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Abstract

We present a posteriori error bounds for reduced basis approxi-
mations of parabolic partial differential equations involving (i) a non-
affine dependence on the parameter and (ii) a nonlinear dependence
on the field variable. The method employs the Empirical Interpolation
Method in order to construct “affine” coefficient-function approxima-
tions of the “nonaffine” (or nonlinear) parametrized functions. Our
a posteriori error bounds take both error contributions explicitly into
account — the error introduced by the reduced basis approximation
and the error induced by the coefficient function interpolation. We
show that these bounds are rigorous upper bounds for the approxi-
mation error under certain conditions on the function interpolation,
thus addressing the demand for certainty of the approximation. As
regards efficiency, we develop an efficient offline-online computational
procedure for the calculation of the reduced basis approximation and
associated error bound. The method is thus ideally suited for the
many-query or real-time contexts. We also introduce a new sampling
approach to generate the collateral reduced basis space for functions
with a nonlinear dependence on the field variable. Numerical results
are presented to confirm and test our approach.

1 Introduction

The role of numerical simulation in engineering and science has become in-
creasingly important. System or component behavior is often modeled using
∗Numerical Mathematics, RWTH Aachen University, Templergraben 55, 52056 Aachen,

Germany.
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a set of partial differential equations and associated boundary conditions,
the analytical solution to which is generally unavailable. In practice, a dis-
cretization procedure such as the finite element method (FEM) is used.

However, as the physical problems become more complex and the math-
ematical models more involved, current computational methods prove in-
creasingly inadequate, especially in contexts requiring numerous solutions
of parametrized partial differential equations for many different values of
the parameter. Even for modest-complexity models, the computational cost
to solve these problems is prohibitive.

For example, the design, optimization, control, and characterization of
engineering components or systems often require repeated, reliable, and real-
time prediction of performance metrics, or outputs, se, such as heat fluxes
or flowrates1. These outputs are typically functionals of field variables, ye,
— such as temperatures or velocities — associated with a parametrized par-
tial differential equation; the parameters, or inputs, µ, serve to identify a
particular configuration of the component — such as boundary conditions,
material properties, and geometry. The relevant system behaviour is thus de-
scribed by an implicit input-output relationship, se(µ), evaluation of which
demands solution of the underlying partial differential equation (PDE).

Our focus here is on parabolic PDEs. For simplicity, we will directly
consider a time-discrete framework associated to the time interval I ≡]0, tf ]
(Ī ≡ [0, tf ]). We divide Ī into K subintervals of equal length ∆t = tf

K and
define tk ≡ k∆t, 0 ≤ k ≤ K ≡ tf

∆t , and I ≡ {t0, . . . , tK}; for notational
convenience, we also introduce K ≡ {1, . . . ,K}. We shall consider Euler-
Backward for the time integration although higher-order schemes such as
Crank-Nicolson can also be readily treated [13]. The abstract formulation
can be stated as follows: given any µ ∈ D ⊂ RP , we evaluate the output
se k(µ) ≡ se(tk;µ) = `(ye k(µ)), ∀k ∈ K, where ye k(µ) ≡ ye(tk;µ) ∈ Xe

satisfies

m(ye k(µ), v) + ∆t a(ye k(µ), v;µ) = m(ye k−1(µ), v) + ∆t f(v;µ)u(tk),
∀v ∈ Xe, ∀k ∈ K, (1)

with initial condition (say) ye(t0;µ) = ye
0(µ) = 0. Here, D is the param-

eter domain in which our P -tuple (input) parameter µ resides; Xe is an
appropriate Hilbert space; Ω ⊂ Rd is our spatial domain, a point in which
shall be denoted x; f(·;µ), `(·) are Xe-continuous bounded linear function-
als; a(·, ·;µ) and m(·, ·) are Xe-continuous and Y e-continuous (Xe ⊂ Y e)

1Here superscript “e” shall refer to “exact.” We shall later introduce a “truth approx-
imation” which will bear no superscript.
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bounded bilinear forms, respectively; and u(tk) is the “control input” at
time t = tk. We assume here that `(·), and m(·, ·) do not depend on the
parameter; parameter dependence, however, is readily admitted [15].

Since the exact solution is usually unavailable, numerical solution tech-
niques must be employed to solve (1). Classical approaches such as the
finite element method can not typically satisfy the requirements of real-time
certified prediction of the outputs of interest. In the finite element method,
the infinite dimensional solution space is replaced by a finite dimensional
“truth” approximation space X ⊂ Xe of size N : for any µ ∈ D, we evaluate
the output

sk(µ) = `(yk(µ)), ∀k ∈ K, (2)

where yk(µ) ∈ X satisfies

m(yk(µ), v) + ∆t a(yk(µ), v;µ) = m(yk−1(µ), v) + ∆t f(v;µ)u(tk),
∀v ∈ X, ∀k ∈ K, (3)

with initial condition y(µ, t0) = y0(µ) = 0. We shall assume — hence the
appellation “truth” — that the approximation space is sufficiently rich such
that the FEM approximation yk(µ) (respectively, sk(µ)) is indistinguishable
from the analytic, or exact, solution ye k(µ) (respectively, se k(µ)).

Unfortunately, for any reasonable error tolerance, the dimensionN needed
to satisfy this condition — even with the application of appropriate (parameter-
dependent) adaptive mesh refinement strategies — is typically extremely
large, and in particular much too large to satisfy the condition of real-time
response or the need for numerous solutions. Our goal is the development of
numerical methods that permit the efficient and reliable evaluation of this
PDE-induced input-output relationship in real-time or in the limit of many
queries — that is, in the design, optimization, control, and characteriza-
tion contexts. To achieve this goal we pursue the reduced basis method.
The reduced basis method was first introduced in the late 1970s for the
nonlinear analysis of structures [1, 29] and subsequently abstracted and an-
alyzed [5, 12, 31, 36]; see [37] for a recent review of contributions to the
methodology.

The core requirement for the development of efficient offline-online com-
putational strategies, i.e., online N -independence, is the affine parameter
dependence — e.g. the bilinear form a(w, v;µ) can be expressed as

a(w, v;µ) =
Q∑
q=1

Θq(µ) aq(w, v), (4)
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where the Θq(µ) : D → R are parameter dependent functions and the
aq(w, v) are parameter-independent bilinear forms. In the recent past, re-
duced basis approximations and associated a posteriori error estimation for
linear and at most quadratically nonlinear elliptic and parabolic PDEs hon-
oring this requirement have been successfully developed [15, 16, 19, 26, 27,
32, 40, 42, 43].

In [14] we extended these results and developed efficient offline-online
strategies for reduced basis approximations of nonaffine (and certain classes
of nonlinear) elliptic and parabolic PDEs. Our approach is based on the Em-
pirical Interpolation Method (EIM) [4] — a technique that recovers the effi-
cient offline-online decomposition even in the presence of nonaffine parame-
ter dependence. We can thus develop an “online N -independent” computa-
tional decomposition even for nonaffine parameter dependence, i.e., where
for general g(x;µ) (here x ∈ Ω and µ ∈ D) the bilinear form satisfies

a(w, v;µ) ≡
∫

Ω
∇w · ∇v +

∫
Ω
g(x;µ)w v. (5)

A posteriori error bounds for nonaffine linear and certain classes of nonaffine
nonlinear elliptic problems have been proposed in [7] and [28], respectively.
In this paper, we shall consider the extension of these techniques and de-
velop a posteriori error bounds (i) for nonaffine parabolic problems and (ii)
for problems in which g is a nonaffine nonlinear function of the parameter
µ (possibly including time), spatial coordinate x, and field variable y —
we hence treat certain classes of nonlinear problems. We recall that the
computational cost to generate the collateral reduced basis space for the
function approximation is very high in the parabolic case if the function g
is time-varying either through an explicit dependence on time or an implicit
dependence via the field variable y(tk;µ) [14]. We therefore propose a novel
more efficient approach to generate the collateral reduced basis space which
is based on a POD(in time)/Greedy(in parameter space) search [16].

A large number of model order reduction (MOR) techniques [2, 8, 9,
25, 30, 35, 39, 44] have been developed to treat (nonlinear) time-dependent
problems. One approach is linearization [44] and polynomial approxima-
tion [9, 30]: however, due to a lack of efficient representations of nonlinear
terms and fast exponential growth (with the degree of the nonlinear approxi-
mation order) of computational complexity, these methods are quite expen-
sive and do not address strong nonlinearities efficiently; other approaches
for highly nonlinear systems (such as piecewise-linearization) have also been
proposed [35, 38] but at the expense of high computational cost and little
control over model accuracy. Furthermore, although a priori error bounds
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to quantify the error due to model reduction have been derived in the linear
case, a posteriori error bounds have not yet been adequately considered even
for the linear case, let alone the nonlinear case, for most MOR approaches.
Finally, it is important to note that most MOR techniques focus mainly on
reduced-order modeling of dynamical systems in which time is considered
the only “parameter;” the development of reduced-order models for prob-
lems with a simultaneous dependence of the field variable on parameter and
time — our focus here — is much less common [6, 10].

This paper is organized as follows: In Section 2 we present a short review
of the empirical interpolation method. The abstract problem formulation,
reduced basis approximation, associated a posteriori error estimation, and
computational considerations for linear coercive parabolic problems with
nonaffine parameter dependence are discussed in Section 3. In Section 4
we extend these results to monotonic nonlinear parabolic PDEs. Numerical
results are used throughout to test and confirm our theoretical results. We
offer concluding remarks in Section 5.

2 Empirical Interpolation Method

The Empirical Interpolation Method (EIM), introduced in [4], serves to
construct “affine” coefficient-function approximations of “non-affine” para-
metrized functions. The method is frequently applied in reduced basis ap-
proximations of parametrized partial differential equations with nonaffine
parameter dependence [14]; the affine approximation of the equations is
crucial for computational efficiency. Here, we briefly summarize the results
for the interpolation procedure and the estimator for the interpolation er-
ror [4, 14].

2.1 Coefficient-function approximation

We are given a function g : Ω × D → R such that, for all µ ∈ D, g(·;µ) ∈
L∞(Ω); here, D ⊂ RP is the parameter domain, Ω ⊂ R2 is the spatial domain
– a point in which shall be denoted by x = (x(1), x(2)) – and L∞(Ω) ≡
{v | ess supv∈Ω |v(x)| <∞}.

We first define the nested sample sets SgM ≡ {µ
g
1 ∈ D, . . . , µ

g
M ∈ D},

associated reduced basis spaces W g
M = span {ξm ≡ g(x;µgm), 1 ≤ m ≤

M}, and nested sets of interpolation points T gM = {x1, . . . , xM}, 1 ≤ M ≤
Mmax. We present here a generalization for the construction of the EIM
which allows a simultaneous definition of the generating functions W g

M and
associated interpolation points T gM [24]. The construction is based on a

5



greedy algorithm [42] and is required for our POD/Greedy algorithm which
we will introduce in Section 4.4.

