
T

||N2 −N1||2 Rmin

(

p

hT
‖v‖2

0,S +
hT

p
|v|21,S

)

≤ 2 ̺M3(1 +M2)

(

p

hT
‖v‖2

0,S +
hT

p
|v|21,S

)

. �
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(a)

T 0

α

T 0

α
e∗ N2

N∗

N1

γ1 γ2

(b)

γ1 γ2

M∗

δ

·

H

H∗

Figure 10: Illustrations for proof of Lemma 3.6. (a): Angles α, γ1, γ2. (b): Case (B)-(C).

(a)

θ

T 0

α
·

R(θ) H

e∗ N2

N∗

N1

γ1 α

e

(b)

T 0

α

γ1

H ′

·

H

·

N2

N∗

N1 N1 + s1(N2 − N1)

e1

e0

Figure 11: Illustrations for proof of Lemma 3.6. (a): Cases (A). (b): Case (B)-(D).

(a)

T 0

α

α

M∗ N2

N∗

N1

γ1 γ2β2β1

θ

· L

(b)

T 0

α

H2

·

M∗ N2

N∗

N1

γ1 α H1
·

e1

e0

e2

Figure 12: Illustrations for case (B)-(C) in proof of Lemma 3.6.
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Lemma 3.6 (Well-resolvedness in case of straight interface sections) Let T ∈ T 0
h satisfy

(24) and let the interface section T 0 be straight, i.e. T 0 = T 0
1 . Then Assumption 3.3 is satisfied with

M2 = max

{

sin (θ∗∗)

cos2 (θ∗∗)
, 1

}

,

M3 =
̺

sin (ϑ(̺)/2)
,

where

θ∗ =
π − ϑ(̺)

2
,

δ∗ = arccos

(

sin (ϑ(̺))

̺

)

,

θ∗∗ = max{δ∗, θ∗} < π/2.

and ϑ(̺) is the smallest angle that can occur in a ̺-regular triangle, see (58).

Proof: Let us first have a look at Fig. 10(a) and introduce the angles α, γ1, γ2, which will be made
use of throughout the proof. The face e∗, with end points N1 and N2, is the face of T selected by
the angle condition. Fig. 10(a) displays both possibilities that may occur, namely that T 0∩e∗ = ∅ or
T 0 ∩ e∗ 6= ∅. In both cases we define α as the angle under which the line that contains T 0 and the
line which contains e∗ intersect. If they do not intersect, then α := 0. The angle γ1, respectively γ2,
is the interior angle of T at N1, respectively N2. Here N1, N2 are such that N2 ∈ T△ if T 0∩e∗ 6= ∅,
and such that the angle α is centered around a point on N1N∗ if T 0 ∩ e∗ = ∅ . Then we have

ϑ(̺) ≤ γ1, γ2 ≤ π/2

0 ≤ α ≤ γ1/2 ≤ π/4 (38)

π/2 ≥ γ1 − α ≥ γ1/2 ≥ ϑ(̺)/2,

where we have used (24).
Case (A): Apart from the angles defined as above, in this case we use the notations according to

Fig. 11(a): For T� we may assume, that θ = 0 corresponds to the line through N∗, which is
perpendicular to T 0, and that the distance from N∗ to the line that contains T 0 is denoted by H .
Note that the line which corresponds to θ = 0 may ly outside of T . We find

|θ| ≤ max{π/2 − (γ − α), π − (π/2 + α) − γ′}
≤ max{π/2 − ϑ(̺)/2, π/2 − α− ϑ(̺)} ≤ θ∗

R(θ) =
H

cos (θ)
, θ ∈ [θ1, θ2] ⊂ [−θ∗, θ∗] (39)

hT ≥ R(θ) ≥ H

R′(θ) = H
sin (θ)

cos2 (θ)
(40)

|R′(θ)| ≤ hT
sin (θ∗)

cos2 (θ∗)
≤ M2hT (41)

Note that (41) holds along T 0 as well as along N1N2 ∩ ∂T�, since the case α = 0 has been included
in all steps. But we have to take care of the fact, that along T 0 and N1N2 ∩ ∂T� we have different
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values for H . Thus we have

Rmin ≥ min{|e| sin (γ − α), |e| sin (γ)} ≥ |e| sin (γ/2)

≥ 2 rT sin (ϑ(̺)/2) ≥ 2 hT

̺
sin (ϑ(̺)/2) ≥ hT /M3 .

We see that (32), (33) are always satisfied for T�, so that we do not have to examine T△ in case
(A).

Case (B)-(D): In this case we use the notations according to Fig. 11(b): Similar to case (A), H is the

distance from N∗ to the line that contains T 0, and for T△ we obtain R(θ) as in (39) and we find
that (40), (41) hold again and

Rmin ≥ H = |e0| sin (γ − α) ≥ |e0| sin (ϑ(̺)/2) .

Furthermore, we have

|e0| + |e1| ≥ 2 rT ≥ 2 hT/̺

max{|e0|, |e1|} ≥ hT /̺ . (42)

Now if |e0| ≥ |e1|, then Rmin ≥ hT /M3. If |e1| ≥ |e0|, we examine T�: We have

R(s) = H ′ + (s− s1) ||N2 −N1||2 tan (α)

R′(s) = ||N2 −N1||2 tan (α)

|R′(s)| ≤ hT tan (α) ≤ hT ,

since we have again (38). Furthermore, using |e1| ≥ hT /̺, we find

Rmin = H ′ = |e1| sin (γ) ≥ hT sin (ϑ(̺))/̺ ≥ hT /M3 .

Case (B)-(C): In this case we use the notations according to Fig. 12(a),(b): As in case (B)-(D), we
can distinguish between the cases |e0| ≥ |e1| and |e1| ≥ |e0| and have (42). If |e0| ≥ |e1|, we
can proceed for T△ as in case (B)-(D). If |e1| ≥ |e0|, we examine T�, see Fig. 12(a): Let θ = 0
correspond to the line through M∗, which is perpendicular to T 0, then we find

L ≤ |e∗|/2
β2 ≥ γ1 ≥ ϑ(̺)

β1 ≥ γ2 ≥ ϑ(̺)

|θ| ≤ max{π/2 − α− β1, π/2 + α− β2} ≤ max{π/2 − ϑ(ρ), π/2 + γ1/2 − γ1}
≤ π/2 − ϑ(̺)/2 = θ∗.

In Fig. 12(b) we find along T 0, that

H = H1 +H2

Rmin ≥ H ≥ H2 = |e0| sin (γ1 − α) ≥ hT

̺
sin (ϑ(̺)/2)

R(θ) =
H

cos (θ)
, θ ∈ [θ1, θ2] ⊂ [−θ∗, θ∗]

hT ≥ R(θ) ≥ H.
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We finally have to examine R(θ) on ∂T� \ (N1N2 ∪ T 0), i.e. on e0 and e2: We consider e2, for e0
the arguments are the same. According to Fig. 10(b) we have

Rmin = H =
|e∗|
2

sin (γ2) ≥ hT

̺
sin (ϑ(̺))

H∗ ≤ hT

cos(δ) =
H

H∗
≥ sin (ϑ(̺))

̺
= cos(δ∗)

|θ| ≤ max{δ∗, π/2 − γ2} ≤ θ∗∗

R(θ) =
H

cos (θ)
, θ ∈ [θ1, θ2] ⊂ [−θ∗∗, θ∗∗]

hT ≥ R(θ) ≥ H.

Thus we obtain (40) again, and alltogether for T� the estimates (32), (33) hold with M2 and M3

as given in the Lemma. �

From Lemma 3.5 and 3.6, we can deduce for the interpolation operator πp of Theorem C.4 the
following approximation property:

Lemma 3.7 Let T ∈ T 0
h satisfy (24), u ∈ Hs(T ) and let j be a multi-index with 0 ≤ |j| ≤ s − 1.

Then we have

||∂j(u − πp(u))||0,e ≤ C(3.7)
h

µ−|j|−1/2
T

ps−|j|−1/2
||u||s,T

for any face e ⊂ ∂T . Additionally let Assumption 3.3 hold. Then

||∂j(u− πp(u))||0,T 0 ≤ C(3.7)
h

µ−|j|−1/2
T

ps−|j|−1/2
||u||s,T

where µ = min(p+ 1, s) and C(3.7) =
√

2C(3.5) C(C.4).

