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We analyze and characterize the possibility to represent or approximate tensors
that stem from a tensorization of vectors, matrices, or tensors by low (hierarchi-
cal) rank. Our main result is that for vectors that stem from the evaluation
of a polynomial f of degree p on an equispaced grid, the (hierarchical) rank is
bounded by 1 + p. This is not true for the canonical rank, and we prove this
by a small counterexample. We extend our result to functions with (few) singu-
larities that are otherwise analytic: for an asymptotically smooth function with
m singularities the rank required to achieve a point-wise accuracy of ε is of the
size k ≤ C + log2(1/ε) + 2m. The storage requirements for a tensorized vector of
length n are O(log(n)k3) and arithmetic operations (e.g., truncated addition) in
the format are of O(log(n)k4) complexity.

Keywords: Hierarchical Tucker, Tensorization, Tensor Rank, Tensor Approxi-
mation, Tensor Train, TT.
MSC: 15A69, 65F99

1 Introduction

In this article we construct tensors

A ∈ R
n1×···×nd, n1, . . . , nd ∈ N,

from vectors
x ∈ R

N , N := n1 · · ·nd.

The aim for such a ”tensorization” is to find a data-sparse representation of the tensor A
and thus reduce, among others, the storage complexity.

This idea was first formulated by Oseledets [10] in the context of matrix tensorization. In
numerical experiments he found out that the TT-rank of a tensorization of the 1d and 2d
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Laplacian as well as the Hilbert matrix has its rank bounded by a small constant. We will
prove that the rank is indeed bounded. Khoromskij [7] was able to prove that vectors of the
exponential form

xi = c · di, i = 1, . . . , N,

allow for a canonical rank one representation after tensorization. Thus, exponential sums and
trigonometric sums have tensorizations of small canonical and hierarchical rank proportional
to the number of addends. Khoromskij and Oseledets [11] have then successfully applied the
tensorization for the solution of PDEs in high dimension and with very large mode sizes.

In this paper, we will address the question for which vectors (respectively matrices and
tensors) such a tensorization is possible with low (hierarchical) rank. In Section 2 we define
the tensorization of vectors, in Section 3 we introduce the hierarchical Tucker format [5, 4]
and the corresponding hierarchical rank. In Section 4 we characterize the class of vectors
whose tensorization has hierarchical rank k. Then, we prove that the tensorization of vectors
that stem from the evaluation of polynomials of degree at most p on an equispaced grid
has a hierarchical rank of at most p + 1. A simple example shows that the canonical rank
is larger than p + 1 and also that a structured grid is essential. In Section 5 we prove
that any asymptotically smooth, i.e., piecewise analytic, function with m singularities or
discontinuities can be discretized and tensorized such that the rank for an ε-approximation
in the ‖‖∞-norm is bounded by C+log2(1/ε)+2m. In Section 6 we consider the tensorization
of matrices and tensors and extend the results to arbitrary (e.g., prime) numbers N .

The important point is that the existence can be proven independently of the construction
of an approximation. Thus, considering high-order polynomials and additional locally sin-
gular functions is reasonable. The strongest requirement is the structure of the underlying
grid.

2 Tensorization of Vectors

For a vector x ∈ R
n·m we define the tensorization (or Folding) of x into a matrix by

(F(x))i,j := xi+(j−1)n, F(x) ∈ R
n×m.

The vector x thus contains the columns of the matrix F(x) one after the other. The same
ordering is used in the standard LAPACK (http://www.netlib.org/lapack) matrix format
for the representation of dense general matrices. This can be generalized to tensors as follows.

Definition 1 (Vector-Tensorization) For vectors x ∈ R
n1···nd we define the tensorization

F : R
n1···nd → R

n1×···×nd

for all indices iµ ∈ {1, . . . , nµ}, µ = 1, . . . , d, by

(F(x))i1,...,id := xℓ, ℓ := i1 +
d∑

µ=2

(iµ − 1)

µ−1
∏

ν=1

nν .

Example 2 Consider the vector x = (1, 2, 3, 4, 5, 6, 7, 8) ∈ R
2·2·2. The tensorization of x is

F(x) =

[
1 3
2 4

∣
∣
∣

5 7
6 8

]
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or index-wise

F(x)0,0,0 = 1, F(x)0,1,0 = 3, F(x)0,0,1 = 5, F(x)0,1,1 = 7,

F(x)1,0,0 = 2, F(x)1,1,0 = 4, F(x)1,0,1 = 6, F(x)1,1,1 = 8.

Remark 3 The tensorization F is an isometric isomorphism for the ‖‖2-norm on R
n1···nd

and the so-called Frobenius norm ‖A‖ :=
√∑n1

i1=1 · · ·
∑nd

id=1 A2
i1,...,id

on R
n1×···×nd.

