
A Hash Data Structure for
Adaptive PDE–Solvers Based on

Discontinuous Galerkin Discretizations

Kolja Brix∗, Ralf Massjung∗, and

Alexander Voß∗

Bericht Nr. 302 Juli 2009

Key words: Discontinuous Galerkin method, adaptive method,
multilevel method, pointerless data structures,
neighboring algorithm.

AMS subject classifications: 65N30, 65N50, 68N01, 68P05

Institut für Geometrie und Praktische Mathematik

RWTH Aachen

Templergraben 55, D–52056 Aachen (Germany)

∗ Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Templergraben 55, D–52056 Aachen,
Germany, {brix, massjung, voss}@igpm.rwth-aachen.de,
http://www.igpm.rwth-aachen.de/{brix, massjung, voss}

A HASH DATA STRUCTURE FOR ADAPTIVE PDE–SOLVERS BASED ON
DISCONTINUOUS GALERKIN DISCRETIZATIONS

KOLJA BRIX∗, RALF MASSJUNG∗, AND ALEXANDER VOSS∗

Abstract. Adaptive multiscale methods are among the most effective techniques for the numerical solution of
partial differential equations. Efficient grid management is an important task in these solvers. In this paper we focus
on this problem for Discontinuous Galerkin discretization methods in 2 and 3 spatial dimensions and present a data
structure for handling adaptive grids of different cell types in a unified approach. Instead of tree-based techniques where
connectivity is stored via pointers, we associate each cell that arises in the refinement hierarchy with a cell identifier, and
construct algorithms that establish hierarchical and spatial connectivity. By means of bitwise operations, the complexity
of the connectivity algorithms can be bounded independent of the level. The grid is represented by a hash table which
results in a low-memory data structure and ensures fast access to cell data. The spatial connectivity algorithm also
supports the application of quadrature rules for face integrals that occur in Discontinuous Galerkin discretizations. The
concept allows to implement Discontinuous Galerkin methods largely independent of spatial dimension and cell type.
We demonstrate this by outlining how typical algorithmic tasks that arise in these implementations can be performed
with our data structure.

Key words. Discontinuous Galerkin method, adaptive method, multilevel method, pointerless data structures,
neighboring algorithm

AMS subject classifications. 65N30, 65N50, 68N01, 68P05

1. Introduction. In order to approximate solutions of partial differential equations (PDE) ef-
ficiently, the most advanced numerical algorithms rely on adaptive as well as multilevel techniques
[13]. To further accelerate computations, these techniques are typically combined with a paralleliza-
tion [3, 30]. Adaptive multilevel methods require operations on the locally adapted discretization
grid and on the grid hierarchy underlying the multilevel structure. To support these techniques, it
is important to have a low-memory data structure to store the adaptive grid hierarchy, a method to
quickly change the grid due to refinement or coarsening needs and fast access mechanisms to provide
the data stored on the grid cells and to determine the hierarchical connectivity (connectivity of parent
and child cells) as well as the spatial connectivity (connectivity of spatially neighboring grid items).
These requirements have been central to our development of a hash-based data structure for adaptive
multilevel grids, which we present in this article. Here we have focused on creating a data structure
which supports PDE-solvers that employ the Discontinuous Galerkin (DG) Method as discretization
tool [2, 11, 1]. Additional aspects that we have incorporated are the flexibility of the data structure
for use in conjunction with different cell types (2D and 3D grids; hybrid grids consisting of several cell
types, e.g. triangles and quadrilaterals) and the support for evaluating quadrature formulas, which
occur when assembling the discrete DG equations. An important consequence of concentrating on
DG methods is that the only connectivity needed in assembling discrete equations is the connectiv-
ity of cells across faces. It is meanwhile well known, that DG methods can be used to successfully
handle all common types of partial differential equations, are well suited for parallelization, have the
convenient property of allowing hanging nodes and allow straightforwardly to vary the approximation
order within the grid (p-adaptivity), see [11].

In contrast to the classical approach that employs pointer structures to store grid connectivities,
a concept based on hash tables possesses the following features, which we consider as advantageous:
It has lower storage requirements and does not need computational work to update connectivities
while refining or coarsening the grid. The hash-based concept needs to calculate spatial connectivity,
which we analyze here in a unified way independent of the cell type. We develop fast algorithms for
calculating the spatial connectivity. Alltogether, this results in a grid management concept, which is
implemented largely independent of spatial dimension and cell type. We summarize the core ingredi-
ents of our approach, which was initiated in [29], and relate it to the literature:

∗Institut für Geometrie und Praktische Mathematik, RWTH Aachen, 52056 Aachen, Germany,
{brix,massjung,voss}@igpm.rwth-aachen.de, http://www.igpm.rwth-aachen.de/{brix,massjung,voss}

1

2 K. BRIX, R. MASSJUNG, AND A. VOSS

Cell identifier and algorithm for spatial connectivity. The grid hierarchy is generated by a refine-
ment rule that divides each cell of a given cell type into its child cells. Thus, we uniquely characterize
each grid cell that may possibly occur within the grid hierarchy by a cell identifier. The cell identi-
fier directly provides the hierarchical connectivity. The spatial connectivity, i.e. to find for a given
cell identifier the identifiers of the corresponding neighboring cells, is examined theoretically in this
article. The theory is presented independent of a particular cell type and results in an algorithm that
delivers the spatial connectivity, provided that several properties are satisfied by the refinement rule.
The validity of these properties are easily checked for standard refinement rules that we employ for
triangles, tetrahedra, quadrilaterals, and cuboids. This unified algorithm turns out to have a rather
simple structure and also works for hybrid grids and for cell types with refinement rules that are gen-
erated in a tensor-product fashion from other cell types, e.g. prisms are treated as tensor products of
quadrilaterals and triangles. We apply this concept to solve PDEs with DG methods in the practically
important case of graded adaptive grids [6, 7, 25].

The usage of cell identifiers for finding neighbors in recursively refined meshes has been studied
in several previous works. In [14] a method is proposed to handle spherical data in geographic
information systems. The surface of a sphere is approximated by an inscribed icosahedron, its surface
representing a triangular net. Adaptively refined grids of this specific coarse grid are considered and
the spatial connectivity is derived in terms of cell identifiers. In [24], the method of [14] is extended
to the surface triangulations of the tetrahedron and the octahedron. In [23] the spatial connectivity
is derived in terms of cell identifiers for adaptively refined tetrahedral grids. Only the case of a coarse
grid consisting of six tetrahedra, which are generated by dividing a cuboid, is considered, while we do
not have any restrictions on the coarse grid. The refinement rule used in [23] divides a tetrahedron into
two subtetrahedra, whereas in our refinement rule, a tetrahedron is divided into eight subtetrahedra.

Stability of refinement rule for cell type tetrahedron. An indispensable property of the grids when
utilized for DG methods, or other Finite Element methods, is that the grid cells do not exhibit
arbitrarily small angles in the refinement process. This issue is particularly involved for tetrahedral
grids and has been analyzed in [4], where the refinement process is proven to generate only a finite
number of congruence classes of tetrahedra. The refinement rule proposed in [4] does not fulfill
all the properties that we demand from a refinement rule. Our refinement rule employs a different
numbering than the one of [4] and we have checked computationally that it generates also a finite
number of congruence classes of tetrahedra.

Face quadrature. Assembling the discrete DG equations on a grid, integrals along the faces of
the grid have to be evaluated. In order to reduce function evaluations, one typically stores the shape
function values at the face quadrature points. Within our algorithm for the spatial connectivity, a
single look up in a table provides the numberings of the face quadrature points with respect to both
cells adjacent to the face. Again this is theoretically described in a unified manner for all cell types
and also works for hybrid grids and graded adaptive grids. To our knowledge this point as not yet
been addressed in the literature.

Hash table. We employ a hash table to store the cell data, which in the case of a DG method are
the coefficients of the numerical solution associated with the cell. For all cell types, we convert the
cell identifier into an unsigned integer, which serves as the key in the hash table. This results in a
grid management independent of the cell type. Our hash table is based on chaining, which requires
pointers to set up the chains. Furthermore, pointers are used to establish doubly-linked lists that
connect entries of the hash table associated with the same level in the grid hierarchy. The storage
requirements for the unsigned integer keys and the pointers within the hash table are low compared to
classical concepts, which are based on tree structures providing the spatial as well as the hierarchical
connectivity by pointers. Moreover, when refining or coarsening the grid, additional work to update
the hierarchical and the spatial connectivity is needed in the tree based data structure concept.

A particular attempt to use hash data structures to create efficient parallel adaptive multilevel
solvers was made in [16]. This work, which is restricted to Cartesian grids, points out that pointer
based data structures are inferior to hash-based data structures with respect to storage requirements
and computing time.

A HASH DATA STRUCTURE FOR ADAPTIVE DG METHODS 3

Bitwise operations. In the worst case, the complexity of the algorithm, that provides the spatial
connectivity, is proportional to the level of the corresponding grid cells. We have removed this level
dependence by replacing the corresponding steps in the algorithm by bitwise operators, which depend
on the cell type, and act on the unsigned integer associated with the cell identifier. This is the same
unsigned integer that is used as the key in the hash table. Employing the bitwise operators ensures
that independent of the cells involved, the spatial connectivity is provided by a fixed, small number
of bitwise operations, where a bitwise operation is typically applied within one processor clock cycle.
This provides a fast access to cell neighbors.

Amongst the neighboring algorithms based on cell identifiers, that we have already mentioned
above, [24] and [23] also express their algorithms in terms of bitwise operations in order to obtain
algorithms with complexity independent of the level of the cells involved.

The paper is organized as follows: In Sect. 2 we first specify what kind of cell type we consider and
how a corresponding refinement rule and a cell identifier is defined. We then turn to the problem of
determining the spatial connectivity within the refinement hierarchy of a single cell. For this purpose
we compile in Sec. 2.3 a number of properties to be demanded from cell type and refinement rule so
that the spatial connectivity can be determined by the algorithm given in Sec. 2.4. Here we illustrate
these concepts for straightforward refinement rules for the cell types triangle and tetrahedron. Sect. 2
is completed by discussing the stability of the refinement rule that we propose for tetrahedra and by
supplementing the spatial connectivity algorithm with a strategy that supports face quadratures re-
quired to implement DG methods. Sect. 3 generalizes the above concepts to the refinement hierarchy
of a coarse grid, where the coarse grid may be composed of grids of different cell types, and discusses
simply graded grids. In Sect. 4 the hash data structure for storing grids and accessing grid data is
discussed. Here we also show how the cell identifier is encoded as an unsigned integer and how bitwise
operations on this unsigned integer are devised in order to turn the algorithm for the spatial connec-
tivity into a form that has level-independent complexity. The section closes with a presentation of
how to apply the data structure to perform several algorithmic tasks that occur in the implementation
of DG methods. Finally in Appendix A we present the refinement rules for further cell types, namely
for quadrilaterals, cuboids and prisms.

2. Refinement hierarchy and connectivity. In this section we consider the refinement of a
single cell and the major target is to find an algorithm that establishes the spatial connectivity. Here
we stick to the following notation rule: Geometrical objects are denoted by capital letters, whereas
numbers of geometrical objects are denoted by small letters. Spatially connected objects are accented
using ·̃ , whereas hierarchically connected objects are accented using ·′.

2.1. The cell type. Let us introduce a few simple concepts, in order to fix the general structure
of the geometrical objects we are going to consider. According to [17] a polytope is a compact and
convex subset of Rn, which is the intersection of a finite set of closed halfspaces of Rn. Furthermore,
the polytope is the convex hull of its vertices and if the polytope K is the intersection of the non-
redundant set of closed halfspaces H+

1 , H
+
2 , . . . ,H

+
m, then Fi = Hi ∩ K for i = 1, 2, . . . ,m are

the facets of K and ∂K = ∪mi=1Fi. We will use the term face instead of facet, since this is more
common in our application background, but note that faces are different objects in the sense of [17].
If X1, X2, . . . , Xd ∈ Rn are the vertices of the polytope K, then we call λ ∈ Rd an array of convex
coefficients if λi ≥ 0 for all i and

∑d
i=1 λi = 1. Then λ maps to a point X ≡

∑d
i=1 λiXi ∈ K.

Note that in general for given X ∈ K the corresponding array of convex coefficients is not unique.
It is unique if K is an n–Simplex and in this case the array of convex coefficients represents the
well-known barycentric coordinates.

4 K. BRIX, R. MASSJUNG, AND A. VOSS

#D 2
#N 3
#F 3

#NF 2

(a) triangle

#D 2
#N 4
#F 4

#NF 2

(b) quadrilateral

#D 3
#N 4
#F 4

#NF 3

(c) tetrahedron

#D 3
#N 8
#F 6

#NF 4

(d) cuboid

#D 3
#N 6
#F 5

#NF 3 or 4

(e) prism

Fig. 2.1: The numbers #D,#N,#F and #NF for various cell types.

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
AA

0 1

2

01

2

(a)

f nF
0 (f) nF

1 (f)
0 1 2
1 2 0
2 0 1

(b) nF

Fig. 2.2: Table nF for cell type triangle.

Definition 2.1 (Cell, cell type). Let #D,#N,#F,#NF ∈ N be given. Then we say that K is a
cell of cell type (#D,#N,#F,#NF), if

(i) K ⊂ R#D is a polytope with #N vertices,
(ii) K is not contained in a hyperplane of R#D,

(iii) K has #F faces and each face is a polytope with #NF vertices, where each vertex of each
face is a vertex of K.

In Fig. 2.1 the numbers #D,#N,#F,#NF are given for the cell types we will consider here. Next
we introduce the local numbering of vertices and faces for a given cell type. Let A0, A1, . . . , A#N−1 be
the vertices of the cell K and define the local numbering of the vertices according to their subscript.
Then the numbering of the faces in cell K is given by the table nF , which is of size #F × #NF
with values in 0, 1, . . . ,#N − 1, and tells us which vertices of K are the vertices of face f . In
Fig. 2.2 we see this table for the cell type triangle and its illustration in the drawing, where the
numbers of the (cell–) vertices and of the faces are indicated. To be more precise, let F be the
face of K with face number f , then vertex j of F is vertex nFj (f) of K. We also define the sets
nF (f) ≡ {nF0 (f), nF1 (f), . . . , nF#NF−1(f)}. For the cell type tetrahedron, the table nF is given in
Fig. 2.5.

We will discuss in detail the cell types triangle and tetrahedron in Sect. 2 and Sect. 3. Since
the discussion for the cell types quadrilateral and cuboid is analogous and straight forward, we only
display the corresponding tables in Appendix A, and restrict ourselves to a few comments for these
cell types here.

2.2. The refinement rule and the cell identifier (ID). We further assign to each cell type
a refinement rule, which divides a cell K into #C subcells, also denoted as children of K, which
are of the same cell type as K. The number of subcells #C is given in Fig. 2.3 for the refinement
rule we are going to employ for the respective cell type. We call K the parent of each of its children.
Similarly we require that when a cell K is refined, each of its faces is subdivided into #CF subfaces,
where each subface is a face of a child of K.

