
A Projection Method to Solve Linear Systems

in Tensor Format

Jonas Ballani∗, and Lars Grasedyck†

Bericht Nr. 309 April 2010

Key words: Low rank, Tucker, hierarchical Tucker,

Kronecker–product matrix.

AMS subject classifications: 15A69, 90C06, 65F10

Institut für Geometrie und Praktische Mathematik

RWTH Aachen

Templergraben 55, D–52056 Aachen (Germany)

∗
Max Planck Insitute for Mathematics in the Sciences, Inselstr. 22–26, D–04109 Leipzig, Germany.

†
Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Templergraben 55, 52056 Aachen.

Financial support from the DFG SPP–1324 under grant GRA2179/2–1 gratefully acknowledged.

A Projection Method to Solve Linear Systems

in Tensor Format

Jonas Ballani ∗, Lars Grasedyck †

April 30, 2010

In this paper we propose a method for the numerical solution of linear systems
of equations in low rank tensor format. Such systems may arise from the discreti-
sation of PDEs in high dimensions but our method is not limited to this type of
application. We present an iterative scheme which is based on the projection of the
residual to a low dimensional subspace. The subspace is spanned by vectors in low
rank tensor format which — similarly to Krylov subspace methods — stem from the
subsequent (approximate) application of the given matrix to the residual. All cal-
culations are performed in hierarchical Tucker format which allows for applications
in high dimensions. The mode size dependency is treated by a multilevel method.
We present numerical examples that include high-dimensional convection-diffusion
equations and shift-invert eigenvalue solvers.

1 Introduction

This paper is concerned with the solution of linear systems

Ax = b (1)

where the system matrix A is given as the sum of d Kronecker products of matrices, i.e.

A =

kA
∑

j=1

d
⊗

µ=1

Aj,µ, (2)

and the right-hand side b is given as a tensor of low (canonical) rank. A matrix of the form (2)
is said to be given in Kronecker format. Every solution strategy which considers A as a full and
unstructured matrix will result in a computational complexity that grows exponentially in d
and is therefore intractable for d ≫ 2. If x can be approximated by a vector of low tensor rank,
solution strategies which exploit the tensor structure of the linear system become applicable.
We will propose a projection method with a complexity of O(dkA) which can be applied even
in high dimensions.

∗Max Planck Institute for Mathematics in the Sciences, Inselstraße 22–26, D-04109 Leipzig, Germany
†Institut für Geometrie und Praktische Mathematik, RWTH Aachen, Templergraben 55, D-52056 Aachen,

Germany. Financial support from the DFG SPP-1324 under grant GRA2179/2-1 gratefully acknowledged.

1

1.1 PDEs in High Dimension

As an example where a linear system (1) with A given in Kronecker format may arise, we
consider the partial differential equation

−∆u = f in Ω := (0, 1)d, (3)

u = 0 on Γ := ∂Ω.

A finite difference discretisation of (3) leads to a linear system (1) where A is of the special
form

A =

d
∑

j=1

In1
⊗ · · · ⊗ Inj−1

⊗ Aj ⊗ Inj+1
⊗ · · · ⊗ Ind

. (4)

Here, Aj ∈ R
nj×nj denotes the stiffness matrix of the 1d Laplacian and Inj

denotes the nj ×
nj identity matrix. A similar structure arises for finite element discretisations and for other
operators of the form div σ∇ + ∇ · b + c where a, b, c are constant.

In [8] we have shown that u has an integral representation which can be approximated by
vectors of low rank. The approximation is based on the computation of integrals of matrix
exponentials by a quadrature rule using sums of exponentials. The method scales linearly in
the dimension d and it is only applicable for definite systems of the form (4) (commutativity of
the summands is required).

1.2 Related Solution Strategies

Beylkin and Mohlenkamp [3] reformulate (1) as a linear least squares problem. For a given
tensor rank of x, they fix all but one direction and solve the associated normal equations.
Alternating cyclically through all possible directions, the residual is decreased at each iteration
step. This procedure is commonly known as an alternating least squares (ALS) approach (cf.
e.g. [2], [3]).

Espig, Hackbusch, Rohwedder, and Schneider [7] have proposed a direct minimisation of the
functional

f(x) = ‖Ax − b‖2

where x is assumed to be of fixed rank. The computation of the gradient of f is performed
with respect to the low rank structure of x. This entails the existence of local minima that are
no solutions of (1) which cannot be trivially avoided. To apply the method of [7], we therefore
have to rely on additional assumptions to avoid local minima.

Kressner and Tobler [15] have introduced a so-called tensor Krylov subspace method. Using
the special structure of (4), they construct a tensorised Krylov space which is the tensor product
of usual Krylov subspaces. The basis of the tensorised Krylov space can be used to transform
the original linear system to a system of smaller (mode) size. If the smaller system can be solved
efficiently, this approach leads to acceptable convergence rates for typical model problems. As
a major drawback, the computational complexity for the solution of the smaller system still
scales exponentially in d.

Krylov subspace methods for tensor computations have also been analysed by Eldén and
Savas [5] but not for the solution of linear systems in low rank tensor format.

1.3 Generalised Low Rank GMRES

In this article, we propose a new method for the solution of (1) which is derived from a typical
projection method. In analogy to a GMRES method, we will construct a low dimensional

2

subspace spanned by tensors of low rank. The linear system projected onto this subspace is
solved in each iteration step and the iterate is truncated to low rank. After this projection and
truncation step the process is restarted by the construction of a new subspace. The properties
of our new method are:

• It has a complexity of O(dkA) and is therefore applicable in high dimensions

• Except the Kronecker format, no additional structure of the addends of A is needed, in
particular we do not require the form (4)

• The residual is non-increasing at each iteration step

• All calculations are performed in hierarchical Tucker format and rely on simple linear
algebra tools like the SVD for the truncation of tensors

The hierarchical Tucker format has been introduced by Hackbusch and Kühn [14]. It allows
for an efficient representation of tensors with linear complexity in d. Moreover, a truncation
procedure is available [9] which scales linearly in d and hence permits an approximate arithmetic
in high dimensions. As a side-effect of our method, the capabilities of the approximate arithmetic
in hierarchical Tucker format for the usage in iterative schemes can be demonstrated.

1.4 Iterate and Approximate

Hackbusch, Khoromskij and Tyrtyshnikov [13] analyse the convergence of a truncated iteration
process of the form

xℓ+1 := T (Φℓ(xℓ)) (5)

where Φℓ is a one-step operator and T is some truncation operator. They show that if (5)
converges for T = Id, then the process will also converge for small perturbations of the iterates
induced by a general truncation operator T . Unfortunately, this concept will not directly
apply to our method as we will work with an operator that truncates tensors to a fixed rank.
Alternatively, one could choose all involved ranks adaptively to guarantee a certain precision.
As some numerical experiments show, this would lead to a successive growth in the ranks which
increases the computing time significantly.

