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Abstract. This article is concerned with recent developments of adaptiavelet solvers for
elliptic eigenvalue problems. We describe the underlyibstract iteration scheme of the pre-
conditioned perturbed iteration. We apply the iteratioratsimple model problem in order to
identify the main ideas which a numerical realization of thesteact scheme is based upon.
This indicates how these concepts carry over to wavelet etigations. Finally we present
numerical results for the Poisson eigenvalue problem oi-amaped domain.



1 INTRODUCTION

The Poisson eigenvalue problem with homogeneous Dirididendary conditions on the
L-shaped domaife C R?

—Au=Xu on{ (1a)
u=0 ono) (1b)

is the prototype of the problems considered in this artiglere precisely we want to determine
a few eigenvalues in the lower part of the spectrum along with correspondimggefunctions.

A standard approach is to discretize first the infinite dineared problem, for instance, by
means of Finite Element Methods (FEM). The resulting finiteehsional algebraic eigenvalue
problem can then be treated by suitable iterative methaoalstéike advantage of the sparsity
of the discretization. However, due to the reentrant coofi¢he L-shaped domain and result-
ing possible singularities of the eigensolutions a pritvogen grids may either lead to large
discretization errors and hence to inaccurate eigenvgpsaimations or to an unnecessarily
large problem size rendering the overall computation veefficient. Instead one might try to
combine the iterative eigensolver with suitably adaptedditizations in order to achieve a de-
sired accuracy of eigenvectors and eigenvalues while kgepe size of the discrete problems
as small as possible. One expects that such adapted mekitastegher refinement levels near
the reentrant corner in order to resolve the singularityoégible strategy is to use adaptive FE
methods which generate a sequence of grids based on looalestimators, see for example
[1]. There an iterative scheme is described which can beeggrée converge, however, com-
plexity estimates are not available up to now [9] so that tttea advantage of such methods
over much simpler uniform discretizations is not clear. Amaroblem is the tolerance up to
which the intermediate problems have to be solved.

In the present paper we tackle the problem from a differerggeetive inspired by the work
of [2]. Instead of solving a sequence of finite dimensiongkavalue problems we stick to
the infinite dimensional formulation. On this level we camsiuct first an (ideal) iterative
algorithm which can be shown to converge to the lowest eiglers and corresponding eigen-
vectors by generalizing the preconditioned inverse itend7] to the operator case. Moreover,
we show that the iteration is robust under perturbation®ag bs their magnitude is kept at
most proportional to the current error.

When carrying out the iteration numerically one ultimatefsito discretize the problem in
some way. In order to facilitate adaptation one can useldaitstable bases for the (infinite
dimensional) energy space in order to transform first thereiglue problem into an equivalent
one on the infinite dimensional sequence sac&or a wide class of eigenvalue problems this
can be done by means of wavelet bases. The unknown eigenbeabg now represented by
an element of,, the idea is now to confine actual numerical computationsossiply good
finitely supportedpproximations. On account of the robustness of the ideratibn under per-
turbations one only has to make sure that the finitely suppgapproximations stay sufficiently
close to the exact solutions. Of course, this requires ity@émg among other things suitable
tolerances that are dynamically updated in the course atehation. Another central issue is
to apply the generally almost fully populated matrix repraations of the involved operators
within the desired tolerances in an efficient way. It turnstbat for a wide range of operators
wavelet representations agaasi-sparsgi.e. they can be approximated up to any tolerance by a
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matrix with only finitely many entries in each row and coluniimese features, namely adaptive
accuracy controlled finitely supported outputs from apprate operator applications give rise
to a computable algorithm.

Finally, the main point is to show that the iteration can beied out inoptimal linear com-
plexityby which we mean the following. For any target accuracy thalper of operations stays
proportional to the degrees of freedom which are neededst te represent an approximation
to the solution within that same accuracy tolerance. Thisddenchmark brings in the theory
of bestN-term approximation [6]. In order to keep approximationsals close to besy-term
approximations suitable coarsening steps are employedtfroe to time in the iteration.

This article summarizes the results obtained by previoukwo[4] and [10]. It highlights
the motivation and the key issues of the proposed iteratimhpaesents a numerical example.
In order to bring out the main ideas without going into too sngathnicalities we first perform
the iteration for toy eigenvalue problem using the Fourasib instead of wavelets.