A HASH DATA STRUCTURE FOR ADAPTIVE DG METHODS 5

#C 4
#CF 2

(a) triangle

#C 4
#CF 2

(b) quadrilateral

#C 8
#CF 4

(c) tetrahedron

#C 8
#CF 4

(d) cuboid

#C 6
#CF 3 or 4

(e) prism

Fig. 2.3: The numbers #C and #CF for the refinement of various cell types.

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
�

A
A
A
A
A
A

0 12 0 1

2
1 0

2

0 1

2

2 2

1 0 0 11 0

2
2

1 0

0
1 2

3

(a)

c nC
0 (c) nC

1 (c) nC
2 (c)

0 1,2 0,2 0,1
1 0 0,1 0,2
2 0,1 1 1,2
3 0,2 1,2 2

(b) nC

Fig. 2.4: Table nC for cell type triangle.

The general structure of the refinement rule is such that for any subcell K ′ of K each vertex of
K ′ is the arithmetic mean of a collection of vertices of K. This is made explicit in the table nC ,
which is of size #C × #N . It is given in Fig. 2.4 for the cell type triangle and in Fig. 2.5 for the
cell type tetrahedron. Furthermore, the drawing of Fig. 2.4 illustrates the table nC for the cell type
triangle. To be more precise, consider child c ∈ {0, 1, . . . ,#C−1} of K and assume that A′j ∈ R#D

is vertex j ∈ {0, 1, . . . ,#N − 1} of the child cell. Then nCj (c) tells us, which vertices of K have
to be averaged to obtain A′j . For example, according to the table of Fig. 2.4, if A0, A1, A2 are the

vertices of triangle K, then vertex 1 of subcell 0 is
1
2

(A0 +A2), whereas vertex 0 of subcell 1 is A0.
This may be written in general as

A′j =

∑
k∈nCj (c)Ak∑
k∈nCj (c) 1

.

For the cell type triangle all entries of table nC are illustrated in the drawing of Fig. 2.4, where the
children of the triangle of Fig. 2.2 are displayed.

Table nC can be applied recursively and thus defines a refinement hierarchy. The cell that
contains all cells of the hierarchy is called the base cell ; its faces are called the base faces. The
children of the base cell are the cells of level 1, the children of all cells of level 1 are the cells of level
2 and so on. In the left picture of Fig. 2.6, we see the cells of level 2 for the base triangle given in
Fig. 2.2. They are children of the cells of level 1 and their child numbers are indicated. We associate
with each cell that can possibly be attained within the refinement hierarchy, the path of child numbers
we have to pass through from level to level to reach that cell. In the right picture of Figure 2.6 we
see the paths of the cells on level 2. Reading from right to left, the path gives the children passed
through from lower to higher levels. The child numbers considered as entries in the path are called
digits. Given a cell of level l we know that only the l digits associated with the lowest levels are of
interest. We thus uniquely identify a cell by its level and a sequence of path digits. This information

6 K. BRIX, R. MASSJUNG, AND A. VOSS

f nF
0 (f) nF

1 (f) nF
2 (f)

0 0 1 2
1 0 1 3
2 0 2 3
3 1 2 3

(a) nF

c nC
0 (c) nC

1 (c) nC
2 (c) nC

3 (c)
0 1,2 0,2 0,1 0,3
1 1,3 0,3 1,2 0,1
2 2,3 1,2 0,3 0,2
3 0,3 2,3 1,3 1,2
4 0 0,1 0,2 0,3
5 0,1 1 1,2 1,3
6 0,2 1,2 2 2,3
7 0,3 1,3 2,3 3

(b) nC

Fig. 2.5: Tables nF and nC for cell type tetrahedron.

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
�

A
A
A
A
A
A

�
�
�
�
�
�
�
�
�

A
A
A

A
A
A
A
A
A
A
A
A

�
�
�

1
0

2
3

1
0

2

3
2

0
1

3

1
0

2

3

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
�

A
A
A
A
A
A

�
�
�
�
�
�
�
�
�

A
A
A

A
A
A
A
A
A
A
A
A

�
�
�

11
01

21
30

12
02

22

31
20

00
10

32

13
03

23

33

Fig. 2.6: Child numbers and paths associated with triangles for level 2

is collected in the cell identifier (ID):

ID ≡ (path, level), (2.1)
path ≡ cl · · · · · · c3c2c1 , with digits ci ∈ {0, 1, . . . ,#C − 1},
level ≡ l , where l ∈ {1, 2, 3, . . . }.

Note that in (3.1) and (3.3), the cell identifier (2.1) will be extended by adding further information to
the ID. In the remainder of the current section we only consider the refinement hierarchy that belongs
to a single base cell and the main purpose of the section is to solve Problem 2.2 within this refinement
hierarchy.

Problem 2.2 (Spatial connectivity). Let an ID ≡ (clcl−1 . . . c2c1, l) and a face number f be given
and let us identify ID with the cell it corresponds to. In case face f of cell ID is part of a base face,
then we want to be provided with this information. Otherwise find ĨD ≡ (c̃lc̃l−1 . . . c̃2c̃1, l̃) and f̃ such
that on the grid of level l, the neighbor of ID across its face f is ĨD and the neighbor of ĨD across its
face f̃ is ID.

In Sect. 3 we consider a whole grid of base cells, the so-called coarse grid, and treat the refinement
hierarchy associated with the coarse grid and also Problem 2.2.

2.3. Conditions imposed on the refinement rule. In this section we set up conditions on
the refinement rule, which will enable us to solve Problem 2.2. These conditions will be formulated in
Properties 2.3, 2.6, 2.8 and 2.12 below. These properties are easily checked for a given cell type and

A HASH DATA STRUCTURE FOR ADAPTIVE DG METHODS 7

H
HHHf

c
0 1 2 3

0 0 0 -1 -1
1 1 -1 1 -1
2 2 -1 -1 2

(a) triangle

HH
HHf
c

0 1 2 3 4 5 6 7

0 -1 2 1 0 -1 -1 -1 0
1 3 -1 1 0 -1 -1 1 -1
2 3 2 -1 0 -1 2 -1 -1
3 3 2 1 -1 3 -1 -1 -1

(b) tetrahedron

Fig. 2.7: Divide/insert–table f̃(f, c) depending on face and child number.

its refinement rule, since these properties mostly concern the cells of level 1 and only in one instance
(Property 2.12) the cells of level 2. If all properties can be verified, then useful conclusions, which
concern all cells in the refinement hierarchy, will be seen to hold. This is detailed in the remainder
of Sect. 2 and in Sect. 3. We will see that the refinement rules proposed for different cell types in
Sect. 2.2 and Appendix A possess all these properties.

2.3.1. Divide and insert faces and the table f̃(f, c). We can distinguish between two types
of faces, namely the ones of type divide and the ones of type insert : Considering a cell of level 1 or
higher, a divide face of the cell is a face that is contained in a face of the cell’s parent. An insert face
of the cell is a face that is not a divide face. The faces of the base cell are called the base faces. Thus
any face, that is contained in a base face, is a divide face. We formulate the first property that our
refinement rule should satisfy:

Property 2.3 (Conformity of insert faces of level 1). For each insert face F of level 1, there exist
two cells K, K̃ of level 1, such that F = K ∩ K̃ and F is a face of K as well as a face of K̃.

Due to the recursive application of the refinement rule, we obtain:

Lemma 2.4 (Conformity of insert faces on all levels). Given a cell type and a refinement rule according
to Sect. 2.1 and 2.2 such that Property 2.3 is satisfied, then the conformity of insert faces on all levels
is given: For each insert face F on level l ≥ 1, there exist two cells K, K̃ of level l, such that
F = K ∩ K̃ and F is a face of K as well as a face of K̃.

The validity of Property 2.3 can be read off from the drawing of Fig. 2.4 for the cell type triangle.
In general it has to be checked in conjunction with tables nF and nC . It is easily checked, that this
property also holds for the cell type tetrahedron.

Next, we can easily set up a table that tells us, if we are at a divide face, and if not, provides us
with another valueable information: Consider first the triangles of level 1 in the drawing of Fig. 2.4.
Given the child number c of a triangle and a face number f , we return the value f̃(f, c) = −1 if
face f of the triangle is a divide face and in case the face is an insert face, according to Property 2.3
we know that the face also belongs to another triangle of level 1 and we return as f̃(f, c) the face
number with respect to the other triangle. The corresponding tables f̃(f, c) are given for the cell
types triangle and tetrahedron in Fig. 2.7. It is easily seen for the cells of level 1, that this table
is well–defined if a cell type and a refinement rule is given according to Sect. 2.1, 2.2 and satisfies
Property 2.3. And due to the recursive application of the refinement rule, it is also clear that the
table is valid on all levels l ≥ 1:

Lemma 2.5 (Uniqueness of table f̃(f, c)). Given a cell type and a refinement rule according to
Sect. 2.1, 2.2 such that Property 2.3 is satisfied, then table f̃(f, c) is well–defined throughout the
refinement hierarchy and is already uniquely determined by level 1.

8 K. BRIX, R. MASSJUNG, AND A. VOSS

2.3.2. Invariance of face numbers under refinement. From the drawings of Fig. 2.2 and
Fig. 2.4 we can make another observation for the divide faces of level 1: Let K ′ be a triangle of level
1, a child of base cell K. Given a divide face of K ′, say with face number f ′, and assuming the face
is contained in face f of K, then we have f = f ′. Obviously, whenever this property holds on level
1, again due to the recursive application of the refinement rule, it will hold on all levels l ≥ 1. We
formulate the property that has to be verified and the conclusion separately:

Property 2.6 (Invariance of face numbers under refinement). Given the base cell K and any one
of its children K ′. If face f ′ of K ′ is contained in face f of K, then we have f = f ′.

We immediately conclude:

Lemma 2.7 (Invariance of face numbers under refinement). Given a cell type and a refinement rule
according to Sect. 2.1, 2.2 such that Property 2.6 is satisfied. Then if K is any cell in the refinement
hierarchy, K ′ any of its children and face f ′ of K ′ is contained in face f of K, then we have
f = f ′.

In fact, trying to ensure the validity of Property 2.6 in the case of tetrahedra led us to the special
enumeration that can be found in tables nC and nF of Fig. 2.5. This enumeration is different to the
ones available in the literature, and we will comment on this issue in detail in Sect. 2.5.

2.3.3. Invariant pattern of face division. Consider again the situation of Lemma 2.7, i.e. let
K ′ be a child of cell K, F a face of K and let F ′ be a face of K ′ that is contained in F . Then we
say that F ′ is a child face of F and F is the parent face of F ′. Remember that F has #CF child
faces with #CF given in the table of Fig. 2.3.

Now, if Lemma 2.7 holds and F is face f of K, then F ′ is also face f of K ′. Each vertex of
F ′ is a vertex of K ′, and thus due to table nC each vertex of F ′ can be written as the arithmetic
mean of a collection of vertices of K. In fact, since F ′ ⊂ F , the vertices of K to be averaged are
vertices of F . Thus, with the aid of table nC and nF we can determine how each vertex of F ′ can
be written as the arithmetic mean of a collection of vertices of F . In Property 2.8 we will impose an
invariance on the procedure which determines the vertices of the face children of F from the vertices
of F . We are now going to introduce the details for this:

Let A0, A1, . . . , A#N−1 be the vertices of K, and A′0, A
′
1, . . . , A

′
#N−1 the vertices of K ′, num-

bered according to the refinement rule of Sect. 2.1, 2.2. Let σ ∈ Π#NF , where ΠN is the group of
permutations on a set of N elements, and define

Ei = AnF
σ(i)

(f) for i ∈ {0, 1, . . . ,#NF − 1},
E′i = A′

nF
σ(i)

(f) for i ∈ {0, 1, . . . ,#NF − 1}. (2.2)

Then the points E0, E1, . . . , E#NF−1, respectively E′0, E
′
1, . . . , E

′
#NF−1, are the vertices of F , respec-

tively F ′. The Ei and E′i can be found in table ncF , which has #CF lines, see Fig. 2.8 for the cell
types triangle and tetrahedron. Each line of table ncF corresponds to one of the face children F ′

of F and tells us, which vertices from E0, E1, . . . , E#N−1 have to be averaged to obtain the vertex
E′i of F ′. Note that the c′i(σ, f) are not relevant yet and will be introduced shortly. Since triangles
and quadrilaterals have the same geometrical objects as faces, we can employ the same permutations
for both. Similarly tetrahedra and prisms both possess triangular faces; the quadrilateral faces of the
prism will be treated in Appendix A.

We require that for a given cell type the table ncF is unique and furthermore that it holds
independent of the face number f of F and the permutation σ, i.e. independent of the numbering
of the face vertices:

A HASH DATA STRUCTURE FOR ADAPTIVE DG METHODS 9

Property 2.8 (Pattern of vertices of face children). There is a unique table ncF , such that given
any base face F and any σ ∈ Π#NF , each line of ncF constitutes a rule that tells us for one child
face F ′ of F , how the vertices E′i of F ′ are given as arithmetic means of the vertices Ei of F .
Here the Ei and the E′i are given according to (2.2).

Due to the recursive application of the refinement rule, we immediately obtain:

Lemma 2.9 (Pattern of vertices of face children). Given a cell type and a refinement rule according
to Sect. 2.1, 2.2 such that Properties 2.6 and 2.8 are satisfied. Then the table ncF of Property 2.8
holds for all faces F in the refinement hierarchy.

The tables ncF are illustrated in Fig. 2.9. Table ncF is applied in the particular case of face f = 1
and face f = 3 of the cell type tetrahedron in Fig. 2.10. Here we have replaced Ei , E′i from the
right picture of Fig. 2.9 by the vertex numbers nFσ(i)(f) from (2.2) with an appropriately chosen
permutation σ.

To table ncF we have added a column containing c′i(σ, f) and c′i also occurs in Fig. 2.9, which
has the following meaning: Let child face F ′ correspond to line i ∈ {0, 1, . . . ,#CF} of table ncF .
F also belongs to a particular child cell, with child number given by c′i . How can we determine c′i ?
For given i ∈ {0, 1, . . . ,#CF}, σ, f , we can infer from (2.2) which of the Ai are averaged in each
line of table ncF and thus together with table nC we can determine which child cell the child face
associated with line i belongs to. To make the dependency on σ and f explicit we have written
c′i(σ, f) in table ncF . In the example of Fig. 2.10, the values c′i are also indicated.

Lemma 2.10 (Child numbers of cells belonging to face children).
For all i ∈ {0, 1, . . . ,#CF}, σ ∈ Π#NF and f ∈ {0, 1, . . . ,#F}, the child number c′i(σ, f) is uniquely
determined by combining (2.2) and table nC .

As a last consequence of this subsection, combining Property 2.8 with Property 2.3 we obtain the
conformity of uniformly refined grids:

Lemma 2.11 (Conformity of uniformly refined grids). Given a cell type and a refinement rule accord-
ing to Sect. 2.1, 2.2 such that Properties 2.3, 2.6, 2.8 are satisfied. Let F be a face of level l in the
refinement hierarchy. Then F is either contained in a base face, or F = K ∩ K̃, where K, K̃ are
two cells of level l in the refinement hierarchy and F is a face of K as well as a face of K̃.