We first choose µg1 ∈ D, compute ξ1 ≡ g(x;µg1), define W g
1 ≡ span{ξ1},

and set x1 = arg ess supx∈Ω |ξ1(x)|, q1 = ξ1(x)/ξ1(x1), and B1
11 = 1. We then

proceed by induction to generate SgM , W g
M , and T gM : for 1 ≤M ≤Mmax−1,

we determine µgM+1 ≡ arg maxµ∈Ξg
train
‖g(·;µ) − gM (·;µ)‖L∞(Ω), compute

ξM+1 ≡ g(x;µgM+1), and define W g
M+1 ≡ span{ξm}M+1

m=1 ; to generate the
interpolation points we solve the linear system

∑M
j=1 σ

M
j qj(xi) = ξM+1(xi),

1 ≤ i ≤ M and we set rM+1(x) = ξM+1(x) −
∑M

j=1 σMj qj(x), xM+1 =
arg ess supx∈Ω |rM+1(x)|, and qM+1(x) = rM+1(x)/rM+1(xM+1). Here,
Ξgtrain ⊂ D is a finite but suitably large train sample which shall serve as our
D surrogate, and gM (·;µ) ∈ W g

M is the EIM interpolant of g(·;µ) over the
set T gM for any µ ∈ D. Specifically

gM (x;µ) ≡
M∑
m=1

ϕMm(µ)qm, (6)

where
M∑
j=1

BM
ij ϕM j(µ) = g(xi;µ), 1 ≤ i ≤M, (7)

and the matrix BM ∈ RM×M is defined such that BM
ij = qj(xi), 1 ≤ i, j ≤

M . We note that the determination of the coefficients ϕMm(µ) requires only
O(M2) computational cost since BM is lower triangular with unity diagonal
and that {qm}Mm=1 is a basis for W g

M [4, 14].
Finally, we define a “Lebesgue constant” [33] ΛM ≡ supx∈Ω

∑M
m=1 |VM

m (x)|,
where VM

m (x) ∈ W g
M are the characteristic functions of W g

M satisfying
VM
m (xn) ≡ δmn, 1 ≤ m,n ≤ M ; here, δmn is the Kronecker delta symbol.

We recall that (i) the set of all characteristic functions {VM
m }Mm=1 is a basis

for W g
M , and (ii) the Lebesgue constant ΛM satisfies ΛM ≤ 2M − 1 [4, 14].

In applications, the actual asymptotic behavior of ΛM is much lower, as we
shall observe subsequently.

2.2 A posteriori error estimation

Given an approximation gM (x;µ) for M ≤Mmax − 1, we define EM (x;µ) ≡
ε̂M (µ) qM+1(x), where ε̂M (µ) ≡ |g(xM+1;µ)−gM (xM+1;µ)|. We also define
the interpolation error as

εM (µ) ≡ ‖g( · ;µ)− gM ( · ;µ)‖L∞(Ω). (8)
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In general, εM (µ) ≥ ε̂M (µ), since εM (µ) ≥ |g(x;µ)−gM (x;µ)| for all x ∈ Ω,
and thus also for x = xM+1. However, we can prove (see [4, 14, 24])

Proposition 1. If g(·;µ) ∈W g
M+1, then (i) g(x;µ)−gM (x;µ) = ±EM (x;µ)

(either EM (x;µ) or −EM (x;µ)), and (ii) ‖g( · ;µ)−gM ( · ;µ)‖L∞(Ω) = ε̂M (µ).

Of course, in general g( · ;µ) 6∈W g
M+1, and hence our estimator ε̂M (µ) is

indeed a lower bound; however, if εM (µ)→ 0 very fast, we expect that the
effectivity,

ηM (µ) ≡ ε̂M (µ)
εM (µ)

, (9)

shall be close to unity. Furthermore, the estimator is very inexpensive – one
additional evaluation of g( · ;µ) at a single point in Ω. Also note that we can
readily improve the rigor of our bound at only modest additional cost: if
we assume that g(·;µ) ∈W g

M+k, then ε̂M = 2k−1 maxi∈{1,...,k} |g(xM+i;µ)−
gM (xM+i;µ)| is an upper bound for εM (µ).

In a recent note [11] a new rigorous a posteriori error bound for the
empirical interpolation method is proposed that does not rely on the as-
sumption g(·;µ) ∈ W g

M+1. In the following derivation for nonaffine linear
problems, we may directly replace the current “next-point” error bound by
this new bound, thus obtaining a rigorous error bound for the reduced-basis
approximation. Unfortunately, we cannot follow this approach for nonlinear
problems and – with the goal of presenting a unified treatment in mind – we
therefore employ the “next-point” error bound throughout the subsequent
analysis.

3 Nonaffine Linear Parabolic Equations

3.1 Problem statement

3.1.1 Abstract formulation

We first recall the Hilbert spacesXe ≡ H1
0 (Ω) — or, more generally, H1

0 (Ω) ⊂
Xe ⊂ H1(Ω) — and Y e ≡ L2(Ω), where H1(Ω) ≡ {v | v ∈ L2(Ω),∇v ∈
(L2(Ω))d}, H1

0 (Ω) ≡ {v | v ∈ H1(Ω), v|∂Ω = 0}, and L2(Ω) is the space
of square integrable functions over Ω [34]; here Ω is a bounded domain in
Rd with Lipschitz continuous boundary ∂Ω. The inner product and norm
associated with Xe (Y e) are given by (·, ·)Xe ((·, ·)Y e) and ‖ · ‖Xe = (·, ·)1/2

Xe

(‖ · ‖Y e = (·, ·)1/2
Y e ) , respectively; for example, (w, v)Xe ≡

∫
Ω∇w · ∇v +
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∫
Ωw v, ∀w, v ∈ X

e, and (w, v)Y e ≡
∫

Ωw v, ∀w, v ∈ Y
e. The truth approx-

imation subspace X ⊂ Xe(⊂ Y e) shall inherit this inner product and norm:
(·; ·)X ≡ (·; ·)e

X and ‖ · ‖X ≡ ‖ · ‖eX ; we further define Y ≡ Y e.
We directly consider the truth approximation statement defined in (3)

with the output given by (2), in which

a(w, v;µ) = a0(w, v) + a1(w, v, g(x;µ)), (10)

and
f(v;µ) =

∫
Ω
v h(x;µ) (11)

where a0(·, ·) is a continuous (and, for simplicity, parameter-independent)
bilinear form and a1 : X ×X × L∞(Ω) is a trilinear form. For simplicity of
exposition, we assume here that h(x;µ) = g(x;µ).

We shall further assume that a(·, ·;µ) and m(·, ·) are continuous

a(w, v;µ) ≤ γa(µ)‖w‖X‖v‖X ≤ γ0
a‖w‖X‖v‖X , ∀ w, v ∈ X, ∀ µ ∈ D,(12)

m(w, v) ≤ γ0
m‖w‖Y ‖v‖Y , ∀ w, v ∈ X; (13)

coercive,

0 < α0
a ≤ αa(µ) ≡ inf

w∈X

a(w,w;µ)
‖w‖2X

, ∀ µ ∈ D, (14)

0 < α0
m ≡ inf

v∈X

m(v, v)
‖v‖2Y

; (15)

and symmetric, a(v, w;µ) = a(w, v;µ), ∀ w, v ∈ X, ∀ µ ∈ D, and m(v, w) =
m(w, v), ∀w, v ∈ X, ∀ µ ∈ D. (We (plausibly) suppose that γ0

a, γ0
m, α0

a, α
0
m

may be chosen independent of N .) We also assume that the trilinear form
a1 satisfies

a1(w, v, z) ≤ γ0
a1
‖w‖X ‖v‖X ‖z‖L∞(Ω), ∀ w, v ∈ X, ∀z ∈ L∞(Ω). (16)

Next, we require that the linear forms f(·;µ) : X → R and `(·) : X → R
be bounded with respect to ‖ · ‖Y . And finally, we require that all linear
and bilinear forms are independent of time — the system is thus linear
time-invariant (LTI). It follows, since g(·;µ) ∈ L∞(Ω), that a solution to (3)
exists and is unique [34].
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3.1.2 Model problem

As a numerical example we consider the following nonaffine diffusion prob-
lem defined on the unit square, Ω =]0, 1[2∈ R2: Given µ ≡ (µ1, µ2) ∈ D ≡
[−1,−0.01]2 ⊂ RP=2, we evaluate yk(µ) ∈ X from (3), where X ⊂ Xe ≡
H1

0 (Ω) is a linear finite element truth approximation subspace of dimension
N = 2601,

m(w, v) ≡
∫

Ω
w v, a0(w, v) ≡

∫
Ω
∇w·∇v, a1(w, v, z) ≡

∫
Ω
z w v, f(v; z) ≡

∫
Ω
z v,

(17)
and z = G(x;µ) is a nonaffine function given by

G(x;µ) ≡ 1√
(x(1) − µ1)2 + (x(2) − µ2)2

. (18)

The output can be written in the form (2), sk(µ) = `(yk(µ)), ∀k ∈ K, where
`(v) ≡ |Ω|−1

∫
Ω v — clearly a very smooth functional. We shall consider the

time interval Ī = [0, 2] and a timestep ∆t = 0.01; we thus have K = 200.
We also presume the periodic control input u(tk) = sin(2πtk), tk ∈ I.

Two snapshots of the solution yk(µ) at time tk = 25∆t are shown in
Figures 1(a) and (b) for µ = (−1,−1) and µ = (−0.01,−0.01), respectively.
The solution oscillates in time and the peak is offset towards x = (0, 0) for
µ near the “corner” (−0.01,−0.01).

3.2 Reduced basis approximation

3.2.1 Formulation

We suppose that we are given the nested Lagrangian [31] reduced basis
spaces

W y
N = span{ζn, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax, (19)

where the ζn, 1 ≤ n ≤ N , are mutually (·, ·)X -orthogonal basis functions.
We comment on the POD/Greedy algorithm for constructing the basis func-
tions in Section 3.4.

