
Adaptive Eigenvalue Computation for
Elliptic Operators

Wolfgang Dahmen, Thorsten Rohwedder,

Reinhold Schneider and Andreas Zeiser∗

Bericht Nr. 301 Juni 2009

Key words: Elliptic eigenvalue equations, preconditioned inverse
iteration, adaptive algorithm.

Institut für Geometrie und Praktische Mathematik

RWTH Aachen

Templergraben 55, D–52056 Aachen (Germany)

∗ TU Berlin – Institut für Mathematik, Straße des 17. Juni 136, 10623 Berlin, Deutschland
E–mail: zeiser@math.tu-berlin.de



18th International Conference on the Application of Computer
Science and Mathematics in Architecture and Civil Engineering

K. Gürlebeck and C. K̈onke (eds.)
Weimar, Germany, 07–09 July 2009

ADAPTIVE EIGENVALUE COMPUTATION FOR ELLIPTIC
OPERATORS

W. Dahmen, T. Rohwedder, R. Schneider and A. Zeiser∗

∗TU Berlin – Institut f̈ur Mathematik
Straße des 17. Juni 136, 10623 Berlin, Deutschland

E-mail: zeiser@math.tu-berlin.de

Keywords: elliptic eigenvalue equations, preconditioned inverse iteration, adaptive algorithm

Abstract. This article is concerned with recent developments of adaptive wavelet solvers for
elliptic eigenvalue problems. We describe the underlying abstract iteration scheme of the pre-
conditioned perturbed iteration. We apply the iteration toa simple model problem in order to
identify the main ideas which a numerical realization of the abstract scheme is based upon.
This indicates how these concepts carry over to wavelet discretizations. Finally we present
numerical results for the Poisson eigenvalue problem on anL-shaped domain.
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1 INTRODUCTION

The Poisson eigenvalue problem with homogeneous Dirichletboundary conditions on the
L-shaped domainΩ ⊂ R

2

−∆u = λu onΩ (1a)

u = 0 on∂Ω (1b)

is the prototype of the problems considered in this article.More precisely we want to determine
a few eigenvaluesλ in the lower part of the spectrum along with corresponding eigenfunctions.

A standard approach is to discretize first the infinite dimensional problem, for instance, by
means of Finite Element Methods (FEM). The resulting finite dimensional algebraic eigenvalue
problem can then be treated by suitable iterative methods that take advantage of the sparsity
of the discretization. However, due to the reentrant cornerof theL-shaped domain and result-
ing possible singularities of the eigensolutions a priori chosen grids may either lead to large
discretization errors and hence to inaccurate eigenvalue approximations or to an unnecessarily
large problem size rendering the overall computation very inefficient. Instead one might try to
combine the iterative eigensolver with suitably adapted discretizations in order to achieve a de-
sired accuracy of eigenvectors and eigenvalues while keeping the size of the discrete problems
as small as possible. One expects that such adapted meshes exhibit higher refinement levels near
the reentrant corner in order to resolve the singularity. A possible strategy is to use adaptive FE
methods which generate a sequence of grids based on local error estimators, see for example
[1]. There an iterative scheme is described which can be proved to converge, however, com-
plexity estimates are not available up to now [9] so that the actual advantage of such methods
over much simpler uniform discretizations is not clear. A main problem is the tolerance up to
which the intermediate problems have to be solved.

In the present paper we tackle the problem from a different perspective inspired by the work
of [2]. Instead of solving a sequence of finite dimensional eigenvalue problems we stick to
the infinite dimensional formulation. On this level we can construct first an (ideal) iterative
algorithm which can be shown to converge to the lowest eigenvalues and corresponding eigen-
vectors by generalizing the preconditioned inverse iteration [7] to the operator case. Moreover,
we show that the iteration is robust under perturbations as long as their magnitude is kept at
most proportional to the current error.