Proof: Using v ≡ ∂j(u− πp(u)) ∈ H1(T ), from Lemma 3.5 and Theorem C.4 we get

||v||20,T 0 = λ+
T ||v||20,T 0 + λ−T ||v||20,T 0

≤ C(3.5) ·
(

p

hT
||v||20,T +

hT

p
|v|21,T

)

≤ C(3.5) C
2
(C.4) ·

(

h
2(µ−|j|)−1
T

p2(s−|j|)−1
||u||2s,T +

h
2(µ−|j|−1)+1
T

p2(s−|j|−1)+1
||u||2s,T

)

.

This proves the second estimate of the lemma. Since T 0 = e ⊂ ∂T is contained in Lemma 3.6 as a
limiting case, we can use the constants M2, M3 from Lemma 3.6 in the definition of C(3.5), and the
first estimate of the lemma is obtained in the same way as the second estimate of the lemma.�

3.3 Lifting operators

This section will provide us with bounds for the terms in (22) that contain fluxes across faces of the
triangulation and across the interface. Furthermore, these bounds will enable us to introduce lifting
operators, which will then be used to extend (22) to a variational formulation on H1(Ω+)×H1(Ω−).
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As auxiliary Hilbert spaces we introduce

M±
h = (V ±

h )2, (q,p)M±
h

=

∫

Ω±

κ± · (q1 p1 + q2 p2) dx ,

Mh = M+
h ×M−

h , (r, s)Mh
= (r+, s+)M+

h

+ (r−, s−)M−
h

,

and denote the corresponding norms by || · ||M±
h

and || · ||Mh
. For v± ∈ V ±

h , respectively v ∈ Vh, the

linear functionals

l±(q) ≡
∑

e∈E±
h

(κ± n · q, [v±])e± , respectively l0(r) ≡
∑

T∈T 0
h

(κn+ · r, [v])T 0 ,

appear in (19) & (20) or (22), with q ≡ ∇u±h , respectively r ≡ (∇u+
h ,∇u−h ). We will next determine

the bounds of these functionals when

v± ≡ v±h + v±0 ∈W±
h ≡ V ±

h + V ±, v ≡ (v+, v−) ∈Wh ≡ Vh + V.

Lemma 3.8 (Boundedness and definition of the Lifting Operators) Let Assumption 2.3,
(24), (27), (28), (29), and Assumption 3.3 be satisfied and define λ±e , respectively λ±T , according to
Lemma 3.2, repectively Lemma 3.4. Then for all v ≡ vh + v0 ∈Wh the estimates

∑

e∈E±
h

(κ± n · q, [v±])e± ≤



C(3.8) ·
∑

e∈E±
h

κ±
(p±e )2

|e±| ||[v±h ]||20,e±





1/2

· ||q||M±
h

∀ q ∈M±
h ,

∑

T∈T 0
h

(κn+ · r, [v])T 0 ≤



C(3.8) ·
∑

T∈T 0
h

κ0 (p0
T )2

hT
||[v]||20,T 0





1/2

· ||r||Mh
∀ r ∈Mh .

hold, i.e. there exist bounded linear operators L
±
h : W±

h →M±
h , L

0
h : Wh →Mh satisfying

(L±
h (v), q)M±

h

=
∑

e∈E±
h

(κ± n · q, [v±])e± ∀ q ∈M±
h , (43)

(L0
h(v), r)Mh

=
∑

T∈T 0
h

(κn+ · r, [v])T 0 ∀ r ∈Mh . (44)

Using the seminorms introduced in (49), we have

||L+
h (v+)||2

M+
h

+ ||L−
h (v−)||2

M−
h

≤ C(3.8)

γ
||[v]||20,h,E(Th) ∀ v ∈Wh ,

||L0
h(v)||2Mh

≤ C(3.8)

γ
||[v]||20,h,Γ ∀ v ∈Wh .

The constant is C(3.8) = max
{

G2 max {C(67), 2C(3.2)}, C(3.4)

}

.

Proof:

∑

e∈E±
h

(κ± n · q, [v])e± ≤





∑

e∈E±
h

κ±|e±|
(p±e )2

||n · q||20,e±





1/2



∑

e∈E±
h

κ±(p±e )2

|e±| ||[v]||20,e±





1/2
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Depending on whether (13), (14), (15) applies we have with T, T̃ ∈ ω(e) that

|e±|
(p±e )2

||n · q||20,e± ≤























1
2

hT

(p±
T

)2
||n · q|T ||20,e + 1

2

h
T̃

(p±

T̃
)2
||n · q|T̃ ||20,e

2
(λ±

e
)2|e±|

(p±
T

)2
||n · q|T ||20,e± + 2

(λ̃±
e

)2|e±|

(p±

T̃
)2

||n · q|T̃ ||20,e±

hT

(p±
T

)2
||n · q|T ||20,e

and thus according to (67) and Lemma 3.2

|e±|
(p±e )2

||n · q||20,e± ≤



















C(67)

2

(

||n · q||20,T± + ||n · q||2
0,T̃±

)

2C(3.2)

(

||n · q||20,T± + ||n · q|||2
0,T̃±

)

C(67) ||n · q||20,T± ,

which can be combined to

κ±
|e±|

(p±e )2
||n · q||20,e± ≤ C(45) κ

±
∑

T∈ω(e)

||q||2L2(T±)2 , (45)

where C(45) = max {C(67), 2C(3.2)}. Thus we have

∑

e∈E±
h

(κ± n · q, [v])e± ≤





∑

T∈T ±
h

G2C(45)κ
±||q||2L2(T±)2





1/2



∑

e∈E±
h

κ±(p±e )2

|e±| ||[v±h ]||20,e±





1/2

=
√

G2C(45) ||q||M±
h





∑

e∈E±
h

κ±(p±e )2

|e±| ||[v±h ]||20,e±





1/2

.

This proves the first estimate of the Lemma. The proof of the second estimate is similar:

∑

T∈T 0
h

(κn+ · r, [v])T 0 =
∑

T∈T 0
h

(

κ+λ+
T n+ · r+ + κ−λ−T n+ · r−, [v]

)

T 0

≤





∑

T∈T 0
h

I+
T + I−T





1/2



∑

T∈T 0
h

κ0 (p0
T )2

hT
||[v]||20,T 0





1/2

where

I±T =
(κ±)2

κ0
(λ±T )2

hT

(p0
T )2

||n+ · r±||20,T 0 ≤ C(3.4) κ
± ||n+ · r±||20,T± ≤ C(3.4) κ

± ||r±||2L2(T±)2 .

Thus

∑

T∈T 0
h

I+
T + I−T ≤ C(3.4)

(

κ+||r+||2L2(Ω+)2 + κ−||r−||2L2(Ω−)2

)

= C(3.4) ||r||2Mh
,

so that the second estimate of the lemma is also proven. The remaining assertions made in the lemma
are then a consequence of the Riesz representation theorem.�
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3.4 Primal Formulation

From now on, we use λe as given in Lemma 3.2 to evaluate v± in (14) and λT as given in Lemma 3.4
to evaluate v in (21). For jD ∈ H1/2(Γ), let ĵ+D ∈ H1(Ω+) be an extension of jD to Ω+ and define

ĵ−D = 0 ∈ H1(Ω−) and ĵD = ĵ±D on Ω±. Then

∑

T∈T 0
h

(κn+ · r, jD)T 0 =
∑

T∈T 0
h

(κn+ · r, [ĵD])T 0

=

∫

Ω+

κ+L
0
h(ĵD)+ · r+ dx +

∫

Ω−

κ−L
0
h(ĵD)− · r− dx .

We extend Bh : Vh × Vh → IR to a bilinear form Bh : Wh ×Wh → IR by defining

Bh(v, φ) ≡
∑

T∈Th

〈κ∇v,∇φ〉T +
∑

e∈E(Th)

〈σe κ [v], [φ]〉e +
∑

T∈T 0
h

σ0
T · (κ0[v], [φ])T 0

−
(

L+
h (φ+) + L0

h(φ)+, κ+ ∇ v+
)

Ω+ −
(

L+
h (v+) + L0

h(v)+, κ+ ∇φ+
)

Ω+

−
(

L−
h (φ−) + L0

h(φ)−, κ− ∇ v−
)

Ω− −
(

L−
h (v−) + L0

h(v)−, κ− ∇φ−
)

Ω−

(46)

and similarly we extend Fh : Vh → IR to a linear functional Fh : Wh → IR by

Fh(φ) ≡
∑

T∈Th

〈f, φ〉T +
∑

T∈T 0
h

λ−T (jN , φ
+)T 0 + λ+

T (jN , φ
−)T 0 + σ0

T · (κ0jD, [φ])T 0

−
(

L0
h(ĵD)+, κ+ ∇φ+

)

Ω+ −
(

L0
h(ĵD)−, κ−∇φ−

)

Ω− .

