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Abstract

This paper is concerned with scattered data approximation in high dimensions:
Given a data set X ⊂ Rd of N data points xi along with values yi ∈ Rd′ , i = 1, . . . , N ,
and viewing the yi as values yi = f(xi) of some unknown function f , we wish to return
for any query point x ∈ Rd an approximation f̃(x) to y = f(x). Here the spatial
dimension d should be thought of as large. We wish to emphasize that we do not
seek a representation of f̃ in terms of a fixed set of trial functions but define f̃ through
recovery schemes which, in the first place, are designed to be fast and to deal efficiently
with large data sets. For this purpose we propose new methods based on what we call
sparse occupancy trees and piecewise linear schemes based on simplex subdivisions.

AMS Subject Classification: 41A63, 62G08, 65D05

Key Words: high-dimensional approximation, non-parametric regression, non-linear
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1 Introduction

Methods for high-dimensional function approximation and statistical learning are com-
monly categorized into two classes. For an overview we refer to [HTF09]. On the one
hand we have parametric methods which try to fit the function globally, typically by
prescribing the structure of the approximant by defining a set of trial functions and
learning the coefficients in this approach by optimizing some error norm. Here one
can think, for example, of generalized additive models, projection pursuit or artificial
neural networks. Although these methods have been applied successfully in a large
number of applications they also have some drawbacks. First, the class of functions
that are approximated well by such techniques is typically small and the right model
has to be determined a priori. Second the training stage usually involves the solution
of a non-linear optimization problem which might be a demanding and time-consuming
process effectively limiting the size of the data that can be handled. Furthermore these
approximations cannot easily be adjusted to new data, for example in the case of in-
cremental online learning or applications where the domain in which the function is to
be evaluated changes in time.
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On the other side of the spectrum there are non-parametric methods which try
to fit functions locally, usually by partitioning the input space and then using simple
local models like piecewise constant approximations. The idea of being content with
piecewise constants is supported by classical concentration of measure results according
to which a well-behaved function (e.g. Lipschitz-continuous) in very high dimensions
deviates from its mean or median by much only on sets of small measure.

A typical example for such a recovery strategy is to determine for any given query
point its k nearest neighbors in the given data site and to use their average as the
approximate function value. At first glance this kind of memory-based learning does not
seem to require any training process except of reading and storing the incoming data. In
practice, however, it is necessary to design a data structure that provides a fast solution
to the question which are the nearest neighbors of a query point x. Unfortunately, the
exact solution requires either a preprocessing time which is exponential in d or a single
query time which is linear in N , the latter characterizing the brute force algorithm
where the distance ‖xi−x‖ is computed for each training point. Actually, for function
recovery purposes one would also be satisfied with an approximate solution which can
be achieved much more efficiently. Here we refer to [Ind04, LMGY05] which give some
of the basic ideas about the algorithms which could be useful in this context. However,
none of the currently available methods seems to perform very well if d goes into the
hundreds and N into the millions. An application background from climatology in
which problems of this size arise will be described in a subsequent report [BBD+on].

Therefore, in situations where a fast return to a query of a function evaluation
matters, such as when approximate function values are required in discretizations of
PDEs, say, alternative strategies may be preferable. In view of these considerations we
develop and investigate in this paper some methods which in the first place are designed
to be fast and to deal efficiently with large data sets and to provide fast algorithms
for evaluation. The motivation behind our approach is to explore the potential of
multiresolution ideas for high spatial dimension.

In the last two decades multilevel methods have proved to be essential for ap-
proximating functions with inhomogeneous local structural properties and have been
successfully applied in different forms in several areas ranging from image processing
to solutions of partial differential equations. A central ingredient of multiresolution
analysis is the tree which describes the relations between levels of resolution. In a
standard setting the initial domain Ω is related to a cube which is the root of the tree.
Then, using consecutive dyadic partitions one can define different levels of resolution
and build the corresponding tree structure level by level. To this end, as a key tool
for data organization we propose the notion of sparse occupancy trees. The underlying
concepts, perhaps with a different terminology, have been certainly used in somewhat
different contexts such as nearest neighbor search. To our knowledge its use in recov-
ery procedures seems to be new. Instead of using the full tree T (called the master
tree), we consider only a subtree T (X ) whose nodes correspond to the cubes that are
occupied, i.e. contain at least one element from the set X . A special indexing and
ordering of these cubes allows us to store of all the information about the tree using
only O(LdN) bits where L is a chosen upper limit for the number of levels in the tree.
The sparse occupancy tree can then be used as a tool for constructing approximations
to the function represented by the data.

We want to emphasize that we are not considering the sparse occupancy trees and
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the problem of nearest neighbors as separate issues. We want to blend them in such
a way that the resulting solution will give efficient and reliable recovery schemes for
a for a variety of problems of the above type. In this context we have to mention
that one can hardly expect a good performance of the nearest neighbor scheme or our
schemes if d is very large and the x-data is distributed uniformly in Rd. In this case
the average distance between two data points would be large even for huge data sets,
and any method based on localization strategies would be doomed to fail. However,
in practical problems the input variables are often strongly correlated and the true
intrinsic dimensionality of the data is much lower than the formal dimension of the
problem. Multiresolution trees seem in particular suited to capture such coherent
structures and, hence, to mitigate the curse of dimensionality.

In Section 2 we introduce a most simple algorithm providing a piecewise constant
approximation. For a given point x ∈ X it finds the finest cube K(x) from T (X ) to
which it belongs. Then the approximated value at x could be set to be the mean value
of the points from K(x) ∩ X . The time for a single query for the node of the sparse
tree that corresponds to any point from the domain Ω will be shown to be O(logN).
A detailed study of this case and numerical tests provide useful insight concerning the
following issue: the quality of this approximation depends significantly on the size of
the cube K(x) which could be large even if there are points from X close to x. The
latter is subject to the way the partition is set. This is the case when the geodesic
distance is much smaller than the distance in the tree. Of course, ignoring the function
values in a neighboring cube which as a node in the tree is far from the cube holding
the query point x, is likely to lead to highly inappropriate assignments of approximate
function values. This observation will guide several attempts to improve upon the
above described basic strategy. Since the evaluation process is very fast, a first idea
is to generate several partitions of the same data by randomly shifting the partition
boundaries and to use the weighted averages of the corresponding approximations. It
will be shown that such an approach indeed has a significant effect.