When carrying out the iteration numerically one ultimately has to discretize the problem in
some way. In order to facilitate adaptation one can use suitable stable bases for the (infinite
dimensional) energy space in order to transform first the eigenvalue problem into an equivalent
one on the infinite dimensional sequence spaceℓ2. For a wide class of eigenvalue problems this
can be done by means of wavelet bases. The unknown eigenvector being now represented by
an element ofℓ2, the idea is now to confine actual numerical computations to possibly good
finitely supportedapproximations. On account of the robustness of the ideal iteration under per-
turbations one only has to make sure that the finitely supported approximations stay sufficiently
close to the exact solutions. Of course, this requires identifying among other things suitable
tolerances that are dynamically updated in the course of theiteration. Another central issue is
to apply the generally almost fully populated matrix representations of the involved operators
within the desired tolerances in an efficient way. It turns out that for a wide range of operators
wavelet representations arequasi-sparse, i.e. they can be approximated up to any tolerance by a
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matrix with only finitely many entries in each row and column.These features, namely adaptive
accuracy controlled finitely supported outputs from approximate operator applications give rise
to a computable algorithm.

Finally, the main point is to show that the iteration can be carried out inoptimal linear com-
plexityby which we mean the following. For any target accuracy the number of operations stays
proportional to the degrees of freedom which are needed at least to represent an approximation
to the solution within that same accuracy tolerance. This latter benchmark brings in the theory
of bestN -term approximation [6]. In order to keep approximations always close to bestN -term
approximations suitable coarsening steps are employed from time to time in the iteration.

This article summarizes the results obtained by previous work in [4] and [10]. It highlights
the motivation and the key issues of the proposed iteration and presents a numerical example.
In order to bring out the main ideas without going into too many technicalities we first perform
the iteration for toy eigenvalue problem using the Fourier basis instead of wavelets.

The article is organized as follow. First, in Section 2 we formulate the eigenvalue problem
in a more abstract way in terms of a Gelfand triple and operators. The perturbed preconditioned
iteration is then analyzed in Section 3. In Section 4 a toy realization of the abstract iteration
scheme is presented which clarifies the properties needed for the application of wavelet bases
in Section 5. Finally we present a numerical example for the wavelet context.

2 OPERATOR FORMULATION

In this section we introduce the notation, state the basic assumptions and pose the problem in
terms of operators. This is based on the abstract setting of aGelfand triple which will simplify
the later analysis.

The Poisson eigenvalue problem, see equation (1) can be generalized to an abstract eigen-
value problem in the weak formulation

a(u, v) = λ(u, v) for all v ∈ V, (2)

wherea is a bilinear form on some Hilbert spaceV and (·, ·) is the inner product on some
Hilbert spaceH which containsV as a densely embedded subspace. We denote the norm onH
by | · | and the norm onV by ‖ · ‖, respectively. Furthermore we assume thata is symmetric,
strongly elliptic and bounded. In the model example of the Poisson eigenvalue problem, see
equation (1), we have

a(u, v) =

∫

Ω

∇u(x) · ∇v(x) dx, (u, v) =

∫

Ω

u(x)v(x) dx,

V = H1
0 (Ω) andH = L2(Ω).

However iteration schemes can be stated more intuitively interms of operators. To this end,
the eigenvalue problem of (2) can be written as

Au = λEu (3)

whereA mapsV into its dualV ∗ while E is a mass matrix in nature corresponding to an
inner product onH. In fact, in our model exampleA is the Laplacian seen as a linear operator
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mappingH1
0 (Ω) into its dualH−1(Ω) while E stems from the inner product on the spaceL2(Ω).

Denoting by〈·, ·〉 the dual pairing onV ∗ andV the operatorsA andE are defined (through the
Riesz representation Theorem) by〈Au, v〉 = a(u, v) and〈Eu, v〉 = (u, v) for all u, v ∈ V ,
respectively.

Now λ ∈ R is aneigenvalueif there exists av ∈ V \ {0}, such thatAv = λEv andv is
called aneigenvector. TheRayleigh quotientis given by

µ(v) =
〈Av, v〉

〈Ev, v〉
=

〈Av, v〉

(v, v)
, v ∈ V. (4)

For simplicity we shall assume in the present paper from now on that the lowest eigenvector is
single and isolated from the rest of the spectrum although one may also deal with degenerated
or multiple eigenvalues .

In summary, the problem we will treat in the sequel can be formulated as follows: Find the
smallest eigenvalueλ1 ∈ R and a corresponding eigenvectoru1 ∈ V \ {0} such that

Au1 = λ1Eu1.