The rest of this article is organised as follows. In the second section, we introduce some basic
definitions related to tensor decompositions. In the third section, we will derive our new solution
method for (1) from a general projection method. In order to make our setting more accessible,
we will afterwards introduce the hierarchical Tucker format which allows for an efficient and
accurate representation of tensors. Moreover, an approximate arithmetic is defined which relies
on the truncation of tensors in hierarchical Tucker format. In section five, we will adapt the
projection method in tensor format to the case of the hierarchical Tucker format. Afterwards,
we will briefly discuss the acceleration of our method by multigrid methods and the application
to eigenvalue problems. In the last section, we illustrate the potential of our method by some
numerical examples.

2 Basic Definitions

In this section, we introduce some basic definitions related to tensors that will be used through-
out the whole article.

3

Notation 1 (Index set). Let d ∈ N and n1, . . . , nd ∈ N. We consider tensors as vectors over
product index sets. For this purpose, we introduce the d-fold product index set

I := I1 × · · · × Id, Iµ := {1, . . . , nµ}, µ ∈ {1, . . . , d}.
Definition 2 (Elementary tensor, order). A tensor X ∈ R

I is called an elementary tensor, if
it can be represented as the tensor product of vectors xµ ∈ R

nµ , µ ∈ {1, . . . , d}, i.e.

X =

d
⊗

µ=1

xµ. (6)

The entries of X are given by

X(i1,...,id) =

d
∏

µ=1

(xµ)iµ , iµ ∈ Iµ.

Tensors of the form (6) are often called rank 1 tensors. The integer d is the order or dimension

of the tensor X.

Definition 3 (Tensor rank, k-term representation). The rank k of a tensor X ∈ R
I is the

minimal number k ∈ N0 such that there exist elementary tensors X1, . . . ,Xk with

X = X1 + . . . + Xk =

k
∑

j=1

d
⊗

µ=1

xj,µ, xj,µ ∈ R
nµ . (7)

A tensor of the form (7) is said to be given in a k-term representation. In the literature, the
representation (7) is sometimes referred to as PARAFAC (parallel factors), CANDECOMP

(canonical decomposition), (CP), or Kronecker format.

Definition 4 (Tucker rank, Tucker format). The Tucker rank of a tensor X ∈ R
I is the tuple

(k1, . . . , kd) with minimal entries kµ ∈ N0 such that there exist orthonormal vectors uj,µ ∈ R
nµ

and a so-called core tensor C ∈ R
k1×...×kd with

X =

k1
∑

j1=1

· · ·
kd
∑

jd=1

C(j1,...,jd)

d
⊗

µ=1

ujµ,µ, 〈ui,µ, uj,µ〉 = δi,j . (8)

The representation of the form (8) is called the Tucker format.

Definition 5 (Matrix in Kronecker format). The Kronecker product for matrices Aµ ∈ R
nµ×nµ ,

µ ∈ {1, . . . , d}, is defined by

d
⊗

µ=1

Aµ

(i1,...,id),(j1,...,jd)

:=
d
∏

µ=1

(Aµ)iµ,jµ , iµ, jµ ∈ Iµ.

A matrix A of the form

A =

kA
∑

j=1

d
⊗

µ=1

Aj,µ, Aj,µ ∈ R
nµ×nµ , (9)

is said to be given in Kronecker format. The multiplication of a matrix A = ⊗d
µ=1Aµ by a

vector x = ⊗d
µ=1xµ reads

d
⊗

µ=1

Aµ

d
⊗

µ=1

xµ

 =

d
⊗

µ=1

(Aµxµ).

4

3 Projection Methods

3.1 A General Projection Method

Consider the linear system
Ax = b

where A ∈ R
I×I is a non-singular matrix and b ∈ R

I . Let x0 be an initial guess and let V, W
be two m-dimensional subspaces of R

I . By means of a projection method, we try to find an
approximate solution x̃ ∈ x0 + V such that the residual b − Ax̃ is orthogonal to W. Given the
initial residual r0 = b−Ax0, the approximate solution can be defined as x̃ = x0 + δ, δ ∈ V, such
that

〈r0 − Aδ,w〉 = 0 for all w ∈ W.

Let Vm = [v1, . . . , vm] ∈ R
I×m and Wm = [w1, . . . , wm] ∈ R

I×m be such that the column vectors
of Vm and Wm form a basis of V and W, respectively. If the approximate solution is written in
the form x = x0 + Vmy, y ∈ R

m, the orthogonality condition leads immediately to the following
system of equations

W⊤
mAVmy = W⊤

mr0.

If the matrix W⊤
mAVm is non-singular, the approximate solution is uniquely defined. In par-

ticular, W⊤
mAVm is non-singular if A is non-singular and W = AV (cf. [17] Prop. 5.1). If

W = AV where V is the m-th Krylov subspace, i.e. V = span{r0, Ar0, A
2r0, . . . , A

m−1r0}, the
projection method is known as GMRES. The projection algorithm is summarised in Algorithm
1. Note that we have assumed a fixed dimension m of the space V. In a GMRES method, this
parameter is usually chosen dynamically as the residual can be estimated cheaply in the inner
loop when the column vectors of Vm are orthonormal. Later on, we will not be able to rely on
orthonormality.

Algorithm 1 Projection method (GMRES)

choose x0

for ℓ = 0, 1, . . . do

rℓ := b − Axℓ

if ‖rℓ‖ / ‖b‖ < ε then

return xℓ

end if

v1 := rℓ/ ‖rℓ‖
for j = 1, . . . ,m do

wj := Avj

solve (V ⊤
j Vj)α = V ⊤

j wj

ṽj+1 := wj −
∑j

i=1 αivi

vj+1 := ṽj+1/ ‖ṽj+1‖
end for

solve (W⊤
mAVm)y = W⊤

mrℓ

xℓ+1 := xℓ + Vmy
end for

5

3.2 A Projection Method in Tensor Format

Let us assume that the matrix A ∈ R
I×I is given in Kronecker format, i.e.

A =

kA
∑

j=1

d
⊗

µ=1

Aj,µ, Aj,µ ∈ R
nµ×nµ ,

and that the right-hand side possesses the representation

b =

kb
∑

j=1

d
⊗

µ=1

bj,µ, bj,µ ∈ R
nµ .