Proof: If F is not part of a base face, then it must be part of an insert face. If F is an insert face,
then we are done according to Lemma 2.4.

What remains are the inner divide faces, i.e. those divide faces which are not contained in a base
face, or expressed equivalently, those divide faces which are contained in an insert face. Let F ′ be the
child face of the insert face F = K ∩ K̃, where F , K, K̃ are all of level l. Then the vertices of F
are at the same time vertices of K and K̃. When K and K̃ are refined, according to Lemma 2.9,
F is divided as a face of K in the same way as F is divided as a face of K̃. One of the subfaces is
F ′, and therefore, there exists a child K ′ of K and a child K̃

′
of K̃ such that F ′ = K ′ ∩ K̃ ′, where

F ′, K ′, K̃
′

are all of level l + 1.
This argument repeats, when F ′ is divided further in the refinement hierarchy, and thus for all

divide faces, which are contained in the insert face F , the conformity condition holds. �

2.3.4. Table c̃(f̃ , f, c). In our effort to solve Problem 2.2, i.e. to find the neighbor cells of cell
K across the faces of K, we have reached the following point: Given a face number f and the child
number c of K we can already determine the number f̃(f, c) of the face relative to the neighbor cell
if we are at an insert face. If we are at a divide face, we can use the ID of K and Lemma 2.7 to do
find f̃ as-well, which will be discussed in Sect. 2.4. One step further is to determine the child number

10 K. BRIX, R. MASSJUNG, AND A. VOSS

ncF

E′0 E′1
c′0(σ, f) E0 E0, E1

c′1(σ, f) E0, E1 E1

(a) Triangle or quadrilateral.

ncF

E′0 E′1 E′2
c′0(σ, f) E0 E0, E1 E0, E2

c′1(σ, f) E0, E1 E1 E1, E2

c′2(σ, f) E0, E2 E0, E1 E2

c′3(σ, f) E1, E2 E0, E2 E0, E1

(b) Tetrahedron or prism (triangular face).

Fig. 2.8: Tables ncF and child numbers c′i for vertices of face children.

E0 E1
E′0 E′0E′1 E′1

c′0 c′1

(a) Face of a triangle.

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
�

A
A
A
A
A
A

E0
E′0 E′1 E′0 E′1 E1

E′2

E′2
E′1 E′0

E′2

E′0 E′1

E′2

E2

c′0 c′1

c′2

c′3

(b) Face of a tetrahedron.

Fig. 2.9: Unique pattern of vertex numbers.

of the neighbor cell when f̃ , f, c are given. This is established by the table c̃(f̃ , f, c), which will be
discussed next:

Let F be a face of level l ≥ 1, which is not contained in a base face, and let Lemma 2.11 hold,
such that F = K ∩ K̃, and K, K̃ are two cells of level l in the refinement hierarchy. Let F be face
f of K and face f̃ of K̃ and let K be child c of its parent cell and K̃ child c̃ of its parent cell.
Then the return value of c̃(f̃ , f, c) is defined to be c̃. We demand that the following property holds.

Property 2.12. Table c̃(f̃ , f, c) is uniquely defined for all inner divide faces of level 2.

The validity of Property 2.12 for the cell types triangle and tetrahedron can be checked by employing
tables nF an nC , while table c̃(f̃ , f, c) is given for cell types triangle and tetrahedron in Fig. 2.11
and Fig. 2.12. Now we can draw the following conclusion:

Lemma 2.13. Given a cell type and a refinement rule according to Sect. 2.1, 2.2 such that Property 2.3
is satisfied. Then table c̃(f̃ , f, c) is uniquely defined for all insert faces of level 1. If additionally
Properties 2.6, 2.8, 2.12 hold, then table c̃(f̃ , f, c) is well-defined throughout the refinement hierarchy,
and it is fully determined by the values found for the insert faces of level 1 and the inner divide faces
of level 2.

Proof: Let K be child c of the base cell, i.e. K is a cell of level 1, and f any face number. Of
course, on level 1, the pair (f, c) occurs only once. If additionally f̃ = f̃(f, c) 6= −1, i.e. face f of
K is an insert face of level 1, then due to Property 2.3, c̃(f̃ , f, c) is well-defined. Due to the recursive
application of the refinement rule, we immediately see, that c̃(f̃ , f, c) is given for the insert faces on
all levels by the values c̃(f̃ , f, c) found on level 1.

A HASH DATA STRUCTURE FOR ADAPTIVE DG METHODS 11

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
�

A
A
A
A
A
A

1 1 0 1 0 03

30 1 3

1 0

3
3

5
1

4

7

(a) f = 1

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
�

A
A
A
A
A
A

3 3 1 3 1 12

21 3 2

3 1

2
2

7
3

5

6

(b) f = 3

Fig. 2.10: Unique pattern of vertex and child numbers for faces 1 and 3 of cell type tetrahedron.

HHHHf
c

0 1 2 3

0 1 0 3 2
1 -1 -1 -1 -1
2 -1 -1 -1 -1

(a) c̃(0, f, c)

HHHHf
c

0 1 2 3

0 -1 -1 -1 -1
1 2 3 0 1
2 -1 -1 -1 -1

(b) c̃(1, f, c)

HHHHf
c

0 1 2 3

0 -1 -1 -1 -1
1 -1 -1 -1 -1
2 3 2 1 0

(c) c̃(2, f, c)

Fig. 2.11: Table c̃(f̃ , f, c) for cell type triangle.

It remains to check the inner divide faces. For divide faces we have f̃(f, c) = −1, and thus a pair
(f, c) can never occur for both a divide face and an insert face. Thus the values c̃(f̃ , f, c) given for
the inner divide faces of level 2 cannot conflict with the values given for insert faces.

It remains to check, that the values c̃(f̃ , f, c) given for the inner divide faces of level 2 cannot
conflict with those values for other inner divide faces. On level 1 no inner divide faces occur. Let us
have a closer look at the inner divide faces of level 2, which are exactly the child faces of insert faces of
level 1: Let F be an insert face of level 1 with the two cells K and K̃ it belongs to, so that F is face f
of K and face f̃ of K̃. Let E0, E1, . . . , E#NF−1 be the vertices of F and Ei = AnF

σ(i)
(f) = ÃnF

σ̃(i)
(f̃)

for i ∈ {0, 1, . . . ,#NF − 1}, where the Aj are the vertices of K, the Ãj are the vertices of K̃ and
σ, σ̃ ∈ Π#NF are chosen appropriately. Then each line of table ncF represents a child face F ′ of F ,
where F ′ = K ′ ∩ K̃ ′. Suppose we are in line i ∈ {0, 1, . . .#NF − 1}, so that K ′ is child c′i(σ, f)
of K and K̃

′
is child c′i(σ̃, f̃) of K̃, which results in the entries c′i(σ̃, f̃) = c̃(f̃ , f, c′i(σ, f)). Due to

(2.2) for the vertices E′i of F ′ we have E′i = A′
nF
σ(i)

(f) = Ã
′
nF
σ̃(i)

(f̃) for i ∈ {0, 1, . . . ,#NF − 1}.

In particular the same permutations σ, σ̃ and face numbers f , f̃ occur, and thus on F ′ the same
situation occurs as on F , i.e. the same table entries c′i(σ̃, f̃) = c̃(f̃ , f, c′i(σ, f)) are reproduced. This
argument repeats when refining further, and thus on all faces which are part of a divide face of level
2, the same entries occur in table c̃(f̃ , f, c).

Due to the recursive application of the refinement rule, it is also clear that for any inner divide
face which is the child face of an insert face, the same entries in c̃(f̃ , f, c) occur as for the inner divide
faces of level 2. Again, when refining the inner divide face, we can use the argument from above, and
we finally obtain that for all divide faces the entries in table c̃(f̃ , f, c) are equal to those valid for the
inner divide faces of level 2. �

2.4. Connectivity. Given an ID, to determine the IDs in the hierarchical connectivity is an
easy task: The parent is given by IDparent = (cl−1 . . . c2c1, l − 1) and the j–th child by IDchild j =

12 K. BRIX, R. MASSJUNG, AND A. VOSS

HH
HHf
c

0 1 2 3 4 5 6 7

0 0 -1 -1 7 4 6 5 3
1 -1 0 -1 2 6 4 -1 5
2 -1 -1 0 1 5 -1 4 6
3 -1 -1 -1 -1 -1 -1 -1 -1

(a) c̃(0, f, c)

HH
HHf
c

0 1 2 3 4 5 6 7

0 1 -1 3 -1 5 7 4 -1
1 -1 1 6 -1 7 5 2 4
2 -1 -1 -1 -1 -1 -1 -1 -1
3 -1 -1 0 1 -1 4 7 5

(b) c̃(1, f, c)

H
HHHf

c
0 1 2 3 4 5 6 7

0 2 3 -1 -1 6 4 7 -1
1 -1 -1 -1 -1 -1 -1 -1 -1
2 -1 5 2 -1 7 1 6 4
3 -1 0 -1 2 -1 7 4 6

(c) c̃(2, f, c)

H
HHHf

c
0 1 2 3 4 5 6 7

0 -1 -1 -1 -1 -1 -1 -1 -1
1 2 3 -1 -1 5 7 -1 6
2 1 -1 3 -1 6 -1 7 5
3 4 -1 -1 3 0 6 5 7

(d) c̃(3, f, c)

Fig. 2.12: Table c̃(f̃ , f, c) for cell type tetrahedron.

(jclcl−1 . . . c3c2c1, l + 1) for j ∈ {0, 1, . . . ,#C − 1}. Problem 2.2, which concerns the spatial connec-
tivity, is more involved. Assuming that all properties formulated so far are satisfied by the refinement
rule, Problem 2.2 can be solved as follows:

Let the assumptions of Lemma 2.13 hold. If f̃(f, cl) = −1 then face f of ID is a divide face and
due to Lemma 2.7 it is a child of face f of (cl−1 . . . c2c1, l − 1). If f̃(f, cl−1) = −1 then face f of
(cl−1 . . . c2c1, l−1) is a divide face and due to Lemma 2.7 it is a child of face f of (cl−2 . . . c2c1, l−2)
and so on. We finally have that if f̃(f, cj) = −1 for j = l, l− 1, . . . , 1, then face f of ID is contained
in a base face. Otherwise, let i ≤ l be the largest index with f̃(f, ci) 6= −1. Then we know that face
f of (ci . . . c2c1, i) is an insert face and it contains face f of ID. Furthermore, we know that face f
of (ci . . . c2c1, i) is also face f̃ of (c̃i, ci−1 . . . c2c1, i), where f̃ = f̃(f, ci) and c̃i = c̃(f̃ , f, ci), i.e. the
cells (ci . . . c2c1, i) and (c̃i, ci−1 . . . c2c1, i) are neighbor cells. Similarly we find, that (cj . . . c2c1, j)
and (c̃j , c̃j−1, . . . , c̃i, ci−1 . . . c2c1, j) are neighbors for j ≥ i, where c̃k = c̃(f̃ , f, ck) for k ≥ i and
their common face is face f of (cj . . . c2c1, j) or likewise face f̃ of (c̃j , c̃j−1, . . . , c̃i, ci−1 . . . c2c1, j).
Thus we have solved Problem 2.2, and display the algorithm that finds the solution in Algorithm 1.

Lemma 2.14. Given a cell type and a refinement rule according to Sect. 2.1, 2.2 such that all properties
of Sect. 2.3 hold, then Problem2.2 is solved by Algorithm 1.

Because of looping twice over the path, the complexity of Algorithm 1 is proportional to the level
present in the adaptive grid, so it is of the order of the maximal level of cells in the grid. But the
algorithm can also be formulated to find the IDs of neighboring cells in constant time, see Sect. 4.2.
As an example, the neighbor triangles of triangle ID = (230, 3), respectively ID = (22, 2), are given in
Fig. 2.13.

2.5. Congruence classes. Two cells K and K̃ are said to be congruent, if there exists a scaling
factor c > 0, a translation vector r ∈ R#D and an orthogonal matrix Q, such that K = r + cQ K̃.

We easily see that all cells appearing in the refinement hierarchy of a base triangle are congruent
to the base triangle. For the cell type tetrahedron this is not the case and the analysis of this issue is
quite involved. The issue was analyzed by Bey [4, 5], where the table nC of Fig. 2.14 was employed.
The result being that amongst the base tetrahedron and all the cells in its refinement hierarchy, there
are at most three congruence classes. The finiteness of congruence classes ensures the stability of
the hierarchy, which means that all tetrahedra are shape-regular, i.e. there exists % > 0 such that
% rK ≥ hK for all tetrahedra K in the refinement hierarchy. Here rK is the radius of the smallest

A HASH DATA STRUCTURE FOR ADAPTIVE DG METHODS 13

Algorithm 1 Neighboring algorithm within one base cell: Given ID ≡ (clcl−1 . . . c2c1, l) and face
number f this algorithm solves Problem 2.2, i.e. it determines ĨD ≡ (c̃lc̃l−1 . . . c̃2c̃1, l̃) and f̃ where
f̃ == −1 means that we are at a base face. The determination of o will be explained in Sect. 2.7.

1: i = l + 1;
2: l̃ = l;
3: f̃ = −1;
4: while (f̃ == −1 and i > 1) do . Search for insert face
5: i = i− 1;
6: f̃ = f̃(f, ci);
7: end while
8: if f̃ 6= −1 then . Insert face found
9: o = o(f, ci); . Look up orientation of neighbor cell in table o(f, c)

10: for j = 1, . . . , i− 1 do . Copy digits cj for j = 1, . . . , i− 1 from input path
11: c̃j = cj ;
12: end for
13: for j = i, . . . , l do . Apply table c̃(f̃ , f, c) to digits cj for j = i, . . . , l

14: c̃j = c̃(f̃ , f, cj);
15: end for
16: end if

(02,2)

(22,2)

(030,3)

(321,3)

(100,3)

(230,3)

ID f ĨD f̃
0 (321, 3) 0

(230,3) 1 (030, 3) 1
2 (100, 3) 2
0 – -1

(22, 2) 1 (02, 2) 1
2 – -1

Fig. 2.13: The neighbor triangles of triangle ID = (230, 3) and ID = (22, 2).

ball contained in K and hK is the diameter of K. This shape-regularity is an important condition
necessary for the convergence of Discontinuous Galerkin or Finite Element Methods.

The reason why we employed a different numbering is that the numbering of Bey does not satisfy
Property 2.6, which has been made use of extensively above to solve Problem 2.2 and will further be
needed in Sect. 2.7 and in Sect. 3.

Using a computer algebra system, we have determined the number of congruence classes for the
refinement as given in Fig. 2.5, which also results in three congruence classes. If the base tetrahedron is
given with vertices (A0, A1, A2, A3), then the three tetrahedra with vertices (0, A1−A0, A2−A0, A3−
A0), (0, A1−A0, A1−A2, A3−A2) and (0, A1−A0, A3−A2, A3−A0) are representatives of the three
congruence classes appearing in the refinement hierarchy of the base tetrahedron.