Our reduced basis approximation ykN,M (µ) to yk(µ) is then: given µ ∈ D,
ykN,M (µ) ∈W y

N , 1 ≤ k ≤ K, satisfies

m(ykN,M (µ), v) + ∆t (a0(ykN,M (µ), v) + a1(ykN,M (µ), v; gM (x;µ)))

= m(yk−1
N,M (µ), v) + ∆t f(v; gM (x;µ)) u(tk), ∀ v ∈W y

N , (20)
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with initial condition y0
N,M (µ) = 0. We then evaluate the output estimate,

skN,M (µ), 1 ≤ k ≤ K, from

skN,M (µ) ≡ `(ykN,M (µ)). (21)

Note that we directly replaced g(x;µ) in (10) by the affine approximation
gM (x;µ) =

∑M
m=1 ϕMm(µ)qm(x) from (6) based upon the empirical inter-

polation approach described in Section 2.
We now express ykN,M (µ) =

∑N
n=1 ykN,Mn(µ) ζn, choose as test functions

v = ζj , 1 ≤ j ≤ N , and invoke (6) to obtain

N∑
i=1

{
m(ζi, ζj) + ∆t

(
a0(ζi, ζj) +

M∑
m=1

ϕMm(µ) a1(ζi, ζj , qm)

)}
ykN,M i(µ)

=
N∑
i=1

m(ζi, ζj) yk−1
N,M i(µ) + ∆t

M∑
m=1

ϕMm(µ) f(ζj ; qm) u(tk), 1 ≤ i ≤ N.

(22)

where ϕMm(µ), 1 ≤ m ≤ M , is determined from (7). We can thus recover
online N -independence even for nonaffine problems: the quantities m(ζi, ζj),
a0(ζi, ζj), a1(ζi, ζj , qm), and f(ζi; qm) are all parameter independent and can
thus be pre-computed offline, as discussed further in Section 3.2.2.

In [14] we developed a priori estimates for the convergence rate ykN,M (µ)→
yk(µ) – the sum of a best approximation result and a perturbation due to the
variational crime associated with the interpolation of g. We next summarize
the offline-online computational procedure and then turn to the development
of our a posteriori error bounds.

3.2.2 Computational procedure

We summarize here the offline-online procedure [3, 18, 23, 32]. We first
express ykN,M (µ) as

ykN,M (µ) =
N∑
n=1

ykN,Mn(µ) ζn, (23)

and choose as test functions v = ζj , 1 ≤ j ≤ N in (20). It then follows
from (22) that yk

N,M
(µ) = [ykN,M 1(µ) ykN,M 2(µ) . . . ykN,M N (µ)]T ∈ RN sat-

isfies

(MN + ∆t AN (µ)) yk
N,M

(µ) = MN yk−1
N,M

(µ) + ∆t FN (µ) u(tk), ∀ k ∈ K,
(24)
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with initial condition yN,M n(µ, t0) = 0, 1 ≤ n ≤ N . Given yk
N,M

(µ), 1 ≤
k ≤ K, we finally evaluate the output estimate from

skN,M (µ) = LTN yk
N,M

(µ), ∀ k ∈ K. (25)

Here, MN ∈ RN×N is a parameter-independent SPD matrix with entries

MN i,j = m(ζi, ζj), 1 ≤ i, j ≤ N. (26)

Furthermore, we obtain from (6) and (10) that AN (µ) ∈ RN×N and FN (µ) ∈
RN can be expressed as

AN (µ) = A0,N +
M∑
m=1

ϕMm(µ) Am1,N , (27)

FN (µ) =
M∑
m=1

ϕMm(µ) FmN , (28)

where ϕMm(µ), 1 ≤ m ≤ M, is calculated from (7), and the parameter-
independent quantities A0,N ∈ RN×N , Am1,N ∈ RN×N , and FmN ∈ RN are
given by

A0,N i,j = a0(ζi, ζj), 1 ≤ i, j ≤ N,
Am1,N i,j = a1(ζi, ζj , qm), 1 ≤ i, j ≤ N, 1 ≤ m ≤M,

FmN j = f(ζj ; qm), 1 ≤ j ≤ N, 1 ≤ m ≤M,

(29)

respectively. Finally, LN ∈ RN is the output vector with entries LN i = `(ζi),
1 ≤ i ≤ N . We note that these quantities must be computed in a stable
fashion which is consistent with the finite element quadrature points (see
[13], p. 132).

The offline-online decomposition is now clear. In the offline stage —
performed only once — we first construct the nested approximation spaces
W g
M and sets of interpolation points T gM , 1 ≤ M ≤ Mmax; we then solve

for the ζn, 1 ≤ n ≤ Nmax and compute and store the µ-independent quan-
tities in (26), (29), and LN . The computational cost — without taking
into account the construction of W g

M and T gM — is therefore O(KNmax)
solutions of the underlying N -dimensional “truth” finite element approx-
imation and O(MmaxN

2
max) N -inner products; the storage requirements

are also O(MmaxN
2
max). In the online stage — performed many times,

for each new parameter value µ — we first compute ϕM (µ) from (7) at
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cost O(M2) by multiplying the pre-computed inverse of BM with the vec-
tor g(xi;µ), 1 ≤ i ≤ M ; we then assemble the reduced basis matrix (27)
and vector (28); this requires O(MN2) operations. We then solve (24) for
yk
N,M

(µ); since the reduced basis matrices are in general full, the operation
count (based on LU factorization and our LTI assumption) is O(N3 +KN2).
Finally, given yk

N,M
(µ) we evaluate the output estimate skN,M (µ), 1 ≤ k ≤ K,

from (25) at a cost of O(KN).
Hence, as required in the many-query or real-time contexts, the online

complexity is independent of N , the dimension of the underlying “truth”
finite element approximation space. Since N , M � N we expect significant
computational savings in the online stage relative to classical discretization
and solution approaches.

3.3 A posteriori error estimation

We will now develop a posteriori error estimators which will help us to (i)
assess the error introduced by our reduced-basis approximation (relative to
the “truth” finite element approximation); and (ii) devise an efficient proce-
dure for generating the reduced-basis space W y

N . We recall that a posteriori
error estimates have been developed for reduced basis approximations of
linear affine parabolic problems using a finite element truth discretization
in [15]. Subsequently, extensions to finite volume disretizations including
bounds for the error in the L2(Ω)-norm have also been considered [16].

3.3.1 Preliminaries

To begin, we assume that we are given a positive lower bound for the coer-
civity constant αa(µ): α̂a(µ) : D → R+ satisfies

αa(µ) ≥ α̂a(µ) ≥ α̂0
a > 0, ∀ µ ∈ D. (30)

This bound can be calculated using the Successive Constraint Method (SCM)
[17]; however, simpler recipes often suffice [32, 43].

We next introduce the dual norm of the residual

εkN,M (µ) ≡ sup
v∈X

Rk(v;µ)
‖v‖X

, ∀ k ∈ K, (31)

where

Rk(v;µ) ≡ f(v; gM (x;µ)) u(tk)−a0(ykN,M (µ), v)−a1(ykN,M (µ), v, gM (x;µ))

− 1
∆t

m(ykN,M (µ)− yk−1
N,M (µ), v), ∀ v ∈ X, ∀ k ∈ K. (32)

12



We also introduce the dual norm

Φna k
M (µ) ≡ sup

v∈X

f(v; qM+1) u(tk)− a1(ykN,M (µ), v, qM+1)
‖v‖X

, ∀ k ∈ K, (33)

which reflects the contribution of the nonaffine terms. Finally, we specify
the inner products (v, w)X ≡ a0(v, w), ∀ v, w ∈ X and (v, w)Y ≡ m(v, w),
∀ v, w ∈ X, recall the definition ε̂M (µ) = |g(tM+1;µ) − gM (tM+1;µ)| from
Section 2.2, and define the “spatio-temporal” energy norm, 1 ≤ k ≤ K,

|||vk(µ)||| ≡
(
m(vk(µ), vk(µ))

+
k∑

k′=1

(
a0(vk

′
(µ), vk

′
(µ)) + a1(vk

′
(µ), vk

′
(µ); g(x;µ))

)
∆t
) 1

2

. (34)

3.3.2 Error bound formulation

We obtain the following result for the error bound.

Proposition 2. Suppose that g(x;µ) ∈W g
M+1. The error, ek(µ) ≡ yk(µ)−

ykN,M (µ), is then bounded by

|||ek(µ)||| ≤ ∆y k
N,M (µ), ∀ µ ∈ D, ∀ k ∈ K, (35)

where the error bound ∆y k
N,M (µ) ≡ ∆y

N,M (tk;µ) is defined as

∆y k
N,M (µ) ≡

(
2∆t
α̂a(µ)

k∑
k′=1

εk
′
N,M (µ)

2
+

2∆t
α̂a(µ)

ε̂2
M (µ)

k∑
k′=1

Φna k′
M (µ)

2

) 1
2

.

(36)

Proof. We immediately derive from (3) and (32) that ek(µ), 1 ≤ k ≤ K,
satisfies

m(ek(µ), v) + ∆t
(
a0(ek(µ), v) + a1(ek(µ), v, g(x;µ))

)
=

m(ek−1(µ), v) + ∆t R(v;µ, tk) + ∆t
(
f(v; g(x;µ)− gM (x;µ)) u(tk)

− a1(ykN,M (µ), v, g(x;µ)− gM (x;µ))
)
, ∀ v ∈ X, (37)

where e(t0;µ) = 0 since y(t0;µ) = yN,M (t0;µ) = 0 by assumption. We now
choose v = ek(µ), invoke the Cauchy-Schwarz inequality for the cross term

13



m(ek−1(µ), ek(µ)), and apply (31) to obtain, 1 ≤ k ≤ K,

m(ek(µ), ek(µ)) + ∆t
(
a0(ek(µ), ek(µ)) + a1(ek(µ), ek(µ), g(x;µ))

)
≤

m
1
2 (ek(µ), ek(µ)) m

1
2 (ek−1(µ), ek−1(µ)) + ∆t εkN,M (µ) ‖ek(µ)‖X

+ ∆t
(
f(ek(µ); g(x;µ)− gM (x;µ)) u(tk)

− a1(ykN,M (µ), ek(µ), g(x;µ)− gM (x;µ))
)
. (38)

From our assumption, g(x;µ) ∈ W g
M+1, Proposition 1, and (33) it directly

follows that

f(ek(µ); g(x;µ)− gM (x;µ)) u(tk)− a1(ykN,M (µ), ek(µ), g(x;µ)− gM (x;µ))

≤ ε̂M (µ) sup
v∈X

f(v; qM+1) u(tk)− a1(ykN,M (µ), v, qM+1)
‖v‖X

‖ek(µ)‖X

≤ ε̂M (µ) Φna k
M (µ) ‖ek(µ)‖X . (39)

We now recall Young’s inequality (for c ∈ R, d ∈ R, ρ ∈ R+)

2 |c| |d| ≤ 1
ρ2
c2 + ρ2 d2, (40)

which we apply thrice: first, choosing c = m
1
2 (ek(µ), ek(µ)), d = m

1
2 (ek−1(µ), ek−1(µ)),

and ρ = 1, we obtain

2 m
1
2 (ek(µ), ek(µ)) m

1
2 (ek−1(µ), ek−1(µ))