(47)

Our DG Method (22) still reads as follows: Find uh ∈ Vh such that

Bh(uh, φ) = Fh(φ) ∀ φ ∈ Vh . (48)

Let us introduce the following seminorms and the grid-dependent energy norm ‖ · ‖h on Wh:

|v|21,h,Ω =
∑

T∈Th

〈κ∇v,∇v〉T , v ∈Wh

||v||20,h,E(Th) =
∑

e∈E(Th)

〈σe κ v, v〉e , v ≡ (v+, v−), v± ∈ L2(Ω±
E )

||v||20,h,Γ =
∑

T∈T 0
h

σ0
Tκ

0(v, v)T 0 , v ∈ L2(Γ)

||v||2h = |v|21,h,Ω + ||[v]||20,h,E(Th) + ||[v]||20,h,Γ , v ∈Wh

(49)

Here we have employed Ω±
E ≡ {x ∈ Ω± : x ∈ e for a face e ∈ E(Th)}.

Lemma 3.9 (Boundedness of Bh) Let Assumption 2.3, (24)-(29), and Assumption 3.3 be satisfied.
Then we have

|Bh(v, φ)| ≤ C(3.9) · ||v||h · ||φ||h ∀ v, φ ∈Wh ,

where C(3.9) = 1 + 2C(3.8)/γ.
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Proof:

|Bh(v, φ)| ≤ |v|1,h,Ω |φ|1,h,Ω + ||[vh]||0,h,E(Th) ||[φh]||0,h,E(Th) + ||[v]||0,h,Γ ||[φ]||0,h,Γ

+ |(L+
h (φ+),∇ v+)M+

h

| + |(L−
h (φ−),∇ v−)M−

h

| + |(L0
h(φ),∇ v)Mh

|

+ |(L+
h (v+),∇φ+)M+

h

| + |(L−
h (v−),∇φ−)M−

h

| + |(L0
h(v),∇φ)Mh

|

≤ |v|1,h,Ω |φ|1,h,Ω + ||[vh]||0,h,E(Th) ||[φh]||0,h,E(Th) + ||[v]||0,h,Γ ||[φ]||0,h,Γ

+
C(3.8)

γ

(

||[φh]||0,h,E(Th) |v|1,h,Ω + ||[φ]||0,h,Γ |v|1,h,Ω

+ ||[vh]||0,h,E(Th) |φ|1,h,Ω + ||[v]||0,h,Γ |φ|1,h,Ω

)

≤
(

1 + 2
C(3.8)

γ

)

· ||v||h · ||φ||h . �

Lemma 3.10 (Coercivity of Bh) Let Assumption 2.3, (24)-(29), and Assumption 3.3 be satisfied.
Then for γ ≥ 4C(3.8) we have

Bh(v, v) ≥ 1

2
||v||2h ∀ v ∈Wh .

Proof:

Bh(v, v) = |v|21,h,Ω + ||[vh]||20,h,E(Th) + ||[v]||20,h,Γ

− 2
(

L+
h (v+) + L0

h(v)+, κ+ ∇ v+
)

Ω+ − 2
(

L−
h (v−) + L0

h(v)−, κ− ∇ v−
)

Ω−

≥ |v|21,h,Ω + ||[vh]||20,h,E(Th) + ||[v]||20,h,Γ

− ε−1 ·
(

||L+
h (v+)||2

M+
h

+ ||L−
h (v−)||2

M−
h

+ ||L0
h(v)||2Mh

)

− ε · |v|21,h,Ω

≥ |v|21,h,Ω + ||[vh]||20,h,E(Th) + ||[v]||20,h,Γ

− C(3.8)

γ ε
·
(

||[vh]||20,h,E(Th) + ||[v]||20,h,Γ

)

− ε · |v|21,h,Ω

= (1 − ε) · |v|21,h,Ω +

(

1 − C(3.8)

γ ε

)

·
(

||[vh]||20,h,E(Th) + ||[v]||20,h,Γ

)

,

for any ε > 0. We choose ε = 1/2 and γ ≥ 4C(3.8). �
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Furthermore, we easily prove that Fh is bounded on Vh by estimating

|Fh(φ)| ≤ ||f ||0,Ω+ · ||φ+||0,Ω+ + ||f ||0,Ω− · ||φ−||0,Ω− +
∑

T∈T 0
h

||jN ||0,T 0 · (||φ+||0,T 0 + ||φ−||0,T 0)

+ ||jD||0,h,Γ · ||[φ]||0,h,Γ +
C(3.8)

γ
||jD||0,h,Γ · |φ|1,h,Ω

≤



||f ||20,Ω+ + ||f ||20,Ω− +

(

1 +
C2

(3.8)

γ2

)

||jD||20,h,Γ +
∑

T∈T 0
h

||jN ||20,T 0





1/2

×

(

||φ+||20,Ω+ + ||φ−||20,Ω− + ||φ+||20,Γ + ||φ−||20,Γ + ||[φ]||20,h,Γ + |φ|21,h,Ω

)1/2

and noting that the last line constitutes a norm on the finite dimensional space Vh. Employing
techniques as in Lemma 2.1 of [2], we can also prove that Fh is bounded on V with respect to ‖ · ‖h.
Then the variational problem (48) can also be considered on V and has a unique solution in V .
Although a nice property, this is of no significance to our convergence analysis.

3.5 Approximation error

Let us define the following domain and spaces,

Ω±
h ≡{x ∈ Ω : x ∈ T for a triangle T ∈ T ±

h },
V

±

h ≡Sp±

(T ±
h ), V h ≡V

+

h × V
−

h , (50)

V
± ≡H1(Ω±

h ), V ≡V
+ × V

−
.

Note that since Ω± ⊂ Ω±
h we can restrict functions from V

±

h , respectively V
±

, to Ω± and obtain
functions belonging to V ±

h , respectively V ±. Thus it is well-defined to plug functions from V h or V
into B(·, ·) or ‖ · ‖h . Note that Vh and V h can be identified and while ‖ · ‖h is still a norm on V h

it is not a norm on V .

Lemma 3.11 Let Assumptions 2.3, (24), 3.3 be satisfied and let πp be the operator given in Theo-
rem C.4. Then we define the interpolation operator Π : V → V h by

Π(v)±|T = πp±
T

(v±|T ) ∀ T ∈ T ±
h

and we have for all v = (v+, v−) ∈ V = V
+ × V

−
with v±|T ∈ Hs±

T (T ), s±T ≥ 2, the estimate

||v − Π(v)||2h ≤

C(3.11) ·





∑

T∈T +
h

h
2µ+

T
−2

T

(p+
T )2s+

T
−3−χ(|T−|)

||v+||2
s+

T
,T

+
∑

T∈T −
h

h
2µ−

T
−2

T

(p−T )2s−
T
−3−χ(|T+|)

||v−||2
s−

T
,T



 ,

where C(3.11) = C2
(C.4) κ

0 (1 + 2γG2
1G2 max{2G3C(3.5), 1}) and µ±

T = min{p±T + 1, s±T }. The charac-

teristic function χ is given by χ(t) = 1 for t > 0 and χ(t) = 0 for t ≤ 0.

Proof: Using Theorem C.4 we find

|v± − Π(v)±|21,T± ≤ |v± − Π(v)±|21,T ≤ C2
(C.4)

h
2µ±

T
−2

T

(p±T )2s±
T
−2

||v±||2
s±

T
,T

∀ T ∈ T ±
h .
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Now let e ∈ E±
h and T ∈ ω(e). If e = e±, then

σ±
e ||(v± − Π(v)±)|T ||20,e± = γ

(p±e )2

|e| ||(v± − Π(v)±)|T ||20,e

≤ γ G3G
2
1

(p±T )2

hT
||(v± − Π(v)±)|T ||20,e

≤ γ G3G
2
1C

2
(3.7)

h
2µ±

T
−2

T

(p±T )2s±
T
−3

||v±||2
s±

T
,T
.