The idea why one could be interested in a tensorization of vectors is that the tensor might
allow for a low rank representation and correspondingly for a low rank arithmetic. For
dimension d > 2 there exist several notions of rank. The most data-sparse is the canonical
rank which is based on outer products of vectors:

(a1 ⊗ · · · ⊗ ad)i1,...,id :=
d∏

µ=1

(aµ)iµ .

Definition 4 (Canoncial rank, CP representation) Let A ∈ R
n1×···×nd. The minimal

number k ≥ 0 such that

A =

k∑

i=1

Ai, Ai = ai,1 ⊗ · · · ⊗ ai,d, ai,µ ∈ R
nµ , (1)

is the tensor rank or canonical rank of A. A sum of the form (1) with arbitrary (not neces-
sarily minimal) k ≥ 0 is called a representation with representation rank k. In the literature
such a data-sparse representation is called CANDECOMP [2] or PARAFAC [6] or simply
CP model.

For d = 30 and n = 2 a vector x ∈ R

Qd
µ=1

n has more than one billion entries (possibly all
non-zero), whereas a CP representation (1) of F(x) with rank k requires only 60k parameters.
Of course, the three main questions that arise are:

1. Is it possible to approximate F(x) for a vector x in low rank format ?

2. Can one find such an approximation efficiently ?

3. Is it possible to perform standard arithmetic operations (e.g. linear combinations) with
tensors of low rank ?

The last two questions have been answered in [4] for the hierarchical Tucker format, which
will be introduced in the next section. The first question is of particular interest here because
it allows us to understand in which cases the tensorization makes sense.

The canonical rank of a tensorized vector is typically very large. This is an observation
that is difficult to prove or underline by numerical experiments, since there is no way to
determine the rank of a high-dimensional tensor. A simple example follows where one can
determine the rank.

3



Example 5 Consider the vector x = (1, 2, 3, 4, 5, 6, 7, 8) ∈ R
2·2·2. The tensorization of x is

F(x) =

[
1 3
2 4

∣
∣
∣

5 7
6 8

]

with front- and back-matrices (i3 = 0 or i3 = 1, respectively)

A :=

[
1 3
2 4

]

, B :=

[
5 7
6 8

]

.

The multilinear rank [12] of F(x) is (2, 2, 2) and the hyperdeterminant is

∆ =

(
det(A + B) − det(A − B)

2

)2

− 4 det(A) det(B) = 0.

Both together prove that the canonical rank of F(x) must be three [3], which is the maximal
possible rank [8].

3 The hierarchical Tucker format

In the hierarchical Tucker format the sparsity of the representation is determined by the
hierarchical rank which is the rank of certain matricizations of the tensor. Throughout this
section we use the notation

I := I1 × · · · × Id, Iµ := {1, . . . , nµ}, µ = 1, . . . , d.

3.1 Definition of the H-Tucker format

Definition 6 (Matricization) For a tensor A ∈ R
I, a collection of dimension indices

t ⊂ {1, . . . , d} and the complement s := {1, . . . , d} \ t the matricization

A(t) ∈ R
It×Is, It := ×

µ∈t
Iµ, Is := ×

µ∈s
Iµ,

is defined by its entries
(
A(t)

)

(iµ)µ∈t,(iµ)µ∈s
:= Ai1,...,id.

Based on the matricization of a tensor A with respect to several sets t ⊂ {1, . . . , d} one
can define the hierarchical rank and the hierarchical Tucker format. In order to be able to
perform efficient arithmetics, we require the sets t to be organized in a tree.

Definition 7 (Dimension tree) A dimension tree or mode cluster tree TI for dimension
d ∈ N is a tree with root Root(TI) = {1, . . . , d} and depth p such that each node t ∈ TI is
either

1. a leaf and singleton t = {µ} or

2. the union of two disjoint successors S(t) = {t1, t2}:

t = t1 ∪̇ t2. (2)
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{1,...,6}

{4,5,6}

{1,2,3}

{5,6}

{4}

{6}

{5}

{1}

{2,3}
{2}

{3}

0 3210321Level:

Figure 1: Left: A dimension tree for d = 6. Right: The interior nodes I(TI) are colored dark
(brown), the leaves L(TI) are light (green).

The level ℓ of the tree is defined as the set of all nodes having a distance of exactly ℓ to the
root, cf. Figure 1 and Example 9. We denote the level ℓ of the tree by

T ℓ
I := {t ∈ TI | level(t) = ℓ}.

The set of leaves of the tree is denoted by L(TI) and the set of interior (non-leaf) nodes is
denoted by I(TI). A node of the tree is a so-called mode cluster (a union of modes).