Every naive strategy which aims at solving (1) will have a complexity that scales exponentially
in d and will be prohibitively expensive. We therefore want to introduce a new method which
is inspired by the general projection method that completely relies on calculations with tensors
of low rank. This will effectively reduce the complexity to O(dkA) which allows us to solve
systems in high dimensions.

In analogy to the general projection method, we will generate a sequence of iterates
{xℓ}l∈N, xℓ ∈ R

I , in tensor format of low rank such that the norm of the residual does not
increase at each iteration step. To this end, assume that xℓ ∈ R

I is given in low rank format
and let rℓ := b − Axℓ. We first construct a subspace V = span{v1, . . . , vm} ⊂ R

I such that all
basis vectors vj are given in low rank format. Define the first basis vector by

ṽ1 := T (rℓ), v1 := ṽ1/ ‖ṽ1‖ ,

where T : R
I → R

I is some truncation operator that truncates a tensor either to a fixed
rank or to a given accuracy. Now let v1, . . . , vj ∈ R

I be given in low rank format and let
Vj := [v1, . . . , vj] ∈ R

I×j. As in a Krylov subspace method, define wj := Avj and solve
(V ⊤

j Vj)α = V ⊤
j wj. A new basis vector is now defined by

ṽj+1 := T
(

wj −
j
∑

i=1

αivi

)

, vj+1 := ṽj+1/ ‖ṽj+1‖ .

Note that, due to the truncation, the columns of Vm are no longer orthogonal. Moreover, the
subspace V = span{v1, . . . , vm} is not a Krylov subspace. Nonetheless, the affine space xℓ+V will
contain an element which does not increase the norm of the residual. Let zℓ+1 := xℓ +Vmy, y ∈
R

m. To perform the projection of the new residual b − Azℓ+1 onto W = span{w1, . . . , wm}, let
Wm := [w1, . . . , wm] ∈ R

I×m and solve (W⊤
mAVm)y = W⊤

mrℓ. The new iterate is now defined by

zℓ+1 = xℓ + Vmy, xℓ+1 := T (zℓ+1).

For the exact residual b − Azℓ+1, we have

‖b − Azℓ+1‖ ≤ ‖rℓ‖

because of the projection of the residual onto W. To ensure the convergence of the projection
method, the truncation xℓ+1 = T (zℓ+1) has to be done in such a way that the norm of the
residual rℓ+1 = b − Axℓ+1 is not increased, i.e.

xℓ+1 = T (zℓ+1) s.t. ‖rℓ+1‖ ≤ ‖rℓ‖ .

6

Algorithm 2 Projection method in tensor format

1: choose x0

2: for ℓ = 0, 1, . . . do

3: rℓ := b − Axℓ

4: if ‖rℓ‖ / ‖b‖ < ε then

5: return xℓ

6: end if

7: ṽ1 := T (rℓ)
8: v1 := ṽ1/ ‖ṽ1‖
9: for j = 1, . . . ,m do

10: wj := Avj

11: solve (V ⊤
j Vj)α = V ⊤

j wj

12: ṽj+1 := T
(

wj −
∑j

i=1 αivi

)

13: vj+1 := ṽj+1/ ‖ṽj+1‖
14: end for

15: solve (W⊤
mAVm)y = W⊤

mrℓ

16: zℓ+1 := xℓ + Vmy
17: xℓ+1 := T (zℓ+1) s.t. ‖b − Axℓ+1‖ ≤ ‖rℓ‖
18: end for

The algorithm is summarised in Algorithm 2.
We have still left open which low rank format we want to use for the representation of vectors

in R
I and, in particular, how the truncation operator T shall look like. Assume for a moment

that all vectors in Algorithm 2 were represented as rank k tensors. Each operation that requires
the addition of two rank k tensors will result in a tensor of rank 2k. Hence, the truncation
of a rank 2k tensor to rank k is necessary if we do not want to increase the rank at each
iteration step. A typical way to perform the truncation is to apply an alternating least squares
(ALS) approach which – in most cases – converges rather slowly. An efficient algorithm for
the truncation has been proposed by Espig [6] which is based on Newton-like techniques. Both
algorithms are local optimisation procedures which crucially depend on the choice of initial
values. Unfortunately, up to now there are no known algorithms which guarantee an a priori
error bound for the truncation.

Consider on the other hand the representation of tensors in Tucker format. Here, reliable
truncation procedures like the higher order SVD and a priori error bounds are available [16].
The major drawback of this format is its exponential complexity in d for the storage of the core
tensor and thus for all relevant arithmetic operations. For low dimensions where d ≤ 6, this
might not be a problem and Algorithm 2 can be adapted to this case but for high dimensions
with d > 6 we need something else.

In the following section we will present the so-called hierarchical Tucker format introduced by
Hackbusch and Kühn [14] which addresses the above mentioned problems. The format provides
both a representation of tensors and reliable truncation procedures with linear complexity in
d. Therefore the hierarchical Tucker format is an efficient means for performing arithmetic
operations with tensors without sacrificing the low rank structure. Hence, it is exactly what we
need for our projection method in tensor format.

7

4 The Hierarchical Tucker Format

For the definition of the hierarchical Tucker format, we adopt the notation from [9].

Definition 6 (Dimension tree). A dimension tree TI for a dimension d ∈ N is a tree with root
Root(TI) = {1, . . . , d} and depth p = ⌈log2(d)⌉ := min{i ∈ N0 | i ≥ log2(d)} such that each
node t ∈ TI is either

1. a leaf and singleton t = {µ} on level ℓ ∈ {p − 1, p} or

2. the disjoint union of two successors S(t) = {s1, s2},
t = s1∪̇s2.

The level ℓ of the tree is defined as the set of all nodes having a distance of exactly ℓ to the
root. The set of leaves of the tree is denoted by L(TI) and the set of interior (non-leaf) nodes
is denoted by J (TI). A node of the tree is a so-called mode cluster (a union of modes). The
canonical dimension tree is a dimension tree where each node t = {µ1, . . . , µq}, q > 1, has two
successors

t1 = {µ1, . . . , µr}, t2 = {µr+1, . . . , µq}, r := ⌊q/2⌋ := max{i ∈ N0 | i ≤ q/2}.
Definition 7 (Matricisation). For a mode cluster t in a dimension tree TI we define the com-
plementary cluster t′ := {1, . . . , d} \ t,

It :=×
µ∈t

Iµ, It′ :=×
µ∈t′

Iµ,

and the corresponding t-matricisation

Mt : R
I 7→ R

It×It′ , (Mt(A))(iµ)µ∈t,(iµ)µ∈t′
:= A(i1,...,id).