3 PERTURBED PRECONDITIONED ITERATION

The task of the current section is to develop an iteration scheme which solves the abstract
eigenvalue problem (3) directly in the (possibly infinite dimensional) spaceV . One possibil-
ity would be to apply the inverse iteration, which under the above assumptions can be shown
to converge also in the infinite dimensional setting. For thePoisson eigenvalue problem of
equation (1) the successorv′ of the current iteratev is then given by

v′ = −∆−1v,

that is one has to solve the Poisson boundary value problem ineach iteration step.

In order to avoid this costly task we propose a different algorithm. It is based on the steepest
descent of the Rayleigh quotient

µ(v) =
(−∆v, v)

(v, v)
.

since all eigenvectors to the lowest eigenvalue minimizeµ. Furthermore, as in the case of
conjugate gradient iteration, the convergence speeds up ifwe use an appropriately scaled pre-
conditionerP−1. Then the iteration reads

v′ = v − P−1(−∆v − µ(v)v).

Note that in the case of a perfect preconditionerP−1 = −∆−1 the iteration coincides with the
inverse iteration. The finite dimensional version of the iteration is well known in linear algebra,
see [7] and references therein.

Regarding a numerically realization it is clear that such an iteration can not be carried out
exactly. For that reason we define the iteration scheme for abstract eigenvalue problems (3)
allowing a perturbation in each step.
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Definition 1. Let the starting vectorv0 ∈ V , v0 6= 0, be given and denote its associated Rayleigh
quotient byµ0 = µ(v0). A perturbed preconditioned inverse iteration (PPINVIT)is a sequence
of vectors(vn)n≥0 and associated Rayleigh quotients (µn)n≥0 generated by

ṽn+1 = vn − P−1(Avn − µ(vn)Evn) + ξn,

vn+1 = |ṽn+1|−1ṽn+1,

µn+1 = µ(vn+1),

where(ξn)n≥0 ∈ V are perturbations.

In the wavelet realization [4] and also in the realization ofsection 4 of the given algorithm
the perturbationsξ(n) account for the fact that the operatorsP−1, A,E are not applied exactly.
That means we have

rn = P−1(Avn − µ(vn)Evn) + ξn,

is the actually computed finitely supported approximation to the exact preconditioned residual
P−1(Avn − µ(vn)Evn).

The iteration resembles the preconditioned Richardson iteration. Here the residual for an
iteratev is given byAv − µ(v)Ev. As in the case of linear equations the magnitude of the
residual can be used to estimate the error. For that purpose we define

ρ(v) = ‖A − λ(v)Ev‖A−1/‖v‖A,

where‖ · ‖A denotes the norm defined by〈A·, ·〉1/2. ‖ · ‖A−1 is defined analogously..

Along the lines of the proof in the algebraic case [7] combined with a perturbation argument
convergence can be shown in the case where the perturbationsare sufficiently small, see [10].

Theorem 2. Let v ∈ V , v 6= 0, such that the associated Rayleigh quotientµ = µ(v) fulfills
µ < λ2, whereλ2 is the second lowest eigenvalue. Assume that the preconditioner P and
perturbationξ fulfill

‖Id − P−1A‖A ≤ γp, ‖ξ‖A/‖v‖A ≤ γξ ρ(v) (5)

whereγ = γP + γξ < 1. Then the resultv′ of the next step of PPINVIT (cf. Definition 1) with
starting vectorv and the associated Rayleigh quotientµ′ = µ(v′), satisfy

µ′ − λ1

λ2 − µ′
≤ q2(γ, λ1, λ2)

µ − λ1

λ2 − µ
.

Hereq is given by

q(γ, λ1, λ2) = 1 − (1 − γ)(1 − λ1/λ2).

Therefore, the rate of decay is only governed by the eigenvalue gap and the quality of the
preconditioner. Note that the presence of a perturbation has the same effect as applying a
preconditioner with a constantγ instead ofγP .

Aside from the Rayleigh quotient one is also interested in convergence to the eigenspace,
which is best described by the convergence of the angle between the iterand and the eigenspace.
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Theorem 3. Let v ∈ V , v 6= 0, such that the associated Rayleigh quotient fulfillsµ(v) <
λ2. Denote the angle with respect to the scalar product〈A·, ·〉 betweenv and the eigenspace
spannedu1 byφ. Then

sin φ ≤

√

λ2

λ1

·
µ(x) − λ1

λ2 − µ(x)
.

Moreover the eigenvector residual controls the angle, i.e.