The article is organized as follow. First, in Sectidn 2 wenfatate the eigenvalue problem
in a more abstract way in terms of a Gelfand triple and opesaifithe perturbed preconditioned
iteration is then analyzed in Sectibh 3. In Secfidon 4 a tojizaton of the abstract iteration
scheme is presented which clarifies the properties needdbdda@pplication of wavelet bases
in Sectiorb. Finally we present a numerical example for theelet context.

2 OPERATOR FORMULATION

In this section we introduce the notation, state the basigraptions and pose the problem in
terms of operators. This is based on the abstract settingseffand triple which will simplify
the later analysis.

The Poisson eigenvalue problem, see equalibn (1) can beadjeed to an abstract eigen-
value problem in the weak formulation

a(u,v) = A(u,v) forallv eV, 2)

wherea is a bilinear form on some Hilbert spaééand (-, ) is the inner product on some
Hilbert spaceff which containg/ as a densely embedded subspace. We denote the nakim on
by | - | and the norm oV by || - ||, respectively. Furthermore we assume thé symmetric,
strongly elliptic and bounded. In the model example of thes§an eigenvalue problem, see
equation[(ll), we have

a(u,v) /Vu -Vo(z)dz, (u,v) :/Qu(x)v(x) dz,

V = H}(Q) andH = L*(Q)

However iteration schemes can be stated more intuitivelgrims of operators. To this end,
the eigenvalue problem dfl(2) can be written as

Au = AFEu (3)

where A mapsV into its dualV* while F is a mass matrix in nature corresponding to an
inner product or. In fact, in our model exampld is the Laplacian seen as a linear operator
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mappingH; () into its dualH ~! () while E stems from the inner product on the spdce).
Denoting by(-, -) the dual pairing or’* andV” the operators! and £ are defined (through the
Riesz representation Theorem) u,v) = a(u,v) and (Eu,v) = (u,v) for all u,v € V,
respectively.

Now A € R is aneigenvaludf there exists a € V' \ {0}, such thatdv = AEv andv is
called areigenvector TheRayleigh quotienis given by
(Av,v)  (Av,v)

uiv) = (Bv,v) - (v,v) ' vev. (4)

For simplicity we shall assume in the present paper from niowhat the lowest eigenvector is
single and isolated from the rest of the spectrum althoughrmoay also deal with degenerated
or multiple eigenvalues .

In summary, the problem we will treat in the sequel can be tdated as follows: Find the
smallest eigenvalug; € R and a corresponding eigenvectgre V' \ {0} such that

Au1 = )\1EU,1.

3 PERTURBED PRECONDITIONED ITERATION

The task of the current section is to develop an iteratiorsehwhich solves the abstract
eigenvalue problem |3) directly in the (possibly infinitendinsional) spac®. One possibil-
ity would be to apply the inverse iteration, which under thexwe assumptions can be shown
to converge also in the infinite dimensional setting. For Reésson eigenvalue problem of
equation[(ll) the successgrof the current iterate is then given by

that is one has to solve the Poisson boundary value probleadin iteration step.

In order to avoid this costly task we propose a different atgm. It is based on the steepest
descent of the Rayleigh quotient

o) — (—Av,v)
1(v) o)

since all eigenvectors to the lowest eigenvalue minimizeFurthermore, as in the case of
conjugate gradient iteration, the convergence speedswe tise an appropriately scaled pre-
conditionerP~!. Then the iteration reads

v =v— P (=Av — p(v)v).

Note that in the case of a perfect preconditiofer = —A~! the iteration coincides with the
inverse iteration. The finite dimensional version of theat®n is well known in linear algebra,
see|[7] and references therein.

Regarding a numerically realization it is clear that suchtaration can not be carried out
exactly. For that reason we define the iteration scheme fsiradi eigenvalue problemis| (3)
allowing a perturbation in each step.



Definition 1. Let the starting vectar® € V,v° # 0, be given and denote its associated Rayleigh
quotient byu® = u(v°). A perturbed preconditioned inverse iteration (PPINVI3 p sequence
of vectors(v™),>o and associated Rayleigh quotient$ X,>o generated by

"t = " — PN A" — p(v™)Eo™) + €,
v — |,l7n+1|71,l7n+1

pmo= v

)

n—i—l)’
where(£"),>o € V are perturbations.

In the wavelet realization [4] and also in the realizatiorsettior 4 of the given algorithm
the perturbationg™ account for the fact that the operatdes', A, E are not applied exactly.
That means we have

"= P Av" — p(v™)Ev™) + €7,
is the actually computed finitely supported approximatmihie exact preconditioned residual
P Av™ — p(v™)Ev™).