Definition 8 (Hierarchical rank, H-Tucker) Let TI be a dimension tree. The hierarchi-
cal rank (kt)t∈TI

of a tensor A ∈ R
I is defined by

∀t ∈ TI : kt := rank(A(t)).

The set of all tensors of hierarchical rank (node-wise) at most (kt)t∈TI
, the so-called H-Tucker

tensors, is denoted by

H-Tucker((kt)t∈TI
) := {A ∈ R

I | ∀t ∈ TI : rank(A(t)) ≤ kt}.

In the hierarchical format only some of the possible subsets t of all modes appear. A
special case if the so-called TT-format [9] with corresponding TT-rank and TT-tree, where
all nodes are of the form

t = {1, . . . , q} or t = {q + 1}, q = 1, . . . , d.

This tree form provides a tree of maximal depth (which may be disadvantageous [4, Section
5]), but we will later see that it may provide a lower rank bound and it is easier to analyse.

In the canonical case the tree is of minimal depth p := ⌈log2(d)⌉ := min{i ∈ N0 | i ≥
log2(d)} with mode clusters of the form

{1, . . . , d}
{1, . . . , ⌈d/2⌉}, {1 + ⌈d/2⌉, . . . , d},
{1, . . . , ⌈d/4⌉}, {1 + ⌈d/4⌉, . . . , ⌈2d/4⌉}, {1 + ⌈2d/4⌉, . . . , ⌈3d/4⌉}, {1 + ⌈3d/4⌉, . . . , d},
etc.
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Example 9 For the dimension indices {1, . . . , 4} the canonical tree is

level 0 : {1, . . . , 4}
level 1 : {1, 2}, {3, . . . , 4}
level 2 : {1}, {2}, {3}, {4}

and the TT-tree is

level 0 : {1, . . . , 4}
level 1 : {1, . . . , 3}, {4}
level 2 : {1, 2}, {3}
level 3 : {1}, {2}.

The matricizations of the tensor F(x), xi = i, i ∈ {1, . . . , 16} in R
2×2×2×2 are

F(x){1} =

[
1 3 5 7 9 11 13 15
2 4 6 8 10 12 14 16

]

,F(x){2} =

[
1 2 5 6 9 10 13 14
3 4 7 8 11 12 15 16

]

,

F(x){3} =

[
1 2 3 4 9 10 11 12
5 6 7 8 13 14 15 16

]

,F(x){4} =

[
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16

]

,

F(x){1,2,3} = (F(x){4})T , F(x){1,2} =







1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16







,F(x){3,4} = (F(x){1,2})T .

3.2 Arithmetics in the H-Tucker format

The storage complexity for a tensor in the CP-model representation with rank k, mode size
n ∼ k and order d is O(dk2). In the H-Tucker format the storage complexity is one factor k
higher. Apart from the mathematical definition of the H-Tucker format we also require an
efficient representation.

Lemma 10 (Hierarchical Tucker format, [4]) Let TI be a dimension tree and A ∈ H-Tucker((kt)t∈TI
).

Then A can be represented by transfer tensors (Bt)t∈I(TI) (for interior nodes) and mode
frames (Ut)t∈L(TI) (for leaves), where Bt ∈ R

kt×kt1
×kt2 for S(t) = {t1, t2} and Ut ∈ R

It×kt.

The storage complexity for Bt, Ut from the previous lemma is

Storage((Bt)t∈I(TI), (Ut)t∈L(TI)) ≤ (d − 1)k3 + k
d∑

µ=1

nµ, k := max
t∈TI

kt, (3)

i.e. linear in the order d (provided that k is uniformly bounded) [4].
Basic arithmetic operations like linear combinations of H-Tucker tensors can be performed

exact, but the representation rank (kt)t∈TI
will be proportional to the sum of the represen-

tation ranks. It is therefore necessary to reduce (truncate) the rank of a tensor A by finding
(almost) best approximations with prescribed rank, Tk(A), or (almost) minimal rank approx-
imations with prescribed truncation accuracy, Tε(A). Such a truncation is possible in the
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H-Tucker format. The details are not relevant here, we just summarize the main result from
[4].

Let TI be a dimension tree and A ∈ H-Tucker(kt)t∈I). Let Abest denote the best approxi-
mation of A in H-Tucker((k̃t)t∈TI

) and Tk̃(A) the truncation of A to rank (k̃t)t∈TI
. Then the

truncation is quasi-optimal,

‖A − Tk̃(A)‖ ≤
√

2d − 3‖A − Abest‖,

and it can be computed in

O(d max
t∈TI

k4
t +

d∑

µ=1

nµk2
µ).