λ1

3µ(v)
ρ(v) ≤ sin φ ≤

λ2

λ2 − µ(v)
ρ(v).

A proof of this theorem can be found in [10]. Convergence of theRayleigh quotient towards
λ1 assures convergence of the angle between the iterands and the corresponding eigenvectoru1.
Obviously the size of the perturbation need to be kept proportional to the current error in the
subspaces which in practice has to be ensured by sufficientlyaccurate operator applications.

4 MODEL REALIZATION

In the previous section an iteration scheme was presented that operates in the abstract spaces
introduced for the eigenvalue problem (3). However, it is still not obvious how such a scheme
can be turned into a numerically realizable algorithm. The purpose of this section is to explain
prerequisites which lead to a numerical algorithm. In ordernot to obscure the main ideas by the
somewhat higher level of technicality encountered with thewavelet context, we shall discuss
in the following setting first a toy problem discretized by Fourier series. However, already
this simple example comprises all the ingredients which arelater necessary for applying the
algorithm in a more realistic wavelet setting.

4.1 Model problem

Consider the eigenvalue problem

−u′′ + gu = λu on (0, 2π) (6a)

u(0) = u(2π) = 0 (6b)

for a n-times continuous differentiable functiong ∈ Cn(0, 2π) with g ≥ 0. This eigenvalue
problem satisfies the assumptions of the general case: By setting H = (L2(0, 2π), ‖ · ‖0) and
V = (H1

0 (0, 2π), | · |1) the differential operator given by

Au = −u′′ + gu

with homogeneous Dirichlet boundary conditions is a symmetric mapping betweenV and its
dual. By Friedrich’s inequalityA is strongly positive and the fact thatg is also bounded from
above shows the boundedness ofa. Moreover the spectrum ofA is purely discrete since(0, 2π)
is a bounded domain.

Now the objective is to apply the perturbed preconditioned inverse iteration of Definition 1
numerically. For that purpose we to chose a representation of functions inV in terms of the sine
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functions

ψk(x) = π−1/2 sin(kx)

k
k = 1, 2, . . . .

which form an orthonormal basis forV . Therefore we have the followingnorm equivalence
which is the first key ingredient:

|u|21 =
∞

∑

k=1

|xk|
2 u =

∞
∑

k=1

xkψk (7)

establish a norm isomorphism betweenH1
0 (0, 2π) andℓ2. Using this representation, the eigen-

value problem (6) then reads as

Sx = λMx,

where the infinite matrix representations are given by

S =
[

〈Aψk, ψk′〉
]

k,k′=1,2,...
M =

[

〈ψk, ψk′〉
]

k,k′=1,2,...

Note that now we have transformed the original eigenvalue problem (3) to an equivalent one in
the sequence spaceℓ2.

For the construction of a preconditioner we use the special structure of the discretization
matrix S. In particular sinceψk are orthonormal with respect to the Laplacian it follows that
S = Id + G where

G = [Gk,k′ ]k,k′=1,2,... Gk,k′ =
1

kk′π

∫ 2π

0

sin(kx)g(x) sin(k′x) dx.

We choose the preconditioner to be a scaled version of the inverse of the Laplacian, which in
the above representation is just the identity. Then

〈x, x〉 ≤ 〈Ax, x〉 ≤ (1 + ‖g‖∞)〈x, x〉.

for all x ∈ ℓ2. It can be shown thatP−1 = α · Id with

α =
2

1 + ‖g‖∞

satisfies equation (5) withγP = ‖g‖∞/(2 + ‖g‖∞).

4.2 Approximate iteration

In the previous part of the section we assembled all ingredients for applying the precondi-
tioned inverse iteration of Definition 1 on the sequence space ℓ2:

x′ = x − α(Sx − µ(x)Mx), µ(x) = 〈Sx, x〉/〈Mx, x〉. (8)

In order to compute the iteration numerically allx(n) created by this iteration have to have only
a finite number of nonvanishing entries. Let us fix the following notation.
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Definition 4. Let x = (xk)k=1,2,... be a sequence inℓ2. Thesupportof x is given bysupp(x) =
{i | xi 6= 0}. The sequencex is said to befinitely supportedif its support is finite. Furthermore
let ♯x = ♯ supp(x), which is the number of non-zero entries of the sequencex.