The iteration resembles the preconditioned Richardsoatiter. Here the residual for an
iteratev is given by Av — u(v)Ev. As in the case of linear equations the magnitude of the
residual can be used to estimate the error. For that purpeskefine

p(v) = [|A = A() Ev[la-/[[v] 4,

where|| - ||+ denotes the norm defined Byl-, -)!/2. || - || 41 is defined analogously..

Along the lines of the proof in the algebraic case [7] combinéh a perturbation argument
convergence can be shown in the case where the perturbatessfficiently small, see [10].

Theorem 2. Letv € V, v # 0, such that the associated Rayleigh quotignt p(v) fulfills
1 < Ag, Where); is the second lowest eigenvalue. Assume that the precameliti® and
perturbation¢ fulfill

[ — P Afla < 7, [I€lLa/lIlla < e p(v) ()

wherey = vp + 7¢ < 1. Then the result’ of the next step of PPINVIT (cf. Definitidh 1) with
starting vectors and the associated Rayleigh quotient= p(v’), satisfy

p— A1
/\2—[1,.

p— A 2
)\2 _/J/ S q (77 )\17)\2)

Hereq is given by
q(ﬁ)/a )\17 )‘2) =1- (1 - 7)(1 - )\1/>\2)

Therefore, the rate of decay is only governed by the eigervghp and the quality of the
preconditioner. Note that the presence of a perturbatiantha same effect as applying a
preconditioner with a constantinstead ofyp.

Aside from the Rayleigh quotient one is also interested invemgence to the eigenspace,
which is best described by the convergence of the angle kettie iterand and the eigenspace.
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Theorem 3. Letv € V, v # 0, such that the associated Rayleigh quotient fulfills) <
Xo. Denote the angle with respect to the scalar produtt -) betweerv and the eigenspace
spanned:; by ¢. Then

sing < (22 B =M

)\1 )\2 — /L(l') ’
Moreover the eigenvector residual controls the angle, i.e.

A proof of this theorem can be found in [10]. Convergence ofRlagleigh quotient towards
A1 assures convergence of the angle between the iterandseacortksponding eigenvector.
Obviously the size of the perturbation need to be kept ptapmal to the current error in the
subspaces which in practice has to be ensured by sufficiactlyrate operator applications.

4 MODEL REALIZATION

In the previous section an iteration scheme was preseragdplerates in the abstract spaces
introduced for the eigenvalue problem (3). However, it i bt obvious how such a scheme
can be turned into a numerically realizable algorithm. Thgpse of this section is to explain
prerequisites which lead to a numerical algorithm. In ord#rto obscure the main ideas by the
somewhat higher level of technicality encountered withlaeelet context, we shall discuss
in the following setting first a toy problem discretized byuFer series. However, already
this simple example comprises all the ingredients whichlater necessary for applying the
algorithm in a more realistic wavelet setting.

4.1 Model problem
Consider the eigenvalue problem

—u" 4+ gu=Au on(0,2n) (6a)
u(0) =u(27) =0 (6b)

for a n-times continuous differentiable functione C™(0,27) with ¢ > 0. This eigenvalue
problem satisfies the assumptions of the general case: Bygétt= (L%(0,2x),| - |lo) and
V = (H}(0,2m),]| - |1) the differential operator given by

Au = —u" + gu

with homogeneous Dirichlet boundary conditions is a synmim@bapping betweey and its
dual. By Friedrich’s inequalityi is strongly positive and the fact thatis also bounded from
above shows the boundedness oMoreover the spectrum of is purely discrete sinc@, 2r)
is a bounded domain.

Now the objective is to apply the perturbed preconditiomeetiise iteration of Definition] 1
numerically. For that purpose we to chose a representatimmotions inV in terms of the sine



functions

Vi(z) =
which form an orthonormal basis féf. Therefore we have the followingorm equivalence
which is the first key ingredient:

[e.o]

ulf =D lanl® w=) wy (7)
h=1

k=1

establish a norm isomorphism betwedp (0, 2) and/,. Using this representation, the eigen-
value problem[(6) then reads as

St =AMz,
where the infinite matrix representations are given by

S = [<Awk’wk/>]k,k’:1,2,... M = [<wk’wk/>}k,k’:l,2,...