We use the short notation A(t) := Mt(A).

Definition 8 (Hierarchical rank). Let TI be a dimension tree. The hierarchical rank (kt)t∈TI

of a tensor A ∈ R
I is defined by

∀t ∈ TI : kt := rank(A(t)).

The set of all tensors of hierarchical rank (node-wise) at most (kt)t∈TI
is denoted by

H-Tucker((kt)t∈TI
) := {A ∈ R

I | ∀t ∈ TI : rank(A(t)) ≤ kt}.
Definition 9 (Frame tree, t-frame, transfer tensor). Let t ∈ TI be a mode cluster and (kt)t∈TI

a family of non-negative integers. We call a matrix Ut ∈ R
It×kt a t-frame and the tuple (Us)s∈TI

of frames a frame tree. A frame is called orthogonal if its columns are orthonormal. A frame
tree is called orthogonal if each non-root frame is. A frame tree is nested if for each interior
mode cluster t with successor S(t) = {t1, t2} the following relations holds:

span{(Ut)i | 1 ≤ i ≤ kt} ⊂ span{(Ut1)i ⊗ (Ut2)j | 1 ≤ i ≤ kt1 , 1 ≤ i ≤ kt2}.
The corresponding tensor Bt ∈ R

kt×kt1×kt2 of coefficients for the representation of the columns
(Ut)i of Ut by the columns of Ut1 and Ut2 ,

(Ut)i =

kt1
∑

j=1

kt2
∑

l=1

(Bt)i,j,l(Ut1)j ⊗ (Ut2)l,

is called the transfer tensor.

8

For a nested frame tree it is sufficient to provide the transfer tensors Bt for all interior mode
clusters t ∈ J (TI) and the t-frames Ut for the leaves t ∈ L(TI). Note that we have not yet
imposed an orthogonality condition on the t-frames.

Definition 10 (Hierarchical Tucker format). Let TI be a dimension tree, (kt)t∈TI
a family of

non-negative integers and A ∈ H-Tucker((kt)t∈TI
). Let (Ut)t∈TI

be a nested frame tree with
transfer tensors (Bt)t∈J (TI) and

∀t ∈ TI : image(A(t)) = image(Ut), A = U{1,...,d}.

Then the representation ((Bt)t∈J (TI), (Ut)t∈L(TI)) is a hierarchical Tucker representation of A.
The family (kt)t∈TI

is the hierarchical representation rank. Note that the columns of Ut need
not be linear independent.

Definition 11 (Orthogonal frame projection). Let TI be a dimension tree, t ∈ TI and Ut an
orthogonal t-frame. We define the orthogonal frame projection πt : R

I 7→ R
I in matricised form

by
(πtA)(t) := UtU

⊤
t A(t).

Theorem 12 (Hierarchical truncation error, [9] Theorem 17 and Remark 18). Let TI be a

dimension tree and A ∈ R
I . Let Abest denote the best approximation of A in H-Tucker((kt)t∈TI

)
and let πt be the orthogonal frame projection for the t-frame Ut that consists of the left singular

vectors of At corresponding to the kt largest singular values σt,i of A(t). Then for any order of

the projections πt, t ∈ TI, holds
∥

∥

∥

∥

∥

∥

A −
∏

t∈TI

πtA

∥

∥

∥

∥

∥

∥

≤
√

∑

t∈TI

∑

i>kt

σ2
t,i ≤

√
2d − 3

∥

∥

∥A − Abest
∥

∥

∥ .

Theorem 13 (Characterisation of hierarchical approximability, [9] Theorem 24). Let TI be a

dimension tree, A ∈ R
I , (kt)t∈TI

a family of non-negative integers and ε > 0. If there exists a

tensor Abest of hierarchical rank (kt)t∈TI
and

∥

∥A − Abest
∥

∥ ≤ ε, then the singular values of A(t)

for each node t can be estimated by
√

∑

i>kt

σ2
i ≤ ε.

On the other hand, if the singular values fulfil the bound
√

∑

i>kt
σ2

i ≤ ε/
√

2d − 3, then the

truncation yields an H-Tucker tensor AH :=
∏

t∈TI
πtA such that

‖A − AH‖ ≤ ε.

This means that we can truncate a tensor A ∈ R
I either to a given hierarchical rank (kt)t∈TI

,
or we can prescribe node-wise tolerances ε/

√
2d − 2 to obtain a guaranteed error bound of

‖A − AH‖ ≤ ε. As we are especially interested in calculations of fixed rank, we will introduce
a truncation operator that bounds the node-wise ranks by a constant.

Definition 14 (Truncation operator). Let k ∈ N and TI a dimension tree. For A ∈ R
I we

introduce the truncation operator Tk : R
I → R

I defined by

Tk(A) :=
∏

t∈TI

πtA, (10)

where for t ∈ TI the columns of the frame Ut ∈ R
It×k are the first k left singular vectors of A(t).

9

If a tensor is already given in hierarchical Tucker format, A ∈ H-Tucker((kt)t∈TI
), then the

truncation can be performed in a complexity of

O

dmax
t∈TI

k4
t +

d
∑

µ=1

nµk2
µ

 .

The hierarchical Tucker format provides a favourable setting for common arithmetic oper-
ations like addition and multiplication of tensors and the matrix-vector product. Since they
follow directly from the definition of the hierarchical Tucker format, the following three lemmas
are given without proof.

Lemma 15 (Addition). Let TI be a dimension tree and A ∈ H-Tucker((kt)t∈TI
), A′ ∈

H-Tucker((k′
t)t∈TI

). Moreover, let ((Bt)t∈J (TI), (Ut)t∈L(TI)) and ((B′
t)t∈J (TI), (U

′
t)t∈L(TI)) be

hierarchical Tucker representations of A and A′, respectively. Define a family of non-negative

integers (k′′
t)t∈TI

by

∀t ∈ TI \ Root(TI) : k′′
t := kt + k′

t,

and k′′
{1,...,d} := 1, the t-frames

∀t ∈ L(TI) : U ′′
t := [Ut | U ′

t],

and the transfer tensors

∀t ∈ J (TI) \ Root(TI) : B′′
t ∈ R

k′′
t ×k′′

t1
×k′′

t2

where t = t1∪̇t2 and

(B′′
t)i,j,l :=

(Bt)i,j,l, 1 ≤ i ≤ kt, 1 ≤ j ≤ kt1 , 1 ≤ l ≤ kt2 ,

(B′
t)i−kt,j−kt1 ,l−kt2

, 1 ≤ i − kt ≤ k′
t, 1 ≤ j − kt1 ≤ k′

t1
, 1 ≤ l − kt2 ≤ k′

t2
,

0, otherwise,

and B′′
{1,...,d} ∈ R

1×k′′
t1
×k′′

t2 where {1, . . . , d} = t1∪̇t2 and

(B′′
{1,...,d})1,j,l :=

(B{1,...,d})1,j,l, 1 ≤ j ≤ kt1 , 1 ≤ l ≤ kt2 ,

(B′
{1,...,d})1,j−kt1 ,l−kt2

, 1 ≤ j − kt1 ≤ k′
t1

, 1 ≤ l − kt2 ≤ k′
t2

,

0, otherwise .