In Section 3 we extend this technology to construct piecewise linear approxima-
tions on simplex subdivisions. Working with simplices offers a number of advantages
which is a common experience in numerical grid generation even in lower dimensions.
Therefore it is a little bit surprising that one hardly finds references discussing simplex
partitioning methods in high dimensions. The elementary observation behind this is
that a d-dimensional simplex has only d + 1 vertices compared to the 2d vertices of
a hyper-cube. Prescribing values for the vertices one can define piecewise linear ap-
proximations as demonstrated in Section 3. The values at the vertices are defined as
weighted averages of the points in the surrounding simplices. The value of the query
point is found by interpolating vertex values of the simplex the query falls into. Hence,
the query response becomes an average of all training points in the neighborhood of
the query coordinates, even including the points to which the tree distance is large. In
fact, this was the main motivation for the development of the vertex scheme: to over-
come the deficiencies of piecewise constant partitioning methods while retaining the
efficiency of tree based algorithms. Indeed, in Section 4 we will show by numerical ex-
periments that this scheme gives an accuracy like the nearest neighbor approximation,
but much faster if the space dimension becomes large.
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2 Sparse Occupancy Trees

In this section we describe the general construction of sparse occupancy trees and
propose efficient data structures for their practical realization. Then we will use this
construction to design a very fast recovery scheme based on cube subdivision.

2.1 Basic Form and Piecewise Constant Approximation

Let us assume that the data set X is contained in a bounded domain Ω ⊂ Rd. Suppose,
that we have a a hierarchy of nested partitions of Ω:

{Ω} = P0 ≺ P1 ≺ . . . ≺ Pj ≺ . . . ,

which means that for all l ≥ 0 the sets Pl = {Ωl,k, k ∈ Il} are partitions of Ω and each
cell Ωl,k ∈ Pl is the disjunct union of cells on the next finer level l + 1 :

Ωl,k =
⋃

r∈Il,k

Ωl+1,r .

Typically, the partitions consist of cubes or simplices and the refinement sets Il,k have
a fixed cardinality.

The hierarchy of partitions induces an infinite master tree T ∗, whose root is Ω and
whose other nodes are the cells Ωl,k. Each node Ωl,k of this tree is connected by an
edge to its children Ωl+1,r where r ∈ Il,k.

In practice we only consider finite subtrees of some fixed depth L, i.e., l ≤ L. L can
be determined according to several possible criteria, such as spatial resolution reflected
by diam ΩL,k, or by separation, which means that each leaf ΩL,k contains at most one
data point from X.

Given x ∈ Ω we denote by T (x) the branchless subtree of T ∗, which only contains
the cells containing x:

T (x) = {Ωl,k ∈ T ∗ : x ∈ Ωl,k} .

The sparse occupancy tree T (X) is the tree we get from the master tree by cutting
all cells which do not contain a training point; equivalently, it is the largest subtree of
T ∗ such that all its nodes contain an x ∈ X:

T (X) :=
⋃
{T (xi) : xi ∈ X} . (1)

A piecewise constant approximation can now be defined as follows: given a training
set X = {x1, . . . , xN} and a test point x we average the values in the leaf of the
branchless tree T (X) ∩ T (x):

f̃(x) = A({yi|xi ∈ L(T (X) ∩ T (x))}). (2)

where we use the notation
A(Y ) =

1
card(Y )

∑
y∈Y

y (3)

to denote the average of a finite subset Y ⊂ Rd′ .
In other words, we identify the maximum level cell in the sparse occupancy tree that

contains the test point and then average the values of the training points contained in
this cell.
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Remark 1. Note that the scheme is interpolating (i.e., if a query coincides with a
training point the algorithm returns the value of this training point), if each leaf of the
tree contains only training sample.

2.2 Occupancy Trees as Sorted Lists

It is possible to write computer codes, that follow word-by-word the above construction,
i.e., one can implement a structure with node elements and pointers to their children to
represent the occupancy tree. However, especially with large data sets, this typically
does not result in the most efficient code. Instead, we represent the occupancy tree by
a sorted list of strings, as described in the following.

2.2.1 Data Structures

We define a string b to be a finite sequence of integers: b = (b1, b2, . . . , bn), where n
is the length of the key. The elements bi of a string will also be called characters. We
denote with (b, c) = (b1, . . . , bn, c) the string that results from appending an additional
number to the sequence. If j < n we write b|j for the substring that consists of the
first j elements of b: b|j = (b1, . . . , bj).

Our first aim is to construct an invertible map of the nodes in the master tree to
the set of strings. We can do this recursively.

First we map the root node Ω to the empty string ∅. For each node Ωl,k we prescribe
an enumeration of its children Ωl+1,k0 , . . . ,Ωl+1,kr−1 where r = r(l, k) is the cardinality
of Il,k. Then we assign for i = 0, . . . , r − 1 the strings b(Ωl+1,ki

) = (b(Ωl,k), i) to the
children of Ωl,k.

Clearly, a cell at level l is mapped to a string of length l and the mapping of all
cells in the master tree into the set of strings of length l is injektive. Therefore, given
a string b in the range of T ∗, we will use the notation Ω(b) to denote the cell that is
mapped to the string b.

Hence, we can make the following simple observations: if b has length n and j < n
then Ω(b) ⊂ Ω(b|j). In particular, if two strings b1,b2 of length n > j have their first
j bits to be identical, but b1j+1 6= b2j+1 then Ω(b1|j) = Ω(b2|j) is the finest cell that
contains both Ω(b1) and Ω(b2).