If e 6= e±, then

σ±
e ||(v± − Π(v)±)|T ||20,e± ≤ γ (p±e )2 ||(v± − Π(v)±)|T ||2L∞(e±)

≤ γ C2
(C.4)G

2
1

h
2µ±

T
−2

T

(p±T )2s±
T
−4

||v±||2
s±

T
,T
.

Combining both cases, for any e ∈ E±
h with {T, T̃} = ω(e) we can write

σ±
e ||[v± − Π(v)±]||20,e± ≤ C





h
2µ±

T
−2

T

(p±T )2s±
T
−3−χ(|e∓|)

||v±||2
s±

T
,T

+
h

2µ±

T̃
−2

T̃

(p±
T̃

)2s±

T̃
−3−χ(|e∓|)

||v±||2
s±

T̃
,T̃



 ,

where C = γG2
1G2 max{G3C

2
(3.7), C

2
(C.4)} ≤ γG2

1G2C
2
(C.4) max{2G3C(3.5), 1}. Similarly, due to Lemma 3.7,

for all T ∈ T 0
h we find

σ0
T ||v± − Π(v)±||20,T 0 ≤ C2

(3.7) γ
(G1 p

±
T )2

hT

h
2µ±

T
−1

T

(p±T )2s±
T
−1

||v±||2
s±

T
,T
.

Thus the lemma is proven.�

3.6 Consistency error

Lemma 3.12 Let u± ∈ H2(Ω±), such that u = (u+, u−) is the solution of Problem 1.1. Then for
all φ ∈Wh we have

Bh(u, φ) −Fh(φ) =
∑

e∈E(Th)

〈κ∂nu, [φ]〉e +
∑

T∈T 0
h

(κ∂n+u, [φ])T 0

−
(

L+
h (φ+) + L0

h(φ)+, κ+ ∇u+
)

Ω+ −
(

L−
h (φ−) + L0

h(φ)−, κ− ∇u−
)

Ω− .

In particular for all φ ∈ V with [φ] = 0 along Γ, we have

Bh(u, φ) = Fh(φ) . (51)

Proof: Partial integration yields
∑

T∈Th

〈κ∇u,∇φ〉T =
∑

T∈Th

〈f, φ〉T +
∑

e∈E(Th)

〈κ∂nu, [φ]〉e

+
∑

T∈T 0
h

(κ+∂n+u+, φ+)T 0 − (κ−∂n+u−, φ−)T 0 .
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Along each interface section T 0 we obtain from (6) the identity

κ∂n+u = κ+∂n+u+ − λ−T jN = κ−∂n+u− + λ+
T jN ,

so that

∑

T∈Th

〈κ∇u,∇φ〉T =
∑

T∈Th

〈f, φ〉T +
∑

e∈E(Th)

〈κ∂nu, [φ]〉e

+
∑

T∈T 0
h

(κ∂n+u, [φ])T 0 + λ−T (jN , φ
+)T 0 + λ+

T (jN , φ
−)T 0 ,

and thus the first identity of the lemma follows from (46) and (47). The second identity of the lemma
is an immediate consequence of the definition of the lifting operators.�

Lemma 3.13 Let Assumptions 2.3, 3.1, 3.3 be satisfied, where m is the number characterizing the
smoothness of Γ in (23) and let E± be the strong m-extension operator of Theorem C.5 for Ω±.
Let u± ∈ Hs(Ω±), with 2 ≤ s ≤ m, such that u = (u+, u−) is the solution of Problem 1.1 and let

(E±u±)|T ∈ Hs±
T (T ) for T ∈ Th

±, 2 ≤ s±T ≤ m. Then we have

|Bh(u, φ) −Fh(φ)| ≤

C(3.13) ·





∑

T∈T +
h

κ+h
2µ+

T
−2

T

(p+
T )2s+

T
−2

||E+u+||2
s+

T
,T

+
κ−h

2µ−
T
−2

T

(p−T )2s−
T
−2

||E−u−||2
s−

T
,T





1/2

· ||φ||h ∀ φ ∈ Wh,

where C(3.13) =

√

2

γ

(

(G2 + 1)C2
(3.7) + 2C(3.8) C

2
(C.4)

)

and µ±
T = min{p±T + 1, s±T }.

Proof: From Lemma 3.12 we have

Bh(u, φ) −Fh(φ) =
∑

e∈E(Th)

〈κ∂nu, [φ]〉e +
∑

T∈T 0
h

(κ∂n+u, [φ])T 0

−
(

L+
h (φ+) + L0

h(φ)+, κ+ ∇u+
)

Ω+ −
(

L−
h (φ−) + L0

h(φ)−, κ− ∇u−
)

Ω− .

Defining ũ =
(

(E+u+)|Ω+
h

, (E−u−)|Ω−
h

)

∈ V , using the operator Π from Lemma 3.11 and the

definition of the lifting operators in Lemma 3.8, we have

(

L
±
h (φ±), κ±∇(Π(ũ)±)

)

Ω± =
∑

e∈E±
h

(κ± n · ∇(Π(ũ)±), [φ±])e±

(

L0
h(φ)+, κ+∇(Π(ũ)+)

)

Ω+ +
(

L0
h(φ)−, κ−∇(Π(ũ)−)

)

Ω− =
∑

T∈T 0
h

(κn+ · ∇(Π(ũ)), [φ])T 0 ,

which yields

Bh(u, φ) −Fh(φ) =
∑

e∈E(Th)

〈κ∂n(u− Π(ũ)), [φ]〉e +
∑

T∈T 0
h

(κ∂n+(u− Π(ũ)), [φ])T 0

−
(

L
+
h (φ+), κ+ ∇ (u+ − Π(ũ)+)

)

Ω+ −
(

L
−
h (φ−), κ− ∇ (u− − Π(ũ)−)

)

Ω−

−
(

L0
h(φ)+, κ+ ∇ (u+ − Π(ũ)+)

)

Ω+ −
(

L0
h(φ)−, κ−∇ (u− − Π(ũ)−)

)

Ω− .
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Finally we can estimate

|Bh(u, φ) −Fh(φ)| ≤
∑

e∈E+
h

κ+ ||∂n(u+ − Π(ũ)+)||0,e+ ||[φ+]||0,e+

+
∑

e∈E−
h

κ− ||∂n(u− − Π(ũ)−)||0,e− ||[φ−]||0,e−

+
∑

T∈T 0
h

(

κ+λ+
T√

κ0
||∂n+(u+ − Π(ũ)+)||0,T 0 +

κ−λ−T√
κ0

||∂n+(u− − Π(ũ)−)||0,T 0

)

·
√
κ0||[φ]||0,T 0

+
√

2
(

||L+
h (φ+)||2

M+
h

+ ||L−
h (φ−)||2

M−
h

+ ||L0
h(φ)||2Mh

)1/2

×




∑

T∈T +
h

κ+|u+ − Π(ũ)+|21,T+ +
∑

T∈T −
h

κ−|u− − Π(ũ)−|21,T−





1/2

≤ C(3.7)





G2

γ

∑

T∈T +
h

κ+h
2µ+

T
−2

T

(p+
T )2s+

T
−1

||E+u+||2
s+

T
,T





1/2



∑

e∈E+
h

γ κ+(p+
e )2

|e+| ||[φ+]||20,e+





1/2

+ C(3.7)





G2

γ

∑

T∈T −
h

κ−h
2µ−

T
−2

T

(p−T )2s−
T
−1

||E−u−||2
s−

T
,T





1/2



∑

e∈E−
h

γ κ−(p−e )2

|e−| ||[φ−]||20,e−





1/2

+
C(3.7)√

γ











∑

T∈T 0
h

κ+h
2µ+

T
−2

T

(p+
T )2s+

T
−1

||E+u+||2
s+

T
,T





1/2

+





∑

T∈T 0
h

κ−h
2µ−

T
−2

T

(p−T )2s−
T
−1

||E−u−||2
s−

T
,T





1/2






×





∑

T∈T 0
h

γ
κ0(p0

T )2

hT
||[φ]||20,T 0





1/2

+
√

2C(C.4)

(

||L+
h (φ+)||2

M+
h

+ ||L−
h (φ−)||2

M−
h

+ ||L0
h(φ)||2Mh

)1/2

×





∑

T∈T +
h

κ+h
2µ+

T
−2

T

(p+
T )2s+

T
−2

||E+u+||2
s+

T
,T

+
∑

T∈T −
h

κ−h
2µ−

T
−2

T

(p−T )2s−
T
−2

||E−u−||2
s−

T
,T





1/2

.