Note that now we have transformed the original eigenvaloblpm [3) to an equivalent one in
the sequence spaége

For the construction of a preconditioner we use the spetiattsire of the discretization
matrix S. In particular since), are orthonormal with respect to the Laplacian it followsttha
S = 1d + G where

1

G = [Grwliw=12,.. Grr = T

/0 ’ sin(kz)g(x) sin(k'z) du.

We choose the preconditioner to be a scaled version of treggavof the Laplacian, which in
the above representation is just the identity. Then

(z,2) < (Az,2) < (1 + |lgllc)(z, 2).

for all z € /5. It can be shown tha?—! = « - Id with

2
o= ——"
1+ l9lloo

satisfies equation)(5) withr = ||g|lso/(2 + |lgllco)-

4.2 Approximate iteration

In the previous part of the section we assembled all ingreslitor applying the precondi-
tioned inverse iteration of Definitidd 1 on the sequence spac

¥ =x—a(Sr—pulx)Mz), wp(x)=(Sz,z)/{(Mx,x). (8)

In order to compute the iteration numerically a1 created by this iteration have to have only
a finite number of nonvanishing entries. Let us fix the follegvhotation.
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Definition 4. Letz = (zy)x—1.2... be a sequence ify. Thesupportof z is given bysupp(z) =
{i | x; # 0}. The sequence is said to bdinitely supportedf its support is finite. Furthermore
let #z = § supp(x), which is the number of non-zero entries of the sequence

Clearly one has to make sure that all operation§lin (8) pregbevthe finiteness of support.
The mass matri¥// is just a diagonal matrix since the functiofs, | £ = 1,2,...} are also
orthogonal with respect to the? inner product . As a consequentér has the same number
of entries as:. However, the stiffness matri¥ is in general fully populated. Therefofer has
in general an infinite number of entries and the iterationraarbe carried out exactly.

However, it has been pointed out in Secfidn 3 that the it@nateed to be carried out only up
to a perturbatiorg. Therefore the applicatiofiz has to be carried out only approximately. One
possibility is to find an operators; with only finite many entries in each row which approximate
S to any given tolerance gsincreases — the number of non-zero entrieS;inthen stays finite
if  has only finite support.

The following definition states the second key ingredientii@ numerical realization of the
PPINVIT, namelycompressibility

Definition 5. Lets* > 0. A matrix A is s*-compressiblé for every j € N there exists a matrix
A; with at most2? entries in each row an column such thjat — 4;|| < «;27*"7 where the
sequencea;) ey IS in 4.

In order to construct such an approximatispfor S we shall exploit the structure of the
matrix S. In particular, the contribution of the Laplacian is alrgad diagonal form whereas
the multiplication withyg fills up the entries of. This matrixG can be simplified further using

1 2

gk:% ;

cos(kx)g(z) dx

and the trigonometric identityin(x) sin(y) = 1/2 cos(z —y) — 1/2 cos(x + y) which leads to

1
Gk,k’ = w(glk—k’l - gk+k')-

From Fourier series theory it follows that the more regyldre faster the coefficients decay
ask — oo. Therefore the leading term in matrix enty, .- stems from the terrgy,_;|, which
decays away from the diagonal. Therefore it is reasonalappooximates by a banded matrix.

Theorem 6. Letg € C™ with n € N. Then the discretization matrik is s*-compressible for
all s* < n. In particular the approximation is given by

(Gj)ip = Grw |k —K| <2
TRk 0 otherwise

i.e. the original matrixG keeping only the banded diagonal part with width

Proof. For Sobolev space&['(0,27) we have the norm equivalence between the weighted
Fourier coefficients of some functianand the corresponding norm, i.e.

o0

27
e = s e = 2n) [ u)et d
0

k=1



In particular, every coefficient has to satishy,| < & "|u|y~ and hence als@y,| < k™ by
definition of g,. The symbol< means less than or equal up to a fixed constant factor. As a
consequence one also has

1
| <
G| S ¥

Now the norm ofG — G; can be estimated by

k—K|™, k—kK #0.