In order to exploit simple scalings to determine stiffness or mass matrices, one has to find ap-
propriate equivalence relations. E.g. if we need to consider those tetrahedra which can be mapped
onto each other by translation and positive scaling only, then the three congruence classes given above
split further and create at most 24 equivalence classes. In comparison, Bey’s refinement results in
at most 6 equivalence classes. For a given base tetrahedron, the equivalence class a subtetrahedron
belongs to can be determined from its path using a finite state machine, a well-known concept from

14 K. BRIX, R. MASSJUNG, AND A. VOSS

c nC0 (c) nC1 (c) nC2 (c) nC3 (c)
0 0 0,1 0,2 0,3
1 0,1 1 1,2 1,3
2 0,2 1,2 2 2,3
3 0,3 1,3 2,3 3
4 0,1 0,2 0,3 1,3
5 0,1 0,2 1,2 1,3
6 0,2 0,3 1,3 2,3
7 0,2 1,2 1,3 2,3

Fig. 2.14: nC for Bey’s refinement rule [4].

automata theory, see [15, 22]. In many instances larger equivalence classes suffice, e.g. if the volume
of a tetrahedron is needed, it can be precomputed for the three congruence classes given above, the
congruence class and level of the tetrahedron is determined and the volume is given by an appropriate
scaling.

2.6. Neighbor orientation. Assume that all properties of Sect. 2.3 are satisfied. So far we have
only discussed, how Algorithm 1 yields the neighbor cell ĨD and face number f̃ . We now ask, how
neighboring cells meet vertex-wise at a face. For this purpose let us consider the following situation:
Let K and K̃ be two cells of the same level and face F = K ∩ K̃ such that F is face f of K and
face f̃ of K̃. Furthermore let A0, A1, . . . , A#N−1, respectively Ã0, Ã1, . . . , Ã#N−1, be the vertices
of K, respectively K̃, given in the order defined by table nC . In order to establish a quadrature rule
for surface integrals in Sect. 2.7, the orientation of the two adjacent cells K and K̃ at face F has to
be identified, i.e. we have to determine which vertices of K and K̃ are identical points in physical
space. This information can be encoded in a permutation π ∈ Π#NF such that

AnFj (f) = ÃnF
π(j)(f̃) for all j ∈ {0, 1, . . . ,#NF − 1}. (2.3)

We enumerate all possible permutations Π#NF ≡ {π0, π1, . . . , π#NF !−1}. Assuming that the child
number of K is c, then o(f, c) is defined as the number of the permutation appearing in (2.3), i.e.
π = πo(f,c). We first find the entries o(f, c) for all insert faces of level 1. These entries are uniquely
defined, only occur where table f̃(f, c) has entries 6= −1, and are given in Fig. 2.15. The numbering
of the permutations πk is fixed in Fig. 2.16.

Due to Lemmas 2.7 and 2.9, table o(f, c) remains valid in (2.3), if instead of F we consider
any child of F . Again due to Lemmas 2.7 and 2.9, refining the face even further, π will remain the
correct permutation in (2.3). Now consider any inner face F in the refinement hierarchy, for which
we assume the situation given at the beginning of the section, and we ask again, what is the correct
permutation in (2.3)? Then we have to coarsen F until an insert face occurs. If this it occurs at level
i, then taking the path digit ci of K, (2.3) holds with π = πo(f,ci). This is how the permutation
number o = o(f, ci) is determined in line 9 of Algorithm 1.

2.7. Face quadrature. When assembling the discrete equations of a DG method, one major
task is to calculate surface integrals on the faces of the grid, which requires the evaluation of quadrature
formulas. Typically for a face F , which is the common face of two cells K and K̃, such a surface
integral and its approximation have the form∫

F

g(x, v(x), ṽ(x)) ds ≈ |F |
#QF−1∑
i=0

ωi g(Xi, v(Xi), ṽ(Xi)). (2.4)

Here v, respectively ṽ, are continuous functions defined on K, respectively K̃, #QF is the number
of face quadrature points, ωi are the quadrature weights and Xi are the quadrature nodes. In most

A HASH DATA STRUCTURE FOR ADAPTIVE DG METHODS 15

H
HHHf

c
0 1 2 3

0 1 1 -1 -1
1 1 -1 1 -1
2 1 -1 -1 1

(a) triangle

HH
HHf
c

0 1 2 3 4 5 6 7

0 -1 3 2 1 -1 -1 -1 1
1 1 -1 5 4 -1 -1 5 -1
2 2 5 -1 3 -1 5 -1 -1
3 3 4 1 -1 3 -1 -1 -1

(b) tetrahedron

Fig. 2.15: Orientation table o(f, c) for cell types triangle and tetrahedron.

0 1
π0 0 1
π1 1 0

(a) Triangle or quadrilat-
eral.

0 1 2
π0 0 1 2
π1 0 2 1
π2 1 2 0

0 1 2
π3 1 0 2
π4 2 0 1
π5 2 1 0

(b) Tetrahedron or prism (triangular face).

Fig. 2.16: Orientation permutations πk for various cell types.

cases v, respectively ṽ, are linear combinations of the DG shape functions.
In order to reduce function evaluations, one typically stores the shape function values at the face

quadrature points on the reference cell. Working with a reference cell or reference element is a well-
known technique developed in the Finite Element Method, see [9]. Thus v(Xi) is provided via the
numbering of the face quadrature points w.r.t. cell K, while ṽ(Xi) is provided via the numbering of
the face quadrature points w.r.t. cell K̃.

Therefore we have to know which face quadrature points of K and K̃ coincide in physical space
and in particular, we have to ensure in the first place that face quadrature points of K and K̃ do
coincide at all. Thus we consider face quadrature formulas of the following form:

Property 2.15 (Face quadrature). Let weights ωi ∈ R and arrays of convex coefficients ηi ∈ R#NF

be given for i ∈ {0, 1, . . . ,#QF − 1}, such that whenever E0, E1, . . . , E#NF−1 are the vertices of a

face F , we define the quadrature nodes to be Xi ≡
#NF−1∑
j=0

ηij Ej for i ∈ {0, 1, . . . ,#QF − 1}.

Further for all permutations in Π#NF ≡ {π0, π1, . . . , π#NF !−1}, we have corresponding permutations

σ0, σ1, . . . , σ#NF !−1 ∈ S#QF , such that Xσk(i) =
#NF−1∑
j=0

ηij Eπk(j) and ωσk(i) = ωi for all k ∈

{0, 1, . . . ,#NF !− 1} and i ∈ {0, 1, . . . ,#QF − 1}.

The quadrature nodes on face f of a cell are denoted by Xf
i for i ∈ {0, 1, . . . ,#QF −1}. In Fig 2.17

we display the quadrature nodes when employing Gaussian quadrature with #QF = 2 along the
faces of triangles. In the right picture, quadrature nodes are shown and the different numberings they
possess with respect to the adjacent cells K and K̃. In fact in our implementation, we allow the user
to define quadrature formulas by providing ωi, η

i, σk satisfying Property 2.15.
Since the permutation number o that we have found in Sect. 2.6 tells us which vertices of K and

K̃ coincide on face F , and since the quadrature points of K and K̃ are defined in terms of these
vertices according to Property 2.15, the permutation number o can be used for the evaluation of the

16 K. BRIX, R. MASSJUNG, AND A. VOSS

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
AA

0 1

2

•X
2
0 •X

2
1

•X1
1

•
X1

0

•
X0

1

•X0
0

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
�

A
A
A
A
A
A

0 12 0 1

2
1 0

2

0 1

2

K

K̃

•X1
1 X̃1

0

•
X1

0
X̃1

1

Fig. 2.17: Quadrature nodes.

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
AA

0 1

2

01

2 �
�
�
�
�
�
�
�
�
�
��

2

1

0

2 0

1

base
triangle 0

base
triangle 1

(a)

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
�

A
A
A
A
A
A

2 2

1 0 1 02 0
2

2 1

1 02 0 2 0
1

0

3

0
1 2

3

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�

A
A
A
A
A
A1 1

(b)

Fig. 3.1: Neighboring base triangles (a) and their uniform refinement of level 1 (b).

integral (2.4). This yields∫
F

g(x, v(x), ṽ(x)) ds ≈ |F |
#QF−1∑
i=0

ωi g(Xf
i , v(Xf

i), ṽ(X̃
f̃

σo(i))) . (2.5)

3. Adaptive refinement of a coarse grid. Assume we have given a coarse grid of a domain,
obtained by an automatic mesh generator or by hand, such that no hanging vertices occur. Further-
more, let a problem be given that we assume to be solved on a grid that is obtained by refinements
of the coarse grid. Typically this refined grid consists of a lot more cells than the coarse grid. We
will consider each cell of the coarse grid as a base cell in the sense of Sect. 2 and extend the methods
of Sect. 2. We assume that all base cells are of the same cell type, which possesses a refinement rule
according to Sect. 2.1, 2.2 and satisfies all properties of Sect. 2.3. We will change this setting only in
Sect. 3.4 when discussing hybrid grids, i.e. cases where the coarse grid contains base cells of different
cell types.

3.1. The coarse grid and its connectivity. We are now going to specify how we define
the spatial connectivity of the coarse grid. We assume that the coarse grid consists of #B base
cells. Let F be face f ∈ {0, 1, . . . ,#F − 1} of base cell K and let K have base cell number
b ∈ {0, 1, 2, . . . ,#B − 1}. The spatial connectivity of the coarse grid is provided by assigning to
each pair (b, f) values b̃, f̃ , o, c̃(0), c̃(1), . . . , c̃(#C − 1), which will be explained in the following. This
amounts to storing #B ·#F · (#C + 3) values.

We set f̃ = −1, if F is on the boundary of the grid and assign in that case to b̃ a negative value,
which serves as a boundary marker. Typically this boundary marker indicates the type of boundary

A HASH DATA STRUCTURE FOR ADAPTIVE DG METHODS 17

condition to be imposed, if we use the grid to solve a PDE with boundary conditions. Otherwise, i.e.
in the case that F is not on the boundary, f̃ and b̃ are assigned such that K̃ is another base cell
satisfying F = K ∩ K̃ and F is face f̃ of K̃ and K̃ has base cell number b̃. Assuming further
that o is defined such that (2.3) is satisfied with π = πo, where the permutation πo is given in
Property 2.15. The values o, c̃(0), c̃(1), . . . , c̃(#C − 1) only have to be assigned if F is not on the
boundary. What remains is to assign the values c̃(0), c̃(1), . . . , c̃(#C − 1), when F,K, K̃, f, f̃ are
given as above. According to table cF , compare Lemma 2.10, let K ′j be child cFj (f) of K and

let K̃
′
j be child cFj (f̃) of K̃. Since the vertices of K and K̃ are numbered independent of each

other, we only know that there is a permutation σ ∈ S#CF , such that child cFj (f) of K is the
neighbor of child cFσ(j)(f̃) of K̃ for all j ∈ {0, 1, . . . ,#CF − 1}. We set c̃(cFj (f)) ≡ cFσ(j)(f̃) for
j ∈ {0, 1, . . . ,#CF − 1}. In fact this defines only #CF values of c̃(0), c̃(1), . . . , c̃(#C − 1). The
undefined values will not be needed in the sequel. When setting up the connectivity of the coarse
grid, the entries c̃(cFj (f)) and the values b̃, f̃ , o have to be determined from the information given by
the coarse mesh generator.

Since due to Lemma 2.10 the patterns of the child numbers of K and of K̃ replicate on any face
in the refinement hierarchy that is contained in the base face F , we know that across these faces the
child numbers of neighbor cells remain to be cFj (f) and cFσ(j)(f̃) for j ∈ {0, 1, . . . ,#CF − 1}. This
is an important observation that will be used in Sect. 3.2.

On the left of Fig. 3.1 we see a coarse triangulation consisting of two base triangles. In this case,
for the pair (b, f) = (0, 0) we have b̃ = 1, f̃ = 2, o = 1, and from the uniform refinement of level 1,
shown on the right of Fig. 3.1 we obtain c̃(2) = 2 and c̃(3) = 1.

3.2. Uniform refinement of the coarse grid and connectivity. If we refine any base cell
of the coarse grid in the manner of Sect. 2, then each cell that can possibly be attained by refinement
is uniquely defined by the extended cell identifier

ID = (path, level, basecell). (3.1)

This means the considered cell is in the base cell with number basecell and is obtained inside this
base cell via path and level. Note that in the following ID denotes the cell identifier in the sense of
(3.1), until we extend it for a last time in (3.3). Since the hierarchical connectivity is not influenced
by the coarse grid, parent and children IDs are obtained as in Sect. 2.4, leaving the basecell number
unchanged.

We consider again the question of the spatial connectivity as formulated in Problem 2.2, but now
on uniform refinements of the coarse grid. The problem is thus slightly varied, since neighboring cells
may belong to different base cells. Given a cell’s ID = (path, level, basecell) and a face number f
we search for the neighbor ĨD on the same level and the corresponding f̃ . On the right of Fig. 3.1
we see how the base triangles are uniformly refined to level 1 and the face numbers are indicated.
On the left of Fig. 3.2 we see how the base triangles from Fig. 3.1 are uniformly refined to level 2,
with the paths of all triangles indicated. Excerpting (path, level) from ID and applying Algorithm 1
to (path, level) and the given face number f , we get either the information, that the face is part
of a base face or we obtain the path of the neighboring cell on level l, which then lies in the same
base cell. In the former case, from the spatial connectivity of the coarse grid we get the number of
the base cell in which we can find our neighbor cell, or the information that we are at the boundary
of the grid. What remains to be discussed is: If face f of cell ID is part of a base face and the
neighboring base cell exists, what is the path of ĨD. According to the discussion in Sect. 3.1, from
the coarse connectivity we also know the array c̃ for face f of the given base cell. Thus we obtain
the child digits c̃l, . . . , c̃1 in the path of ĨD from the child digits cl, . . . , c1 in the path of ID simply
by setting c̃j = c̃(cj). The full algorithm to determine the spatial connectivity within the uniformly
refined grid is given in Algorithm 2. Using the permutation number o determined in Algorithm 2,
the face quadrature formulae (2.5) holds in analogy to Sect. 2.7.

18 K. BRIX, R. MASSJUNG, AND A. VOSS

Algorithm 2 Neighboring algorithm with coarse connectivity: Given ID ≡ (clcl−1 . . . c2c1, l, b) and
face number f the following algorithm solves Problem 2.2, i.e. it determines ĨD ≡ (c̃lc̃l−1 . . . c̃2c̃1, l̃, b̃)
and f̃ , where f̃ == −1, means that we are at the grid boundary. Additionally the permutation
number o is determined.