Using Lemma 3.8 we are done. �

3.7 Error estimate of the DG method

The error estimate in the energy norm || · ||h can now be deduced from Strang’s second lemma, and
using the typical duality argument then leads to an error estimate in L2-norm. These are given in
the following theorems.
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Theorem 3.14 Let Assumptions 2.3, 3.1, 3.3 be satisfied, and let γ ≥ 4C(3.8). Let uh be the solution

of (48) and let m, E±, u, s±T , µ±
T be as in Lemma 3.13. Then the following hp-error estimate holds:

||u− uh||h =





∑

T∈T +
h

κ+|u+ − u+
h |21,T+ +

∑

T∈T −
h

κ−|u− − u−h |21,T−

+ ||[uh]||20,h,E(Th) +
∑

T∈T 0
h

σ0
T κ

0 ||[u− uh]||2T 0





1/2

≤ C(3.14) ·





∑

T∈T +
h

h
2µ+

T
−2

T

(p+
T )2s+

T
−3−χ(|T−|)

||E+u+||2
s+

T
,T

+
∑

T∈T −
h

h
2µ−

T
−2

T

(p−T )2s−
T
−3−χ(|T+|)

||E−u−||2
s−

T
,T





1/2

,

where C(3.14) = max

{

C(3.11) ·
(

3 +
4C(3.8)

γ

)

, 2C(3.13)

}

≤ max
{

4C(3.11), 2C(3.13)

}

.

Proof: Applying Theorem C.1, we obtain

||u− uh||h ≤
(

1 + 2C(3.9)

)

inf
φ∈Vh

||u− φ||h + 2 sup
φ∈Vh

|Bh(u, φ) −Fh(φ)|
||φ||h

and making use of Lemma 3.11, Lemma 3.13, and the definition of C(3.9), the Theorem is proven.�

Theorem 3.15 Let Assumptions 2.3, 3.1, 3.3 be satisfied, where m is the number characterizing the
smoothness of Γ in (23) and let γ ≥ 4C(3.8). Let uh be the solution of (48) and let u± ∈ Hs(Ω±),
with 2 ≤ s ≤ m, such that u = (u+, u−) is the solution of Problem 1.1. Then the following error
estimate holds:

(

‖u+ − u+
h ‖2

0,Ω+ + ‖u− − u−h ‖2
0,Ω−

)1/2

≤ C(3.15)
hmin{p+1,s}

ps−2

(

‖u+‖2
s,Ω+ + ‖u−‖2

s,Ω−

)1/2

,

where C(3.15) > 0 depends on κ0, C(3.9), C(3.11), C(3.13), C(3.14), C
2
(C.5), C(C.6).

Proof: Consider Problem 1.1 with f± ≡ u± − u±h |Ω± and gD = 0, jD = jN = 0. According to [8]
this problem has a unique solution v = (v+, v−) with v± ∈ H2(Ω±). We denote the right hand side
functional of the corresponding variational formulation by

Gh : Wh → IR, Gh(φ) =
∑

T∈Th

〈u− uh, φ〉T .

Then, using the symmetry of Bh, (48) and (51) we find for any vh ∈ Vh

‖u+ − u+
h ‖2

0,Ω+ + ‖u− − u−h ‖2
0,Ω− = Gh(u − uh)

= B(v − vh, u− uh)

− (Bh(u, v − vh) −Fh(v − vh))

− (Bh(v, u− uh) − Gh(u− uh))
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Introducing h = max
T∈Th

hT , p = min

{

min
T∈T +

h

p+
T , min

T∈T −
h

p−T

}

, yields

‖u+ − u+
h ‖2

0,Ω+ + ‖u− − u−h ‖2
0,Ω−

≤ C(3.9)‖v − vh‖h ‖u− uh‖h

+ C(3.13)
hmin{p+1,s}−1

ps−1

(

κ+‖E+u+‖2
s,Ω+

h

+ κ−‖E−u−‖2
s,Ω−

h

)1/2

‖v − vh‖h

+ C(3.13)
h

p

(

κ+‖E+v+‖2
2,Ω+

h

+ κ−‖E−v−‖2
2,Ω−

h

)1/2

‖u− uh‖h

Due to Theorem C.5 and the regularity result of Theorem C.6, we can estimate

κ+‖E+v+‖2
2,Ω+

h

+ κ−‖E−v−‖2
2,Ω−

h

≤ C2
(C.5) κ

0
(

‖v+‖2
2,Ω+ + ‖v−‖2

2,Ω−

)

≤ C2
(C.6) C

2
(C.5) κ

0
(

‖u+ − u+
h ‖2

Ω+ + ‖u− − u−h ‖2
Ω−

)

and taking vh = Π(ṽ) according to Lemma 3.11, we similarly obtain

‖v − vh‖2
h ≤ C(3.11) h

2
(

‖E+v+‖2
2,Ω+

h

+ ‖E−v−‖2
2,Ω−

h

)

≤ C2
(C.6) C

2
(C.5) C(3.11) h

2
(

‖u+ − u+
h ‖2

Ω+ + ‖u− − u−h ‖2
Ω−

)

and

‖u− uh‖2
h ≤ C2

(C.5) C
2
(3.14)

h2min{p+1,s}−2

p2s−4

(

‖u+‖2
s,Ω+ + ‖u−‖2

s,Ω−

)

.

This yields

(

‖u+ − u+
h ‖2

0,Ω+ + ‖u− − u−h ‖2
0,Ω−

)1/2

≤ C(3.9) C(C.6) C
1/2
(3.11) C

2
(C.5) C(3.14)

hmin{p+1,s}

ps−2

(

‖u+‖2
s,Ω+ + ‖u−‖2

s,Ω−

)1/2

+ C(3.13) C(C.5)

√

κ0C(C.6)C(3.11)
hmin{p+1,s}

ps−1

(

‖u+‖2
s,Ω+ + ‖u−‖2

s,Ω−

)1/2

+ C(3.13) C
2
(C.5) C(C.6) C(3.14)

√
κ0

hmin{p+1,s}

ps−1

(

‖u+‖2
s,Ω+ + ‖u−‖2

s,Ω−

)1/2

and the Theorem is proven.�

3.8 An additional penalization

The error estimates found so far do not control pointwise errors. This should not concern us too much
for the numerical solution in triangles away from the interface. But near the interface T± may be
very small and although not making an essential contribution to L2-errors, within these triangles large
pointwise errors may occur. In particular we observe large pointwise errors for the derivatives in such
small T±, see Section 4. This may be very annoying, if the elliptic interface problem is coupled to a
transport equation, as for example in Hele-Shaw flow, where ∂nu on the interface has to be evaluated
in order to determine the velocity field, see [12].

With the purpose of controlling L∞-errors near the interface, we add another penalty to the DG
method (48). This additional penalty also alters the energy norm, but we will show that with the new
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energy norm we can prove the same error estimate as in Theorem 3.14. In Section 4 we will clearly see
that due to this additional penalty L∞-errors of the derivatives behave very well. In the new bilinear
form Bh we additionally penalize jumps of derivatives ∂ju±h along e∓ for faces e ∈ E0

h. The idea is
to enforce a smooth extension of u±h along face sections sticking out of Ω±. The new bilinear form is
defined as follows. The role played before by the spaces denoted with a V will now be played by the
spaces denoted with a V , which are provided with more smoothness:

p± ≡ max
T∈T ±

h

p±T

V± ≡ Hp±+1(Ω±
h ) ⊂ V

±

V ≡ V+ × V− ⊂ V

Wh ≡ V h + V , where V h has been defined in (50)

∂jv ≡ ∂j1

∂x1

∂j2

∂x2
, with multi-index j = (j1, j2)

Dlv ≡ (∂jv)|j|=l , where |j| = j1 + j2

〈v, w〉0,p,E0
h

≡
∑

e∈E0
h







p+
e
∑

l=0

κ+

p+
e

·
(

(p+
e )2

|e|

)1−2l

·
(

[

Dlv+
]

,
[

Dlw+
]

)

e−

+

p−
e
∑

l=0

κ−

p−e
·
(

(p−e )2

|e|

)1−2l

·
(

[

Dlv−
]

,
[

Dlw−
]

)

e+







‖v‖2
0,p,E0

h

≡ 〈v, v〉0,p,E0
h

Bh(v, φ) ≡ Bh(v, φ) + 〈v, φ〉0,p,E0
h

: Wh ×Wh → IR

‖v‖2
h,p ≡ ‖v‖2

h + ‖v‖2
0,p,E0

h

Our DG method is now to find uh ∈ Vh such that

Bh(uh, φ) = F(φ) ∀ φ ∈ Vh . (52)

We will see in the analysis of the approximation error below, that the jumps appearing in 〈v, w〉0,p,E0
h

are weighted in terms of p±e and |e| in such a way that ‖v − Π(v)‖0,p,E0
h

falls with the optimal rate
in both h and p.