For the proof we refer to [4, Theorem 3.11, Remark 3.12, Lemma 4.9].
We conclude that the H-Tucker format is almost as data-sparse as the CP-model, and

additionally it allows for a formatted (truncated) arithmetic in quasi-optimal complexity
(one additional factor k) and with quasi-optimal accuracy (a factor

√
2d − 3). The crucial

question is: why should the rank k be small ? This question will be answered in the following.

4 Matricization of Tensorized Vectors

We recall that the tensorization F(x) ∈ R
n1×···×nd of a vector x ∈ R

n1···nd is of the form

(F(x))i1,...,id := xℓ, ℓ := i1 +
d∑

µ=2

(iµ − 1)

µ−1
∏

ν=1

nν .

We will first look at a special case, the TT-format, where nodes of the tree are of a simple
form.

Theorem 11 (Hierarchical rank of tensorized vectors in TT-format) Let F(x) ∈ R
n1×···×nd

be the tensorization of x and for q = 1, . . . , d let Nq :=
∏q

µ=1 nµ and N ′
q :=

∏d
µ=q+1 nµ. Then

the rank of the matricization F(x)(t), t := {1, . . . , q}, is

rank(F(x))(t) = dim
(
span{x|Iℓ,q

| ℓ = 1, . . . , N ′
q}
)
, Iℓ,q := {1 + (ℓ − 1)Nq, . . . , ℓNq}.

In particular, if for given t = {1, . . . , q} all sub-vectors fulfill

∀ℓ = 1, . . . , N ′
q : x|Iℓ,q

∈ Vq ⊂ R
Nq ,

then the rank of the matricization (F(x))(t) is bounded by dimVq.

Proof: The matricization (F(x))(t) has entries of the form

(F(x))
(t)
(i1,...,iq),(iq+1,...,id) = xi.

We consider a single column of the matricization. For this, let (iq+1, . . . , id) be fixed. The
parameters for the row indices are (i1, . . . , iq). In the vector x the corresponding entries of
the column are consecutively arranged from

ℓ1 := 1 +

d∑

µ=q+1

(iµ − 1)

µ−1
∏

ν=1

nν = 1 +

(
d∑

µ=q+1

(iµ − 1)

µ−1
∏

ν=q+1

nν

)

Nq =: 1 + (ℓ − 1)Nq
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to

ℓ2 := Nq +
d∑

µ=q+1

(iµ − 1)

µ−1
∏

ν=1

nν = Nq − 1 + ℓ1 = ℓNq.

Thus, the column is the sub vector x|ℓ1,...,ℓ2 = x|Iℓ,q
, which proves the theorem.

The assumption on the sub-vectors of x is a bit abstract. In the following corollary we
consider a concrete and interesting example, where the vector x is the discretization of a
function on an equispaced grid. Prior to that we consider general mode clusters t.

Theorem 12 (Hierarchical rank of tensorized vectors in H-Tucker-format) Let F(x) ∈
R

n1×···×nd be the tensorization of x and for t = {r + 1, . . . , s} let Nr :=
∏r

µ=1 nµ, Ns :=
∏s

µ=1 nµ, and N ′
s :=

∏d
µ=s nµ. Then the rank of the matricization F(x)(t) is

rank(F(x))(t) = dim
(
span{x|Iℓ,t

| ℓ = 1, . . . , NrN
′
s}
)
,

Iℓ1+(ℓ2−1)Nr ,t := {ℓ1 + (j − 1)Nr + (ℓ2 − 1)Ns | j = 1, . . . , Ns/Nr}.
Proof: The matricization (F(x))(t) has entries of the form

(F(x))
(t)
(ir+1,...,is),(1,...,ir ,is+1,...,id) = xi.

We consider a single column of the matricization. For this, let (1, . . . , ir, is+1, . . . , id) be fixed.
The parameters for the row indices are (ir+1, . . . , is). The corresponding entries in x are

1 +

r∑

µ=1

(iµ − 1)

µ−1
∏

ν=1

nν

︸ ︷︷ ︸

∈[1,2,...,Nr]

+

s∑

µ=r+1

(iµ − 1)

µ−1
∏

ν=1

nν

︸ ︷︷ ︸

∈Nr [0,1,...,Ns/Nr−1]

+

d∑

µ=s+1

(iµ − 1)

µ−1
∏

ν=1

nν

︸ ︷︷ ︸

∈Ns[0,1,...,N ′
s−1]

.

In the TT-format every column of F(x)(t) is a contiguous sub-vector of x. In the H-Tucker-
format the columns are ’staggered’ sub-vectors of x.