≤ m(ek−1(µ), ek−1(µ)) +m(ek(µ), ek(µ)); (41)

second, choosing c = εkN,M (µ), d = ‖ek(µ)‖X , and ρ = (α̂a(µ)/2)
1
2 we have

2 εkN (µ) ‖ek(µ)‖X ≤
2

α̂a(µ)
εkN,M (µ)

2
+
α̂a(µ)

2
‖ek(µ)‖2X ; (42)

and third, choosing c = ε̂M (µ) Φna k
M (µ), d = ‖ek(µ)‖X , and ρ = (α̂a(µ)/2)

1
2

gives

2 ε̂M (µ) Φna k
M (µ) ‖ek(µ)‖X ≤

2
α̂a(µ)

ε̂2
M (µ) Φna k

M (µ)
2

+
α̂a(µ)

2
‖ek(µ)‖2X ;

(43)
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Combining (38) and (39), and invoking (14) and (41)-(43), we obtain, 1 ≤
k ≤ K,

m(ek(µ), ek(µ))−m(ek−1(µ), ek−1(µ)) + ∆t
(
a0(ek(µ), ek(µ))

+ a1(ek(µ), ek(µ), g(x;µ))
)
≤ 2∆t
α̂a(µ)

(
εkN,M (µ)

2
+ ε̂2

M (µ) Φna k
M (µ)2

)
,

(44)

where we used the fact that α̂a(µ) ≤ αa(µ), ∀ µ ∈ D. We now perform the
sum from k′ = 1 to k and recall that e(µ, t0) = 0, leading to

m(ek(µ), ek(µ)) +
k∑

k′=1

∆t
(
a0(ek

′
(µ), ek

′
(µ)) + a1(ek

′
(µ), ek

′
(µ), g(x;µ))

)
≤ 2∆t
α̂a(µ)

k∑
k′=1

(
εk
′
N,M (µ)

2
+ ε̂2

M (µ) Φna k′
M (µ)

2
)
, ∀ k ∈ K, (45)

which is the result stated in Proposition 2.

We note from (36) that our error bound comprises the affine as well
as the nonaffine error contributions. We may thus choose N and M such
that both contributions balance, i.e., neither N nor M should be chosen
unnecessarily high. We also recall that our (crucial) assumption g(x;µ) ∈
W g
M+1 cannot be confirmed in actual practice — in fact, we generally have

g(x;µ) /∈W g
M+1 and hence our error bound (36) is not completely rigorous,

since ε̂M (µ) ≤ εM (µ). We comment on both of these issues again in detail
in Section 3.5 when discussing numerical results.

We can now define the (simple) output bound in

Proposition 3. Suppose that g(x;µ) ∈ W g
M+1. The error in the output of

interest is then bounded by

|sk(µ)− skN,M (µ)| ≤ ∆s k
N,M (µ), ∀ k ∈ K, ∀ µ ∈ D, (46)

where the output bound ∆s k
N,M (µ) is defined as

∆s k
N,M (µ) ≡ sup

v∈X

`(v)
‖v‖Y

∆y k
N,M (µ) . (47)

Proof. From (2) and (21) we obtain

|sk(µ)− skN,M (µ)| = |`(yk(µ))− `(ykN,M (µ))|

= |`(ek(µ))| ≤ sup
v∈X

`(v)
‖v‖Y

‖ek(µ)‖Y .
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The result immediately follows since ‖ek(µ)‖Y ≤ ∆y k
N,M (µ), 1 ≤ k ≤ K.

Since our focus here is on developing a posteriori error bounds for non-
affine and (subsequently) nonlinear problems, we do not consider primal-
dual techniques. However, incorporating these techniques analogous to [15]
is also possible.

3.3.3 Computational procedure

We now turn to the development of offline-online computational procedures
for the calculation of ∆y k

N,M (µ) and ∆s k
N,M (µ). The necessary computations

for the offline and online stage are detailed in A. Here, we only summarize
the computational costs involved.

In the offline stage we first compute the quantities F , A0,1, and M
from (88) and (91) and then evaluate the Λ from (90) and (92); this requires
(to leading order) O(MmaxNmax) expensive “truth” finite element solutions,
and O(M2

maxN
2
max) N -inner products. In the online stage — given a new

parameter value µ and associated reduced basis solution yk
N,M

(µ), 1 ≤ k ≤
K — the computational cost to evaluate ∆y k

N,M (µ) and ∆s k
N,M (µ), 1 ≤ k ≤ K,

is O(KM2N2). Thus, all online calculations needed are independent of N .

3.4 Sampling Procedure

The sampling procedure is a two stage process. We first construct the sam-
ple set SgM , associated space W g

M , and set of interpolation points T gM for the
nonaffine function as described in Section 2. We then invoke a POD/Greedy
sampling procedure — a combination of the Proper Orthogonal Decom-
position (POD) in time with a Greedy selection procedure in parameter
space [16, 20] — to generate W y

N .
Let PODX({yk(µ), 1 ≤ k ≤ K}, R) return the R largest POD modes,

{χi, 1 ≤ i ≤ R}, with respect to the (·, ·)X inner product. We recall that the
POD modes, χi, are mutually X-orthogonal such that PR = span{χi, 1 ≤
i ≤ R} satisfies the optimality property

PR = arg inf
YR⊂span{yk(µ),1≤k≤K}

(
1
K

K∑
k=1

inf
w∈YR

‖yk(µ)− w‖2X

)
, (48)

where YR denotes a linear space of dimension R. Here, we are only in-
terested in the largest POD mode which we obtain using the method of
snapshots [39]. To this end, we solve the eigenvalue problem Cψi = λiψi
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for (ψ1 ∈ RK , λ1 ∈ R) associated with the largest eigenvalue of C, where
Cij = (yi(µ), yj(µ))X , 1 ≤ i, j ≤ K; we then obtain the first POD mode
from χ1 =

∑K
k=1 ψ

1
k y

k(µ).
The POD/Greedy procedure proceeds as follows: we first choose a µ∗ ∈

D and set Sy0 = {0}, W y
0 = {0}, N = 0. Then, for 1 ≤ N ≤ Nmax, we

first compute the projection error ekN,proj(µ) = yk(µ∗)−projX,W y
N−1

(yk(µ∗)),
1 ≤ k ≤ K, where projX,WN

(w) denotes the X-orthogonal projection of
w ∈ X onto WN , and we expand the parameter sample SyN ← SyN−1 ∪ {µ∗}
and the reduced basis space W y

N ← W y
N−1 ∪ PODX({ekN,proj(µ

∗), 1 ≤ k ≤
K}, 1), and set N ← N + 1. Finally, we choose the next parameter value
from µ∗ ← arg maxµ∈Ξtrain ∆yK

N,Mmax
(µ)/|||yKN (µ)|||, i.e., we perform a greedy

search over Ξtrain for the largest relative a posteriori error bound at the final
time. Here, Ξtrain ⊂ D is a finite but suitably large train sample. In general,
we may also specify a desired error tolerance, εtol,min, and stop the procedure
as soon as maxµ∈Ξtrain ∆yK

N,Mmax
(µ)/|||yKN (µ)||| ≤ εtol,min is satisfied; Nmax is

then indirectly determined through the stopping criterion.
We note that during the POD/Greedy sampling procedure we shall use

the “best” possible approximation gM (x;µ) of g(x;µ) so as to minimize the
error induced by the empirical interpolation procedure, i.e., we set M =
Mmax. In cases where the control input u(tk) is unknown, we appeal to
the LTI property and generate the reduced basis space based on an impulse
input [15]. Extensions of the sampling procedure to treat non-zero initial
conditions and multiple inputs may also be considered [13].

3.5 Numerical Results

We now present numerical results for our model problem of Section 3.1.2.
We choose for Ξtrain ⊂ D a deterministic grid of 40 × 40 parameter points
over D and we take µg1 = (−0.01,−0.01). Next, we pursue the empirical
interpolation procedure described in Section 2 to construct SgM , W g

M , T gM ,
and BM , 1 ≤M ≤Mmax, for Mmax = 57.

We first present the results for the empirical interpolation of G(x;µ) from
(18). To this end, we introduce a parameter test sample ΞTest of size QTest =
225, and define the maximum error εM,max = maxµ∈Ξg

Test
εM (µ), the average

effectivity η̄M = Q−1
Test

∑
µ∈Ξg

Test
ηM (µ), where ηM (µ) is the effectivity defined

in (9), and κM is the condition number of BM . We present in Table 1 εM,max,
ΛM , η̄M , and κM as a function of M . We observe that εM,max converges
rapidly with M ; that the Lebesgue constant grows very slowly; that the
error estimator effectivity is less than but reasonably close to unity; and
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that BM is quite well-conditioned for our choice of basis.

Table 1: Numerical results for empirical interpolation of G(x;µ):
εM,max, ΛM , η̄M , and κM as a function of M .

M εM,max ΛM η̄M κM
8 2.05 E – 01 1.98 0.17 3.73
16 8.54 E – 03 2.26 0.85 6.01
24 6.53 E – 04 3.95 0.50 8.66
32 1.29 E – 04 5.21 0.73 12.6
40 1.37 E – 05 5.18 0.43 16.6
48 4.76 E – 06 10.2 0.19 20.0

We next turn to the reduced basis approximation and construct the
reduced basis space W y

N according to the POD/Greedy sampling procedure
in Section 3.4; we sample on Ξtrain with M = Mmax and obtain Nmax = 45
for εtol,min = 1 E – 6.

In Figure 2 we plot, as a function of N and M , the maximum relative
error in the energy norm εyN,M,max,rel = maxµ∈ΞTest

|||eK(µ)|||/|||yK(µy)|||,
where µy ≡ arg maxµ∈ΞTest

|||yK(µ)|||. We observe that the reduced-basis
approximation converges very rapidly. We also note the “plateau” in the
curves for M fixed and the “drops” in the N → ∞ asymptotes as M in-
creases: for fixed M the error due to the coefficient function approximation,
gM (x;µ)− g(x;µ), will ultimately dominate for large N ; increasing M ren-
ders the coefficient function approximation more accurate, which in turn
leads to a drop in the error. We further note that the separation points,
or “knees,” of the N -M -convergence curves reflect a balanced contribution
of both error terms; neither N nor M limit the convergence of the reduced
basis approximation.

In Table 2 we present, as a function of N and M , εyN,M,max,rel, the max-
imum relative error bound ∆y

N,M,max,rel, and the average effecitivity η̄yN,M ;

here, ∆y
N,M,max,rel is the maximum over ΞTest of ∆y k

N,M (µ)/|||yK(µy)||| and

η̄yN,M is the average over ΞTest × I of ∆y k
N,M (µ)/|||yk(µ) − ykN,M (µ)|||. Note

that the tabulated (N,M) values correspond roughly to the “knees” of the
N -M -convergence curves. We observe very rapid convergence of the reduced
basis approximation and error bound.