If |e+| ≪ |e|, then along e+ the term σ+
e · (κ+[uh], [φ])e+ dominates in (19) due to our choice

σ+
e = γ · (p+

e )2 · |e+|−1. Thus, (19) will only enforce continuity of u+
h across e, and no further

smoothness is guaranteed. In this situation |e−| ≈ |e|, so that the additional penalty is of the same
magnitude as σ+

e · (κ+[uh], [φ])e+ and thus more smoothness is enforced.
We easily conclude, that replacing Bh, Wh, ‖ · ‖h by Bh , Wh , ‖ · ‖h,p in Lemma 3.9 and

Lemma 3.10, the lemmas remain valid without changing the constants. But note that while ‖ · ‖h,p

is a norm on V h it is not a norm on V . Thus we can only speak of coercivity of Bh on V h. But
this suffices to apply Strang’s second lemma. Boundedness of Fh on V h with respect to ‖ · ‖h,p

follows as-well. Again we have to find estimates for the approximation error and the consistency error
in order to apply Strang’s second lemma.

Approximation error: Let v ∈ V and consider a multi-index j with 0 ≤ |j| = l ≤ p±e , then

(

(p±e )2

|e|

)−2l

‖∂j(v± − Π(v)±)|T ‖2
0,e∓ ≤ C2

(3.7)

(

(p±T )2

hT

)−2l
h

2(p±
T

+1)−2l−1

T

(p±T )2(p±+1)−2l−1
||v±||2p±+1,T

≤ C2
(3.7) (p±T )−2l h

2p±
T

+1
T

(p±T )2p±+1
||v±||2p±+1,T
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and thus, since l + 1 different partial derivatives of order l exist,

p±
e
∑

l=0

(

(p±e )2

|e|

)1−2l

‖Dl(v± − Π(v)±)|T ‖2
0,e∓ ≤ (p±e )2

|e| C2
(3.7)

h
2p±

T
+1

T

(p±T )2p±+1
||v±||2p±+1,T

p±
e
∑

l=0

l + 1

(p±T )2l
.

We have

p±
e
∑

l=0

l + 1

(p±T )2l
≤



























p±
e
∑

l=0

l+ 1 =
(p±e + 2)(p±e + 1)

2
≤ (G1 + 2)(G1 + 1)

2
if p±T = 1

∞
∑

l=0

l+ 1

4l
=

16

9
if p±T ≥ 2

and thus,

p±
e
∑

l=0

1

p±e

(

(p±T )2

|e|

)1−2l

‖Dl(v± − Π(v)±)|T ‖2
0,e∓ ≤ C(53)

h
2p±

T

T

(p±T )2p±
||v±||2p±+1,T , (53)

where C(53) = G1G3C
2
(3.7) max {(G1 + 2)(G1 + 1)/2, 16/9}. Finally, we obtain

‖v± − Π(v)‖2
0,p,E0

h

≤ C
∑

T∈T 0
h

h
2p+

T

T

(p+
T )2p+

||v+||2p++1,T +
h

2p−
T

T

(p−T )2p−
||v−||2p−+1,T ,

where C = 2 κ0C(53). Combining with Lemma 3.11, we deduce the following result.

Lemma 3.16 Let the assumptions of Lemma 3.11 hold. Then for all v = (v+, v−) ∈ V we have

||v − Π(v)||2h,p ≤

C(3.16) ·





∑

T∈T +
h

h
2p+

T

T

(p+
T )2p+−1−χ(|T−|)

||v+||2p++1,T +
∑

T∈T −
h

h
2p−

T

T

(p−T )2p−−1−χ(|T+|)
||v−||2p−+1,T



 ,

where C(3.16) = C(3.11) + 2 κ0C(53).

Consistency error: From Lemmas 3.12, 3.18 we immediately deduce the following analogue results.

Lemma 3.17 Let (23) hold with m ≥ 1 + max {p+, p−} and let E± be the strong m-extension

operator of Theorem C.5 for Ω±. Let u± ∈ Hp±+1(Ω±), such that u = (u+, u−) is the solution of

Problem 1.1 and set ũ ≡
(

(E+u+)|Ω+
h

, (E−u−)|Ω−
h

)

∈ V. Then for all φ ∈Wh we have

Bh(ũ, φ) −Fh(φ) =
∑

e∈E(Th)

〈κ∂nu, [φ]〉e +
∑

T∈T 0
h

(κ∂n+u, [φ])T 0

−
(

L
+
h (φ+) + L

0
h(φ)+, κ+ ∇u+

)

Ω+ −
(

L
−
h (φ−) + L

0
h(φ)−, κ− ∇u−

)

Ω− .

In particular for all φ ∈ V with [φ] = 0 along Γ, we have

Bh(ũ, φ) = Fh(φ) . (54)
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Lemma 3.18 Let Assumptions 2.3, 3.1, 3.3 be satisfied, and let m, E±, u, ũ be as in Lemma 3.17.
Then we have

|Bh(ũ, φ) −Fh(φ)| ≤

C(3.13)





∑

T∈T +
h

κ+h
2p+

T

T

(p+
T )2p+

||E+u+||2p++1,T +
κ−h

2p−
T

T

(p−T )2p−
||E−u−||2p−+1,T





1/2

· ||φ||h,p ∀ φ ∈ Wh .

Error estimate: Also, from Theorem 3.14 we immediately deduce the following error estimate.

Theorem 3.19 Let Assumptions 2.3, 3.1, 3.3 be satisfied, and let γ ≥ 4C(3.8). Let uh be the solution
of (52) and let m, E±, u, ũ be as in Lemma 3.17. Then the following error estimate holds:

||ũ− uh||h,p ≤ C(3.19) ·





∑

T∈T +
h

h
2p+

T

T

(p+
T )2p+−1−χ(|T−|)

||E+u+||2p++1,T

+
∑

T∈T −
h

h
2p−

T

T

(p−T )2p−−1−χ(|T+|)
||E−u−||2p−+1,T





1/2

,

where C(3.19) = max

{

C(3.16) ·
(

3 +
4C(3.8)

γ

)

, 2C(3.13)

}

≤ max
{

4C(3.16), 2C(3.13)

}

.

Proof: Applying Theorem C.1, we obtain

||ũ− uh||h,p ≤
(

1 + 2C(3.9)

)

inf
φ∈V h

||ũ− φ||h,p + 2 sup
φ∈V h

|Bh(ũ, φ) −Fh(φ)|
||φ||h,p

and making use of Lemma 3.16, Lemma 3.18, and the definition of C(3.9), the Theorem is proven.�

Trying to carry over the proof of Theorem 3.14 to obtain an L2-error estimate for the DG Method (52),

we note that since v± ∈ H2(Ω±) in the proof of Theorem 3.14, plugging ṽ ≡
(

(E+v+)|Ω+
h

, (E−v−)|Ω−
h

)

into the bilinear form Bh works only if p+ = p− = 1. Thus we only obtain an L2-error estimate for
the case p+ = p− = 1.