1: Excerpt (path, level) ≡ (clcl−1 . . . c2c1, l) from ID
2: Apply Algorithm 1 to obtain (c̃lc̃l−1 . . . c̃2c̃1, l̃), f̃ and o from (clcl−1 . . . c2c1, l) and f ;
3: if f̃ 6= −1 then
4: b̃ = b;
5: else
6: Get b̃, f̃ , o from b, f due to coarse connectivity;
7: if f̃ 6= −1 then
8: Get c̃ from b, f due to coarse connectivity;
9: for j=1,. . . ,l do

10: c̃j = c̃(cj);
11: end for
12: end if
13: end if

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

A
A
A

A
A
A
A
A
A

A
A
A
A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
AA

A
A
A
A
A
A
A
A
A

A
A
A
A
A
A

A
A
A

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

11
01

21
30

12
02

22

31
20

00
10

32

13
03

23

33
11 31 13 33

01 20 03

21 00 23
30 10

12 32
02

22

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�

�
�
�
�
�
�

A
A
A
A
A
A

A
A
A
A
A
A

A
A
A
A
A
A
A
A
A
A
AA

A
A
A
A
A
A
A
A
A

A
A
A
A
A
A

A
A
A

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�

e e e
Fig. 3.2: Two base cells of Fig. 3.1 uniformly refined to level 2 with paths indicated (left), and refined
to a simply graded grid with hanging vertices encircled (right).

3.3. Simply graded grids. The use of uniformly refined grids is inefficient in many applications.
To enable local refinements we consider simply graded grids which are refinements of the coarse grid
fullfilling the following condition: If two cells are adjacent across a face then their level can differ at
most by 1. Due to the structure of our refinement rules, in a simply graded grid, a cell of level l
can have #CF neighboring cells across one face, which are all of level l + 1. On such a face the
cells of the higher level possess vertices that are not vertices for the cell of the lower level, so–called
hanging vertices, compare the encircled vertices in Fig. 3.2. In Sect. 4.5.1 we will give an example for
an algorithm, which ensures that grids are simply graded.

Given ID ≡ (clcl−1 . . . c2c1, l, b) and f , what are the neighbors ĨD ≡ (c̃lc̃l−1 . . . c̃2c̃1, l̃, b̃) and f̃
in a simply graded grid? In Sect. 4.5.2 we will see that for the applications we consider here, it suffices
to consider the case that ĨD is not of higher level than ID, i.e. l̃ ∈ {l, l − 1}. Then according to
Algorithm 2 from ID we first find the neighbor ĨD ≡ (c̃lc̃l−1 . . . c̃2c̃1, l, b̃), which is of the same level,
and the corresponding f̃ and o. We will see in Sect. 4.4 how we can check, if ĨD is actually a cell
in the graded grid. If that cell exists, we are done. If it does not exist, ĨD is replaced by its parent
(c̃l−1 . . . c̃2c̃1, l − 1, b̃). In this latter case, we have to reconsider the face quadrature (2.5): Note that
from our initial application of Algorithm 2 we still have the face number f̃ , the permutation number
o and the digit c̃l to our disposal. Let cell K, respectively K̃, be the cells corresponding to ID,
respectively ĨD ≡ (c̃l−1 . . . c̃2c̃1, l − 1, b̃). Then F = K ∩ K̃ is face f of K and a child face of face

A HASH DATA STRUCTURE FOR ADAPTIVE DG METHODS 19

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
AA

�
�
�
�
�
�
�
�
�
�
��

�
�
�
�
�
�

A
A
A
A
A
A

•

•K̃

K

�
�
�
�
�
�
�
�
�
�
��

A
A
A
A
A
A
A
A
A
A
AA

��

��

��

AA

AA

AA

0 1

2

•
X7

0

•
X7

1

•
X8

0

•
X8

1

•X3
0

•X3
1

•X4
0

•X4
1

•X6
1

•X6
0

•X5
1

•X5
0

0
1 2

3

Fig. 3.3: Additional quadrature points.

f̃ of K̃, compare the left picture of Fig. 3.3. Note that additional face quadrature points for K̃ are
required. Namely, apart from the face quadrature points Xe

i , e ∈ {0, ...,#F − 1}, given in the left
picture of Fig. 2.17, we have to add the face quadrature points given in the right picture of Fig. 3.3,
which we denote by Xe

i , e ∈ {#F,#F + 1, . . . ,#F · (#CF + 1) − 1}. Here we have numbered the
child faces of the faces of K from #F to #F · (#CF + 1) − 1. One easily sees that these child
faces are also uniquely characterized by providing a cell child number c and a face number f , so
that the corresponding child face is face f of the child c of K. This results in a table e(f, c), which
determines e ∈ {#F,#F + 1, . . . ,#F · (#CF + 1)− 1} from the corresponding f and c. The details
are not given here. Now, using ẽ = e(f̃ , c̃l), the face quadrature (2.5) looks as follows:∫

F

g(x, v(x), ṽ(x)) ds ≈ |F |
#QF−1∑
i=0

ωi g(Xf
i , v(Xf

i), ṽ(X̃
ẽ

σo(i))) . (3.2)

3.4. Hybrid grids. We have also implemented the case of hybrid grids. Namely, in 2D our
coarse grid can consist of triangles and quadrilaterals, whereas in 3D the coarse grid can consist of
tetrahedra, cuboids and prisms. For the cell types quadrilateral, cuboid and prism, we can set up
the same tables that we have introduced for the cell types triangle and tetrahedron in the previous
sections. Almost all arguments used so far carry over to the cell types quadrilateral, cuboid and prism.
For cuboids the only change is that not all permutations π ∈ Π#NF are allowed in (2.3). Here for a
face F of a cuboid only those permutations of the vertices of F are allowed which correspond to rigid
body motions of F , compare Fig. A.3. This is no restriction in practice, since the vertices of the base
cuboids are naturally numbered such that those permutations do not occur. Furthermore, prisms are
constructed as a tensor product of triangles and quadrilaterals. For details, see Appendix A.

In order to handle hybrid grids we partition our coarse grid into several blocks, where each block
consists of cells of the same cell type. Accordingly we have to extend the ID again. Thus our cells are
finally identified by

ID ≡ (path, level, basecell, block, type, flags), (3.3)

where in addition to the information stored in the previous cell identifier, the block number and the
cell type are stored. The flags provide auxiliary storage space within the cell identifier, to be used for
various purposes, compare Sect. 4.

4. Adaptive grid data management. From our applications, the numerical solution of partial
differential equations (PDE), we are in need to store the adaptive grid in use and the data for every
cell in the grid, namely the coefficients of the solution of the PDE. This data is called the cell data.
As explained in the last section, an adaptive grid can be represented by a set of IDs. In a typical
problem involving a time–dependent PDE this set of IDs changes dynamically and a memory–efficient

20 K. BRIX, R. MASSJUNG, AND A. VOSS

storage technique to handle such a situation and to guarantee quick access to the cell data is needed.
This can typically be achieved by employing a hash table. We will see that it is quite advantageous
to store an ID within a bitstring, where the bitstring is an unsigned integer. This is memory-efficient
and allows us to perform the calculation of the neighbor ĨD in constant time using bit manipulations
on the unsigned integer. Furthermore, we will see how the associated unsigned integer can directly be
used as the argument of the hash function.

4.1. ID bitstrings. In order to store the ID ≡ (path, level, basecell, block, type, flags), we use
an unsigned integer of appropriate length (e.g. 32 or 64 bit), denoted by ID2, where the subscript 2
indicates the use of the binary system. Our implementation allows to partition the bits of the integer
into groups of different lengths and to access the groups separately. For example

ID2 ≡ (path︸︷︷︸
16 bits

, level︸ ︷︷ ︸
3 bits

, basecell︸ ︷︷ ︸
8 bits

, block︸ ︷︷ ︸
2 bits

, type︸︷︷︸
1 bit

, f lags︸ ︷︷ ︸
2 bits

)2 ,

i.e. for the path we reserve a group of 16 bits, for the level a group of 3 bits, for the basecell a group
of 8 bits, for the block a group of 2 bits, for the type only 1 bit and the remaining group of 2 bits are
used as flags for various purposes, e.g. in the assembling routine discussed in Sect. 4.5.2. In general
we denote by #P the number of bits reserved for the path. Furthermore, there is a grouping within
the path, namely if #B bits are needed to represent the child numbers 0, 1, ...,#C−1, then each digit
in the path requires #B bits. Thus, if #L is the largest number with #P ≥ #L ·#B, then all cells
of the grid hierarchy occurring between levels 1 and #L can be represented by the path. Accordingly
we have to choose the number of bits for the level large enough, so that all numbers between 1 and
#L can be represented. In the present example we have chosen an integer of 32 bits, where the grid
can possess cells from level 1 to 8 = #L, i.e. if each cell has 4 children (i.e. for our cell types in two
spatial dimensions, triangles or quadrilaterals), which can be encoded into #B = 2 bits, then all cells
occurring between level 1 and 8 can be represented since we have chosen #P = 16 = #L ·#B. The
8 bits for the basecell allow to have a coarse grid of 256 basecells, which can be divided into 4 blocks
and 2 different cell types may occur in the 4 blocks.

This technique to store the ID provides several advantages:
• It is very memory–efficient. The ID of a cell is encoded into 32 or 64 bits, which is of the

same memory size as a single pointer would need on a modern computer. Note that by means of
our algorithms presented in Sect. 2 and 3 we can infer the full hierarchical and spatial connectivity
from ID2. I.e. the savings in memory over data structures that realize connectivities via pointers, is
immediately visible, see Sect. 4.4.5 for details.
• It can directly be used to construct the hash function, see Sect. 4.4.1.
• It provides a cheap and simple means to perform operations only on a chosen subset of cells

that are present in the adaptive grid, see Sect. 4.4.4.
• It is in particular independent of the cell type and the spatial dimension and thus enables a

development of the data management algorithm independent of geometrical properties of the grid.
• The path can also be made use of in a parallelization technique based on a space-filling curve of

the grid. Here the position of a cell along a space-filling curve is determined from the path of the cell
using a finite state machine [15, 22]. This has been applied for logically Cartesian grids in [30] and
[8]. One of our targets is to generalize this in the future to triangular, tetrahedral and hybrid grids.
• For multiphase applications it is very convenient to set up a hash map for each physical phase,

i.e. phase-wise loops can easily be performed using the corresponding hash map and the particular
cell data associated with each phase is also associated with the corresponding hash map, compare
Sect. 4.4.

4.2. Finding neighbors in constant time using bitwise operations. We can slightly re-
organize Algorithm 1 and divide it into the steps (A), (B), (C), below. The loop in the lines 4–7 is
replaced by steps (A) and (B), whereas the loops in the lines 10–15 are replaced by step (C):

A HASH DATA STRUCTURE FOR ADAPTIVE DG METHODS 21

(A) For the given f , let I : {0, 1, ...,#C − 1} → {0, 1} be defined by I(c) = 1 if we are at an
insert face, i.e. if f̃(f, c) ≥ 0, and I(c) = 0 if we are at a divide face, i.e. if f̃(f, c) = −1. Set
Ii = I(ci) for all digits in the path.

(B) Set Ii = 0 for all i > l. Then find the largest index i for which Ii = 1. Set f̃ = f̃(f, ci).
(C) Then set c̃j = c̃(f̃ , f, cj) for 1 ≤ j ≤ #L. Here for fixed f̃ , f we use the map c̃(f̃ , f, ·) :

{0, 1, ...,#C − 1} → {0, 1, ...,#C − 1}. Overwrite c̃i−1, ..., c̃1 by ci−1, ..., c1 .

Now I(·) and c̃(f̃ , f, ·) can be considered as Boolean mappings {0, 1}#B → {0, 1}#B . Such
Boolean mappings can always be written as the combination of logic operations, see [22, 28]. Further-
more, near-minimal logic operations using only few bit-manipulations can be constructed by employing
Karnaugh maps, as is also detailed in [22, 28]. Finally, these logic operations can be turned into bitwise
operators which act on the entire path and map from {0, 1}#P to {0, 1}#P . These bitwise operators
are constructed from elementary bit manipulations like AND, XOR and bit shift operations (e.g. right
shift RSH), combined with appropriately constructed bit masks, see [21]. In essence we achieve that the
Boolean mappings I(·) or c̃(f̃ , f, ·) are applied to all digits of the path at the same time, which can
speed-up Algorithm 1. In contrast, in lines 4–7 or lines 10–15 of Algorithm 1 sequential evaluations
are performed, which in the worst case require that the respective loops have to be gone through
#L times. In a similar way bitwise operators were used in [24]. Finally, a fast means to realize the
search for the largest index i in (B) is required. Again, using a loop to check the Ij results in #L
sequential checks in the worst case. Here we use a processor instruction known as bit scan reverse, or
shortly bsr to perform this task on (0, ..., 0, Il, ..., I1)2. This instruction is available on most modern
processors, e.g. on the compatible successors of Intel 80386 [27].

Apart from the choice #B = 2, Fig. 4.1 displays the general realization of Algorithm 1 using
bitwise operators. The arrows drawn with continuous lines denote Boolean maps acting on a full
path. Those Boolean maps being used in general are explicitly given in the figure (AND levelmask,
AND levelinsertmask, AND insertmask, OR), the remaining ones depend on the cell type and represent
the maps I and the table c̃.

We discuss Fig. 4.1 in more detail for the cell type triangle and the case that the neighbor cell
across face f = 0 is sought. Table f̃(0, ·) of Fig. 2.7 reveals that I(c) = 1 iff the higher of the two bits
needed to represent c is zero. Thus we calculate (NOT (c#L, . . . , c1)2) AND oddmask, where oddmask =
(. . . , 1, 0, 1, 0, 1, 0) is a bitstring of length 2 #L with every odd bit set. We shift the result by one bit to
the right to obtain (I#L, . . . , I1)2. Before applying bsr we have to remove misleading information, i.e.
(I#L, . . . , I1)2 AND levelmask = (0, . . . , 0, Il, . . . , I1)2, where only the bits corresponding to cl, . . . , c1
are set in levelmask and l is the level of the cell. The levelmask, and all other masks, are tabulated.
Now bsr locates the insert face at level i = bsr((0, . . . , Il, . . . , I1)2) div #B, where div stands for
integer division. If i = −1, then the bitstring only has zero bits, i.e. face f = 0 is part of the base cell
boundary. Since then there is no neighboring cell, the algorithm terminates. Otherwise f̃ = f̃(0, ci)
can be obtained from the corresponding digit ci. Next a bitwise version of c̃(f̃ , 0, c) is applied to
the original path. The valid fine level digits in the result are extracted using a bitwise AND with the
levelinsertmask, which has bits set only where digits of level i, . . . , l are located. In order to copy
the coarse level digits, the insertmask, which only has bits set at digits corresponding to levels coarser
than the insert face, is applied on the original path using a bitwise AND operation. Finally the two
results obtained sofar in the left and in the right column of the figure are combined with a bitwise OR
operation (dashed arrow on bottom of Fig. 4.1) to obtain the path of the neighbor cell.

For each f, f̃ the corresponding bit operations, made up of logic operations and masks, that
realize I(·) and c̃(f̃ , f, ·) are implemented and called when needed within the steps (A), (B), (C).
In the worst case steps (A), (B), (C) together require 8 bitwise operations for the cell type triangle
and at most 46 bitwise operations for the cell type tetrahedron. Since each bitwise operation and
bsr are performed within very few processor clock cycles, the spacial connectivity across grid faces is
established very fast.