Clearly one has to make sure that all operations in (8) preserve the the finiteness of support.
The mass matrixM is just a diagonal matrix since the functions{ψk | k = 1, 2, . . .} are also
orthogonal with respect to theL2 inner product . As a consequenceMx has the same number
of entries asx. However, the stiffness matrixS is in general fully populated. ThereforeSx has
in general an infinite number of entries and the iteration cannot be carried out exactly.

However, it has been pointed out in Section 3 that the iteration need to be carried out only up
to a perturbationξ. Therefore the applicationSx has to be carried out only approximately. One
possibility is to find an operatorsSj with only finite many entries in each row which approximate
S to any given tolerance asj increases – the number of non-zero entries inSjx then stays finite
if x has only finite support.

The following definition states the second key ingredient for the numerical realization of the
PPINVIT, namelycompressibility.

Definition 5. Let s∗ > 0. A matrixA is s∗-compressibleif for everyj ∈ N there exists a matrix
Aj with at most2j entries in each row an column such that‖A − Aj‖ ≤ αj2

−s∗j where the
sequence(aj)j∈N is in ℓ1.

In order to construct such an approximationSj for S we shall exploit the structure of the
matrix S. In particular, the contribution of the Laplacian is already in diagonal form whereas
the multiplication withg fills up the entries ofS. This matrixG can be simplified further using

gk =
1

2π

∫ 2π

0

cos(kx)g(x) dx

and the trigonometric identitysin(x) sin(y) = 1/2 cos(x− y)− 1/2 cos(x + y) which leads to

Gk,k′ =
1

kk′
(g|k−k′| − gk+k′).

From Fourier series theory it follows that the more regularg the faster the coefficientsgk decay
ask → ∞. Therefore the leading term in matrix entryGk,k′ stems from the termg|k−k′|, which
decays away from the diagonal. Therefore it is reasonable toapproximateS by a banded matrix.

Theorem 6. Let g ∈ Cn with n ∈ N. Then the discretization matrixD is s∗-compressible for
all s∗ < n. In particular the approximation is given by

(Gj)k,k′ =

{

Gk,k′ |k − k′| ≤ 2j

0 otherwise,

i.e. the original matrixG keeping only the banded diagonal part with width2j.

Proof. For Sobolev spacesHn
0 (0, 2π) we have the norm equivalence between the weighted

Fourier coefficients of some functionu and the corresponding norm, i.e.

|u|2Hn =
∞

∑

k=1

k2n|uk|
2, uk = (2π)−1/2

∫ 2π

0

u(x)eikx dx.
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In particular, every coefficient has to satisfy|uk| ≤ k−n|u|Hn and hence also|gk| . k−n by
definition of gk. The symbol. means less than or equal up to a fixed constant factor. As a
consequence one also has

|Gk,k′| .
1

k k′
|k − k′|−n, k − k′ 6= 0.

Now the norm ofG − Gj can be estimated by

‖G − Gj‖ ≤ sup
k=1,2,...

∞
∑

k′=1

∣

∣(G − Gj)k,k′

∣

∣

which follows from the Schur Lemma and the symmetry ofG. Inserting the estimate of|Gk,k′|
gives

sup
k=1,2,...

∑

k′:|k−k′|>2j

1

kk′
|k − k′|−n . 2−jn.

Here we have also used the fact that we only have to sum up contributions which are more than
j positions away from the diagonal. This proves the assertion.

The previous result lays the basis for performing the perturbed preconditioned inverse itera-
tion. Instead of calculating the exact residualr = Sx − µ(x)Mx we calculate

rj = Sjx − µj(x)Mx, µj(x) = 〈Sjx, x〉/〈Mx, x〉

which has only finite number of non-zero entries. The error can be estimated by

‖r − rj‖ ≤ ‖S − Sj‖‖x‖ + |µ(x) − µj(x)|‖x‖ . 2−jn‖x‖

where Theorem 6 was used. Finally we choosej sufficiently large such that the error bound in
Theorem 2 for the perturbation is satisfied.

4.3 Complexity

Theorem 2 ensures that the error between the iterandx(i) and the solution decreases in each
step of PPINVIT. However, in every iteration step the support of x(n) grows thereby increasing
the active degrees of freedom. Now the question arises whether these degrees of freedom are
really necessary to achieve the current error. In other words one should compare the number of
entries of the current iterate with the sparsest possible approximation realizing the same error.