IG-Gill < suwp > |(G =Gl

=1
which follows from the Schur Lemma and the symmetryzofinserting the estimate oy, |
gives
sup Z i\k—k'[’" < 27m,
k=1,2,... kK ~

O Rt k—k! | >29

Here we have also used the fact that we only have to sum uplmatidns which are more than
j positions away from the diagonal. This proves the assertion n

The previous result lays the basis for performing the pbedmpreconditioned inverse itera-
tion. Instead of calculating the exact residuat Sz — p(x) Mz we calculate

r; = Sjx — p;(v)Mz, p;(r) = (Sjz,z)/(Mz, x)
which has only finite number of non-zero entries. The errortoaestimated by
r =il < IS = Sillllll + [u(@) — (@)l < 279"l
where Theorernl6 was used. Finally we chopsefficiently large such that the error bound in

Theoreni P for the perturbation is satisfied.

4.3 Complexity

Theoreni 2 ensures that the error between the iter&hdnd the solution decreases in each
step of PPINVIT. However, in every iteration step the suppbr:(™ grows thereby increasing
the active degrees of freedom. Now the question arises wh#ibse degrees of freedom are
really necessary to achieve the current error. In other svorek should compare the number of
entries of the current iterate with the sparsest possitpecaxpmation realizing the same error.

This ties into the concept of beat-term approximation, see![6] and references therein. Let
us denote

EN:{ZL‘EEQHjZESN},

consisting of all sequences with at md@étnon-zero entries. For an element /¢, we define
the error of the best approximationiiy as

ox(e) = inf o= y.



The decay oby(z) asN — oo now characterizes the approximability of the vectoThere-
fore we introduce approximation spaces

A ={z €ly ||z

as = ||z]| 4 |z|as < oo}, |z| 45 = sup Néopy(x),

NeN
i.e. the set of all sequences such that the error of the bpsb@mation with at mostV non-
zero coefficients decays at least/gs®. Another way to view this is the following: it takes at
mostN. = £~ /*|z| 4~ number of entries in order to approximate .4° with accuracy:. Thus,
in what follows optimal complexity can be expressed by thatien

accuracy: «— degrees of freedonT /#| - | 4.

Now for any approximation to u € A° with errors we can compare the number of non-zero
entries ofr with the best possible bound'/*|u| 4+ (over the whole class). If the support of
is to large we can calculate a more efficient approximatigdheatost of a slightly bigger error
by judiceously coarsening the current approximation.

Theorem 7. Letz € A° for somes > 0 andy € ¢, such thatl|xz — y|| < . For a fixedb > 0
define

W = Argminy, < (-4)cH2
Then one has

o —zll < (2+b)e, fw ezl

as Nwllas S llllas

where the involved constants are independent dihat isw is a quasi-optimal approximation
of z with tolerance(2 + b)e.

The presented procedure is called coarsening and a proobedound in [2]. For any
finitely supported, the calculation ofv can be done easily: first sort all entriesyohccording
to their magnitude and then take the largest ones (in alesedhie) until the desired accuracy is
reached. Since this procedure involves sorting of the aieffis it takedog(fy)ty operations.
However, at the expense of a slightly worse target accuraeycan get away with quasi-sorting
while removing thdog-term. This coarsening procedure therefore provides a gieeacreate a
more efficient approximation from a given one.

The aim for an iterative scheme can now be stated as follawsarfy given target accuracy
the iteration calculates a corresponding approximatiah shat the number of required opera-
tions stays proportional to the minimum number of degredsegidom needed to represent the
solution with the same accuracy.

To achieve this linear complexity, however, one has to make that the support of all
intermediate vectors stays proportional to the best plessifie. This boils down to the follow-
ing assertion: letr € A® for somes > 0 and a tolerance be given. One can calculate an
approximationw,. of Sz such that

ISz —w.|| <e fw. < 5’1/S|x

AS.
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A direct approach would be the following: Firstcan be coarsened up to some tolerasce
with ¢ < 1 to achiever. with fz, < e7'/%|x| 4~ number of non-zero entries. Then applywith
4 small enough such that7(+2 < ¢e. Then

Sz — Sjze|| < IS |z — 2|l + 1S = Sl llzel| < ell]]-
However the number of entries in = S;z. can be as high as

8(S;xe) < 2 . < g~ 5_1/5|$

A3

as the number of non-zero entries in each row is at iostherefore the support of the result
S;z. is too large and hence also the number of operations scale timan linearly.

A more elaborate version however achieves linear complexit

Theorem 8. Let A be as* compressible matrix and € .4° with s < s*. Then for any tolerance
¢ > 0 there exits an algorithm which computes such that
Az —w.| < e, twe Szl

~Y

where the number of operations stays bounded by a multipte!6f| |

As -

The algorithm given in[2] uses the following strategy. Thatrnx vector multiplicationAx
is done by multiplying each component.ofvith the corresponding column and then summing
up. Now depending on the magnitude of a componenthe corresponding column of an
approximationd, with & = k(z;) is chosen. The biggex;| is the better the approximation has
to be. In this way one can constructively prove the precetliegrem.