The effectivity serves as a measure of rigour and sharpness of the error
bound: we would like η̄yN,M ≥ 1, i.e., ∆y k

N,M (µ) be a true upper bound for
the error in the energy-norm; and ideally we have η̄yN,M ≈ 1 so as to obtain
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Figure 1: Solution yk(µ) at tk = 25∆t for (a) µ = (−1,−1) and (b) µ =
(−0.01,−0.01).
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Figure 2: Convergence of the reduced basis approximation: εyN,M,max,rel.
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a sharp bound for the error. We recall, however, that in actual practice
we cannot confirm the assumption g(x;µ) ∈W g

M+1 from Proposition 2 and
thus η̄yN,M ≥ 1 may not hold. Specifically, if we choose (N,M) such that the
function interpolation limits the convergence we do obtain effectivities less
than 1, e.g., for (N,M) = (25, 24) (instead of (25, 32) in Table 2) we obtain
η̄yN,M = 0.83. A judicious choice for N and M is thus important for rigour
and safety.

We next turn to the output estimate and present, in Table 2, the maxi-
mum relative output error εsN,M,max,rel, the maximum relative output bound
∆s
N,M,max,rel, and the average output effectivity η̄s; here, εsN,M,max,rel is the

maximum over ΞTest of |s(µ, tks(µ))−sN,M (µ, tks(µ))|/|s(µ, tks(µ))|, ∆s
N,M,max,rel

is the maximum over ΞTest of ∆s
N,M (µ, tks(µ))/|s(µ, tks(µ))|, and η̄s is the

average over ΞTest of ∆s
N,M (µ, tη(µ))/|s(µ, tη(µ)) − sN,M (µ, tη(µ))|, where

tks(µ) ≡ arg maxtk∈I |s(µ, tk)| and tη(µ) ≡ arg maxtk∈I |s(µ, tk)−sN,M (µ, tk)|.
Again, we observe very rapid convergence of the reduced basis output ap-
proximation and output bound — for only N = 15 and M = 24 the output
error bound is already less than 0.3%. The output effectivities are still
acceptable for smaller values of (N,M), but deteriorate for larger values.

In Table 3 we present, as a function of N and M , the online computa-
tional times to calculate skN,M (µ) and ∆s k

N,M (µ) for 1 ≤ k ≤ K. The values
are normalized with respect to the computational time for the direct calcula-
tion of the truth approximation output sk(µ) = `(yk(µ)), 1 ≤ k ≤ K. The
computational savings for an accuracy of less than 0.3 percent (N = 15,
M = 24) in the output bound is approximately a factor of 30. We note
that the time to calculate ∆s k

N,M (µ) exceeds that of calculating skN (µ) con-
siderably — this is due to the higher computational cost, O(KM2N2), to
evaluate ∆y k

N,M (µ). Thus, although the previous observations suggests to
choose M large so that the error contribution due to the nonaffine function
approximation is small, we should choose M as small as possible to retain
the computational efficiency of our method. We emphasize that the reduced
basis entry does not include the extensive offline computations — and is
thus only meaningful in the real-time or many-query contexts.

4 Nonlinear Parabolic Equations

In this section we extend the previous results to nonaffine nonlinear parabolic
problems. We first introduce the abstract statement and reduced basis ap-
proximation, we then develop the a posteriori error bounds and subsequently
introduce a new construction to define the generating functions for the non-
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Table 2: Convergence rates and effectivities as a function of N and M for
the nonaffine problem.

N M εyN,M,max,rel ∆y
N,M,max,rel η̄yN,M εsN,M,max,rel ∆s

N,M,max,rel η̄sN,M
5 16 1.22 E – 02 1.74 E – 02 1.42 3.30 E – 03 1.01 E – 01 29.1
15 24 3.32 E – 04 4.75 E – 04 1.09 1.57 E – 04 2.77 E – 03 27.5
25 32 2.91 E – 05 4.30 E – 05 1.44 1.88 E – 05 2.50 E – 04 85.4
35 40 3.78 E – 06 3.50 E – 06 1.11 3.22 E – 06 2.04 E – 05 137
45 48 5.66 E – 07 8.17 E – 07 1.39 8.14 E – 08 4.76 E – 06 553

Table 3: Online computational times (normalized with respect to the time
to solve for sk(µ), 1 ≤ k ≤ K) for the nonaffine problem.

N M skN,M (µ), ∀k ∈ K ∆s k
N,M (µ), ∀k ∈ K sk(µ), ∀k ∈ K

5 16 2.70 E – 03 1.84 E – 02 1
15 24 3.18 E – 03 3.01 E – 02 1
25 32 3.96 E – 03 4.57 E – 02 1
35 40 4.71 E – 03 7.16 E – 02 1
45 48 5.52 E – 03 1.02 E – 01 1

linear term. Finally, we discuss numerical results obtained for a model
problem.

4.1 Problem statement

4.1.1 Abstract formulation

We consider a time-discrete framework associated to the time interval I ≡
]0, tf ] as introduced in Section 1; Ī is divided into K subintervals of equal
length ∆t = tf

K , that tk is defined by tk ≡ k∆t, 0 ≤ k ≤ K ≡ tf
∆t ; further-

more, I ≡ {t0, . . . , tk} and K ≡ {1, . . . ,K}. The “truth” approximation is
then: given a parameter µ ∈ D, we evaluate the output of interest

sk(µ) = `(yk(µ)), ∀ k ∈ K (49)
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where the field variable yk(µ) ∈ X, 1 ≤ k ≤ K, satisfies the weak form of
the nonlinear parabolic partial differential equation

m(yk(µ), v) + ∆t aL(yk(µ), v) + ∆t
∫

Ω
g(yk(µ);x;µ) v

= m(yk−1(µ), v) + ∆t f(v) u(tk), ∀ v ∈ X, (50)

with initial condition (say) y(µ, t0) = 0. Here, µ and D are the input and
input domain; u(tk) denotes the control input; and g(w;x;µ) : R×Ω×D → R
is a nonlinear nonaffine function continuous in its arguments, increasing in
its first argument, and satisfies, for all y ∈ R, y g(y;x;µ) ≥ 0 for any x ∈ Ω
and µ ∈ D. We note that the field variable, yk(µ), is of course also a function
of the spatial coordinate x. In the sequel we will use the notation y(x, tk;µ)
to signify this dependence whenever it is crucial.

We shall make the following assumptions. We assume that aL(·, ·) and
m(·, ·) are continuous

aL(w, v) ≤ γ0
a‖w‖X‖v‖X , ∀ w, v ∈ X, (51)

m(w, v) ≤ γ0
m‖w‖Y ‖v‖Y , ∀ w, v ∈ X; (52)

coercive,

0 < α0
a ≡ inf

w∈X

aL(w,w)
‖w‖2X

, , (53)

0 < α0
m ≡ inf

v∈X

m(v, v)
‖v‖2Y

; (54)

and symmetric, aL(v, w) = aL(w, v), ∀ w, v ∈ X, and m(v, w) = m(w, v),
∀ w, v ∈ X. (We (plausibly) suppose that γ0

a, γ
0
m, α

0
a, α

0
m may be chosen

independent of N .) We also require that the linear forms f(·) : X → R
and `(·) : X → R be bounded with respect to ‖ · ‖Y . The problem is thus
well-posed [22].

Since the focus of this section is the treatment of the nonlinearity g(w;x;µ)
we assume that the bilinear and linear forms m, aL and b, ` are parameter
independent; a parameter dependence of either form is readily admitted.
Note also that our results presented here directly carry over to the case
where g is also an explicit function of (discrete) time tk.

4.1.2 Model problem

We turn to a numerical example. We consider the following nonlinear dif-
fusion problem defined on the unit square, Ω =]0, 1[2∈ R2: Given µ =
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(µ1, µ2) ∈ Dµ ≡ [0.01, 10]2, we evaluate yk(µ) ∈ X from (50), where
X ⊂ Xe ≡ H1

0 (Ω) is a linear finite element truth approximation subspace of
dimension N = 2601,

m(w, v) ≡
∫

Ω
w v, aL(w, v) ≡

∫
Ω
∇w·∇v, f(v) ≡ 100

∫
Ω
v sin(2πx1) cos(2πx2),

(55)
and the nonlinearity is given by

g(yk(µ);µ) = µ1
eµ2 yk(µ) − 1

µ2
. (56)

The output sk(µ) is evaluated from (49) with `(v) =
∫

Ω v. We presume the
periodic control input u(tk) = sin(2πtk), tk ∈ I. We shall consider the time
interval Ī = [0, 2] and a timestep ∆t = 0.01; we thus have K = 200.

We note that µ2 represent the strength of the nonlinearity whereas
µ1 represents the strength of the sink term in (56); as µ2 → 0 we have
g(w;µ) → µ1w. The solution thus tends to the solution for the linear
problem as µ2 tends to zero. Two snapshots of the solution yk(µ) at time
tk = 25∆t are shown for µ = (0.01, 0.01) and µ = (10, 10) in Figures 3(a)
and (b), respectively. We observe that the solution has two negative peaks
and two positive peaks with similar height for µ = (0.01, 0.01) (which os-
cillate back and forth in time). As µ2 increases, the height of the negative
peaks remains largely unchanged, while the positive peaks get rectified as
shown in Figure 3(b). The exponential nonlinearity has a damping effect on
the positive part of yk(µ), but has (almost) no effect on the negative part.
Note that the solution for µ = (10, 10), of course, also oscillates in time —
with the positive peaks always being smaller than the negative peaks.

4.2 Reduced basis approximation

4.2.1 Formulation

We suppose that we are given the nested collateral reduced basis space
W g
M = span{ξn, 1 ≤ n ≤ M} = span{q1, . . . , qM}, 1 ≤ M ≤ Mmax and

nested set of interpolation points T gM = {x1, . . . , xM}, 1 ≤ M ≤ Mmax; we
will propose a procedure to construct W g

M and T gM in Section 4.4. Then,
for given wk(µ) ∈ X and M , we approximate g(wk(µ);x;µ) by gw

k

M (x;µ) =∑M
m=1 ϕ

k
M m(µ)qm(x), where

M∑
j=1

BM
ij ϕ

k
M j(µ) = g(w(xi, tk;µ);xi;µ), 1 ≤ i ≤M ; (57)
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note that ϕkM (µ) ≡ ϕM (tk;µ) now also depends on the (discrete) time
tk. We also introduce the nested Lagrangian reduced basis spaces W y

N =
span{ζn, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax, where the ζn, 1 ≤ n ≤ N , are
mutually (·, ·)X -orthogonal basis functions. We construct W y

N according to
the POD/Greedy procedure outlined in Section 3.4 with M = Mmax.