This ties into the concept of bestN -term approximation, see [6] and references therein. Let
us denote

ΣN = {x ∈ ℓ2 | ♯x ≤ N},

consisting of all sequences with at mostN non-zero entries. For an elementx ∈ ℓ2 we define
the error of the best approximation inΣN as

σN(x) = inf
y∈ΣN

‖x − y‖.
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The decay ofσN(x) asN → ∞ now characterizes the approximability of the vectorx. There-
fore we introduce approximation spaces

As =
{

x ∈ ℓ2 | ‖x‖As := ‖x‖ + |x|As < ∞
}

, |x|As = sup
N∈N

N sσN(x),

i.e. the set of all sequences such that the error of the best approximation with at mostN non-
zero coefficients decays at least asN−s. Another way to view this is the following: it takes at
mostNε = ε−1/s|x|As number of entries in order to approximatex ∈ As with accuracyε. Thus,
in what follows optimal complexity can be expressed by the relation

accuracyε ←→ degrees of freedomε−1/s| · |As .

Now for any approximationx tou ∈ As with errorε we can compare the number of non-zero
entries ofx with the best possible boundε−1/s|u|As (over the whole class). If the support ofx
is to large we can calculate a more efficient approximation atthe cost of a slightly bigger error
by judiceously coarsening the current approximation.

Theorem 7. Let x ∈ As for somes > 0 andy ∈ ℓ2 such that‖x − y‖ ≤ ε. For a fixedb > 0
define

w = argmin‖y−z‖≤(1+b)ε♯z

Then one has

‖w − x‖ ≤ (2 + b)ε, ♯w . ε−1/s‖x‖As , ‖w‖As . ‖x‖As

where the involved constants are independent ofε. That isw is a quasi-optimal approximation
of x with tolerance(2 + b)ε.

The presented procedure is called coarsening and a proof canbe found in [2]. For any
finitely supportedy the calculation ofw can be done easily: first sort all entries ofy according
to their magnitude and then take the largest ones (in absolute value) until the desired accuracy is
reached. Since this procedure involves sorting of the coefficients it takeslog(♯y)♯y operations.
However, at the expense of a slightly worse target accuracy one can get away with quasi-sorting
while removing thelog-term. This coarsening procedure therefore provides a means to create a
more efficient approximation from a given one.

The aim for an iterative scheme can now be stated as follows: for any given target accuracy
the iteration calculates a corresponding approximation such that the number of required opera-
tions stays proportional to the minimum number of degrees offreedom needed to represent the
solution with the same accuracy.

To achieve this linear complexity, however, one has to make sure that the support of all
intermediate vectors stays proportional to the best possible one. This boils down to the follow-
ing assertion: letx ∈ As for somes > 0 and a toleranceε be given. One can calculate an
approximationwε of Sx such that

‖Sx − wε‖ ≤ ε ♯wε ≤ ε−1/s|x|As .
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A direct approach would be the following: Firstx can be coarsened up to some tolerancecε
with c < 1 to achievexε with ♯xε . ε−1/s|x|As number of non-zero entries. Then applySj with
j small enough such that2−j(n+2) ≤ cε. Then

‖Sx − Sjxε‖ ≤ ‖S‖ ‖x − xε‖ + ‖S − Sj‖ ‖xε‖ . ε‖x‖.

However the number of entries inyε = Sjxε can be as high as

♯(Sjxε) ≤ 2j · ♯xε . ε−1/n · ε−1/s|x|As ,

as the number of non-zero entries in each row is at most2j. Therefore the support of the result
Sjxε is too large and hence also the number of operations scale more than linearly.

A more elaborate version however achieves linear complexity.

Theorem 8. LetA be as∗ compressible matrix andx ∈ As with s < s∗. Then for any tolerance
ε > 0 there exits an algorithm which computeswε such that

‖Ax − wε‖ ≤ ε, ♯wε . ε−1/s‖x‖As

where the number of operations stays bounded by a multiple ofε−1/s‖x‖As .

The algorithm given in [2] uses the following strategy. The matrix vector multiplicationAx
is done by multiplying each component ofx with the corresponding column and then summing
up. Now depending on the magnitude of a componentxi the corresponding column of an
approximationAk with k = k(xi) is chosen. The bigger|xi| is the better the approximation has
to be. In this way one can constructively prove the precedingtheorem.