5 WAVELET REALIZATION

In the last section we presented a toy problem which wasetiged using the Fourier basis.
However it is clear that the scope of this method is limited cdntrast wavelet discretization
allow one to treat a variety of different problems. For amadtiction to such concepts see for
example[[3].

In the first part of this section we state the key assumpti@tessary for using PPINVIT
in the case of a wavelet discretization. In the second pagpnesent numerical results for the
Poisson eigenvalue problefd (1) od.eshaped domain.

5.1 Prerequisites

Let the setl = {¢, | A € V} of waveletsy, for some index seV be a Riesz-basis fdr.
What we mean by Riesz-basis will be explained in a moment betothe case of” = H*(Q)
for some domairf2 C R? with Lipschitz boundary concrete realizations of such Vetveases
are known.

The first key ingredient for the realization of PPINVIT in thest section was the norm
equivalencel(7) which was actually an equality. Here we ireqihnat the collectionV is a
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Riesz-basis, i.e. the mappifg, }rcv — > oo Ua¥) is injective and there exit constants”
such that

cluf® < Z lur|* < Cluf?, = ZUA%-

AEV AeV

Note that| - | denotes the norm ovi. This means that the importance of a contributiqe, of
some basis functiott,, in the whole expansion is reflected by the magnitude of thicasant
uy up to a constan€’'/c, the condition number of the basis. In the case of Sobolevespa
V = H*(Q) for a bounded Lipschitz domain ¢ R? such a construction is always possible.

Now an equivalent formulation for the eigenvalue probleig3jiven by
St =AMz

in ¢2(V). Here the infinite dimensional matrix representations ef dperatorsd and £ are
given by

S = [(Ar, Ua)avev, M = [(Epy, Yx)avev,

respectively. These matrix representations are usuatlgparse in the strict sense. For a given
row there exists in general an infinite number of entries. el@w, as in the case of Sectian 4
for a wide variety of operators these matrices are quassepa the sense of Definitian 5. This
is due to the fact that the wavelets have vanishing momente spme appropriate ordet,
which means that for any polynomialof order at mostn one has

/Q Uala) pla) do = 0.

Therefore for a wide range of eigenvalue problems wavetetige a framework for adaptive
solvers that are able to compute an approximate solution apy tolerance in (asymptotically)
optimal complexity.

5.2 Numerical example

Finally we wish to present some numerical experiments fefbisson eigenvalue problem
(@) an theL-shaped domaif = (—1,1)2\ [0, 1]>. From classical regularity theory![8], the
Sobolev regularity is restricted by the biggest interiaylarof a polygonal domain. In particular,
for the L-shaped domain the lowest eigenfunction can onlghmvn to be inH* for s < 5/3.
This means that even for piecewise linear hat functions timvergence rate of for a uniform
refinement will be at besvV—'/2 in the H' norm, whereV is the number of degrees of freedom.

In contrast, employing piecewise linear wavelet bases wth vanishing moments in the
adaptive algorithm PPINVIT will lead to an optimal convenge rateN —'/2 for the eigenfunc-
tion in the H'-norm [10,4]. Therefore, adaptive solution concepts fer Boisson eigenvalue
problem will outperform uniform grid refinement.

The implementation of our eigenvalue solver is based ondhptave wavelet code described
in [11]. The wavelet basis is constructed along the lines5pf [n Figure[l the error in the
Rayleigh quotient for the smallest eigenvalue is shown. Asfearence value we useq =
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N (dof)
Figure 1: Convergence of the Rayleigh quotient for the adajtigorithm with respect to the degrees of freedom.

9.639723844, see[[1]. It can be seen that the error decreasesNikg which is as expected
twice as high as the rate for the corresponding eigenfumctio

Also of interest is the structure of the chosen wavelets Wwigcshown in Figurél2. The
plot shows the center of the active ansatz functions duhegsixth step for two different zoom
levels. There one can see the self similarity in the two scale

0.01

-0.01
-0.01 0 0.01

Figure 2: Plot of the active wavelets in the sixth step for tifferent zoom levels. Each dot corresponds to a
center of support of an active wavelet.
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