In order to put the work load for neighbor finding into relation to other tasks within a PDE
solver, let us look at the face term

∫
F
a(x, t)φ(x)u(x)dx that arises in the DG formulation in a simple

22 K. BRIX, R. MASSJUNG, AND A. VOSS

insert face

AND levelmask

OR

AND levelinsertmask

AND insertmask

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

cl cl−1 cl−2 c2 c1

cl cl−1 cl−2 c2 c1

(A)

. . . 00 00 0 0 0

c2cicl c1ci−1

(C)

. . . 00 00 0 0 0

ci−1 c2 c1

Il−1Il Il−2

. . . 0 0 00

I1I2

0 010 1 0 1

I#L Il+1

Il−1Il Il−2

. . . 0 0 00

I1I2

0 010 00 0

. . . 01 01 100 0 0 1 0 0 1 0

0 1 0

0 1 0

1 1 1

. . . 01 1 0 01 100 0 0

c̃l−1c̃l c̃l−2

. . . 00 1 0 1010 1 0 1

c̃#L c̃l+1 c̃2 c̃1

. . . 0 00 0 0010 00 0 0 0

c̃l c̃i

. . . 0 00 010 00 0 0 0

c̃l c̃i

c̃i c̃1c̃2c̃i−1c̃l

c1c2ci−1

1 0 0

1 1 0 0

0 0 1 1 1

(B)

1 1 1

1

0 0

1 11

f̃ = f̃(f, ci)

i = bsr((0, . . . , Il, . . . , I1)2) div #B

Fig. 4.1: Neighbor finding in constant time for 2D triangular paths at face f = 0 using two-bit digits.

transport problem. We consider two dimensional grids, so that the integral is a line integral, and we
assume that the normal transport velocity a is constant, so that a Gaussian quadrature rule using
m points has order 2m − 1 of exactness. If we assume the polynomial ansatz and test functions u
and φ to be of order p, we need at least a quadrature rule with p + 1 points to exactly integrate the
product. So not neglecting the quadrature weight, we need at least 2 multiplications per quadrature
point. Overall we have 2(p + 1) multiplications per edge to calculate the above edge integral. Note
that this integral has do be evaluated for each of the (p+ 1) · (p+ 2)/2 test functions associated with
each of the two cells adjacent to face F . Due to the fact that on modern processors the workload for
one double multiplication and one bitwise operation are roughly the same, the workload for the face
quadrature easily dominates the 8 bitwise operations required for finding the neighbor.

Neighbor finding across base cell boundaries. If bsr delivers the insert level i = 0, i.e. if above
no neighboring cell was found within the base cell, then Algorithm 2 reduces to the application of the
table c̃ that is stored on the base cell for each face. As in the search for a neighboring cell within the
base cell, this mapping can be interpreted as a Boolean mapping on the full path and can be executed
in constant time by few bitwise operations. The mapping can be applied directly to the whole path,
because it is known that no insert face was found. As there are only finitely many different tables c̃,
it suffices to prepare the bit operations for each table and store the corresponding table number for
each face on the base cell.

4.3. Leaf-, ante- and basecells. The cells that constitute the coarse grid have already been
introduced as the base cells in Sect. 3, and since the base cells are fixed, we can store the base cell
data and the coarse grid connectivity in an array which we denote by BA. The domain covered by
the coarse grid is locally refined to the grid on which we have chosen to discretize a PDE. Then we
call the cells in this grid the leaf cells. We adopt the convention, that we never let a base cell become
a leaf cell, i.e. base cells are considered as cells on level 0, whereas all leaf cells are at least of level 1.
This is very convenient, since different data are stored on base and leaf cells. The cells that can be

A HASH DATA STRUCTURE FOR ADAPTIVE DG METHODS 23

found in the hierarchy between base cells and leaf cells are the ante cells. I.e. any ancestor of a leaf
cell, which is not a base cell, is an ante cell. Both the set of ante cells and the set of leaf cells are each
stored within a hash table, compare Sect. 4.4. These two hash tables are denote by LHT (Leaf cell
Hash Table) and AHT (Ante cell Hash Table).

4.4. Hash table for cell data. The pair of cell identifier and associated cell data, (ID2, cell data),
present for each cell in an adaptive grid, is the essential data we have to deal with. Adding and delet-
ing cells could be handled very efficiently and with low memory cost by a linked list of these pairs.
But if we wanted to know if a cell defined by a given ID exists in the list or we wanted to access the
associated cell data, then a time–consuming linear search would be needed. On the other hand, if we
ensured fast access to the cell data by storing it in an array at an array index uniquely associated with
ID, then we would waste an enormous amount of storage, since we had to provide an array with as
many entries as potentially attainable IDs. A beneficial compromise between these two rather naive
points of view is a hash table. It is a well–known data structure, which achieves dense storage of data
items via a hash function, while at the same time access of the data, respectively the check for the
availability of the data, is performed in constant time, i.e. with expected complexity O(1). See [12,
chapter 12] and [20, section 6.4] for an introduction to hash tables.

In the general setting of hash tables, the pair (ID, cell data) is denoted as (key, value). The set
of all potentially attainable keys is called the universe of keys. For the fast access property of a
hash table, a high quality hash function, and an efficient collision handling, see Sect. 4.4.1, have to
be found. We use a hash table based on chaining, i.e. the pairs (key, value) of interest are stored
within an array of p linked lists, see Fig. 4.2. The array entries are denoted as slots or buckets. A
few other types of hash tables exist [12]. A hash function is a mapping from the universe of possible
keys onto the slots, i.e. onto the set {0, 1, 2, ..., p− 1}.

To further improve the performance of the hash table, we set up the memory heap, a special
memory management for the hash table, see Sect. 4.4.2. Following the concepts of the C++ standard
library [18], we provide iterators to loop over the data items stored in the hash table. A special feature
of the implementation of our hash table is that all data items corresponding to the same refinement
level are connected by a doubly–linked list, see Sect. 4.4.3. This level–link can be seen in Fig. 4.2 and
is a valuable device when employing a multilevel strategy in the PDE–solution method.

4.4.1. Hash function and collision handling. The hash function h maps the universe of keys
onto the numbers {0, 1, 2, ..., p− 1}, where p is the number of slots available,

h : universe of keys → {0, 1, 2, ..., p− 1},
k 7→ s = h(k).

The evaluation of the hash function is required to be deterministic and of constant complexity. If we
now would like to find the cell data v corresponding to a given key k, then we know that if the pair
(k, v) is available, then it can be found in the linked list attached to slot s = h(k).

In our case, ignoring the flag–bits, the remaining bits of ID2 ≡ (path, level, basecell, block, type, 00...0)2
form a unique identifier of a cell. We set the flag–bits to 0 for evaluating the hash function and apply
a modulus operation on the integer (path, level, basecell, block, type, 00...0)2:

h : universe of keys → {0, 1, 2, ..., p− 1},
ID2 7→ h(ID2) = (path, level, basecell, block, type, 00...0)2 mod p.

As mentioned before, if s = h(k) is known, a further search is needed within the list associated with
slot s in order to find the pair (k, v) in the list.

The hash function cannot be injective, since the hash table makes only sense, if the cardinality
of the universe of keys is much bigger than the number of slots available. A collision occurs, if h
maps two keys to the same slot. Our choice to associate a linked list (called a chain in this context)
with each slot, resolves this problem: If k and s = h(k) are given, a linear search within the chain
associated with slot s is performed in order to find k in the list. Besides other approaches, chaining
is a classical way to resolve collisions [20].

24 K. BRIX, R. MASSJUNG, AND A. VOSS

321Level 4

hash-table

chains (singly-linked)

level links (doubly-linked)
and

k8

k6

k3

k2

k5k7

k1
k4

k4 v4 v1k1

k5 v5 k2 v2 k7 v7

k8 v8

k3 v3

k6 v6

function
hash-

slots

keys
possible

Universe of

Fig. 4.2: Hash table: Pairs (key, value) ≡ (ID2, cell data) are shortly denoted by (kj , vj) for j ∈ N.

In order to guarantee efficiency, all chains should be as short as possible and of almost the same
length to minimize the costs of linear search, which is of complexity O(M) when M is the length of
the chain. Furthermore to reduce the number of collisions, the number of slots p should not be a
power of 2, because if p = 2m, then h(k) only depends on the last m bits of the k. Best distributions
can be expected, if p is a prime number, and not too close to a power of 2, see [12].

4.4.2. Memory–heap. When the grid changes dynamically, excessive allocation and deletion of
single (key, value)-pairs in the hash table can be quite time-consuming. To overcome this problem, we
set up a memory management framework for the hash table that is called memory–heap and allocates
or deallocates memory block-wise. Starting from an estimation of the storage space needed, a first
block of memory is allocated. If more data needs to be stored, more smaller blocks are allocated on
demand.

4.4.3. Iterators and level-wise connection. We can traverse all leaf cells by looping through
the slots of LHT and running at each slot through the attached chain. We provide an iterator for this
loop over all leaf cells. In applications it can be advantageous to run through the cells in the order
of the levels. For this purpose we have placed pointers in the hash table, which connect cells of the
same level. These pointers constitute a doubly linked list for each level, see Fig. 4.2. Whenever a cell
is deleted from the grid or new ones are created, these lists have to be updated.

All applications discussed in Sect. 4.5 make use of this level-wise links, in particular multilevel
methods for the solution of PDEs, see Sect. 4.5.4, make excessive use of these links. Here typically
the algorithms not only loop through the leaf cells, but also through all ancestors of the leaf cells, i.e.
through the corresponding hash table AHT, for which level-wise links and iterators are provided as
well.

4.4.4. IDsets. Some operations are collective on a set of cells, e.g. a set of leaf cells may be
proposed for refinement and we want to replace each of these leaf cells in LHT by its children. Again

A HASH DATA STRUCTURE FOR ADAPTIVE DG METHODS 25

it may be very useful, compare Sect. 4.5.3, to loop level-wise through the set of leaf cells. For such a
situation we provide hash tables without value type, which we call IDsets. I.e. iterators and level-wise
connection can be used for IDsets as described in Sect. 4.4.3.

4.4.5. A comparison to pointered trees. In classical codes [3, 26], hierarchical as well as
spatial connectivity of the cells are represented by pointer structures, which can be quite memory-
consuming. As an example, let us consider the refinement rules for triangles and tetrahedra given in
Sect. 2. Then each triangle needs 1 pointer to refer to the parent cell, 4 pointers to refer to the child
cells and, using a simply graded grid, 6 pointers to the neighbor cells, that is a total of 11 pointers per
cell. For a tetrahedral cell one needs to store 1 pointer to the parent cell, 8 pointers to children and
16 pointers to neighboring cells, so overall 25 pointers. All these pointers have to be kept up-to-date,
e.g. when refining a cell, any connectivity related to that cell and represented by a pointer has to be
changed.

On modern 64 bit computers, a pointer requires 64 bits to be stored, which is exactly the same as
for a double-precision floating-point number. Assume we approximate each unknown of our solution
with piecewise quadratic polynomials on a triangulation. Then we have 6 degrees of freedom, i.e.
6 doubles, per triangle and unknown, which is roughly half the amount of storage required for the
pointers that represent the connectivity between triangles.

Using our approach based on cell identifiers, there are no pointers attached to the cells for estab-
lishing connectivity. Instead, we store for each cell one ID as an unsigned integer, which is of a size
comparable to that of a pointer. Remember that our storage of the grid is not totally free of pointers,
but requires only very few of them. For the hash map, we use one pointer per slot in the hash table
and additionally one pointer per cell for chaining. Note that the number of pointers used per cell is
also independent of the dimension and type of the cells. Furthermore it is a very useful feature to
have the possibility to loop level-wise over the cells. So, as many classical pointer-based codes also do
[3, 26], we invest two more pointers per cell for a doubly-linked list that connects all cells within the
same level. We chose to use a doubly-linked list to be able to remove a cell from the list in constant
time.

Comparing the computational work of the two grid management approaches, the principle dif-
ferences are the following: Our approach calculates spatial connectivity, whereas cell neighbors are
accessible via pointers in the tree-based approach. As detailed in Sect. 2.7 and 3.3, the full infor-
mation needed for matching face quadrature points in DG assembling routines is also provided when
we calculate the spatial connectivity, without requiring any additional storage or calculations. Fur-
thermore, when refining or coarsening the grid, in the tree-based approach all hierarchical and spatial
connectivities have to be updated by rearranging pointers, which is fully omitted in our approach.

4.5. Applications. Next we outline how typical algorithmic tasks that arise in the implemen-
tation of DG methods can be performed with our data structure.

4.5.1. Ensuring simply graded grids. Let us show how to ensure that a grid is simply graded,
compare Sect. 3.3. Given an arbitrarily refined grid, which is a partition of the coarse triangulation,
we would like to refine this grid, such that a simply graded grid results with as few as possible cells.

In Sect. 4.4.3, we saw that we can loop level-wise through our hash map. Using this feature, we
now run through all leaf cells of a grid, which are stored in the leaf cell hash table (LHT), from the
finest to the coarsest level. for each leaf cell we determine the parent cell, loop over the faces of the
parent cell and check if the face is either part of the boundary or if the face neighbor of the parent
cell is present in the grid. If we are not at the boundary and the face neighbor is not present, then
there is at least an ante cell at level 1 which we can refine until the missing face neighbor exists. This
approach is also expressed in Algorithm 3, where we rely on the fact that an ante cell hash table
(AHT) is present, as explained in Sect. 4.3.

For this algorithm, the level-wise operation from finest to coarsest level is crucial, because while
traversing cells of a level, there are only cells of coarser levels inserted. So the linked list of cells is
not altered at the level that is currently processed. Note that testing if ID ∈ LHT requires a search
for the key ID in the hash table LHT .

26 K. BRIX, R. MASSJUNG, AND A. VOSS

As an example, starting from a coarse grid we loop several times through the grid and refine in
each loop those cells that are cut by a sphere. We apply Algorithm 3 to this grid, which is not yet
graded. A simply graded grid results which is shown in Fig. 4.3 for a 2D and a 3D hybrid case.

Algorithm 3 Grading algorithm: Ensure that adjacent cells differ in level at most by 1.
1: for (l = #L; l ≥ 1; l −−) do . loop over levels from fine to coarse
2: for (iter = LHT.begin(l); iter! = LHT.end(l); + + iter) do . loop over (leaf)cells of level l
3: get cell data, including ID, from LHT entry that iter points to;
4: for (face f = 0, . . . ,#F − 1) do
5: use Algorithm 2 to determine ĨD, the neighbor of ID across face f ;
6: if (ĨD /∈ AHT) then . ensure that neighbor cell is not finer
7: ĨDa = ĨD;
8: while (ĨDa /∈ LHT) do . find ancestor leaf cell
9: ĨDa = parent(ĨDa);

10: end while
11: for (j = level(ĨDa); j < level(ĨD)− 1; j + +) do
12: determine ĨDa of ancestor cell of ĨD at level j;
13: refine ĨDa; . refine until parent of ĨD is present
14: end for
15: end if
16: end for
17: end for
18: end for

4.5.2. Assembling Loop for the Discontinuous Galerkin Method. We assume a PDE to
be given that is spatially discretized using a DG method. Either when setting up the linear system
of discrete equations (in case we have a stationary and linear problem, see [1]) or when advancing the
equations in time (in case we apply an explicit time integrator for a time dependent problem, see [10]),
then we have to evaluate the volume terms and the face terms appearing in the DG discretization. In
order to assemble these terms we have to loop through the grid with the help of our data structure.
This assembling loop is given in Algorithm 4. Here we assume that the leafcells constitute a simply
graded grid.