Finally, if x ∈ Ω and a maximum level L of the master tree is given, we denote
with b(x) the string that is assigned to the the finest level cell ΩLk which contains x:
x ∈ Ω(b(x)) ∈ L(T ∗).

2.2.2 Algorithm

The approximation defined by equation (2) can now be realized by the following algo-
rithm that consists of a training stage and an evaluation stage. Again, we assume that
the maximum level of the master tree L is prescribed. The training stage consists of
the following steps:

1. For every training point xi compute the string b(xi).

2. Sort the b(xi) lexicographically. Note that the lexicographical ordering of the
nodes induces a new ordering of the points in X. Without loss of generality we
will assume in what follows that the points xi were already ordered in the same
way. In the implementation one has to store the resulting permutation, of course.
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3. For all n = 1, . . . , N , compute the running sums

Y n =
n∑
i=1

yi = Y n−1 + yn ,

where for convenience we set Y 0 = (0, . . . , 0).

Remark 2. The computation of the strings requires the generation of O(LN) charac-
ters. The sorting operation can be done in O(dN log(N)) time, if we assume that two
strings can be compared in O(d) time. The storage is LN characters for the strings plus
N integers for the permutation vector and O(d′N) real values for the running sums.

Now let us assume that a query point x is given. Then, in the evaluation stage, we
have to find the finest cell in the occupancy tree that contains x and to average the
values of points in this cell. These points correspond to the strings which share the
maximum number of leading characters with b(x) among all strings in the sorted list.
These strings can be identified as follows:

1. Find the position n, such that b(xn) < b(x) ≤ b(xn+1), where < denotes the
relation induced by the lexicographical ordering.

2. Compare b(x) with b(xn) and b(xn+1). The maximum number of leading char-
acters is

j := max{j : b(x)|j = b(xn)|j ∨ b(x)|j = b(xn+1)|j} .

3. Find the position m such that b(xm−1) < b(x)|j ≤ b(xm). Obviously xm is the
first point that shares j characters with b(x), because b(x)|j is the smallest string
that starts with b(x)|j .

4. Generate the string b̃ = (b, R, . . . , R) by appending (L− j)-times the maximum
cardinality R of all setsMl,k. This is obviously the last possible string that begins
with b(x)|j . Then search the position p such that b(xp) ≤ b̃ < b(xp+1). Clearly,
xp is the last point in the list that has to be considered for averaging.

5. The value of the approximation can then be computed by evaluation of the run-
ning sums:

f̃(x) =
1

p−m+ 1
(Y p − Y m−1)

Remark 3. This evaluation algorithm essentially consists of three search algorithms,
which, in the worst case, can be performed in O(d log(N)) time each by binary subdivi-
sion. In practice the effort is usually smaller, because n, m, and p are close together in
the list, so that n can be used as good initial guess for the other two search operation.
The evaluation of the running sum requires only constant time. Hence, the operation
count for a single function evaluation is O(3d log(N)).

Remark 4. Especially if the data sets are very large, the method of running sums
might become a source of numerical inaccuracies caused by cancellation or overflow.
Remedies for this is to break the running sum into chunks or to use several buckets for
values of different sign or magnitude.

Remark 5. It is obvious that in a computer program the above algorithm can be imple-
mented in the most efficient manner, if the characters are bits (or sequences of bits);
in this case the strings can be represented by bitstreams. This is the case for all binary
trees and for the dyadic subdivision schemes which we will consider in this paper.
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2.3 Cube Subdivision

In this section we assume that Ω = [0, 1]d is the d-dimensional hypercube. For con-
venience we will omit the prefix “‘hyper” most of the time and speak of cubes and
cuboids, although in general d 6= 3. If the data is initially not contained in [0, 1]d, this
can usually be achieved by rescaling the training data X component-wise, in particular
when the training data is given beforehand instead of coming in incrementally.

2.3.1 Dyadic cube subdivision

In this variant each cube is immediately subdivided into its 2d subcubes, i.e. the
partitions are given by

Pl = {
d∏
i=1

[ki2−l, (ki + 1)2−l], ki ∈ {0, . . . , 2l − 1}} .

This means that each node in the master tree has 2d children.

2.3.2 Binary cube subdivision

The cubes are halved one dimension after another. I.e., the partitions are given by

Pl = {
d∏
i=1

[ki2−li , (ki + 1)2−li ], ki ∈ {0, . . . , 2li − 1}, li = b l + d− i
d

c}

Note that

• the cells of the partitions are generally not cubes but only rectangles,

• the ordering of the hyperplanes which are used for the subdivision is not deter-
mined adaptively but is prescribed (otherwise one would not have a well defined
master tree),

• in contrast to dyadic subdivision the underlying master tree is now a binary tree.

2.3.3 Bitstream Generation

Cube subdivision is particularly attractive because the generation of the strings b(x)
is very simple. Given an input x = (x1, . . . , xd) ∈ [0, 1]d we can write its components
in binary representation as

xi =
∞∑
k=1

bik2−k .

In the case xi 6= 1 is binary rational, we assume that the sequence {bik}k ends with
zeros, while for xi = 1 we have bik = 1, k ∈ N. In both, dyadic and binary subdivision,
the bitstream assigned to a point x is then

(b11, b21, . . . , bd1, b12, b22, . . . , bd2, . . . , b1L, b2L, . . . , bdL).