Then ((B′′
t)t∈J (TI), (U

′′
t)t∈L(TI)) is a hierarchical Tucker representation of A′′ := A + A′.

Lemma 16 (Scalar multiplication). Let TI be a dimension tree and A ∈ H-Tucker((kt)t∈TI
)

with hierarchical Tucker representation ((Bt)t∈J (TI), (Ut)t∈L(TI)). For c ∈ R define B′
{1,...,d} :=

cB{1,...,d} and for all other t ∈ J (TI) \ Root(TI) let B′
t := Bt. Then ((B′

t)t∈J (TI), (Ut)t∈L(TI))
is a hierarchical Tucker representation of A′ := cA.

Lemma 17 (Matrix-vector multiplication). Let TI be a dimension tree and A ∈
H-Tucker((kt)t∈TI

) with hierarchical Tucker representation ((Bt)t∈J (TI), (Ut)t∈L(TI)). Let M ∈
R
I×I be a matrix given by

M =

d
⊗

µ=1

Mµ, Mµ ∈ R
nµ×nµ .

For all t = {µ} ∈ L(TI) define

U ′
t := MµUt.

Then ((Bt)t∈J (TI), (U
′
t)t∈L(TI)) is a hierarchical Tucker representation of A′ := MA.

10

It is straight-forward to see that the multiplication has a complexity of O(
∑d

µ=1 n2
µkµ) if the

Mµ are unstructured and O(
∑d

µ=1 nµkµ) if the Mµ are sparse (i.e. allow for a matrix-vector
multiplication in O(nµ)).

Remark 18 (Norm, scalar product). In [9] we have shown how to compute the Euclidean norm

of a tensor in hierarchical Tucker format in O
(

dmaxt∈TI
k4

t +
∑d

µ=1 nµk2
µ

)

. The scalar product

of two vectors v,w ∈ H-Tucker((kt)t∈TI
) may then be calculated via the elementary formula

〈v,w〉 =
1

2

(

‖v + w‖2 − ‖v‖2 − ‖w‖2
)

.

5 A Projection Method in Hierarchical Tucker Format

In this section, we adapt the projection method in tensor format to the setting of the hierarchical
Tucker format. For this purpose, we will follow the algorithmic concept introduced in Section
3.2. The basic idea is to construct a low-dimensional subspace which is spanned by vectors of low
rank in hierarchical Tucker format. Let us assume that xℓ, b ∈ H-Tucker((kt)t∈TI

). According to
the arithmetic operations introduced in the last section, we may calculate rℓ = b−Axℓ directly
in hierarchical Tucker format. We now can use the residual to construct a low-dimensional
subspace of vectors of low rank. To keep computations as cheap as possible, we will bound the
node-wise ranks of the vectors vj spanning the subspace by a constant kv ∈ N. In analogy to
Section 3.2 we define

ṽ1 := Tkv(rℓ), v1 := ṽ1/ ‖ṽ1‖ , (11)

where we have specified the truncation operator to be of the form (10). Now let v1, . . . , vj ∈
H-Tucker((kt)t∈TI

) be given such that kt ≤ kv for all t ∈ TI . Define Vj := [v1, . . . , vj] ∈ R
I×j

and let wj := Avj . For the definition of a new basis vector, we have to solve the system
(V ⊤

j Vj)α = V ⊤
j wj . The calculation of the entries of the matrix V ⊤

j Vj and of the vector V ⊤
j wj

merely requires the evaluation of scalar products which can easily be done according to Remark
18. A new basis vector is now defined by

ṽj+1 := Tkv

(

wj −
j
∑

i=1

αivi

)

, vj+1 := ṽj+1/ ‖ṽj+1‖ .

The projection of the residual onto the subspace W spanned by the columns of Wm =
[w1, . . . , wm] requires the solution of (W⊤

mAVm)y = W⊤
mr0. Again, the matrix W⊤

mAVm and
the vector W⊤

mr0 may be calculated by the evaluation of scalar products of tensors in hierarchi-
cal Tucker format.

Until now, we do not know whether the subspace V spanned by the columns of Vm was ”good”
enough to lead to a sufficient decrease in the residual. What we expect is that for increasing
values of kv, V attains similar properties as the exact Krylov subspace. To control the decrease
of the residual, we introduce a parameter ρ ∈ (0, 1) which is assumed to be small. If the new
residual rℓ −

∑m
i=1 yiwi fulfils

∥

∥

∥

∥

∥

rℓ −
m
∑

i=1

yiwi

∥

∥

∥

∥

∥

< (1 − ρ) ‖rℓ‖ , (12)

we have chosen a subspace V that guarantees a decrease of the residual with rate 1 − ρ. If
(12) is not fulfilled, we have to modify the subspace V such that it contains an element which

11

decreases the residual faster. We strongly expect that this is the case if we approximate the
exact Krylov space better. Therefore, we increase kv and construct a new set of basis vectors
by starting at (11) where we substitute the truncation operator Tkv by Tkv+1.

Assume now that (12) is fulfilled. Formally, the new iterate may be written as zℓ+1 :=
xℓ +Vmy. As the addition of tensors increases the rank, we also would like to apply a truncation
operator to the new iterate. In a similar way as before, we may truncate zℓ+1 by Tkx where
kx ∈ N is chosen such that the convergence is preserved. This means that we have to require

‖b − Axℓ+1‖ < ‖rℓ‖ (13)

where xℓ+1 := Tkx(zℓ+1). By subsequently increasing kx, we can find a value such that (13) is
fulfilled since for the exact iterate zℓ+1 we can rely on the bound (12). Thus we have arrived at
a new iterate xℓ+1 which is again given in tensor format of low rank. We have summarised all
steps in Algorithm 3.

As the truncation of tensors in hierarchical Tucker format scales like O(k4) for the node-wise
ranks, it is advantageous to keep all ranks as small as possible throughout the whole iteration
process. At first, this may seem unnatural as for this purpose we have to choose a small value of
ρ resulting in a slow convergence behaviour. But – as the numerical evidence shows – this policy
pays off, since we can perform a much higher number of iterations at the same computational
costs.