In this loop we make use of the flags introduced in Sect. 4.1 to mark cells that have already been
processed. Thus in line 1 we first set all these flags to false. In order to (efficiently) handle hanging
vertices, we loop through the leafcells level-wise, going from fine to coarse levels (lines 2-3), making
use of the level links within the hash table. Reaching an entry of the hash table we have access to
the corresponding cell data and ID of the cell. The cell data can be used to evaluate volume terms,
whereas ID can be used to find ĨD, the identifier of the neighbor cell (line 7). Typically the face
terms establish the coupling of neighboring cells within a DG discretization, so that the cell data
corresponding to ID and ĨD are needed when evaluating the face terms. In order to have access
to the cell data of ĨD and the corresponding flags we have to find ĨD in the hash table, which is
done in line 9, in case we are not at a boundary face. Note here, that the query ”if (ĨD ∈ LHT)” is
accomplished by searching for ĨD in the leaf cell hash table LHT. Note also that the flags of ĨD found
by the neighboring algorithm in line 7 are meaningless. We first have to find ĨD in the hash table,
where ĨD is stored with the flags inherent to the corresponding leafcell. If the flag of ĨD has not yet
been processed, then the terms for the current face still have to be assembled. If we cannot find ĨD
in the hash table, i.e. if we are led to line 14, then hanging vertices occur at the current face. Since
the leafcells form a simply graded grid, the neighbor of ID in the grid is either of one level higher or
of one level lower. If it is of one level higher, then the face has already been processed before. Thus
it remains to check if the parent cell of ĨD can be found in the hash table (line 16). Note that in this
case, the current face is a full face for ID but only part of a face for ĨDp, the parent of ĨD. In any case

A HASH DATA STRUCTURE FOR ADAPTIVE DG METHODS 27

that may occur, we have already found all information to evaluate the face terms via the quadrature
rule (2.5) or (3.2). These evaluations occur in line 12 if ĨD is the neighbor of ID in the grid, in line
18 if ĨDp is the neighbor of ID in the grid, and in line 22 if the face is on the boundary. Note that
applying (3.2) in line 22 requires first to evaluate table e(·, ·) to obtain ẽ = e(f̃ , c̃l), compare Sect. 3.3.

Algorithm 4 Assembling loop for the Discontinuous Galerkin Method on simply graded grid
1: set assembleflag to false in ID for all leafcells in LHT ;
2: for (l = #L; l ≥ 1; l −−) do . loop over levels from fine to coarse
3: for (iter = LHT.begin(l); iter! = LHT.end(l); iter + +) do . loop over (leaf)cells of level l
4: get cell data, including ID, from LHT entry that iter points to;
5: assemble volume terms;
6: for (face f = 0, . . . ,#F − 1) do
7: use Algorithm 2 to determine f̃ , o and ĨD for ID across face f ;
8: if (f̃ 6= −1) then . neighbor found at inner face
9: if (ĨD ∈ LHT) then . neighbor is on same level

10: if (not ĨD.assembleflag) then . neighbor cell has not been processed
11: get corresponding cell data for ĨD from LHT ;
12: assemble face terms; . use (2.5)
13: end if
14: else . hanging vertices
15: determine ĨDp, the parent cell of ĨD;
16: if (ĨDp ∈ LHT) then . ĨDp has hanging vertices on face f̃
17: get cell data for ĨDp from LHT ;
18: assemble face terms; . use (3.2)
19: end if
20: end if
21: else . boundary face
22: assemble face terms; . use (2.5) with ṽ from boundary data
23: end if
24: end for
25: set ID.assembleflag; . indicating that the cell and all its faces have been processed
26: end for
27: end for

4.5.3. Adaptation of simply graded grids. In practical codes, grid adaptation is required
to improve the quality of solutions. Assuming a simply graded grid is given, we can formulate an
algorithm that keeps the grid simply graded during adaptation as follows:

Assume an adaptation criterion is given that decides if a leafcell should be kept in the grid, refined
or coarsened. We collect all cell identifiers proposed for refinement in refineset and those proposed
for coarsening in coarsenset. Note that the two sets are in fact hash tables that have the same
structure as LHT, i.e. they can be processed level-wise. Note also that since the input grid is simply
graded, for any cell the adjacent cells differ in level by −1, 0 or +1. Consequently, after the cell is
refined, the level difference is −2, −1 or 0. Only in the first case the grading condition is not fulfilled,
which is resolved by adding the neighbor cell to refineset. As the refineset is processed level-wise
and the neighbor cell is on a coarser level, it is processed later on. Similarly, if for any cell proposed
for coarsening an adjacent cell differs in level by +1, then coarsening is prohibited. Here we implicitly
assume that locally finer grids produce more accurate solutions.

An algorithm that updates the grid by combining refinement, coarsening and grading, consists of
the following chronological steps. A detailed formulation of the algorithm can be obtained along the
lines of Algorithm 4, including details like boundary treatment, which will not be covered here.

• For refinement, we loop through refineset from fine to coarse levels. For each cell to be

28 K. BRIX, R. MASSJUNG, AND A. VOSS

refined, we generate the neighbors across all faces according to Algorithm 2. We determine the
parent cell of each neighbor. If a parent cell is a leaf cell, then it is inserted into refineset.
Furthermore we remove it from coarsenset, if present, as it will no longer be a leaf cell. Note
that the grid is simply graded after completing refinement.
• A cell should be coarsened only, if all its siblings are also marked for coarsening. Thus we fill

a hash table called CHT with the parent cells of the cells in coarsenset. Here the key is the
identifier of the parent cell and the associated value is an integer that counts how many of its
children are in coarsenset.
• To coarsen the grid, we traverse through CHT from fine to coarse levels. For each cell in CHT

with counter value = #C we loop over the faces and determine the neighbor and f̃ according
to Algorithm 2. If the neighbor is a leaf cell, we proceed to the next face. Otherwise we
determine the children of the neighbor which are adjacent to the cell from CHT. These children
are easily identified by a lookup in a table depending on f̃ . If any of these children is not a
leaf cell, then the present cell from CHT will not be coarsened and we proceed to the next cell
in CHT. Otherwise we proceed to the next face.
If all faces have been checked, without proceeding to the next cell, the current cell is coarsened
and after that we continue with the next cell from CHT.

Note that the coarsening loop like the one for refinement is performed from fine to coarse levels,
because coarsening of a cell only takes place, if the levels of adjacent cells are appropriate. Unlike
refinement coarsening does not force the cells in its surrounding to change its level. Assume all cells
with level above 1 of a simply graded adaptive grid are marked for coarsening and we expect every cell
to be coarsened. If the algorithm started with coarse levels, hanging nodes would possibly prohibit
the coarsening of coarse cells, even if the adjacent cells are coarsened lateron.

We slightly modify the example from Sect. 4.5.1: Now, starting from a coarse grid we loop again
several times through the grid, insert each cell that is cut by a sphere into refineset and all others
into coarsenset. In each loop we apply the algorithm described above. Again the grids shown in
Fig. 4.3 emerge.

(a) 2D grid (b) 3D grid

Fig. 4.3: Simply graded hybrid adaptive grid in 2 and 3 spatial dimensions.

4.5.4. Multilevel data and fast wavelet transform. Let us associate with each cell K of a
given cell type a basis of n functions φK1 , φ

K
2 , . . . , φ

K
n with support on K, which typically are given

by a set of Finite Element shape functions, extended by 0 outside of K. Then we can represent
functions of the form

u =
∑

K∈LHT

n∑
i=1

cKi φ
K
i (4.1)

A HASH DATA STRUCTURE FOR ADAPTIVE DG METHODS 29

on the leaf cell grid, and for each leaf cell K we have

u|K =
n∑
i=1

cKi φ
K
i .

The array of coefficients (cK1 , c
K
2 , . . . , c

K
n) represents the cell data for u on K. Assume that K is of

level l and that its children K ′0,K
′
1, . . . ,K

′
#C−1 are of level l + 1. Typically, then we have

span{φK1 , φK2 , . . . , φKn } ⊂ span{φK
′
0

1 , φ
K′0
2 , . . . , φ

K′0
n , φ

K′1
1 , , φ

K′#C−1
n }

and one can construct a so-called wavelet basis ψK1 , ψ
K
2 , . . . , ψ

K
n·(#C−1) with support on K and such

that

span{φK1 , φK2 , . . . , φKn , ψK1 , ψK2 , . . . , ψKn·(#C−1)} = span{φK
′
0

1 , φ
K′0
2 , . . . , φ

K′0
n , φ

K′1
1 , , φ

K′#C−1
n }.

For particular constructions of wavelet bases, see for example [19].
Assume now that K ′0,K

′
1, . . . ,K

′
#C−1 are leaf cells and that v is expanded into the corresponding

basis functions, then on K = K ′0 ∪K ′1 ∪ · · · ∪K ′#C−1 we can represent v|K in the single scale form

v|K =
#C−1∑
j=0

n∑
i=1

c
K′j
i φ

K′j
i , (4.2)

and also in the two scale form

v|K =
n∑
i=1

cKi φ
K
i +

n·(#C−1)∑
i=1

dKi ψ
K
i . (4.3)

Transforming between (4.2) and (4.3) is a change of basis, where in (4.3) the coarse level features∑n
i=1 c

K
i φ

K
i have been separated from the fine level features

∑n·(#C−1)
i=1 dKi ψ

K
i . The coarse level

features are also denoted as the mean and the fine level features as the detail.
Assume now that our leaf cell grid is a uniformly refined grid of level #L, and that a function u

is given by (4.1). Then (4.1) is a single scale representation and we collect all coefficients of (4.1) in
the array C#L. The corresponding grid of parent cells is given by all the ante cells of level #L− 1.
We consider any ante cell K of level #L − 1 and its children K ′0,K

′
1, . . . ,K

′
#C−1, which are leaf

cells of level #L. Then we can write u|K in the single scale representation of the form (4.2). This
single scale representation of level #L can be transformed into the two scale form (4.3) with mean
on the scale of level #L− 1 and details on the scale of level #L. We collect all mean coefficients cKi
occurring for all ante cells of level #L−1 in the array C#L−1 and similarly all detail coefficients dKi
in the array D#L−1, although we note again that the latter ones correspond to information on the
scale of level #L. This separation into means and details can be applied recursively, to transform next
the means represented by C#L−1 into means C#L−2 and details D#L−2. Here C#L−2 contains the
means on the ante cells of level #L− 2. This process can be continued until we reach the base cells
with means C0 and details D0. It is schematically depicted in Fig. 4.4 and known as the pyramid
algorithm. Note that at the end of the process the coefficient array C#L has been fully decomposed
into the details D#L−1, D#L−2, . . . , D0 plus the base cell means C0, which is known as a wavelet
or multi scale representation of u. The process can also be reversed by determining C#L from the
wavelet representation.

The wavelet representation of u is conveniently stored by distributing the coefficients appearing
in Dl to the ante cells of level l they belong to. This requires to store for each ante cell an array
of n · (#C − 1) coefficients, which is independent of the level l. For each base cell we also have to
store the corresponding mean coefficients from C0, which results in n ·#C coefficients to be stored
for each base cell. In contrast, the array C#L that contains the single scale coefficients of u can be

30 K. BRIX, R. MASSJUNG, AND A. VOSS

. . .

. . .C#L−1

D#L−1

C#L

D1

C1

D0

C0

leaf cells base cellsante cells

C#L

. . .

. . .C#L−1

D#L−1 D1

C1

D0

C0

leaf cells ante cells base cells

Fig. 4.4: Pyramid algorithm for fast wavelet transform and its inverse. The dashed box contains
the single scale coefficients C#L stored on the leaf cells and the dotted boxes mark the multiscale
coefficients DJ for 0 ≤ J < #L stored on ante and base cells.

stored by assigning to each leaf cell K the n coefficients (cK1 , c
K
2 , . . . , c

K
n). Thus leaf cells, ante cells

and base cells require different cell data to represent u. This is in fact another reason for setting up
the separate data units LHT , AHT and BA to manage the grid and its hierarchy.

Note that in fact it is not required to have a uniformly refined leaf cell grid in order to perform the
pyramid algorithm and that with a nonuniformly refined leaf cell grid the algorithm works analogously
and produces again n · (#C − 1) detail coefficients for each ante cell and n ·#C coefficients for each
base cell.

Algorithm 5 shows how to implement the fast wavelet transform/pyramid algorithm on an adaptive
grid. It proceeds from fine to coarse levels in AHT , utilizing the level links within AHT through the
corresponding iterator. For each ante cell and each base cell visited a transformation from (4.2) to
(4.3) is performed. For such a transformation typically a single mask matrices g and h can be
constructed that can be applied throughout the hierarchy to perform the transformations

g : (cK
′
0

1 , c
K′0
2 , . . . , c

K′0
n , c

K′1
1 , , c

K′#C−1
n) 7→ (cK1 , c

K
2 , . . . , c

K
n),

h : (cK
′
0

1 , c
K′0
2 , . . . , c

K′0
n , c

K′1
1 , , c

K′#C−1
n) 7→ (dK1 , d

K
2 , . . . , d

K
n·(#C−1)).

Similarly, the inverse fast wavelet transform can be accomplished by using appropriate masks g̃ and
h̃ and looping from coarse to fine level.