Our reduced basis approximation ykN,M (µ) to yk(µ) is then obtained by
a standard Galerkin projection: given µ ∈ D, ykN,M (µ) ∈W y

N satisfies

m(ykN,M (µ), v) + ∆t aL(ykN,M (µ), v) + ∆t
∫

Ω
g
yk

N,M

M (x;µ) v

= m(yk−1
N,M (µ), v) + ∆t f(v) u(tk), ∀ v ∈W y

N , ∀ k ∈ K, (58)

with initial condition yN,M (µ, t0) = 0. We evaluate the output approxima-
tion from

skN,M (µ) = `(ykN,M (µ)), ∀ k ∈ K. (59)

We note that the need to incorporate the empirical interpolation method
into the reduced basis approximation only exists for high-order polynomial
or non-polynomial nonlinearities [14]. If g is a low-order (or at most quadrat-
ically) polynomial nonlinearity in yk(µ), we can expand the nonlinear terms
into their power series and develop an efficient, i.e., online N -independent,
offline-online computational decomposition using the standard Galerkin pro-
cedure [40, 41].

4.2.2 Computational procedure

In this section we develop the offline-online computational decomposition to
recover online N -independence even in the nonlinear case. We first express
ykN,M (µ) as

ykN,M (µ) =
N∑
n=1

ykN,Mn(µ) ζn, (60)

and choose as test functions v = ζj , 1 ≤ j ≤ N , in (58).

It then follows from the affine representation of g
yk

N,M

M that yk
N,M

(µ) =

[ykN,M 1(µ) ykN,M 2(µ) . . . ykN,M N (µ)]T ∈ RN , 1 ≤ k ≤ K, satisfies

(MN + ∆t AN ) yk
N,M

(µ) + ∆t CN,M ϕkM (µ) = MN yk−1
N,M

(µ) + ∆t BN u(tk),
(61)

with initial condition yN,M n(t0;µ) = 0, 1 ≤ n ≤ N . Here, the coefficients
ϕkM (µ) = [ϕkM 1(µ) ϕkM 2(µ) . . . ϕkM M (µ)]T ∈ RM are determined from (57)
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with wk = ykN,M ; MN ∈ RN×N , AN ∈ RN×N , and CN,M ∈ RN×M , are
parameter-independent matrices with entries MN i,j = m(ζi, ζj), 1 ≤ i, j ≤
N , AN i,j = a(ζi, ζj), 1 ≤ i, j ≤ N , and CN,Mi,j =

∫
Ω ζi qj , 1 ≤ i ≤ N, 1 ≤

j ≤ M , respectively; and FN ∈ RN is a parameter independent vector with
entries FN i = f(ζi), 1 ≤ i ≤ N .

We can now substitute ϕkM m(µ) from (57) into (61) to obtain the non-
linear algebraic system

(MN + ∆t AN ) yk
N,M

(µ) + ∆t DN,M g(ZN,M yk
N,M

(µ);xM ;µ)

= MN yk−1
N,M

(µ) + ∆t BN u(tk), ∀ k ∈ K, (62)

where DN,M = CN,M (BM )−1 ∈ RN×M , ZN,M ∈ RM×N is a parameter-
independent matrix with entries ZN,Mi,j = ζj(xi), 1 ≤ i ≤ M, 1 ≤ j ≤ N ,
and xM = [xi . . . xM ]T ∈ RM is the set of interpolation points. We now solve
for yk

N,M
(µ) at each timestep using a Newton iterative scheme: given the

solution for the previous timestep, yk−1
N,M

(µ), and a current iterate ȳk
N,M

(µ),
we find an increment δy

N,M
such that

(
MN + ∆t AN + ∆tĒN

)
δy
N,M

= MN yk−1
N,M

(µ) + ∆t BN (µ) u(tk)− (MN + ∆t AN ) ȳk
N,M

(µ)

−∆t DN,M g(ZN,M ȳk
N,M

(µ);xM ;µ), (63)

where ĒN ∈ RN×N must be calculated at every Newton iteration from

ĒNi,j =
M∑
m=1

DN,M
i,m g1

( N∑
n=1

ȳkN,Mn(µ)ζn(xm);xm;µ
)
ζj(xm), 1 ≤ i, j ≤ N,

(64)
where g1 is the partial derivative of g with respect to the first argument.
Finally, we evaluate the output estimate from

skN,M (µ) = LTN yk
N,M

(µ), ∀ k ∈ K, (65)

where LN ∈ RN is the output vector with entries LN i = `(ζi), 1 ≤ i ≤ N .
The offline-online decomposition is now clear. In the offline stage —

performed only once — we first construct the nested approximation spaces
W g
M and sets of interpolation points T gM , 1 ≤M ≤Mmax; we then solve for

the ζn, 1 ≤ n ≤ Nmax and compute and store the µ-independent quantities
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MN , AN , BM , DN,M , BN , and ZN,M . In the online stage — performed
many times, for each new parameter value µ — we solve (63) for yk

N,M
(µ)

and evaluate the output estimate skN,M (µ) from (65). The operation count
is dominated by the Newton update at each timestep: we first assemble
ĒN from (64) at cost O(MN2) — note that we perform the sum in the
parenthesis of (64) first before performing the outer sum — and then invert
the left hand side of (63) at cost O(N3). The operation count in the online
stage is thus O(MN2 + N3) per Newton iteration per timestep. We thus
recover N -independence in the online stage.

4.3 A posteriori error estimation

4.3.1 Preliminaries

We now turn to the development of our a posteriori error estimator; by
construction, the error estimator is rather similar to the nonaffine parabolic
case in Section 3. To begin, we recall that the bilinear form aL is assumed
to be parameter independent here; we can thus use the coercivity constant
αa and have no need for the lower bound α̂a(µ) required earlier. We next
introduce the dual norm of the residual

εkN,M (µ) ≡ sup
v∈X

Rk(v;µ)
‖v‖X

, ∀ k ∈ K, (66)

where

Rk(v;µ) ≡ f(v) u(tk)− 1
∆t

m(ykN,M (µ)− yk−1
N,M (µ), v)

− aL(ykN,M (µ), v)−
∫

Ω
g
yk

N,M

M (x;µ) v, ∀ v ∈ X, ∀ k ∈ K, (67)

is the residual associated to the nonlinear parabolic problem. We also require
the dual norm

ϑqM ≡ sup
v∈X

∫
Ω qM+1 v

‖v‖X
. (68)

and the error bound ε̂kM (µ) for the nonlinear function approximation given
by

ε̂kM (µ) ≡ |g(ykN,M (xM+1;µ);xM+1;µ)− g
yk

N,M

M (xM+1;µ)|. (69)

We note that, contrary to the nonaffine case, the error bound ε̂kM (µ) is now
also a function of (discrete) time. Finally, we define the “spatio-temporal”
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energy norm, 1 ≤ k ≤ K,

|||vk(µ)||| ≡

(
m(vk(µ), vk(µ)) +

k∑
k′=1

aL(vk
′
(µ), vk

′
(µ)) ∆t

) 1
2

, ∀ v ∈ X.

(70)

4.3.2 Error bound formulation

We obtain the following result for the error in the energy norm.

Proposition 4. Suppose that g(ykN,M (µ);x;µ) ∈ W g
M+1, 1 ≤ k ≤ K. The

error, ek(µ) ≡ yk(µ)− ykN,M (µ), is then bounded by

|||ek(µ)||| ≤ ∆y k
N,M (µ), ∀ µ ∈ D, ∀ k ∈ K, (71)

where the error bound ∆y k
N,M (µ) is defined as

∆y k
N,M (µ) ≡

(
2∆t
αa

k∑
k′=1

εk
′
N,M (µ)

2
+

2∆t
αa

ϑqM
2

k∑
k′=1

ε̂k
′
M (µ)

2

) 1
2

. (72)

Proof. We immediately derive from (50) and (67) that ek(µ) = yk(µ) −
ykN,M (µ), 1 ≤ k ≤ K, satisfies

m(ek(µ), v)+∆t aL(ek(µ), v)+∆t
∫

Ω

(
g(yk(µ);x;µ)− g(ykN,M (µ);x;µ)

)
v

= m(ek−1(µ), v)+∆tR(v;µ, tk)+∆t
∫

Ω

(
g
yk

N,M

M (x;µ)− g(ykN,M (µ);x;µ)
)
v,

∀ v ∈ X, (73)

where e(t0;µ) = 0 since y(t0;µ) = yN,M (t0;µ) = 0 by assumption. We now
choose v = ek(µ) in (73), immediately note from the monotonicity of g that∫

Ω

(
g(yk(µ);x;µ)− g(ykN,M (µ);x;µ)

)
ek(µ) ≥ 0; (74)

invoke (66) and the Cauchy-Schwarz inequality for the cross termm(ek−1(µ), ek(µ))
to obtain, 1 ≤ k ≤ K,

m(ek(µ), ek(µ)) + ∆t aL(ek(µ), ek(µ))

≤ m
1
2 (ek−1(µ), ek−1(µ))m

1
2 (ek(µ), ek(µ)) + ∆t εkN,M (µ) ‖ek(µ)‖X

+ ∆t
∫

Ω

(
g
yk

N,M

M (x;µ)− g(ykN,M (µ);x;µ)
)
ek(µ). (75)
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We will now apply (40) twice: first, choosing c = m
1
2 (ek(µ), ek(µ)), d =

m
1
2 (ek−1(µ), ek−1(µ)), and ρ = 1, we obtain

2 m
1
2 (ek(µ), ek(µ)) m

1
2 (ek−1(µ), ek−1(µ))

≤ m(ek−1(µ), ek−1(µ)) +m(ek(µ), ek(µ)); (76)

and second, choosing c = εkN,M (µ), d = ‖ek(µ)‖X , and ρ = (αa/2)
1
2 we have

2 εkN,M (µ) ‖ek(µ)‖X ≤
2
αa

εkN,M (µ)
2

+
αa
2
‖ek(µ)‖2X . (77)

We now note from our assumption g(ykN,M (µ);x;µ) ∈ W g
M+1 and Proposi-

tion 1 that

g
yk

N,M

M (x;µ)− g(ykN,M (µ);x;µ) = ε̂kM (µ) qM+1(x); (78)

it thus follows that

2
∫

Ω

(
g
yk

N,M

M (x;µ)− g(ykN,M (µ);x;µ)
)
ek(µ)