In binary cube subdivisions we consider each single bit as a character, whereas in dyadic
subdivision a character consists of d bits. I.e., the j-th character consists of the bits
b1j , . . . , bdj which in the sense of Section 2.2.1 can be considered as a binary represen-
tation of an integer in the range 0, . . . , 2d−1 corresponding to a certain enumeration of
the children of a cell in a dyadic subdivision scheme.
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2.4 Random Shifts

The above recovery schemes suffer from the following fact. For any two points x, x′ ∈ X
the tree distance distT (x, x′) is the shortest path in the tree T (X) connecting the nodes
ΩL,k(x) 3 x and ΩL,k′ 3 x′. Of course, whereas ||x−x′||may be arbitrarily small for any
fixed norm || · || on Rd, the tree distance distT (x, x′) could be 2L. The above recovery
scheme takes local averages of function values whose tree distance is small possibly
omitting values for arguments that are geometrically very close. In fact, an adversary
effect on the quality of the reconstruction is reflected by numerical experiments that
will be shown later below. There are several possible remedies. Since the recovery
scheme is very fast, the perhaps simplest one is to perform several different recoveries
with respect to randomly slightly shifted coordinate systems and then take the average
of the outputs.

In our implementation we scale the data to the interval [0.3, 0.7], and then shift the
data with random vectors in [−0.3, 0.3]d. Let f̃ρ(x) denote the result of a query at x
with the data shifted by the vector ρ and Xρ(x) be the corresponding set of training
points in the leaf of the sparse occupancy tree containing x. Furthermore, let R(x)
be the set of shifts ρ for which the level of the evaluation is maximal. Then we have
tested the following two schemes to compute a result from the random shifts:

f̃(x) =
1

#(R(x))

∑
ρ∈R(x)

f̃ρ(x) (4)

or
f̃(x) =

1∑
ρ∈R(x) #(Xρ(x))

∑
ρ∈R(x)

(
#(Xρ(x))f̃ρ(x)

)
(5)

The idea of the second formula is to weight the points that occur in the sets Xρ(x)
according to the number of their appearance in these sets. A third possibility is to
choose just one of the ρ ∈ R(x) randomly and to take this result. We usually prefer
the first version.

3 Sparse Occupancy Trees using Simplices

As it has become clear from the above abstract description of a sparse occupancy tree,
there are in principal no restrictions on the shape of the elements of the partitions. For
the reasons that have been explained in the introduction we want to build trees based on
simplices. This does not offer any advantages over cube subdivision, if we only consider
piecewise constant approximations, but allows for extensions towards piecewise linear
schemes, which will be the topic of Section 3.3. First, however, we have to go through
some technicalities concerning data preparation and the computation of the bitstrings.

3.1 Data Preparation

To start a simplex subdivision scheme we have to map all the data points into a simplex.
Here we choose the standard simplex

S = {x ∈ Rd : 0 ≤ x1 ≤ x2 ≤ . . . ≤ xd ≤ 1}.
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If one has data in the unit cube [0, 1]d, this can be achieved by the so-called root
transformation T : [0, 1]d → S:

x = (xi)di=1 7−→ T (x) =

 d∏
j=i

x
1/j
j

d

i=1

,

which can be computed recursively by

T (x)d = x
1/d
d , T (x)i = T (x)i+1 x

1/i
i , i = d− 1, . . . , 1,

and has the useful property that its Jacobian determinant JT (x) = 1
n! = const, see

[FY94]. Furthermore, this transformation (and its inverse) are computationally cheap
and numerically stable. However, since the transformation is singular on the boundary,
it makes sense to scale the data initially to the cube [0.125, 0.875]d.

Remark 6. One should note, that this step is actually not without concern. Since the
partial derivatives of the mapping T vary over a large range of magnitudes, the metric
of the original data is effectively distorted. We assume that this might be the reason
for the deterioration of the approximation quality we observe in some of our numerical
experiments.

3.2 Bitstream Generation

Next, we have to compute for any data point x its corresponding bitstream b(x).
We start with the simplex S = S(∅) and initialize the bitstream b = ∅. Then we
proceed successively with the following bisection algorithm, where we assume that
after some steps of subdivision x is contained in the simplex S(b) with the vertices
vj , j = 0, . . . , d. We assume that with respect to these vertices x has the barycentric
coordinates τ(x, S(b)) = (τ0, . . . , τd) given by

x =
d∑
j=0

τjv
j ,

d∑
j=0

τj = 1 .

To perform one bisection step we choose two vertices vk, vl and subdivide the edge
that connects these two vertices at its midpoint. Then we calculate the barycentric
coordinates of x with respect to the two resulting subsimplices:

x =
d∑
j=0

τjv
j =

d∑
j=0,j 6=k,l

τjv
j + τkv

k + τlv
l

=
d∑

j=0,j 6=k,l
τjv

j + 2τk

(
vk + vl

2

)
+ (τl − τk)vl

=
d∑

j=0,j 6=k,l
τjv

j + (τk − τl)vk + 2τl

(
vk + vl

2

)
.

If all barycentric coordinates of a point are in the range [0, 1], it can be concluded
that x is in the interior of the simplex. Therefore, if τl < τk, then x is contained in
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the subsimplex connected to the vertex vl. In this case, we replace vk by 1
2(vk + vl),

τk by 2τk, τl by (τl − τk), and add 0 to the bitstream b. Else, if τl < τk, we replace
vl by 1

2(vk + vl), τl by 2τl, τk by τk − τl and append 1 to b. (In case τl = τk both
cases could be applied. In order to have uniqueness of the representation, the tie-break
should be consistent and give always the same decision.) Then we proceed with the
next subsection. It is important to note that only two coordinates are changed for
each bisection and only one vertex is added to the total set of vertices produced in the
course of the subdivision process.

The only task remaining is to determine what edge one subdivides in each step.
For this purpose we use the following scheme that seems to be both efficient and to
lead to favorable shapes of the intermediate simplices. We organize the vertices into
two groups. One will consist of “old” vertices, which will be denoted by vj , as above,
and the other one will be comprised of “new” vertices wj . The general form of an
intermediate simplex arising in this process will be

S(b) =
[
vp, vp+1, ..., vq, wq−p+1, wq−p+2, ..., wd

]
,

where 0 ≤ p ≤ q ≤ d. The initial simplex S(∅) corresponds to p = 0, q = d and has
only old vertices. Every bisection will replace one of the old vertices vp or vq by the
new vertex

wq−p :=
1
2

(vp + vq). (6)

After each bisection the number of old vertices of the new simplex decrease by one.
In analogy to dyadic subdivision, it takes d such bisections before ending up with an
isotropic refinement of the initial simplex.