Algorithm 3 Projection method in hierarchical Tucker format

choose x0 and ρ ∈ (0, 1)
kv := 1, kx := 1
for ℓ = 0, 1, . . . do

rℓ := b − Axℓ

if ‖rℓ‖ / ‖b‖ < ε then

return xℓ

end if

repeat

construct v1, . . . , vm with T := Tkv as in lines 7 to 14 of Algorithm 2
solve (W⊤

mAVm)y = W⊤
mrℓ

kv := kv + 1
until ‖rℓ −

∑m
i=1 yiwi‖ < (1 − ρ) ‖rℓ‖

zℓ+1 := xℓ + Vmy
repeat

xℓ+1 := Tkx(zℓ+1)
kx := kx + 1

until ‖b − Axℓ+1‖ < ‖rℓ‖
end for

6 Multigrid Acceleration

In the previous section we have considered the solution of a general linear system in Kronecker
form. Many problems of practical interest however, require the solution of a linear system (1)
where the system matrix stems from the discretisation of a partial differential equation. In
this case GMRES type methods can suffer from large mode sizes nµ and their convergence rate
tends to 1 as nµ → ∞.

12

For elliptic problems of large scale, multigrid methods have become the method of choice due
to their fast convergence and linear scaling. A comprehensive introduction may be found in [11],
and we summarise the necessary basic ingredients in the following. It will turn out that one
can use the multigrid method for iterates in low rank tensor format and achieve linear scaling
in the mode size nµ as well as the order d of the tensor.

The main idea is to construct a hierarchy of grids (hence the name multigrid) which are used
to reduce different frequency components of the error. The basic ingredients of a multigrid
method for the solution of a linear system (1) are:

1. A hierarchy of discrete problems

Aℓxℓ = bℓ, Aℓ ∈ R
Nℓ×Nℓ , ℓ = 1, . . . , L,

where N1 < . . . < NL, NL = #I, such that the problem on the coarsest level ℓ = 1 may
be solved directly, two subsequent systems are strongly related, and the problem on the
finest level ℓ = L is the original problem with AL = A that has to be solved.

2. Prolongation and restriction operators

P ℓ
ℓ−1 : R

Nℓ−1 → R
Nℓ , Rℓ−1

ℓ : R
Nℓ → R

Nℓ−1

which transfer a vector from a grid on level ℓ to a vector on the next finer or coarser grid
on level ℓ + 1 or ℓ − 1.

3. A smoothing operator
xi+1

ℓ = Sℓ(x
i
ℓ, bℓ), ℓ = 1, . . . , L

that reduces high frequency components of the error.

Consider as an example a one-dimensional domain Ω = (0, 1). A hierarchy of grids with equidis-
tant nodes may be defined by Ωℓ := {i/2ℓ | 1 ≤ i < 2ℓ}. A typical choice of the prolongation
and restriction operator is then given by the corresponding matrices

P ℓ
ℓ−1 =

1

2

1
2
1 1

2
1 1

. . .

, Rℓ−1
ℓ =

1

4

1 2 1
1 2 1

. . .

.

The idea of a hierarchy of grids can be adapted to the multidimensional setting. Let Ω :=
Ω1 × . . . × Ωd and let Ωµ,ℓ be a hierarchy of grids in mode-µ direction µ ∈ {1, . . . , d}. Then

Ωℓ := Ω1,ℓ × . . . × Ωd,ℓ, ℓ = 1, . . . , L,

defines a hierarchy of grids for the domain Ω. Due to the product structure of the hierarchy of
grids, the prolongation and restriction operators possess a nice tensor product structure. Let
P ℓ

µ,ℓ−1 and Rℓ−1
µ,ℓ be prolongation and restriction operators in mode-µ-direction µ ∈ {1, . . . , d},

respectively. Then

P ℓ
ℓ−1 := P ℓ

1,ℓ−1 ⊗ . . . ⊗ P ℓ
d,ℓ−1, Rℓ

ℓ−1 := Rℓ−1
1,ℓ ⊗ . . . ⊗ Rℓ−1

d,ℓ ,

13

define prolongation and restriction operators for the hierarchy of grids Ωℓ.
The smoothing operator Sℓ is not required to be a good solver, but it should remove high

frequency components of the error. A typical choice of Sℓ is a Jacobi or a Gauss-Seidel method.
Here, for simplicity, we choose a Richardson method which is defined by

xi+1
ℓ := xi

ℓ + ωℓ(bℓ − Aℓx
i
ℓ)

where 0 < ωℓ < 2/̺(Aℓ) and ̺(Aℓ) is the spectral radius of Aℓ.
We still have to address how the linear systems on the coarsest level should be solved. For

the low-dimensional case, this is typically a small system which can be solved iteratively or by
direct methods. However, for high dimensions even the system on the coarsest level might be
too large. We therefore propose to use the projection method in hierarchical Tucker format to
solve this system. We have summarised the whole multigrid procedure in Algorithm 4.

Algorithm 4 xℓ = multigrid(ℓ, xℓ, bℓ)

if ℓ = 1 then

solve A1x1 = b1 by Algorithm 3
return x1

else

for i = 1 to ν1 do

xℓ := xℓ + ωℓ(bℓ − Aℓxℓ)
end for

dℓ−1 := Rℓ−1
ℓ (bℓ − Aℓxℓ)

eℓ−1 := 0
for i = 1 to γ do

eℓ−1 = multigrid(ℓ − 1, eℓ−1, dℓ−1)
end for

xℓ := xℓ + P ℓ
ℓ−1eℓ−1

for i = 1 to ν2 do

xℓ := xℓ + ωℓ(bℓ − Aℓxℓ)
end for

return xℓ

end if

In practice it might be advisable not to use the multigrid method directly, but as a pre-
conditioner in an iterative solver. For the iterative solver one can use again the GMRES-type
projection method that we have presented here.

7 Application in an Eigenvalue Solver

We consider the problem to find eigenvalues and corresponding eigenvectors of large matrices,
i.e. we seek a pair (λ, x) ∈ R × R

I \ {0} such that

Ax = λx.