Algorithm 5 Multilevel loop: Fast wavelet transform
1: for (l = #L− 1; l ≥ 1; l −−) do . loop over levels from fine to coarse
2: for (iter = AHT.begin(l); iter! = AHT.end(l); iter + +) do . loop over ante cells of level l
3: get ID for cell in AHT that iter points to;
4: determine children IDi of ID for 0 ≤ i < #C;
5: get children’s cell data (coefficient vector cl+1

i) from LHT or AHT for 0 ≤ i < #C;
6: calculate cl and dl by applying masks g and h on (cl+1

i)0≤i<#C ;
7: store coarse and detail coefficients cl and dl on cell ID;
8: end for
9: end for

10: for (b = 0; b < #basecells; b+ +) do . loop over base cells
11: get ID for b-th base cell from base cell array;
12: determine children IDi of ID for 0 ≤ i < #C;
13: get children’s cell data (coefficient vector cl+1

i) from LHT or AHT for 0 ≤ i < #C;
14: calculate c0 and d0 by applying masks g and h on (c1

i)0≤i<#C ;
15: store coarse and detail coefficients c0 and d0 on base cell ID;
16: end for

5. Conclusion. We presented a concept for managing multilevel adaptive grids, which aims at
supporting efficiently and with low storage requirements the numerical solution of PDEs based on DG
discretizations. The concept also provides a unifying framework for handling various cell types and
even hybrid grids composed of different cell types. In contrast to classical data structures that employ

A HASH DATA STRUCTURE FOR ADAPTIVE DG METHODS 31

pointers to store hierarchical and spatial connectivity, our data structures relies on cell identifiers that
uniquely characterize grid cells, algorithms that provide hierarchical and spatial connectivity and a
hash table to store the cells and the corresponding cell data. Independent of the cell type, we have
developed a theory to derive the algorithm for the spatial connectivity. Information needed to apply
quadrature formulas on grid faces, necessary when assembling discrete DG equations, is also provided
by the algorithm. The theory formulates conditions on the refinement rule used for an arbitrary
cell type under which the algorithm works. We display standard refinement rules for quadrilaterals,
triangles, cuboids, tetrahedra in our framework, which fulfill these conditions. Generalizations to
hybrid grids and cell types composed of the above in tensor product fashion are straightforward and
examples are given. A fast realization of the spatial connectivity algorithm is given by reformulating
parts of the algorithm in terms of bitwise operations on unsigned integers which represent the cell
identifiers. These bitwise operations depend on the cell type. The unsigned integer used to represent
the cell identifier is used as the key in the hash table in order to address cells. Since unsigned integers
are used independent of the cell type, the hash table also constitutes a cell type independent part of
the concept.

The concept has been successfully applied in practical implementations by the authors, and the
authors have used it in conjunction with DG discretizations in other publications. Generalizations to
anisotropic refinements and extensions of the concept to include parallelization and parallel multilevel
preconditioners are currently under construction.

Appendix A. Supported cell types. Besides the cell types given in the previous chapters, all
algorithms presented before are also applicable to quadrilateral cells in 2D and cuboid and prism cells
in 3D. The Cartesian cell types are much simpler than triangles and tetrahedra. Furthermore, prisms
are simply constructed as tensor-products of triangles and quadrilaterals, and thus we present only
the tables for quadrilaterals, cuboids and prisms and restrict ourselves to a few comments for these
cell types.

The characteristic numbers #D, #N, #F and #NF as well as #C and #CF have already been
given in Fig. 2.1 and Fig. 2.3 for all cell types. Since the -1 entries in c̃(f̃ , f, c) indicate that the
corresponding argument (f̃ , f, c) does not occur, we can in fact write table c̃(f̃ , f, c) for cell type
triangle into one table, which is independent of f̃ , compare Fig. 2.11. This coincidence also comes up
for quadrilaterals and cuboids, so that we give the corresponding table in the compact form c̃(f, c),
see Fig. A.1 and Fig. A.2. The same applies for the cell type prism, see Fig. A.4.

Quadrilaterals. The tables for quadrilaterals are presented in Fig. A.1. The numbering of the
vertices is inspired by the representation of the node number in the binary system, where each coor-
dinate direction is represented by one bit. Concerning the neighbor orientation, we have o(f, c) = 0
independent of f and c at any face inside a base cell.

Cuboids. The tables nF , nC , f̃(f, c) and c̃(f, c) for cell type cuboid are presented in Fig. A.2.
Again, the vertex numbering follows the binary system, where each coordinate direction is represented
by one bit. As for quadrilaterals, at any face inside a base cell the neighbor orientation is o(f, c) = 0
independent of f and c . In Sect. 3.4 we already noted that not all permutations of face vertices are
permitted in (2.3), and that only those corresponding to rigid body motions of the face are allowed. We
denote this set of permutations by Π′ ⊂ Π#NF , and have |Π′| = 8. The admitted node permutations
Π′ are given in Table A.3.

Prisms. In order to build coarse grids of tetrahedra and cuboids, prism cells can be used. A prism
cell can be constructed as the tensor-product of a triangular and a quadrilateral cell. All algorithms
given in this paper can also be applied for this cell type, see Fig. A.4 for the tables. Note that
triangular faces have to be distinguished from quadrilateral faces by the face number and treated
differently. The neighbor orientation o(f, c) does not depend on c and is o(f) = 4 on triangular faces
and o(f) = 0 on quadrilateral faces.

32 K. BRIX, R. MASSJUNG, AND A. VOSS

f nF
0 (f) nF

1 (f)
0 0 1
1 1 3
2 0 2
3 2 3

(a) nF

c nC
0 (c) nC

1 (c) nC
2 (c) nC

3 (c)
0 0 0,1 0,2 0,1,2,3
1 0,1 1 0,1,2,3 1,3
2 0,2 0,1,2,3 2 2,3
3 0,1,2,3 1,3 2,3 3

(b) nC

H
HHHf

c
0 1 2 3

0 -1 -1 3 3
1 2 -1 2 -1
2 -1 1 -1 1
3 0 0 -1 -1

(c) f̃(f, c)

H
HHHf

c
0 1 2 3

0 2 3 0 1
1 1 0 3 2
2 1 0 3 2
3 2 3 0 1

(d) c̃(f, c)

Fig. A.1: Tables for cell type quadrilateral.

f nF
0 (f) nF

1 (f) nF
2 (f) nF

3 (f)
0 0 1 2 3
1 0 1 4 5
2 0 2 4 6
3 1 3 5 7
4 2 3 6 7
5 4 5 6 7

(a) nF

c nC
0 (c) nC

1 (c) nC
2 (c) nC

3 (c) nC
4 (c) nC

5 (c) nC
6 (c) nC

7 (c)
0 0 0,1 0,2 0,1,2,3 0,4 0,1,4,5 0,2,4,6 0,. . . ,7
1 0,1 1 0,1,2,3 1,3 0,1,4,5 1,5 0,. . . ,7 1,3,5,7
2 0,2 0,1,2,3 2 2,3 0,2,4,6 0,. . . ,7 2,6 2,3,6,7
3 0,1,2,3 1,3 2,3 3 0,. . . ,7 1,3,5,7 2,3,6,7 3,7
4 0,4 0,1,4,5 0,2,4,6 0,. . . ,7 4 4,5 4,6 4,5,6,7
5 0,1,4,5 1,5 0,. . . ,7 1,3,5,7 4,5 5 4,5,6,7 5,7
6 0,2,4,6 0,. . . ,7 2,6 2,3,6,7 4,6 4,5,6,7 6 6,7
7 0,. . . ,7 1,3,5,7 2,3,6,7 3,7 4,5,6,7 5,7 6,7 7

(b) nC

H
HHHf

c
0 1 2 3 4 5 6 7

0 -1 -1 -1 -1 5 5 5 5
1 -1 -1 4 4 -1 -1 4 4
2 -1 3 -1 3 -1 3 -1 3
3 2 -1 2 -1 2 -1 2 -1
4 1 1 -1 -1 1 1 -1 -1
5 0 0 0 0 -1 -1 -1 -1

(c) f̃(f, c)

H
HHHf

c
0 1 2 3 4 5 6 7

0 4 5 6 7 0 1 2 3
1 2 3 0 1 6 7 4 5
2 1 0 3 2 5 4 7 6
3 1 0 3 2 5 4 7 6
4 2 3 0 1 6 7 4 5
5 4 5 6 7 0 1 2 3

(d) c̃(f, c)

Fig. A.2: Tables nF , nC , f̃(f, c) and c̃(f, c) for cell type cuboid.

A HASH DATA STRUCTURE FOR ADAPTIVE DG METHODS 33

ncF

E′0 E′1 E′2 E′3
c′0(σ, f) E0 E0, E1 E0, E2 E0, E1, E2, E3

c′1(σ, f) E0, E1 E1 E0, E1, E2, E3 E1, E3

c′2(σ, f) E0, E2 E0, E1, E2, E3 E2 E2, E3

c′3(σ, f) E0, E1, E2, E3 E1, E3 E2, E3 E3

(a) Table ncF and child numbers c′i.

0 1 2 3
π0 0 1 2 3
π1 2 0 3 1
π2 3 2 1 0
π3 1 3 0 2

0 1 2 3
π4 1 0 3 2
π5 3 1 2 0
π6 2 3 0 1
π7 0 2 1 3

(b) Orientation permutations πk.

Fig. A.3: Tables for cuboid or prism (quadrilateral face).

f nF
0 (f) nF

1 (f) nF
2 (f) nF

3 (f)
0 1 2 4 5
1 2 0 5 3
2 0 1 3 4
3 0 1 2 -
4 3 4 5 -

(a) nF

c nC
0 (c) nC

1 (c) nC
2 (c) nC

3 (c) nC
4 (c) nC

5 (c)
0 1,2 0,2 0,1 1,2,4,5 0,2,3,5 0,1,3,4
1 0 0,1 0,2 0,3 0,1,3,4 0,2,3,5
2 0,1 1 1,2 0,1,3,4 1,4 1,2,4,5
3 0,2 1,2 2 0,2,3,5 1,2,4,5 2,5
4 1,2,4,5 0,2,3,5 0,1,3,4 4,5 3,5 3,4
5 0,3 0,1,3,4 0,2,3,5 3 3,4 3,5
6 0,1,3,4 1,4 1,2,4,5 3,4 4 4,5
7 0,2,3,5 1,2,4,5 2,5 3,5 4,5 5

(b) nC

H
HHHf

c
0 1 2 3 4 5 6 7

0 0 0 -1 -1 0 0 -1 -1
1 1 -1 1 -1 1 -1 1 -1
2 2 -1 -1 2 2 -1 -1 2
3 -1 -1 -1 -1 4 4 4 4
4 3 3 3 3 -1 -1 -1 -1

(c) f̃(f, c)

H
HHHf

c
0 1 2 3 4 5 6 7

0 1 0 3 2 5 4 7 6
1 2 3 0 1 6 7 4 5
2 3 2 1 0 7 6 5 4
3 4 5 6 7 0 1 2 3
4 4 5 6 7 0 1 2 3

(d) c̃(f, c)

Fig. A.4: Tables nF , nC , f̃(f, c) and c̃(f, c) for cell type prism.

34 K. BRIX, R. MASSJUNG, AND A. VOSS

REFERENCES

[1] D. Arnold, F. Brezzi, B. Cockburn, and D. Marini, Unified analysis of discontinuous Galerkin methods for
elliptic problems. SIAM J. Numer. Anal., 39(5) (2002), pp. 1749–1779.

[2] F. Bassi and S. Rebay, High-order accurate discontinuous finite element solution of the 2D Euler equations. J.
Comput. Phys. 138(2) (1997), pp. 251–285.

[3] P. Bastian, Parallele Adaptive Mehrgitterverfahren. Teubner Skripten zur Numerik, B. G. Teubner, Wiesbaden,
1996.

[4] J. Bey, Tetrahedral grid refinement. Computing, 55 (1995), pp. 355–378.
[5] J. Bey, Simplicial grid refinement: On Freudenthal’s algorithm and the optimal number of congruence classes.

Numer. Math., 85 (2000), pp. 1–29.
[6] K. Brix, M. Campos Pinto, and W. Dahmen, A Multilevel Preconditioner for the Interior Penalty Discontinuous

Galerkin Method. SIAM J. Numer. Anal., 46 (2008), pp. 2742–2768.
[7] K. Brix, M. Campos Pinto, W. Dahmen, and R. Massjung, Multilevel Preconditioners for the Interior Penalty

Discontinuous Galerkin Method II - Quantitative Studies. Commun. Comput. Phys., 5 (2009), pp. 296–325.
[8] K. Brix, S. Mogosan, S. Müller, and G. Schieffer, Parallelisation of Multiscale-Based Grid Adaptation using

Space-Filling Curves. IGPM Report # 299, RWTH Aachen, 2009.
[9] P. G. Ciarlet, The finite element method for elliptic problems. North-Holland, Amsterdam, 1978.

[10] B. Cockburn and C.-W. Shu, Runge-Kutta Discontinuous Galerkin methods for Convection-Dominated Prob-
lems. J. Sci. Comput., 16(3) (2001), pp. 173–261.

[11] B. Cockburn, G.E. Karniadakis and C.-W. Shu, Discontinuous Galerkin Methods. Lecture Notes in Compu-
tational Science and Engineering, Vol. 11, Springer, Heidelberg, 2000.

[12] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. The MIT Press, Cambridge,
MA, 2001.

[13] W. Dahmen, Wavelet and Multiscale Methods for Operator Equations. Acta Numerica 6 (1997), pp. 55–228.
[14] G. Fekete, Rendering and managing spherical data with sphere quadtrees. Proceedings of the First IEEE Con-

ference on Visualization (Visualization ’90), IEEE computer Society Press, Los Alamitos (1990), pp. 176–186.
[15] A. Gill, Introduction to the Theory of Finite-state Machines. McGraw-Hill, New York, 1962.
[16] M. Griebel and G. Zumbusch, Parallel multigrid in an adaptive PDE solver based on hashing and space-filling

curves. Parallel Comput., 25 (1999), pp. 827–843.
[17] B. Grünbaum, Convex Polytopes. Springer, Heidelberg, 2nd edition, 2003.
[18] N. M. Josuttis, The C++ Standard Library: A Tutorial and Reference. Addison-Wesley, Boston, MA, 1999.
[19] F. Keinert, Wavelets and Multiwavelets. Chapman and Hall/CRC Press, Boca Raton, FL, 2004.
[20] D. E. Knuth, The Art of Computer Programming, Volume 3: Sorting and Searching. Addison-Wesley, Boston,

MA, 2nd edition, 1997.
[21] D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 1: Bitwise Tricks and Techniques; Binary

Decision Diagrams. Addison-Wesley, Boston, MA, 2009.
[22] Z. Kohavi, Switching and Finite Automata Theory. McGraw-Hill, New York, 1978.
[23] M. Lee, L. De Floriani, and H. Samet, Constant-time neighbor finding in hierarchical tetrahedral meshes.

International Conference on Shape Modeling and Applications (SMI 2001), IEEE computer Society Press, Los
Alamitos, CA (2001), pp. 286–295.

[24] M. Lee and H. Samet, Navigating through Triangle Meshes Implemented as Linear Quadtrees. ACM Trans.
Graphics, 19 (2000), pp. 79–121.

[25] R. Massjung, An hp-Error Estimate for an Unfitted Discontinuous Galerkin Method Applied to Elliptic Interface
Problems. IGPM Report # 300, RWTH Aachen, 2009.

[26] A. Schmidt and K. G. Siebert, Design of Adaptive Finite Element Software. Lecture Notes in Computational
Science and Engineering, Vol. 42, Springer, Heidelberg, 2004.

[27] B. E. Smith and M. T. Johnson, Programming the Intel 80386. Scott Foresman, Glenview, IL, 1987.
[28] S. P. Vingron Switching Theory: Insight Through Predicate Logic. Springer, Heidelberg, 2004.
[29] A. Voss, Notes on Adaptive Grids in 2D and 3D, Part I: Navigating through Cell Hierarchies using Cell Identi-

fiers. IGPM Report # 268, RWTH Aachen, 2006.
[30] G. Zumbusch, Parallel multilevel methods. Adaptive mesh refinement and loadbalancing. B. G. Teubner, Wies-

baden, 2003.