In case there is only one old vertex with index p = q, we declare the end of the level
and start the next one by reassigning the names of the vertices as follows: v0 := vp and
vk := wk for k = 1, ..., d and continue with the procedure. In Figure 3.2 one dyadic
subdivision cycle is graphically demonstrated for a three-dimensional configuration.

3.3 Piecewise Linear Approximation

On simplex partitions one can define piecewise linear approximations by prescribing
values for all the vertices and interpolating the values of vertices connected to the cell
a queries falls into. We have to note however, that in high dimensions it can hardly be
the aim to achieve quadratic order of convergence - this would require that one could
prescribe highly accurate values for the vertices which would be a very hard task.
The real motivation for the development of such vertex schemes is that they provide
a means to overcome the tree distance problem: it will not matter any more, if two
points separate early in the occupancy tree because all training points spatially close
to a query will contribute to the result via the vertices that connect neighboring cells.
Similar to kernel methods the answer to a query will be a weighted average of training
samples resulting in smoother approximants and therefore diminishing the variance of
the approximation, a property that might be of interest, in particular, for regression
problems. One can even think about constructing globally continuous approximants.
The challenge hereby is how to deal with non-uniform, adaptive partitions and hanging
nodes. However, we do not pursue this idea deeply in the current paper which is
exclusively concerned with data interpolation.
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Figure 1: Top left: initial configuration. S∅ = [v0, v1, v2, v3], p = 0, q = d = 3, wq−p =
w3 = (v0 + v3)/2. Top right: first binary subdivision step. S0 = [v0, v1, v2, w3] , p =
0, q = 2 , wq−p = w2 = (v0 + v2)/2. Bottom left: second binary subdivision step.
S0,1 = [v1, v2, w2, w3], p = 1, q = 2, wq−p = w1 = (v1 + v2)/2. Bottom right: last binary
subdivion step. S0,1,1 = [v1, w1, w2, w3], p = 1, q = 1, wq−p = w0 = v1, reset.
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In the following we will concentrate on the construction of a particular scheme
which preserves the interpolation property of sparse occupancy algorithms because this
method offers the best compromise between computational efficiency and accuracy in
our numerical experiments. However, we will introduce some notations and ideas that
allow for the development of other variants of piecewise linear schemes. The main
choices in the construction are the design of the underlying occupancy tree, i.e. the
depth of its branches which corresponds to the refinement of the underlying partition,
and how to define values for the vertices, in particular, for the vertices that are not
connected to occupied cells, but might be needed for the evaluation of a query.

3.3.1 Notation

To describe the vertex algorithms in detail we introduce some notation.

• For any d-dimensional simplex S we will denote the set of its d+ 1 vertices with
V(S).

• If x is a point in S, and v ∈ V(S) then τ(S, v, x) is the barycentric weight of x
with respect to v. These weights are defined by the equations

x =
∑

v∈V(S)

τ(S, v, x)v,
∑

v∈V(S)

τ(S, V, x) = 1 . (7)

• We consider S(∅) to be the level 0 simplex. A level l simplex is a simplex that
emerges from a level l − 1 simplex by exactly d-binary subdivisions with the
subdivision rule described in section 3.2, i.e., we base our linear approximation
on a dyadic tree.

• With Sl(x) we denote the level-l simplex of the master tree in which the data
point x lies.

• Let T be an occupancy tree. Then the set of simplices on level l in this occupancy
tree is denoted by Sl(T ).

• A level-l vertex is a corner point of a level-l simplex. Note, that a vertex can
belong to several levels. Furthermore

Vl(T ) =
⋃

S∈Sl(T )

V(S) (8)

is the set of all level-l vertices connected to a level-l simplex of the tree T .

• If v ∈ Vl(T ), then Sl(T , v) ⊂ Sl(T ) is the set of level-l simplices in the occupancy
tree T which are adjacent to v.

• If in the subdivision process a vertex v emerges as average of the vertices w1 and
w2 we write w1 = p1(v) and w2 = p2(v).

3.3.2 Principle of the Approximation

Let T = T (X) be a finite simplex-based occupancy tree. This means that each node
Ωk,l in the tree contains a training point. For the moment we do not prescribe a certain
maximum depth L for the tree and keep open the option that different branches may
have different depth.

12



In the training stage of the piecewise linear approximation we compute for all levels
l and all vertices v ∈ Vl(T ) the value

yl(v) = A({yi |xi ∈
⋃

S∈Sl(T ,v)

S}). (9)

If v /∈ Vl(T ) we define its (unweighted) value recursively by averaging the values of its
parents:

yl(v) =
1
2

(yl−1(p1(v)) + yl−1(p2(v))). (10)

This recursion terminates, because the level-0 values of the the vertices of S(∅) are
defined, if the training data set is not empty.

In the evaluation stage the level-l value of a query point x is then determined by
piecewise linear interpolation of the vertex values of the level-l cell in the master tree
the query falls into, concretely

f̃l(x) =
∑

v∈V(Sl(x))

τ(Sl(x), v, x) yl(v). (11)

Note, that the description of this algorithm only becomes complete, when we define
how exactly we construct T , i.e., how deep we refine the branches of the occupancy
tree. Second, we have to decide, which of the various level-values f̃l(x) shall become
the result f̃(x) of the query. In particular, the above approximation is not necessarily
continuous and not necessarily interpolating. However, this can be enforced by the right
choice of T and l. Furthermore note, that this algorithm is suited for online-learning
purposes: if one gets a new sample, one just computes its place in the occupancy tree
and adds its value to all adjacent vertices. After that a query can immediately use the
new information.