In many applications, one specifically wants to find the smallest or the largest eigenvalue λmin or
λmax for a given matrix, the eigenvectors corresponding to a few largest or smallest eigenvalues,
or all eigenvectors corresponding to eigenvalues in a specific part of the complex plane. The

14

largest eigenvalue may be found by the well-known power method which only requires matrix-
vector products. The smallest eigenvalue can be determined by the inverse power method
which relies on the subsequent solution of linear systems of the form Ax(ℓ+1) = y(ℓ) where
y(ℓ+1) := x(ℓ+1)/

∥

∥x(ℓ+1)
∥

∥. The convergence of this iteration process may be controlled by
means of the Rayleigh quotient ΛA(x) := 〈x,Ax〉/〈x, x〉. For an exact eigenpair (λ, x), we
have λ = ΛA(x). It is therefore a good strategy to use the Rayleigh quotient λ(ℓ) := ΛA(x(ℓ))
to estimate an eigenvalue from its approximate eigenvector. The inverse power method may
be stopped if

∥

∥Ax(ℓ) − λ(ℓ)x(ℓ)
∥

∥ < ε for some ε > 0. We have summarised the inverse power
method in Algorithm 5.

Algorithm 5 Inverse power method

choose ε > 0 and y(1) ∈ R
I with

∥

∥y(1)
∥

∥ = 1
for ℓ = 1, 2, . . . do

solve Ax(ℓ+1) = y(ℓ)

y(ℓ+1) := x(ℓ+1)/
∥

∥x(ℓ+1)
∥

∥

λ(ℓ+1) := ΛA(y(ℓ+1))
if
∥

∥Ay(ℓ+1) − λ(ℓ+1)y(ℓ+1)
∥

∥ < ε then

return y(ℓ+1)

end if

end for

In general, any eigenvalue of A which is sufficiently separated from the rest of the spectrum,
may be found by introducing a shift σ ∈ R which is assumed to be close to the sought eigenvalue.
More precisely, let us assume that A has the eigenvalues λ1, . . . , λN and that

|σ − λi| < min{|σ − λj| : 1 ≤ j ≤ N, j 6= i}. (14)

If σ 6= λi, we have

Ax = λix ⇐⇒ (A − σI)−1x =
1

λi − σ
x.

Hence, (A−σI)−1 has the same eigenvectors as A. Moreover, 1/(λi−σ) is the largest eigenvalue
of (A− σI)−1 which can be found by the inverse power method. The application of the inverse
power method to the shifted matrix A−σI is commonly known as a shift-invert strategy. Note
that if A is given in Kronecker format, also the matrix A − σI possesses this structure as the
identity may be written as I = I1 ⊗ . . .⊗ Id. In this case, the linear system in Algorithm 5 may
therefore be solved by the projection method in hierarchical Tucker format.

For eigenvalue problems of large scale it might not be advisable to apply the shift-invert
strategy directly since the involved solution of a linear system by a GMRES-type method may
suffer from a slow convergence rate. In analogy to the solution of linear systems of large scale,
elliptic eigenvalue problems may efficiently be treated using a multigrid method [10]. A detailed
analyses of this multigrid eigenvalue scheme has been given in [1]. As in the usual multigrid
method, the eigenvalue problem has only to be solved on the coarsest level. The eigenvectors on
the finer levels result from the application of prolongation, restriction and smoothing operators.
This setting can easily be adapted to the multi-dimensional case where we propose to use the
projection method in hierarchical Tucker format as a solver on the coarsest level. This allows
us to treat elliptic eigenvalue problems of large scale in high dimensions.

15

8 Numerical Examples

The following numerical examples shall illustrate the potential of the projection method for the
solution of linear systems in high dimensions. We are specifically interested in the following
questions:

• Does the method converge sufficiently fast for all dimensions d?

• Does the hierarchical rank of x only increase moderately throughout the iteration process?

• Can we combine large dimensions d with a large mode size nµ?

Fortunately, we can answer all questions in the affirmative, at least for the range of examples
that we consider. For simplicity, let now n := n1 = . . . = nd. In all examples, the dimension m
of the subspace V is bounded by m = 10 but it may also be smaller when the basis vectors of
V become linearly dependent. The parameter ρ introduced in (12) has a strong impact on both
the convergence rate of the method and on the hierarchical ranks of the basis vectors spanning
V. The higher the value of ρ, the higher is the convergence rate of the method implying a low
number of iteration steps. On the other hand, a higher value of ρ leads to higher ranks for the
basis vectors spanning V which implies a much longer time for the truncation of vectors. The
choice of ρ is therefore a trade-off and we are not aware of an optimal value. As a conservative
choice which works well in all examples we have set ρ := 10−4.

Example 19 (Symmetric case, [8]). As a symmetric example, we consider the Poisson equation
in d dimensions, i.e.

−∆u = f in Ω = (0, 1)d,

u = 0 on Γ := ∂Ω.

A finite difference discretisation with mesh-width h leads to a linear system Ax = b where A is
of the form (4) with

Aµ =
1

h2

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

.

Let the right-hand side be given such that it corresponds to the solution u =
∏d

µ=1(xµ−x2
µ). We

now fix the value of n := 10 and check the convergence of the projection method for dimensions
d = 4, 8, 16, 32, 64. The decrease of the relative residual ‖Ax − b‖ / ‖b‖ is shown in Fig. 1.
Remarkably, the maximal hierarchical rank kx remains bounded by 1 throughout the whole
solution process.

Example 20 (Comparison to CG method). In the symmetric case, it is also possible to im-
plement a conjugate gradient method that completely relies on truncated calculations in hier-
archical Tucker format. To investigate this method, we made two experiments. First, we fixed
ε = 10−10 and truncated all vectors in the CG method with an accuracy of ε where all node-wise
ranks were determined adaptively. Second, we fixed an upper bound on the hierarchical rank
kx = 5 and compared both cases for d = 8 and n = 10 in Example 19. In both experiments the
decrease of the residual is similar up to an accuracy of 10−3 (cf. Fig. 2) but then the sequence
of iterates with fixed rank stagnates. The convergence can only be maintained by increasing the

16

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 5 10 15 20 25 30 35 40 45 50

re
la

tiv
e

re
si

du
al

iteration

Poisson: n = 10

d = 4
d = 8

d = 16
d = 32
d = 64

 0

 0.5

 1

 1.5

 2

 5 10 15 20 25 30 35 40 45 50

hi
er

ar
ch

ic
al

 r
an

k(
x)

iteration

Poisson: n = 10

d = 4
d = 8

d = 16
d = 32
d = 64

Figure 1: Left: relative residual ‖Ax − b‖ / ‖b‖ for the Poisson equation with n = 10, right:
maximal hierarchical rank kx.