Theorem 3.20 Let Assumptions 2.3, 3.1, 3.3 be satisfied, where m = 2 is the number characterizing
the smoothness of Γ in (23) and let γ ≥ 4C(??). Let uh be the solution of (52), using p±T = 1 for

all T ∈ T ±
h and let u± ∈ H2(Ω±), u = (u+, u−) is the solution of Problem 1.1. Then the following

error estimate holds:

(

‖u+ − u+
h ‖2

0,Ω+ + ‖u− − u−h ‖2
0,Ω−

)1/2

≤ C(3.20) h
2
(

‖u+‖2
2,Ω+ + ‖u−‖2

2,Ω−

)1/2

,

where C(3.20) > 0 depends on κ0, C(3.9), C(3.16), C(3.13), C(3.19), C
2
(C.5), C(C.6).
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(a)

e
T

T̃ e

(b)

CIRCLE

Γ
Ω+

Ω−

(c)

FLOWER

Γ

Ω+

Ω−

Figure 13: (a): Definition of T̃ e . (b), (c): Domains for examples CIRCLE and FLOWER.

4 Numerical experiments

In this section we display the behaviour of (48) and (52) when applied to Problem 1.1. For this
purpose we utilize further approximation steps which are shortly described now. The details will be
published elsewhere.

First, let us assume that Γ is defined as the zero-level set of a function ϕ : Ω → IR, which does
not have to be a signed distance function, and let Ω± = {x ∈ Ω : ±ϕ(x) > 0}. We approximate
T 0 by a polynomial of degree p0

T , where efficient iterations are employed to approximately determine
p0

T + 1 points which lie in T and satisfy ϕ = 0. This also results in corresponding approximations of
T±. Furthermore efficient quadrature formulas are used to integrate on T±. By T±

1 we denote the
approximations of T±, which are due to the straight interface approximation T 0

1 , compare Section 3.2.
Finally, let us assume that on each face of T ∈ Th there is at most one hanging node. Let face
e ∈ E(Th) possess an end point which is a hanging node for T̃ ∈ ω(e), as in Fig. 1(a). Then
considering the children of T̃ obtained by refinement, we denote by T̃ e the child for which e is a
face, compare Fig. 13(a). With these definitions we approximate λe and λT in our computations as
follows:

λ±e =
|T±

1 |
|T±

1 | + |T̃±

1 |
, λ̃±e =

|T̃±

1 |
|T±

1 | + |T̃±

1 |
, if {T, T̃} = ω(e) and e is a face of both T and T̃ ,

λ±e =
|T±

1 |
|T±

1 | + |(T̃ e)
±
1 |
, λ̃±e =

|(T̃ e)
±
1 |

|(Te)
±
1 | + |(T̃ e)

±
1 |
, if {T, T̃} = ω(e) and e is not a face of T̃ ,

λ±T =



















1 if
|T±

1 |

|T+
1 |+|T−

1 |
> 0.8

0 if
|T±

1 |

|T+
1 |+|T−

1 |
< 0.2

|T±
1 |

|T+
1 |+|T−

1 |
otherwise .

The stabilization parameter is set to γ = 10, which seems to be a suitable choice in general. We use
constant p = p±T for all T ∈ Th

± in our calculations and display the following norms and seminorms
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of the error:

e02 = log
(

||u+ − u+
h ||20,Ω+ + ||u− − u−h ||20,Ω+

)1/2

e0∞ = log
(

max {||u+ − u+
h ||L∞(Ω+), ||u− − u−h ||L∞(Ω−)}

)

e12 = log





∑

T∈T +
h

||∇(u+ − u+
h )||20,T+ +

∑

T∈T −
h

||∇(u− − u−h )||20,T−





1/2

e1∞ = log

(

max

{

max
T∈T +

h

||∇(u+ − u+
h )||L∞(T+), max

T∈T −
h

||∇(u− − u−h )||L∞(T−)

})

CIRCLE: In this example Γ is a circle and is contained in a triangle Ω, see Fig. 13(b). Let parameters

a, b, c, r0 ∈ IR be given, where b, r0 > 0. Setting r(x, y) =
√

x2 + y2, we define the level set function
by ϕ(x, y) = r0 − r(x, y). Furthermore, we specify the diffusion coefficients κ+ = 1, κ− = b, the
interface data jD = a, jN = −bγ/r0 and f = 0, gD(x, y) = 1+c ln (r(x, y)/r0). The exact solution of
Problem 1.1 is then given by u+(x, y) = 1+a, u−(x, y) = 1+ c ln (r(x, y)/r0). We set the parameters
to a = −1, b = 10, c = 10, r0 = 0.28.

We apply both (48) and (52) and find in Fig. 14-16 that both methods behave as expected with
respect to e12 . The convergence rates indicated are determined from the errors measured on the
coarsest and the finest grid. Both methods also behave almost identically with respect to e02 and e0∞.
Major differences occur for e1∞. Here (52) significantly improves the results compared to (48). One
clearly observes how, due to the additional penalty, pointwise errors in the gradient are controlled
very well by (52). In Fig. 17(a) we display how e02 behaves for (52) on a hierarchy of grids when
increasing p and infer from Fig. 17(b) that increasing p also pays off in terms of degrees of freedom

(DOF). As is well-know, u±h |T ∈ Pp(T ) possesses 1 + 2 + ...+ (p+ 1) =
(p+ 1) · (p+ 2)

2
DOF.

In order to envision the differences of the numerical solutions obtained with (52) for various p,
we consider the same problem again, changing only the parameter a = 0, so that the exact solution
is continuous at the interface. In Fig. 18 the numerical solutions are displayed for p = 1 and p = 3
on a coarse grid. Note that the visualization tool can only represent the numerical solution piecewise
linearly, using the solution values in the triangle corners, even if the underlying numerical solution is
a piecewise polynomial of higher degree. Nethertheless the improvements of the solution with p = 3
compared to the one with p = 1 is clearly visible. Note that the redundant part of the numerical
solution, i.e. u±h for x ∈ Ω±

h \Ω±, is also shown, which makes u+
h and u−h interpenetrate each other

at the interface. The interface is projected onto the solution graphs and displayed as a white curve.
Here we have e0∞ = −1.33 for p = 1, employing 857 DOF, and e0∞ = −3.37 for p = 3, employing
2860 DOF. In order to obtain e0∞ = −3.37 with p = 1 requires around 100000 DOF.

FLOWER: In this example Γ looks like a flower and is contained in a triangle Ω, see Fig. 13(c).

The polar-coordinates are given by r(x, y) =
√

x2 + y2,

θ(x, y) =

{

arccos (x/r(x, y)) for y ≥ 0
− arccos (x/r(x, y)) for y < 0

and the continuous 1-periodic function z : IR → IR is defined by the following conditions: z(0) =
z(0.5) = z(1) = 0, z(0.25) = −z(0.75) = 1 and z is a polynomial of degree 1 on each of the intervals
[0, 0.25], [0.25, 0.5], [0.5, 0.75], [0.75, 1]. The interface Γ is given as a parametrized curve

x0(θ) = (0.5 + 0.2 z(2.5 θ/π)) · cos (θ)
y0(θ) = (0.5 + 0.2 z(2.5 θ/π)) · sin (θ)

}

θ ∈ [0, 2π], (55)

with distance r0(θ) =
√

x0(θ)2 + y0(θ)2 from the origin. A corresponding level set function is

ϕ(x, y) = 1 − r(x, y)

r0(θ(x, y))
.
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Figure 14: CIRCLE: h-convergence of (48) and (52) for p = 1.
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Figure 15: CIRCLE: h-convergence of (48) and (52) for p = 2.
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Figure 16: CIRCLE: h-convergence of (48) and (52) for p = 3.
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p = 1 p = 3

Figure 18: CIRCLE: Numerical solutions for p = 1 and p = 3 on same grid.

Now we consider Problem 1.1 with the following data and exact solution: κ+ = κ− = 1, u+(x, y) =
1 + sin (x) e−y, u−(x, y) = sin (x) e−y. Here jD = 1, jN = 0, f = 0.