3.3.3 Special Schemes

As mentioned before we mainly aim at an interpolating scheme. This property can
be enforced by choosing the underlying occupancy tree such that no two leaves of T
join at a common vertex and an evaluation level l which is equal or larger than the
level of the last occupied cell the query falls into. In the experiments of Section 4 we
use a version that chooses l as the level of the smallest cell in the master tree still
connected to at least one vertex of a cell in the occupancy tree. With these choices it
is obviously guaranteed that a query coincident with a training point returns the value
of this training point, because all vertices of the evaluation simplex are influenced by
this training sample only. Typically, vertex separating trees become rather deep, which
might become unpractical, if memory limitations have to be observed.

Therefore we also experimented with minimal separating trees, i.e., we chose T to be
the smallest tree, such that each leaf of T contains only one training point. However,
we observed a severe decrease of accuracy in this case, so that we disregarded this
non-interpolating approach.

The easiest (but perhaps not best) method to enforce global continuity of the ap-
proximation is to perform all evaluations at the same level l. This would just mean to
define a piecewise linear function on a uniform partition. The disadvantage of this sim-
plistic approach is, that for highly non-uniformly distributed data, it requires frequent
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use of vertex values that are not defined by training points nearby, but by the recursion
(10). This, however, decreases the accuracy because it increases the probability that
information is taken from data points which are far away from the query location.

3.3.4 Variants

Furthermore we have tested the following modification of the algorithm:

• Weighted vertex values: compute the vertex values not just by averaging but take
the distances (or the barycentric weights) of the data points to the vertices into
account.

• Best vertices: in the evaluation stage (Equation 11) do not sum up over all the
vertices of the simplex, but only over the vertices that have been assigned values
on level l:

g(x) =

∑
v∈V(Sl(x))∩Vl(T ) b(Sl(x), v, x)gl(v)∑
v∈V(Sl(x))∩Vl(T ) b(Sl(x), v, x).

None of these modifications delivers a significant improvement in the numerical exper-
iments we performed; therefore we do not present results for them.

4 Numerical Results

In this Section we demonstrate the performance of the above described schemes with
some numerical results. As test cases we have chosen the examples designed by Fried-
man in [Fri91] since they are relatively well-known. A limitation of these examples is
that the x-data is always supposed to be uniformly distributed. Since in many practical
situations the input data is correlated or otherwise restricted to some submanifold of
the formal input space, we have designed one test case of our own in order to cover
this situation, too.

In all examples the setup is as follows: First, we generate a test data set of M =
1, 000, 000 points, and then various training data sets of N points, where N = 10e with
e = 3, 4, 5, 6. This allows us to get some insight into the convergence behavior of the
schemes. We measure the accuracy of the approximation using the root mean square
error

RMSE =

√√√√ 1
M

M∑
i=1

(f̃(xi)− f(xi))2

of the test set. Assuming that the xi are independently drawn from a distribution
ρX on Rd, this is essentially a Monte-Carlo approximation of the weighted L2-error
(
∫

Ω(f̃(x)− f(x))2 dρX)1/2.
It is clear that in literature (for instance [MLH03]) one easily finds methods like

CART, support vector machines, or neural networks, which achieve better accuracy
for the Friedman problems than the methods analyzed here. But these schemes are
outside the scope of the current work because they use the distribution of the y-data
in their training processes. The nearest neighbor and sparse occupancy tree recovery
schemes described in this paper can be characterized as semi-adaptive schemes since
they all use only the x-data in order to decide how to partition the input space. It
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N 1,000 10,000, 100,000 1,000,000
k-nearest neighbor

k
1 3.45642 2.72654 2.16177 1.70666
5 2.5381 1.87911 1.41927 1.07411
10 2.51983 1.81674 1.34074 0.990133
20 2.6283 1.86574 1.35252 0.98068

opt-k 8 10 12 16
opt 2.50911 1.81674 1.33621 0.976907

Sparse Occupancy Trees
Dyadic Cubes 4.63352 3.36706 3.14852 2.65411
Binary Cubes 4.41309 3.2352 2.30208 2.24182

Simplices 5.13561 4.04371 3.55441 3.22269
Random Shifts (Dyadic Cubes)

10 3.27477 2.56207 1.74117 1.33433
50 3.18321 2.49552 1.62769 1.1639
100 3.11513 2.42343 1.67022 1.18687

Vertex Algorithm
3.18713 2.49601 1.9143 1.48756

No. Vertices 21,086 195,418 2,010,754 19,206,866

Table 1: Results for the ten-dimensional Friedman 1 example.

therefore seems appropriate to restrict the comparison to the relative performance of
such related schemes.

4.1 Friedman 1 Data Set

In this test case we approximate the function

y(x1, . . . , x10) = 10 sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5. (12)

Hereby the x1, . . . , x10 are uniformly distributed over the ranges 0 ≤ xi ≤ 1. The
variables x6, . . . x10 clearly do not contribute to the y-values which causes a deteriora-
tion of the convergence, since the semi-adaptive schemes have no means to detect that
these inputs are irrelevant. In order to quantify these effects, we repeat the experiment
without the extra dimensions. In both cases the test set has a variance of 4.876642.

In Table 1 which displays the residual mean square errors calculated with nearest
neighbors, sparse occupancy trees, random shifts and the interpolating piecewise lin-
ear vertex algorithm, one can make the following observations. The piecewise constant
approximation with sparse occupancy trees clearly is not competitive with regard to ap-
proximation accuracy. However, random shifts significantly improve the performance.
Applying a moderate number of random shifts clearly outperforms the 1-nearest neigh-
bor method, although it is still clearly worse than the k-nearest neighbor method with
an optimally chosen k. In this particular example binary splitting of cubes works
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single tree 100 random shifts
level queries average error queries average error

1 383762 3.20158 0
2 615339 2.24789 0
3 899 1.2386 743241 1.08021
4 0 256363 1.4529
5 0 395 0.7784
6 0 1 0.593573

Table 2: Statistics of evaluation levels and corresponding errors.

significantly better than dyadic splitting. This is explained by the fact, that the super-
fluous variables come last in the splitting. That means that the superfluous splits in
these directions have less influence on the tree structure and the averaging procedure.
The approximation with piecewise constant approximation on simplices is significantly
worse than the cube version confirming the suspicions we formulated about the data
preparation step in Section 3.1.