Corollary 13 (Polynomial Approximation) Let (xi)
n1···nd

i=1 , d ≥ 1, be the discrete evalua-
tion of a polynomial f(y) of degree p on a regular (equispaced) grid of points ξi = (i−1)h, h :=
1/(N − 1), N :=

∏d
µ=1 nµ, i.e.

xi = f(ξi).

Then for every t = {r + 1, . . . , s} ⊂ {1, . . . , d} the tensorization F(x)(t) fulfills

rank(F(x)(t)) ≤ p + 1.

Proof: We consider in the first part the case r = 0 and treat the general case afterwards. For
every ℓ the sub-vector x1+(ℓ−1)Nq ,...,ℓNq

is the discrete evaluation of some polynomial (shifted
f) of degree p in the same Nq nodes h{1, 2, . . . , Nq}. The polynomials are different, but the
nodal points are the same so that the interpolation maps the p + 1-dimensional space of
polynomials of degree less or equal p to an at most p + 1 dimensional vector space Vq. For
the general case, the sub-vectors are of the form

xℓ1+0Nr+(ℓ2−1)Ns,··· ,ℓ1+(Ns/Nr−1)Nr+(ℓ2−1)Ns
= xℓ′+(j−1)Nr

, j = 1, . . . , Ns/Nr.

Thus, every vector is the interpolation of a (different) polynomial of degree at most p in the
same points H, 2H, . . . , Ns/NrH , H := Nrh. Again, the interpolation maps into an at most
p + 1-dimensional space Vq.
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Example 14 The tensor F(x) from Example 9 is the tensorization of the vector x which is
the evaluation of the linear function f(y) = y on the grid {1, 2, . . . , 16}. The matricizations
all have exactly rank k = 2. In particular F(x){1,2} has four columns which are the four parts
x|{ℓ,ℓ+1,ℓ+2,ℓ+3}, ℓ = 1, . . . , 4, of the vector x.

One can easily see that an equidistant (or similarly structured) grid is necessary: for the
function f(y) = y the value xi codes the location of the grid point ξi, so if all of them can
be chosen independently one has to store all the values independently.

5 Singularities

The result on the polynomial approximation gives some insight into the class of functions that
can easily be approximated by low rank. However, we are also interested in the approximation
of functions that have a singularity, i.e., where the polynomial approximation deteriorates
as the number of grid points increases. In order to treat the problem in more generality, we
will allow a finite number of singularities and assume that the function is analytic otherwise.

Definition 15 (Asymptotically smooth) Let f : J = [a, b] → R be a function and let
S := {s1, . . . , sm} ⊂ J . The function f is said to be asymptotically smooth with singular
points S, if for all points y ∈ J \ S holds

|∂if(y)| ≤ C1γ
σγii!, γ ≤ C2dist(y, S)−1,

where σ is the degree of singularity.

Example 16 The function f(x) = x−1 is asymptotically smooth on any interval J ⊂ R with
singular point S = {0} and degree σ = 1:

|∂if(y)| = i!|y−σ−i| ≤ γ1γii!, γ := |y|−1 = dist(y, S)−1.

We can nicely approximate an asymptotically smooth function in intervals that are bounded
away from the singularities. Thus, if we ignore the two closest intervals per singular point,
then on all other intervals we can apply a polynomial approximation. The few singulari-
ties will then require a rank increased by their number times two. Before we formulate the
theorem, we need an auxiliary lemma.

Lemma 17 Let N =
∏d

µ=1 nµ and for t := {r + 1, . . . , s} ⊂ {1, . . . , d} let Nr, Ns, N
′
s be

defined as in Theorem 12. Then the sets

Iℓ1+(ℓ2−1)Nr ,t := {ℓ1 + (j − 1)Nr + (ℓ2 − 1)Ns | j = 1, . . . , Ns/Nr}

form a partition of {1, . . . , N}.

Proof: There is no overlap between the sets (Ns is a multiple of Nr and ℓ1 ≤ Nr), and all
indices ℓ = 1, . . . , N can be written in the form ℓ = ℓ1 + (j − 1)Nr + (ℓ2 − 1)Ns for integers
ℓ1 ≤ Nr, j ≤ Ns/Nr, ℓ2 ≤ N ′

s. As a special case r = 0 the TT-format is included, where
Nr = 1.

9



Theorem 18 (TT-Rank of tensorizations of asymptotically smooth functions) Let
(xi)

N
i=1, d ≥ 1, be the discrete evaluation of an asymptotically smooth function f with singular

points S = {s1, . . . , sm} on a regular (equispaced) grid of points ξi = (i−1)h, h := 1/(N −1),
N =

∏d
µ=1 nµ, i.e.

xi = f(ξi).