Applying (52) we find in Fig. 19 that the L2-error behaves as expected, and again we see how
increasing the degree p pays off in terms of DOF. In Fig. 20 numerical solutions are shown on a
coarse grid for p = 1 and p = 3. The linear approximation of the zero level set of ϕ on a triangle can
cut the triangle boundary only twice. Thus Assumption 2.3 is always satisfied for p = 1. If we have
p > 1 and our algorithm detects that Assumption 2.3 is not satisfied for a triangle, i.e. the interface
cuts through a face twice, then the triangles adjacent to the face are refined. This detection and
refinement strategy is repeated until Assumption 2.3 is satisfied throughout the grid. Of course this
can only guarantee Assumption 2.3 to hold up to a finite precision. The details of this will be provided
elsewhere. For problem FLOWER on coarse grids only a few triangles need to be refined in order to
satisfy Assumption 2.3, as can be seen for p = 3 in Fig. 20. Note that this makes diamond-shaped
holes appear in the grids T ±

h . Again Γ is the white curve, projected onto both the graphs of u+
h and

u−h .
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A Norms

We use the following notations:

||x||2 ≡
(

n
∑

i=1

x2
i

)1/2

for x ∈ IRn

(v, w)Ω ≡
∫

Ω

v · w dx for v, w ∈ L2(Ω)n

H l(Ω) ≡ W l,2(Ω) for l ∈ IN

∂jv ≡ ∂j1

∂x1

∂j2

∂x2
· · · ∂

jn

∂xn
with multi-index j = (j1, j2, ..., jn)

|v|l,Ω ≡





∑

|j|=l

∫

Ω

|∂jv|2 dx





1/2

for v ∈ H l(Ω)

‖v‖l,Ω ≡
(

∑

k=0

|v|2k,Ω

)1/2

for v ∈ H l(Ω)

B Triangles

For a triangle T we define

rT ≡ radius of largest circle contained in T,

RT ≡ radius of smallest circle containing T,

hT ≡ diameter of T = length of largest edge of T.

We always have

rT ≤ hT

2
≤ RT

and, particularly for the reference triangle T̂ ≡ {(x, y) ∈ IR2 : 0 ≤ x, y ≤ 1, x + y ≤ 1}, we have
rT̂ = (2+

√
2)−1 ≥ 2/7, RT̂ = 2−1/2, hT̂ =

√
2. Assuming that a bijective affine mapping FT : T̂ → T

maps the reference triangle T̂ onto T , i.e. FT (x̂) ≡ x0 +BT x̂ with x0 ∈ IR2 and an invertible matrix
BT ,

||BT ||2 ≤ RT /rT̂ (56)

||B−1
T ||2 ≤ RT̂ /rT (57)

2 π r2T ≤ |detBT | = 2 |T | ≤ h2
T

follow. For a proof of (56) and (57) we refer to [6], pg. 76. If ̺ · rT ≥ hT holds, we call T a ̺-regular
triangle. In this case, the smallest interior angle of T can be bounded from below by

ϑ(̺) = max{arctan (2/̺), 2 arctan (1/̺), 2 arcsin (1/̺)} = 2 arcsin (1/̺) (58)
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and for ̺-regular triangles we obtain

RT ≤ hT

2 sin (ϑ(̺))
,

||BT ||2 · ||B−1
T ||2 ≤ ̺

2 sin (ϑ(̺))
· RT̂

rT̂
=

(
√

2 + 1) ̺

2 sin (ϑ(̺))
,

2 π h2
T /̺

2 ≤ |detBT | ≤ h2
T ,

π h2
T /̺

2 ≤ |T | .

C Theorems from the literature

C.1 Nonconforming Galerkin–Approximations

Theorem C.1 (Strang’s Second Lemma) Let V and Vh be linear spaces. Set Wh ≡ Vh + V
and let || · ||h be a norm on Vh and a seminorm on Wh. Let ah(·, ·) : Wh ×Vh → IR be a continuous
bilinear form, which is coercive on Vh and let f : Vh → IR be a continuous linear functional, i.e.
there exist h–dependent positive constants ch, Ch,Kh, such that

|ah(wh, vh)| ≤ Ch · ||wh||h · ||vh||h ∀ wh ∈Wh, vh ∈ Vh, (59)

ah(vh, vh) ≥ ch · ||vh||2h ∀ vh ∈ Vh, (60)

|fh(vh)| ≤ Kh · ||vh||h ∀ vh ∈ Vh. (61)

Then the solution uh of the variational equation

ah(uh, vh) = fh(vh) ∀ vh ∈ Vh (62)

is unique and satisfies

||v − uh||h ≤
(

1 +
Ch

ch

)

inf
vh∈Vh

||v − vh||h +
1

ch
sup

vh∈Vh

|ah(v, vh) − fh(vh)|
||vh||h

∀ v ∈ V. (63)

Proof: For all vh ∈ Vh, v ∈ V we have

ch · ||uh − vh||2h ≤ ah(uh − vh, uh − vh)

= fh(uh − vh) + ah(v − vh, uh − vh) − ah(v, uh − vh)

≤ fh(uh − vh) + Ch ||v − vh||h · ||uh − vh||h − ah(v, uh − vh) ,

where we have used (60), (62), (59). Thus we have

||uh − vh||h ≤ Ch

ch
· ||v − vh||h +

1

ch
· |ah(v, uh − vh) − fh(uh − vh)|

||uh − vh||h

≤ Ch

ch
· ||v − vh||h +

1

ch
sup

zh∈Vh

|ah(v, zh) − fh(zh)|
||zh||h

.

Employing the triangle inequality, we obtain

||v − uh||h ≤
(

1 +
Ch

ch

)

· ||v − vh||h +
1

ch
sup

zh∈Vh

|ah(v, zh) − fh(zh)|
||zh||h

,

which holds for all vh ∈ Vh, v ∈ V . Thus the Lemma is proven.�
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C.2 Inverse estimates

Theorem C.2 ([20], Theorem 3.91, 3.92) Let I ≡ (a, b) ⊂ IR, h ≡ b − a, then

||v′||0,I ≤ C(64)
p2

h
||v||0,I ∀ v ∈ P p(I), p ≥ 0, (64)

where C(64) = 2
√

3 and

||v||L∞(I) ≤ C(65)
p√
h
||v||0,I ∀ v ∈ P p(I), p ≥ 1, (65)

where C(65) = 4
√

2.

Theorem C.3 ([20], Theorem 4.76) Let T̂ ⊂ IR2 denote the reference triangle and ê any face of
T̂ , then there exists a constant C(C.3) > 0, such that

||v̂||0,ê ≤ C(C.3) p ||v̂||0,T̂ for all v̂ ∈ P p(T̂ ), p ≥ 1.

By a scaling argument we immediately deduce for any triangle T and any of its faces e, that

||v||20,e ≤ C(66)
p2|e|
|T | ||v||20,T for all v ∈ P p(T ), (66)

where C(66) = C2
(C.3)/2 and in the particular case that T is ̺-regular,

||v||20,e ≤ C(67)
p2

hT
||v||20,T for all v ∈ P p(T ), (67)

where C(67) = C2
(C.3) ̺

2/(2 π).

C.3 hp–Interpolation

Theorem C.4 ([4], Lemma 4.5) Let T be a ̺-regular triangle and u ∈ Hs(T ). Then there exists
a positive constant C(C.4) > 0 depending on s and ̺ but independent of u, p and hT , and a sequence
πp(u) ∈ P p(K), p = 1, 2, . . . , such that for an arbitrary q with 0 ≤ q ≤ s

‖u− πp(u)‖q,T ≤ C(C.4)
hµ−q

T

ps−q
||u||s,T for s ≥ 0,

‖u− πp(u)‖L∞(T ) ≤ C(C.4)
hµ−1

T

ps−1
||u||s,T for s > 1,

where µ := min(p+ 1, s).

C.4 Extension result for Sobolev spaces

In the following result the Cm–regularity property of a domain Ω ⊂ IRn is due to [1], page 84.
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Theorem C.5 ([1], Theorem 5.22) Let Ω ⊂ IRn have the uniform Cm–regularity property with
m ∈ IN and a bounded boundary. Then there exists a strong m-extension operator E : H0(Ω) →
H0(IRn), i.e. an operator satisfying (E v)

∣

∣

Ω
= v for all v ∈ H0(Ω), and a constant C(C.5) > 0 such

that
‖Ev‖s,IRn ≤ C(C.5) ‖v‖s,Ω ∀ v ∈ Hs(Ω) and s ∈ {0, 1, ...,m}.

C.5 Regularity of an elliptic interface problem

Theorem C.6 ([8], Theorem 2.1) Let gD = 0 and jD = jN = 0 in Problem 1.1. Then Prob-
lem 1.1 has a unique solution u ≡ (u+, u−). The solution satisfies u± ∈ H2(Ω±) and there exists a
constant C(C.6) > 0, such that

(

‖u+‖2
2,Ω+ + ‖u−‖2

2,Ω−

)1/2

≤ C(C.6) ‖f‖0,Ω .
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