5 WAVELET REALIZATION

In the last section we presented a toy problem which was discretized using the Fourier basis.
However it is clear that the scope of this method is limited. In contrast wavelet discretization
allow one to treat a variety of different problems. For an introduction to such concepts see for
example [3].

In the first part of this section we state the key assumptions necessary for using PPINVIT
in the case of a wavelet discretization. In the second part wepresent numerical results for the
Poisson eigenvalue problem (1) on aL-shaped domain.

5.1 Prerequisites

Let the setΨ = {ψλ | λ ∈ ∇} of waveletsψλ for some index set∇ be a Riesz-basis forV .
What we mean by Riesz-basis will be explained in a moment below.In the case ofV = Hs(Ω)
for some domainΩ ⊂ R

d with Lipschitz boundary concrete realizations of such wavelet bases
are known.

The first key ingredient for the realization of PPINVIT in thelast section was the norm
equivalence (7) which was actually an equality. Here we require that the collectionΨ is a
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Riesz-basis, i.e. the mapping{vλ}λ∈∇ →
∑

λ∈∇ vλψλ is injective and there exit constantsc, C
such that

c|u|2 ≤
∑

λ∈∇

|uλ|
2 ≤ C|u|2, u =

∑

λ∈∇

uλψλ.

Note that| · | denotes the norm onV . This means that the importance of a contributionuλψλ of
some basis functionψλ in the whole expansion is reflected by the magnitude of the coefficient
uλ up to a constantC/c, the condition number of the basis. In the case of Sobolev spaces
V = Hs(Ω) for a bounded Lipschitz domainΩ ⊂ R

d such a construction is always possible.

Now an equivalent formulation for the eigenvalue problem (3) is given by

Sx = λMx

in ℓ2(∇). Here the infinite dimensional matrix representations of the operatorsA andE are
given by

S = [〈Aψλ, ψλ′〉]λ,λ′∈∇, M = [〈Eψλ, ψλ′〉]λ,λ′∈∇,

respectively. These matrix representations are usually not sparse in the strict sense. For a given
row there exists in general an infinite number of entries. However, as in the case of Section 4
for a wide variety of operators these matrices are quasi-sparse in the sense of Definition 5. This
is due to the fact that the wavelets have vanishing moments upto some appropriate orderm,
which means that for any polynomialp of order at mostm one has

∫

Ω

ψλ(x) p(x) dx = 0.

Therefore for a wide range of eigenvalue problems wavelet provide a framework for adaptive
solvers that are able to compute an approximate solution up to any tolerance in (asymptotically)
optimal complexity.

5.2 Numerical example

Finally we wish to present some numerical experiments for the Poisson eigenvalue problem
(1) an theL-shaped domainΩ = (−1, 1)2 \ [0, 1]2. From classical regularity theory [8], the
Sobolev regularity is restricted by the biggest interior angle of a polygonal domain. In particular,
for the L-shaped domain the lowest eigenfunction can only beshown to be inHs for s < 5/3.
This means that even for piecewise linear hat functions the convergence rate of for a uniform
refinement will be at bestN−1/3 in theH1 norm, whereN is the number of degrees of freedom.

In contrast, employing piecewise linear wavelet bases withtwo vanishing moments in the
adaptive algorithm PPINVIT will lead to an optimal convergence rateN−1/2 for the eigenfunc-
tion in theH1-norm [10, 4]. Therefore, adaptive solution concepts for the Poisson eigenvalue
problem will outperform uniform grid refinement.

The implementation of our eigenvalue solver is based on the adaptive wavelet code described
in [11]. The wavelet basis is constructed along the lines of [5]. In Figure 1 the error in the
Rayleigh quotient for the smallest eigenvalue is shown. As a reference value we usedλ1 =
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Figure 1: Convergence of the Rayleigh quotient for the adaptive algorithm with respect to the degrees of freedom.

9.639723844, see [1]. It can be seen that the error decreases likeN−1, which is as expected
twice as high as the rate for the corresponding eigenfunction.

Also of interest is the structure of the chosen wavelets which is shown in Figure 2. The
plot shows the center of the active ansatz functions during the sixth step for two different zoom
levels. There one can see the self similarity in the two scales.
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Figure 2: Plot of the active wavelets in the sixth step for twodifferent zoom levels. Each dot corresponds to a
center of support of an active wavelet.
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