≤ 2 sup
v∈X


∫

Ω

(
g
yk

N,M

M (x;µ)− g(ykN,M (µ);x;µ)
)
v

‖v‖X

 ‖ek(µ)‖X

≤ 2 ε̂kM (µ) sup
v∈X

{∫
Ω qM+1v

‖v‖X

}
‖ek(µ)‖X

≤ 2 ε̂kM (µ) ϑqM ‖e
k(µ)‖X

≤ 2
αa

ε̂kM (µ)
2
ϑqM

2 +
αa
2
‖ek(µ)‖2X , (79)

where we applied (40) with c = ε̂kM (µ) ϑqM , d = ‖ek(µ)‖X , and ρ = (αa/2)
1
2

in the last step. Finally, from (75), (76), (77), (79), invoking (53) and
summing from 1 to k we obtain the bound

m(ek(µ), ek(µ)) + ∆t
k∑

k′=1

a(ek
′
(µ), ek

′
(µ))

≤ 2 ∆t
αa

k∑
k′=1

(
εk
′
N,M (µ)

2
+ ϑqM

2
ε̂k
′
M (µ)

2
)

(80)

which is the result stated in Proposition 4.
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We can now define the (simple) output bound

Proposition 5. Suppose that g(ykN,M (µ);x;µ) ∈ W g
M+1, 1 ≤ k ≤ K. The

error in the output is then bounded by

|sk(µ)− skN,M (µ)| ≤ ∆s k
N,M (µ), ∀ k ∈ K, ∀ µ ∈ D, (81)

where the output bound is defined as

∆s k
N,M (µ) ≡ sup

v∈X

`(v)
‖v‖Y

∆y k
N,M (µ), ∀ k ∈ K, ∀ µ ∈ D. (82)

Proof. The result directly follows from (49), (59), and the fact that the error
satisfies ‖ek(µ))‖Y ≤ ∆y k

N,M (µ), 1 ≤ k ≤ K, for all µ ∈ D.

We note from (72) that our error bound comprises two terms: the con-
tribution from the linear (affine) terms and from the nonlinear (nonaffine)
function approximation. Similar to the linear nonaffine case, we may thus
choose N and M such that both contributions balance, i.e., neither N nor
M should be chosen unnecessarily high. However, our choice should also
take the rigor of the error bound into account.

The rigor is related to the condition that g(ykN,M (µ);x;µ) ∈W g
M+1, 1 ≤

k ≤ K, which is very unlikely to hold in the nonlinear case: first, because
W g
M is constructed based on g(yk(µ);x;µ) and not g(ykN,M (µ);x;µ), and

second, particularly because of the time-dependence of g(ykN,M (µ);x;µ). A
judicious choice of N and M can control the trade-off between safety and
efficiency — we opt for safety by choosing N and M such that the rigorous
part εkN,M (µ) dominates over the non-rigorous part, ϑqM ε̂

k
M (µ); we opt for

efficiency by choosing N and M such that both terms balance.

4.3.3 Computational procedure

The offline-online decomposition for the calculation of ∆y k
N,M (µ) (and ∆s k

N,M (µ))
follows directly from the corresponding procedure for nonaffine problems
discussed in Sections 3.3.3. We will therefore omit the details and only sum-
marize the computational costs involved in the online stage. In the online
stage — given a new parameter value µ and associated reduced basis solu-
tion yk

N,M
(µ), 1 ≤ k ≤ K — the computational cost to evaluate ∆y k

N,M (µ)

(and hence ∆s k
N,M (µ)) is O(K(N +M)2) and thus independent of N .
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4.4 Sampling Procedure

We first consider the construction of W g
M and T gM . We present an extension

of the construction procedure described in Section 2 for nonaffine (station-
ary) functions to nonaffine time-varying functions. Although we directly
consider the case where the function is time-varying through an implicit
dependence on time via the field variable yk(µ), our method can also be
applied to functions with an explicit dependence on time.

We recall that our previous approach of constructing the collateral re-
duced basis space W g

M in the nonlinear case is computationally very expen-
sive [14]. The reason is twofold: first, we need to calculate and store the
“truth” solution yk(µ) at all times tk ∈ I on the training sample Ξgtrain in
parameter space. And second, construction of W g

M requires the solution of
a linear program2 for all parameter-time pairs, (tk;µ) ∈ Ξ̃gtrain ≡ I × Ξgtrain,
since the function g is time-varying, as is inherently the case in the nonlinear
context.

Our new approach combines the procedure described in Section 2.1
for nonaffine stationary functions with the POD/Greedy algorithm of Sec-
tion 3.4. Although we cannot avoid the first problem related to our previous
construction, i.e., calculation and storage of yk(µ) on Ξgtrain, we do to a great
extent alleviate the second problem. Furthermore, we believe that our new
approach is more coherent — as compared to the construction of W y

N —
and more robust. To this end, we recall the definition of the interpolation
error (8) generalized to time-varying functions

εkM (µ) ≡ ‖g(yk(µ);x;µ)− gy
k

M (x;µ)‖L∞(Ω). (83)

where gy
k

M (x;µ) =
∑M

m=1 ϕ
k
M m(µ)qm(x), and ϕkM (µ) is calculated from (57)

for wk = yk(µ). We also recall the function PODY ({yk(µ), 1 ≤ k ≤ K}, R)
which returns the R largest POD modes, {χi, 1 ≤ i ≤ R}, now with respect
to the Y inner product. Again, we are only interested in the largest POD
mode which we obtain using the method of snapshots [39].

The POD/Greedy-EIM procedure proceeds by induction: we first choose
a µ∗ ∈ D and set Sg0 = {0}, W g

0 = {0}, M = 0. Then, for 1 ≤ M ≤ Mmax,
we first compute the error ekM,EIM(µ) = g(yk(µ∗);x;µ∗) − gy

k

M (x;µ∗), 1 ≤
k ≤ K, and we expand the parameter sample SgM ← SgM−1 ∪ {µ∗} and

2The construction of W g
M in [14] is based on a greedy selection process: we choose

the next parameter value µ∗ — and hence generating function ξ ≡ g(yk(µ∗);x;µ) — as
the one that maximizes the best approximation error in the L∞(Ω)-norm over the train
sample.
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the collateral reduced basis space W g
M ← W g

M−1 ∪ PODY ({ekM,EIM(µ∗), 1 ≤
k ≤ K}, 1), and set M ← M + 1. We then generate the next interpolation
point xM , basis function qM , and update BM

i j = qj(xi), 1 ≤ i, j ≤ M
according to the procedure described in Section 2.1. Finally, we choose the
next parameter value from µ∗ ← arg maxµ∈Ξtrain

∑K
k=1 ε

k
M (µ), where εkM (µ)

is defined in (83).
Given W g

M , T gM , and BM , we can then construct W y
N following the

POD/Greedy procedure outlined in Section 3.4. We shall again use the

“best” possible approximation g
yk

N,M

M (x;µ) of g(ykN,M ;x;µ) so as to mini-
mize the error induced by the empirical interpolation procedure, i.e., we set
M = Mmax.

Finally, we note that we cannot appeal to the LTI property anymore
to generate W y

N (and W g
M ), i.e., a reduced basis space trained on an im-

pulse response will, in general, not yield good approximation properties for
arbitrary control inputs u(tk). However, model reduction techniques for non-
linear control systems face the same problem — u(tk) is usually not known
in advance in the control context — and methods to train the reduced-order
model on a “generalized” impulse input have been proposed for nonlinear
systems [21]. We can directly employ these approaches to also generate the
reduced basis approximation. Furthermore, our a posteriori error bound
serves as a measure of fidelity especially in the online stage and we can thus
detect an unacceptable deviation from the truth approximation in real-time.

4.5 Numerical Results

We now present numerical results for the model problem introduced in Sec-
tion 4.1.2. We choose for Ξtrain ⊂ D a deterministic grid of 12×12 parameter
points over D and we take µg1 = (10, 10). Next, we pursue the POD/Greedy-
EIM procedure described in Section 4.4 to construct SgM , W g

M , T gM , and BM ,
1 ≤ M ≤ Mmax, for Mmax = 191. We plot the parameter sample SgM in
Figure 4(a). We observe that the parameter sample is spread throughout
D but strongly biased towards larger values of µ2 corresponding to a more
dominant nonlinearity.

We next turn to the reduced basis approximation and construct the
reduced basis space W y

N according to the POD/Greedy sampling procedure
in Section 3.4; we sample on Ξtrain with M = Mmax and obtain Nmax = 55
for εtol,min = 1 E – 6. We plot the parameter sample SyN in Figure 4(b). We
observe again that the parameter sample is biased towards larger values of
µ2 and that most samples are located on the “boundaries” of the parameter
domain D.
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Figure 3: Solution yk(µ) at tk = 25∆t for (a) µ = (−1,−1) and (b) µ =
(−0.01,−0.01).
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Figure 4: Parameter samples (a) SgM and (b) SyN . The diameter of the circles
scale with the frequency of the corresponding parameter in the sample.
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Figure 5: Convergence of the reduced basis approximation for the nonlinear
model problem: (a) εyN,M,max,rel and (b) ∆y

N,M,max,rel .

In Figure 5(a) and (b) we plot, as a function of N and M , the maximum
relative error in the energy norm εyN,M,max,rel and maximum relative error
bound ∆y

N,M,max,rel over a test sample Ξtest of size 225, respectively (see
Section 3.5 for the definition of these quantities). We observe very rapid
convergence of the reduced basis approximation. Furthermore, the errors
behave similar as in the nonaffine example: the error levels off at smaller
and smaller values as we increase M ; increasing M effectively brings the
error curves down. We also observe that increasing M above 80 has no
(visible) effect on the convergence of the error, whereas the error bound still
shows a considerable decrease up to M = 160. In order to obtain sharp
error bounds we thus have to choose M conservatively.

In Table 4 we present, as a function ofN andM , εyN,M,max,rel, ∆y
N,M,max,rel,

and η̄yN,M ; and for the output εsN,M,max,rel, ∆s
N,M,max,rel, η̄

s (see Section 3.5
for the definition of these quantities). Note that the choice of (N,M) is based
on the convergence of the error bound in Figure 5(b). We observe very rapid
convergence of the reduced basis (output) approximation and (output) error
bound. The effectivities, η̄yN,M , are greater but close to 1 throughout, we
thus obtain sharp upper bounds for the true error. Due to our conserva-
tive choice of M the error contribution due to the function approximation
is much smaller than the reduced-basis contribution; we therefore do not
obtain effectivities smaller than 1 here. The output effectivities are con-
siderably larger but still acceptable thanks to the fast convergence of the
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reduced-basis approximation – for only N = 20 and M = 100 the relative
output error bound is less than 1%.