Then there exists a tensor Z ∈ R
n1×···×nd that approximates the tensorization F(x) point-wise

with accuracy ε and that has its hierarchical rank bounded by

rank(Z(t)) ≤ C + log2(1/ε) + 2m, t = {1, . . . , q}.
The constant C depends on the degree of singularity σ.

Proof: We construct the tensor Z by a vector-tensorization Z := F(z), where the entries of
z are given on the same grid as those of x but for a different function zi = g(ξi). The function
g is defined piecewise, where it is either a polynomial of degree p or it is the function f itself.
Thus, it suffices to bound the rank of Z and to determine the degree of the polynomials
necessary to achieve the desired point-wise accuracy ‖f − g‖∞ < ε. The degree p will be
specified later.

First, we partition the grid of points hierarchically over all levels q = 1, . . . , d as follows.
At the start the partition is empty, P := ∅. For each level q = 1, . . . , d we add to P all sets
Iℓ,q where

1. Iℓ,q 6⊂ ∪P and

2. dist(xi, S) > hNq/2 or Nq < 2.

On each of the sets Iℓ,q ∈ P we apply a polynomial approximation, except for the small sets
where one can simply use the function f .

1. Polynomial approximation on intervals Iℓ,q ∈ P, Nq ≥ 2: By definition of the par-
tition the set fulfills dist(xi, S) > hNq/2 for all i ∈ Iℓ,q. We define the interval
J := [mini∈Iℓ,q

ξi, maxi∈Iℓ,q
ξi]. The diameter of J can be estimated by |J | < hNq.

The distance of J to S is at least hNq/2. According to [1, Lemma 3.13] the ‖‖∞ best
approximation of f by a polynomial g of degree p fulfills

‖f − g‖∞,J ≤ 4eC1γ
σ(1 + γ|J |)p(1 + 2/(γ|J |))−p

≤ 4eC1(hNq/2)−σ3p2−p.

In order to achieve ‖f − g‖∞,J < ε we thus have to choose

p := C + log2(1/ε).

Note that the constant C may depend on the degree of singularity σ.

2. Rank bound for all matricizations: Let q ∈ {1, . . . , d}. According to Theorem 12 we

have to determine the dimension of the span of all vectors (x|Iℓ,q
)
N ′

q

ℓ=1. For all sets on
which we have applied the polynomial approximation the span has dimension at most
p + 1. The number of intervals that do not fulfill the distance criterion, i.e., where
dist(xi, S) > hNq/2, is at most two times the number m of singular points, i.e., there
are at most 2m vectors where the polynomial approximation is not applied. Thus the
dimension of the total span is at most

rank(Z(1,...,q)) ≤ p + 1 + 2m.
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We have to stress again that the result of Theorem 18 depends strongly on the regular
structure of the grid.

Remark 19 (H-Tucker format) For the general H-Tucker format the nodes are t = {r +
1, . . . , s} and the index sets are of the form

Iℓ1+(ℓ2−1)Nr ,t = {ℓ1 + (j − 1)Nr + (ℓ2 − 1)Ns | j = 1, . . . , Ns/Nr}

For all but 2m values of ℓ2 the singularities have a distance of at least hNs to the nodes cor-
responding to indices j ∈ Iℓ1+(ℓ2−1)Nr ,t. The maximal distance between nodes is hNrNs/Nr =
hNs, thus the same polynomial approximation as above (the TT case) is applicable. It re-
mains to find a low rank approximation for indices with the 2m fixed values of ℓ2. Here we
change the construction from column-wise to row-wise, i.e., we approximate every row-part
except the 2m close to the singularities, by a polynomial of degree p. Again, for one row-part
(ℓ1 varying) the domain for the interpolation is of size hNr and the distance to the singularity
is at least hNr. In total the rank is proportional to 4m(p + 1) + 2m. One can as well derive
the estimate k ≤ (C + 1 + p + 2m)2 directly by [4, 5.3.2] from Theorem 18.

6 Matrix and Tensor Tensorization

The tensorization has been defined so far for vectors that stem from the discretization of
a function f defined on an interval in R. We will now consider the case where f(x, y) is
a bivariate function and thus a matrix has to be tensorized. If the function f(x, y) can be
approximated by a degenerate expansion

f(x, y) ≈
k∑

i=1

fi(x)gi(y)

with few terms k, then one can simply proceed as before with the functions fi, gi which are
now univariate. However, when the coupling between x and y is strong, e.g.

f(x, y) = 1/|x − y|, x, y ∈ [0, 1],

then such a type of approximation is worthless since k will grow with the meshwidth. In this
case one can simply forbid to ever separate the two directions x, y.