It is clear that the accuracy of the answer to a single query depends significantly on
the level on which the query is evaluated. This is also confirmed by Table 2 which shows
on which level the queries were evaluated in the case N = 106. As already explained
in the introduction, one cannot expect too much from any partitioning scheme in
this particular example, because the data is uniformly distributed so that the training
samples separate already on low levels. However, random shifts have a significant effect
on this statistics. In this case the majority of evaluations is pushed from level 2 to
level 3 and no evaluations are performed on level 1 or 2 any more.

For comparison Table 3 lists the results, if one removes x6, . . . x10 from the input
data. As expected the difference between the dyadic and the binary tree algorithm
becomes insignificant and the vertex algorithm achieves comparable accuracy as the
nearest neighbor algorithm. Furthermore, in both Tables 1 and 3 one can observe that
choosing a too large number of random shifts can lead to a slight deterioration of the
residual. This behavior is similar to what one can observe when one lets k increase
above the optimum in the k-nearest neighbor approximation.

4.2 Friedman 2 Data Set

In this case we approximate the function

y(x1, . . . , x4) =

√
x2

1 +
(
x2x3 −

1
x2x4

)2

with the four variables uniformly distributed over the ranges 0 ≤ x1 ≤ 100, 40π ≤
x2 ≤ 560π, 0 ≤ x3 ≤ 1, and 1 ≤ x4 ≤ 11. The function has variance 3752.

This test case merely confirms the conclusions outlined in the previous sections.
The last line of the table lists how many vertices have been assigned values in the
training stage of the vertex algorithm. This information is relevant because the exten-
sive memory consumption of the vertex algorithm seems to be its major disadvantage
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N 1,000 10,000, 100,000 1,000,000
k-nearest neighbors

k
1 1.88274 1.17671 0.734954 0.460371
5 1.38843 0.809425 0.47469 0.28492
10 1.41282 0.792543 0.442179 0.253858
20 1.56399 0.848696 0.452497 0.24638

opt-k 6 8 12 17
opt 1.38235 0.789593 0.440825 0.245935

Sparse Occupancy Trees
Dyadic Cubes 2.72086 1.67133 1.04174 0.708435
Binary Cubes 2.54749 1.66814 1.04311 0.644786

Binary Simplices 3.29683 2.14322 1.43075 0.958765
Random Shifts (Dyadic Cubes)

10 1.54714 0.95336 0.626991 0.615749
50 1.49284 0.829795 0.571043 0.534478
100 1.52529 0.826601 0.5509 0.512936

Vertex Algorithm
1.54153 0.88528 0.511434 0.289492

No. Vertices 10,782 103,758 1,041,575 10,042,198

Table 3: Results for 5-dimensional Friedman 1 example.
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N 1,000 10,000, 100,000 1,000,000
k-nearest neighbor

k
1 83.1134 45.6397 18.9724 13.9701
5 62.5134 30.4696 15.925 8.63483
10 65.5309 28.6937 14.2602 7.41368
20 76.067 30.1256 13.748 6.71658

opt-k 5 11 18 31
opt 62.5134 28.683 13.7265 6.58647

Sparse Occupancy Trees
Dyadic Cubes 115.894 65.4261 37.8324 21.219
Binary Cubes 119.475 65.1913 35.9613 20.854

Simplices 142.638 84.5237 47.9805 27.8929
Random Shifts (Dyadic Cubes)

10 75.4826 38.8928 19.7915 14.5742
50 66.2124 35.9743 19.5236 10.5921
100 65.304 35.257 19.6445 10.4952

Vertex Algorithm
65.244 29.7608 14.0904 7.02889

No. Vertices 8911 86303 837,773 8,225,310

Table 4: Results for Friedman 2 Example
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N 1,000 10,000, 100,000 1,000,000
k-nearest neighbor

k
1 0.155238 0.103645 0.0692366 0.0439895
5 0.135107 0.0868966 0.0556544 0.0348372
10 0.140372 0.0905709 0.0570974 0.0355295
20 0.153082 0.0978829 0.0625607 0.0386026

opt-k 5 5 5 6
opt 0.135107 0.0868966 0.0556544 0.0347881

Sparse Occupancy Trees
Dyadic Cubes 0.202478 0.116544 0.0811854 0.0602853
Binary Cubes 0.215195 0.118146 0.0843254 0.064841

Simplices 0.176661 0.11912 0.0887659 0.0491299
Random Shifts (Dyadic Cubes)

10 0.140396 0.094879 0.0585261 0.0362686
50 0.139053 0.0922174 0.060494 0.0368731
100 0.140396 0.09131 0.0608876 0.0375257

Vertex Algorithm
0.0960549 0.0601811 0.0336853 0.0199746

No. Vertices 8,911 86,303 837,773 8,225,310

Table 5: Results for Friedman 3 Example

for its practical application. In this case the trained vertex tree needs about 8−9 times
more memory than the incoming data. However, this seems still more economical than
storing, say, 50 or 100 randomly shifted occupancy trees, so that the vertex algorithm
is surely more memory efficient than the random shift algorithm.