In Table 5 we present, as a function of N and M , the online computa-
tional times to calculate skN,M (µ) and ∆s k

N,M (µ) for 1 ≤ k ≤ K. The values
are normalized with respect to the computational time for the direct cal-
culation of the truth approximation output sk(µ) = `(yk(µ)), 1 ≤ k ≤ K.
The computational savings are considerable despite the output effectivities
of O(100): for an accuracy of less than 1% in the output bound (N = 20,
M = 100) the reduction in online time is approximately a factor of 3600.

Table 4: Convergence rate and effectivities as a function of N and M for
the nonlinear problem.

N M εyN,M,max,rel ∆y
N,M,max,rel η̄yN,M εsN,M,max,rel ∆s

N,M,max,rel η̄sN,M
1 40 3.83 E – 01 1.15 E + 00 2.44 9.99 E – 01 2.49 E + 01 14.1
5 60 1.32 E – 02 4.59 E – 02 2.43 5.35 E – 03 1.00 E + 00 130
10 80 9.90 E – 04 3.41 E – 03 2.10 2.57 E – 04 7.42 E – 02 146
20 100 9.40 E – 05 4.16 E – 04 2.77 1.43 E – 05 9.06 E – 03 436
30 120 1.30 E – 05 7.34 E – 05 2.48 5.34 E – 06 1.60 E – 03 307
40 140 3.36 E – 06 8.75 E – 06 1.64 2.85 E – 06 1.90 E – 04 205

Table 5: Online computational times (normalized with respect to the time
to solve for sk(µ), 1 ≤ k ≤ K) for the nonlinear problem.

N M sN,M (µ, tk), ∀k ∈ K ∆s
N,M (µ, tk), ∀k ∈ K s(µ, tk), ∀k ∈ K

1 40 5.42 E – 05 9.29 E – 05 1
5 60 9.67 E – 05 8.58 E – 05 1
10 80 1.19 E – 04 9.37 E – 05 1
20 100 1.71 E – 04 1.05 E – 04 1
30 120 2.42 E – 04 1.18 E – 04 1
40 140 3.15 E – 04 1.35 E – 04 1

5 Conclusions

We have presented a posteriori error bounds for reduced basis approxima-
tions of nonaffine and certain classes of nonlinear parabolic partial differ-

34



ential equations. We employed the Empirical Interpolation Method to con-
struct affine coefficient-function approximations of the nonaffine and nonlin-
ear parametrized functions, thus permitting an efficient offline-online com-
putational procedure for the calculation of the reduced basis approxima-
tion and the associated error bounds. The error bounds take both error
contributions — the error introduced by the reduced basis approximation
and the error induced by the coefficient function interpolation — explicitly
into account and are rigorous upper bounds under certain conditions on
the function approximation. The POD/Greedy sampling procedure is com-
monly used to generate the reduced basis space for time-dependent prob-
lems. Here, we extended these ideas to the Empirical Interpolation Method
and introduced a new sampling approach to construct the collateral reduced
basis space for time-varying functions. The new sampling approach is more
efficient than our previous approach and thus also allows to consider higher
parameter dimensions.

We presented numerical results that showed the very fast convergence
of the reduced basis approximations and associated error bounds. We note
that there exists an optimal, i.e., most online-efficient, choice of N vs. M
where neither error contribution limits the convergence of the reduced ba-
sis approximation. Although our results showed that we can obtain upper
bounds for the error with a judicious choice of N and M , our error bounds
are, unfortunately, provably rigorous only under a very restrictive condition
on the function interpolation. In the nonaffine case we can easily lift this
restriction by replacing our current bound for the interpolation error with
the new rigorous bound proposed in a recent note[11]; in the nonlinear case,
however, the new bound is not applicable and the restriction remains. This
is the topic of current research.

Our results also showed that the computational savings to calculate the
output estimate and bound in the online stage compared to direct calcula-
tion of the truth output are considerable — especially in the nonlinear case
where we obtained a speed-up of O(103). We note that the offline com-
putations in the nonlinear case are also more extensive, primarily due to
the precomputation and storage of the truth solutions required to generate
W g
M . However, if a high premium on real-time performance or a many-query

context can justify or outweigh the offline cost, the reduced basis approach
presented here can be very gainfully employed.
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A Computational procedure: a posteriori error bounds

We summarize the development of offline-online computational procedures
for the calculation of ∆y k

N,M (µ). We first note from standard duality argu-
ments that

εkN,M (µ) ≡ sup
v∈X

Rk(v;µ)
‖v‖X

= ‖êk(µ)‖X , (84)

where êk(µ) ∈ X is given by

(êk(µ), v)X = R(v;µ, tk), ∀ v ∈ X; (85)

(85) is effectively a Poisson problem for each tk ∈ I. From (32), (10), and
(6) it thus follows that êk(µ) satisfies

(êk(µ), v)X =
M∑
m−1

ϕMm(µ) f(v; qm)u(tk)

−
N∑
n=1

{
1

∆t

(
ykN,M n(µ)− yk−1

N,M n(µ)
)
m(ζn, v) + ykN,M n(µ) a0(ζn, v)

+
M∑
m=1

ϕMm(µ) ykN,M n(µ) a1(ζn, v, qm)

}
, ∀ v ∈ X. (86)

It is clear from linear superposition that we can express êk(µ) as

êk(µ) =
M∑
q=m

ϕMm(µ) y(tk)Fm

−
N∑
n=1

{
1

∆t

(
ykN,M n(µ)− yk−1

N,M n(µ)
)
Mn

+

(
A0
n +

M∑
m=1

ϕMm(µ)A1
m,n

)
ykN,M n(µ)

}
, (87)
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where we calculate Fm ∈ X, A0
n ∈ X, A1

m,n ∈ X, and Mn ∈ X from

(Fm, v)X = f(v; qm), ∀ v ∈ X, 1 ≤ m ≤Mmax,

(A0
n, v)X = a0(ζn, v), ∀ v ∈ X, 1 ≤ n ≤ Nmax,

(A1
m,n, v)X = a1(ζn, v, qm), ∀ v ∈ X, 1 ≤ n ≤ Nmax, 1 ≤ m ≤Mmax,

(Mn, v)X = m(ζn, v), ∀ v ∈ X, 1 ≤ n ≤ Nmax;
(88)

note B, A0,1, and M are parameter independent. From (84) and (88) it
follows that

εkN,M (µ)
2

=
M∑

m,m′=1

ϕMm(µ)ϕm′(µ)u(tk)u(tk) Λffmm′

+
M∑
m=1

N∑
n=1

ϕMm(µ)u(tk)

((
Λa0f
mn +

M∑
m′=1

ϕm′(µ) Λa1f
mnm′

)
ykN,M n(µ)

+
(
ykN,M n(µ)− yk−1

N,M n(µ)
)

Λmfmn

)

+
N∑

n,n′=1

{
ykN,M n(µ) ykN,M n′(µ)

(
Λa0a0
nn′ +

M∑
m=1

ϕMm(µ)Λa0a1
nn′m

)

+ykN,M n(µ)
(
ykN,M n′(µ)− yk−1

N,M n′(µ)
)(

Λa0m
nn′ +

M∑
m=1

ϕMm(µ)Λa1m
nn′m

)
+
(
ykN,M n(µ)− yk−1

N,M n(µ)
)(

ykN,M n′(µ)− yk−1
N,M n′(µ)

)
Λmmnn′

+
M∑

m,m′=1

ϕMm(µ)ϕm′(µ) ykN,M n(µ) ykN,M n′(µ) Λa1a1
nn′mm′

}
, (89)
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where the parameter-independent quantities Λ are defined as

Λffmm′ = (Fm,Fm′)X , 1 ≤ m,m′ ≤Mmax;

Λa0f
mn = −2 (Fm,A0

n)X , 1 ≤ m ≤Mmax, 1 ≤ n ≤ Nmax;

Λa1f
mnm′ = −2 (Fm,A1

m′,n)X , 1 ≤ m,m′ ≤Mmax, 1 ≤ n ≤ Nmax;

Λmfmn = − 2
∆t

(Fm,Mn)X , 1 ≤ m ≤Mmax, 1 ≤ n ≤ Nmax;

Λa0a0
nn′ = (A0

n,A0
n′)X , 1 ≤ n, n′ ≤ Nmax;

Λa0a1
nn′m = 2(A0

n,A1
m,n′)X , 1 ≤ m ≤Mmax, 1 ≤ n, n′ ≤ Nmax;

Λa1a1
nn′mm′ = (A1

m,n,A1
m′,n′)X , 1 ≤ m,m′ ≤Mmax, 1 ≤ n, n′ ≤ Nmax;

Λa0m
nn′ =

2
∆t

(A0
n,Mn′)X , 1 ≤ n, n′ ≤ Nmax;

Λa1m
nn′m =

2
∆t

(A1
m,n,Mn′)X , 1 ≤ m ≤Mmax, 1 ≤ n, n′ ≤ Nmax;

Λmmnn′ =
1

∆t2
(Mn,Mn′)X , 1 ≤ n, n′ ≤ Nmax.

(90)
The evaluation of Φna k

M (µ) is very similar; to this end, we first calculate
FM+1 ∈ X and A1

M+1,n ∈ X from

(FM+1, v)X = f(v; qM+1), ∀ v ∈ X,
(A1

M+1,n, v)X = a1(ζn, v; qM+1), ∀ v ∈ X, 1 ≤ n ≤ Nmax;
(91)

It then follows from (33) and standard duality arguments that

Φna k
M (µ)

2
= y(tk)

2
ΛffM+1M+1

+
N∑
n=1

ykN,M n(µ)

{
y(tk) Λa1f

nM+1M+1 +
N∑

n′=1

ykN,M n′(µ) Λa1a1
nn′M+1M+1

}
where the parameter-independent quantities Λ are defined as

ΛffM+1M+1 = (FM+1,FM+1)X ;

Λa1f
nM+1M+1 = −2 (FM+1,A1

M+1,n)X , 1 ≤ n ≤ Nmax;

Λa1a1
nn′M+1M+1 = (A1

M+1,n,A1
M+1,n′)X , 1 ≤ n, n′ ≤ Nmax.

(92)

The offline-online decomposition is now clear. In the offline stage we first
compute the quantities F , A0,1, andM from (88) and (91) and then evalu-
ate the Λ from (90) and (92); this requires (to leading order) O(MmaxNmax)
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expensive “truth” finite element solutions, and O(M2
maxN

2
max)N -inner prod-

ucts. In the online stage — given a new parameter value µ and associated
reduced basis solution yk

N,M
(µ), ∀ k ∈ K — the computational cost to eval-

uate ∆y k
N,M (µ) and ∆s k

N,M (µ), ∀ k ∈ K, is O(KM2N2). Thus, all online
calculations needed are independent of N .
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