6.1 Tensorization of Matrices

For a matrix X ∈ R
(n1·n2)×(m1·m2) we define the tensorization of X by

(M∗(X))(i1,i2),(j1,j2) := Xi1+(i2−1)n1,j1+(j2−1)m1
, M∗(x) ∈ R

(n1×n2)×(m1×m2).

This corresponds to a vector-tensorization of all rows and columns of the matrix.

11



Definition 20 (Preliminary Matrix Tensorization) We define the (preliminary) ten-
sorization for matrices X ∈ R

n1···nd×m1···md by

(M∗(X))(i1,...,id),(j1,...,jd) := Xℓi,ℓj
, ℓi := i1 +

d∑

µ=2

(iµ − 1)

µ−1
∏

ν=1

nν ,

ℓj := j1 +

d∑

µ=2

(jµ − 1)

µ−1
∏

ν=1

mν ,

M∗(X) ∈ R
(n1×···×nd)×(m1×···×md).

Example 21 Consider the matrix X = diag(1, 2, 3, 4, 5, 6, 7, 8) ∈ R
2·2·2×2·2·2. The tensoriza-

tion of X is a diagonal matrix M∗(X) with diagonal entries

diag(M∗(X)) =

[
1 2
3 4

∣
∣
∣

5 6
7 8

]

or index-wise

M∗(X)(0,0,0),(0,0,0) = 1, M∗(X)(0,0,1),(0,0,1) = 5,

M∗(X)(1,0,0),(1,0,0) = 2, M∗(X)(1,0,1),(1,0,1) = 6,

M∗(X)(0,1,0),(0,1,0) = 3, M∗(X)(0,1,1),(0,1,1) = 7,

M∗(X)(1,1,0),(1,1,0) = 4, M∗(X)(1,1,1),(1,1,1) = 8.

The tensorization is an isomorphism

M∗ : R

Qd
µ=1 nµ×

Qd
µ=1 mµ → R

(⊗d
µ=1nµ)×(⊗d

µ=1mµ).

The matrix structure is thus preserved by the tensorization, or, in other words, only the
column (respectively row) vectors are tensorized.

The tensor format M∗(X) is reasonable for a theoretical treatment concerning the matrix
properties, but it is more elegant to reorganize the modes in order to treat the tensor as
before in the vector case.

Definition 22 (Matrix Tensorization) We define the tensorization of a matrix X ∈
R

n1···nd×m1···md by

M : R
n1···nd×m1···md → R

n1m1×···×ndmd ,

(M(X))i1+(j1−1)n1),...,id+(jd−1)nd
:= Xℓi,ℓj

,

ℓi := i1 +

d∑

µ=2

(iµ − 1)

µ−1
∏

ν=1

nν ,

ℓj := j1 +

d∑

µ=2

(jµ − 1)

µ−1
∏

ν=1

mν .

For the tensor M(X) we can apply the standard hierarchical Tucker approximation. The
ranks for the representation are defined as above by

kt := rankt(M(X)) := rank(M(X)(t)).

12



For a node t = {1, . . . , q} we obtain a matrix with columns

M(X)
(1,...,q)
ℓ = X|Iℓ1,q×Jℓ2,q

,

ℓ1 ∈ {1, . . . , N ′
q}, N ′

q =

d∏

µ=q+1

nµ, ℓ2 ∈ {1, . . . , M ′
q}, M ′

q =

d∏

µ=q+1

mµ,

where the row and column indices are

Iℓ1,q := {1 + (ℓ1 − 1)Nq, . . . , ℓ1Nq}
Jℓ2,q := {1 + (ℓ2 − 1)Mq, . . . , ℓ2Mq}.

The same techniques and arguments as for the vector case apply. In the following we give
some simple examples.

Example 23 (1d Laplace) The one-dimensional Laplacian discretized by finite elements
or finite differences on an equispaced grid with 2d grid points leads (up to scaling) to a
tridiagonal system matrix X with diagonal entries Xi,i = 2 and sub- and super-diagonal
entries Xi,i−1 = Xi−1,i = −1. For any partition of the matrix into 2q × 2q tiles there appear
only four different patterns: The block can be zero, it can have a single entry in the lower left
or upper right corner, or it can be a block on the diagonal with the same tridiagonal structure.
For the rank only the latter three block types are relevant, so the rank of a matricization of
M(X) is always three (except when Nq < 3 or N ′

q < 3).