4.3 Friedman 3 Data Set

Here

y(x1, . . . , x4) = tan−1

(
x2x3 − (x2x4)−1

x1

)
with 0 ≤ x1 ≤ 100, 40π ≤ x2 ≤ 560π, 0 ≤ x3 ≤ 1, and 1 ≤ x4 ≤ 11. The variance
of the test data set is 0.3165252. Note that this function has a very steep gradient if
x1 → 0 and almost jumps from −π/2 to π/2 when the numerator changes sign.

In Table 5 we see that the optimal number of nearest neighbors hardly (if at all) in-
creases when N grows, indicating that the target function indeed is not very smooth. In
this case the vertex algorithm performs even better than the optimal nearest neighbor
algorithm. This can be explained by its interpolation property, which is very helpful
here due to the nearly discontinuous behavior of the function. Furthermore, one is led
to assume that the piecewise linear approximant improves the accuracy in regions of
steep gradients.
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N 1,000 10,000, 100,000 1,000,000
k-nearest neighbor

1 0.629136 0.376805 0.218324 0.123483
5 0.547673 0.280663 0.143379 0.0765174
10 0.590996 0.293347 0.136615 0.0671632
20 0.648708 0.348594 0.147633 0.0644286

opt-k 3 5 9 18
opt 0.539988 0.280663 0.136575 0.0643436

Sparse Occupancy Trees
Dyadic Cubes 0.66076 0.461315 0.284637 0.165377
Binary Cubes 0.699489 0.474227 0.28751 0.166394

Simplices 0.667239 0.502764 0.354782 0.230808
Random Shifts (Dyadic Cubes)

10 0.638401 0.408558 0.233137 0.116529
50 0.584682 0.327386 0.186034 0.108537
100 0.583817 0.314226 0.174883 0.103498

Vertex Algorithm
0.501392 0.294926 0.150229 0.0667254

No. Vertices 53,271 516,167 5,085,728 50,918,786

Table 6: Results for Data on Submanifold Example

4.4 Data on Submanifold

In this example we consider samples of the smooth function f(x) = sin(2π(x1+· · ·+xd))
for d = 20 and sample sites X that are uniformly distributed on a randomly chosen
5-dimensional sphere in [0, 1]20.

Standard estimates for piecewise constant approximation predict that for a smooth
function y = f(x) the L2-error on a non-adaptive partition is proportional to N−1/D,
where D is the dimension of the manifold from which the samples are drawn. Therefore
we compute the quantity

D̃ =
log(N2/N1)

log(RMSE1/RMSE2)
(13)

where N1, N2 are the numbers of points in two training data sets and RMSE1, RMSE2

are the calculated root mean square errors of the corresponding experiments with the
same numerical scheme. In the current example we except, of course, values for D̃
around 5. Indeed, we observe values between 4.5 and 6.5 for the sparse occupancy
trees, about 3.5 to 4.5 for the nearest neighbor algorithm and between 3 and 4.5 for
the vertex algorithm. Even if these numbers are not too reliable, they clearly indicate
that all the schemes indeed capture the submanifold and do not converge with the rate
one would expect for a real 20-dimensional problem.
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50 Rand. Shifts Vertices k-NN ANN
10-dim Friedman 1 Example

Training 285s 112s 8s 8s
Evaluation 688s 157s 2439s 86s
RMSE 1.1639 1.48756 0.976907 1.16764

20-dim Sinus Wave
Training 463s 437s 18s 18s
Evaluation 951s 354s 159,929s 6043s
RMSE 0.371329 0.221245 0.276657 0.277038

Table 7: Computational times (in seconds)

4.5 Comparison of CPU Times

To give an impression of computational efficiency of the above schemes and of its
dependency on the space dimension, we reconsider the ten-dimensional Friedman 1
example from Section 4.1 and another artificial example where the the input data
points xi are uniformly distributed in 20-dimensional space and the function to be
approximated is f(x) = sin(

∑d
k=1 xk). Table 7 shows the computational times (in

seconds) needed to process a training and a test data set of 106 points each on a
computer with 2.3 GHz AMD Opteron processor. For the comparison with the k-
nearest neighbors algorithm we use the kd-tree implementation provided by the ANN-
library [MA10]. We used the same package to make a comparison with the approximate
nearest neighbors method. In this case the distance between the query point and the
i-th point returned by the search may exceed the distance between the query point and
the true i-th nearest neighbor by a factor of (1 + ε). In order to get some kind of fair
comparison we tried to find parameters k and ε such that the approximation accuracy
is about the same as for the random shift or the vertex method. In the 10-dim problem
we finally used k = 9 and ε = 4, in the 20-dimensional example k = 17 and ε = 1.

In either case exact nearest neighbor search is not a practical option. The higher
the dimension of input space becomes the less efficient nearest neighbor search be-
comes. The kd-tree obviously still perform well for 10 dimensions and in this case the
approximate nearest neighbor method is preferable to the schemes presented here, but
in the given 20-dimensional example the vertex algorithm produces better accuracy
in less time. Moreover, Table 7 does not reflect that it is not clear beforehand what
favorable values for the number of nearest neighbors and the relaxation parameter ε
are; they have to be determined by some learning technique like cross validation. The
vertex algorithm, on the other hand, does not have any tuning parameters and does
not require prior knowledge.

5 Conclusion

The aim of this paper was to investigate several algorithms that might serve as effi-
cient alternatives to the k-nearest neighbors approximation in high dimensions. These
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algorithms are based on sparse occupancy trees and suited for large data sets and on-
line learning. The algorithms scale well in high dimensions because the preprocessing
and storage costs are at most proportional to d and N logN and evaluation costs are
proportional to logN . Hence, the computational costs do not depend exponentially on
d as one can typically observe for (approximate) nearest neighbor methods. Simulta-
neously the approximation quality of the k-nearest neighbors method is preserved. In
particular, the piecewise linear vertex approximation scheme seems to have potential
for further improvements because already in its current, rather simple, implementa-
tion it outperforms the piecewise constant methods in various examples and there are
several directions which one can search for improvements, notably with regard to the
construction of globally continuous approximants.
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