Example 24 (2d Laplace) The two-dimensional Laplacian discretized on an equispaced
grid with n× n, n := 2d grid points leads (up to scaling) to a system matrix X with diagonal
entries Xi,i = 4, sub- and super-diagonal entries Xi,i−1 = Xi−1,i = −1 and off-diagonal
entries Xi,i−n = Xi−n,i = −1. For any partition of the matrix into 2q × 2q tiles there appear
only five different patterns: The block can be zero, it can have a single entry in the lower
left or upper right corner, it can be a block on the diagonal with the same five point stencil
structure, or it can be an off-diagonal coupling in the lower or upper half which is the same
diagonal matrix block in both cases. For the rank only the latter four block types are relevant,
so the rank of a matricization of M(X) is always four (except when Nq < 4 or N ′

q < 4).

Example 25 (Hilbert matrix) The Hilbert matrix has entries

Xi,j = 1/(i − j + 0.5)

and thus allows for a polynomial approximation in blocks that are separated from the diagonal.
On the diagonal the blocks are all identical, and the same holds for the sub- and super-diagonal
blocks. Thus the rank is bounded by 3 + p2, where p ∼ log(1/ε) for a point-wise accuracy of
ε.

6.2 Tensor Tensorization

In principle, there is no restriction to extend the formalism also to higher order tensors, i.e.,
to tensorize a tensor

X ∈ R
⊗

d1
µ=1

Qd2
ν=1

nµ,ν

13



into a tensor
T (X) ∈ R

⊗
d2
ν=1

Qd1
µ=1

nµ,ν

which might make sense when d1 is small compared to d2, or if an additional structure is
present.

Definition 26 (Tensor Tensorization) We define the tensorization for tensors X ∈ R
⊗

d1
µ=1

Qd2
ν=1

nµ,ν

by

T ∗(X) ∈ R
⊗

d2
ν=1

⊗
d1
µ=1

nµ,ν ,

(T ∗(X))
(i1

1
,...,i

d1
1

),··· ,(i1
d2

,...,i
d1
d2

)
:= Xℓ1,··· ,ℓd1

, ℓη := iη1 +

d2∑

µ=2

(iηµ − 1)

µ−1
∏

ν=1

nµ,ν .

The corresponding H-Tucker compatible tensorization is given by

T (X) ∈ R
⊗

d2
ν=1

Qd1
µ=1

nµ,ν ,

(T (X))ℓ1,...,ℓd2
:= (T ∗(X))

(i1
1
,...,i

d1
1

),··· ,(i1
d2

,...,i
d1
d2

)
, ℓη = i1η +

d1∑

µ=2

(iµη − 1)

µ−1
∏

ν=1

nν,η.

6.3 General Vectors

In principle one could be interested in a tensorization of a general vector x ∈ R
N , where N is

not necessarily a product of many small numbers but, e.g., a prime number. Formally, this
can be easily overcome by the definition of an extended vector,

x̄i :=

{
xi i ≤ N
0 otherwise,

i = 1, . . . ,
d∏

µ=1

nµ ≥ N.

Theorem 27 (H-rank of tensorized extended vectors) Let F ex(x) ∈ R
n1×···×nd be the

tensorization of the extension x̄ of x ∈ R
N and for t = {1, . . . , q} let Nq :=

∏q
µ=1 nµ, and

N ′
q :=

∏d
µ=q+1 nµ. Then the rank of the matricization F ex(x)(t) is

rank(F ex(x))(t) ∈ {k, k + 1},
k := dim

(
span{x|Iℓ,q

| ℓ = 1, . . . , N ′
q, Iℓ,q ⊂ {1, . . . , N}}

)
,

Iℓ,q := {1 + (ℓ − 1)Nq, . . . , ℓNq}.}.

Proof: The index sets all fulfil Iℓ,q∩{1, . . . , N} ∈ {∅, {1, . . . , N}} except for a single index ℓ.
Thus the column rank is the column rank of the matrix where the ℓ-th column is eliminated,
plus one if the eliminated column is linearly independent of the others.

We want to remark that the statement of Theorem 27 is not true for the general H-Tucker
format with clusters t = {r + 1, . . . , s}. There the rank can only be bounded by 2k + 1.

Corollary 28 (Polynomial approximation) Let x be as in Corollary 13 (or Theorem
18). Then the hierarchcial rank of F(x̄) in the TT-format is bounded by p + 2 (or C +
log2(1/ε) + 2m, respectively) for any extension x̄ of x. In the general H-Tucker format the
rank is bounded by 2p + 3 (or C + 2 log2(1/ε) + 4m, respectively).
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7 Conclusion

We conclude that a large class of vectors that stem from the evaluation of a polynomial
or asymptotically smooth function on an equispaced grid, allows for a tensorization with
small hierarchical rank k. A truncated arithmetic for such tensorized vectors is possible in
O(k4 log N), where N is the length of the vector. This holds independently of the number
N , i.e., whether N can be factorized or not is not relevant. However, the requirement that
the grid is equispaced (or similarly structured) is necessary.
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