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 2 4 6 8 10 12 14 16 18 20

re
la

tiv
e

re
si

du
al

iteration

Poisson: d = 8, n = 10

eps = 1e-10
k = 5

 0

 5

 10

 15

 20

 2 4 6 8 10 12 14 16 18 20

hi
er

ar
ch

ic
al

 r
an

k(
x)

iteration

Poisson: d = 8, n = 10

eps = 1e-10
k = 5

Figure 2: Truncated CG method applied to the Poisson equation for d = 8 and n = 10 with
fixed accuracy or fixed rank. Left: relative residual ‖Ax − b‖ / ‖b‖. Right: hierarchical
rank kx.

hierarchical rank up to 15. It seems clear that this behaviour stems from the fact that for fixed
ranks the gradient directions in the CG method lose orthogonality. This can only be overcome
by increasing the ranks further which has a strong impact on running times as the truncation
of tensors in hierarchical Tucker format scales like O(k4). It therefore pays off to work with an
iterative scheme which is based on calculations with tensors of fixed rank instead of determining
all ranks adaptively for a fixed accuracy. This in turn means that it is advantageous to develop
solution methods in tensor format that do not only rely on orthogonal directions like the CG
method but to consider more general strategies like the GMRES-type method that we present
here.

Example 21 (Non-symmetric case, [8]). As a non-symmetric example, we consider the
convection-diffusion equation

−∆u + c⊤∇u = f in Ω = (0, 1)d,

u = 0 on Γ := ∂Ω.

A finite difference discretisation combined with a second order convergent scheme for the con-

17

vection term leads to a linear system Ax = b where A is of the form (4) with

Aµ =
1

h2

2 −1
−1 2 −1

. . .
. . .

. . .

−1 2 −1
−1 2

+
cµ

4h

3 −5 1

1 3 −5
. . .

. . .
. . .

. . . 1
1 3 −5

1 3

.

As in the last example, let the right hand side be given such that it corresponds to the solution
u =

∏d
µ=1(xµ−x2

µ) and fix n := 10. For cµ := 10, the matrix A is still positive definite. We now
check the convergence for dimensions d = 4, 8, 16, 32, 64. The decrease of the relative residual
‖Ax − b‖ / ‖b‖ is shown in Fig. 3. In this case, the maximal hierarchical rank of x increases
moderately throughout the whole iteration process.

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 50 100 150 200 250 300 350 400

re
la

tiv
e

re
si

du
al

iteration

Convection: n = 10, c = 10

d = 4
d = 8

d = 16
d = 32
d = 64

 0

 2

 4

 6

 8

 10

 50 100 150 200 250 300 350 400

hi
er

ar
ch

ic
al

 r
an

k(
x)

iteration

Convection: n = 10, c = 10

d = 4
d = 8

d = 16
d = 32
d = 64

Figure 3: Left: Relative residual ‖Ax − b‖ / ‖b‖ for the convection-diffusion equation with n =
10 and cµ = 10, right: maximal hierarchical rank kx.

Example 22 (Multigrid). For matrices stemming from a finite difference or finite element
discretisation of a partial differential equation, typically the condition number increases with
the refinement level of the discretisation. One way to overcome this, is to use a preconditioner in
the solution process. Here, we focus on a multigrid method which has similar effects. Consider
first a naive way of solving Example 19 for fixed dimension d = 4 and increasing mode size n.
As Fig. 4 illustrates, this leads to a rapid increase in the number of iteration steps. Using a
multigrid method, the dependence on n can be completely removed as Fig. 5 illustrates. In
another experiment, we fix the mode size n = 1023 and test the convergence of the multigrid
method for dimensions d = 4, 8, 16, 32. As Fig. 5 demonstrates, the convergence seems to be
independent of the dimension which allows for the solution of really large problems.

Example 23 (Eigenvalues). As an example for finding eigenvalues and corresponding eigen-
vectors of a given matrix, let us look at the eigenvalue problem for the Laplace operator

−∆u = λu in Ω := (0, 1)d,

u = 0 on Γ := ∂Ω.

The eigenvalues of the corresponding finite difference matrix A are given by

λ(i1,...,id) = 2(n + 1)2
d
∑

µ=1

(

1 − cos
iµπ

n + 1

)

, 1 ≤ iµ ≤ n.

18

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 0 200 400 600 800 1000 1200 1400 1600 1800 2000

re
la

tiv
e

re
si

du
al

iteration

Poisson: d = 4

n = 8
n = 16
n = 32
n = 64

n = 128

Figure 4: Relative residual ‖Ax − b‖ / ‖b‖ for the Poisson equation with d = 4

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 2 4 6 8 10 12 14

re
la

tiv
e

re
si

du
al

iteration

Poisson: d = 4

n = 1023
n = 2047
n = 4095
n = 8191

n = 16383

 1e-08

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 2 4 6 8 10 12 14

re
la

tiv
e

re
si

du
al

iteration

Poisson: n = 1023

d = 4
d = 8

d = 16
d = 32

Figure 5: Relative residual ‖Ax − b‖ / ‖b‖ for the multigrid method applied to the Poisson equa-
tion. Left: d = 4. Right: n = 1023.

We are interested in the calculation of eigenvalues and corresponding eigenvectors for the fol-
lowing three cases:

• the minimal eigenvalue λ1 := λ(1,...,1),

• an intermediate eigenvalue λ2 := λ(2,...,2),

• the maximal eigenvalue λn := λ(n,...,n).

Note that λ1, λ2, and λn are simple eigenvalues of A. The shift-invert strategy may be applied
to all three cases if we choose a shift σ that is close enough to the sought eigenvalue. In this
example, we take

σ1 := λ1 − 2(n + 1)2(1 − cos(π/(n + 1))),

σ2 := λ2 − 1
8(n + 1)2 |cos(3π/(n + 1)) − cos(2π/(n + 1))| ,

σn := λn + 2(n + 1)2(1 − cos(π/(n + 1))),

respectively. Note that in all three cases condition (14) is fulfilled. In a first experiment, we
apply the shift-invert strategy for λ1 in dimension d = 4, 8, 16, 32 and fix n = 10. The result is

19

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 2 3 4 5 6 7 8 9 10

er
ro

r

iteration

Laplace Eigenvalue: n = 10

d = 4
d = 8

d = 16
d = 32

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 2 4 6 8 10 12 14 16 18 20

er
ro

r

iteration

Laplace Eigenvalue: d = 4, n = 10

lambda 1
lambda 2
lambda n

Figure 6: Left: error
∥

∥Ax(ℓ) − λ(ℓ)x(ℓ)
∥

∥ of the shift-invert strategy with shift σ1 applied to the
Laplace eigenvalue problem with n = 10. Right: error for d = 4 and n = 10 with
shifts σ1, σ2 and σn.

shown in Fig. 6. Second, we apply the shift-invert strategy for λ1, λ2, λn with fixed d = 4 and
n = 10 (cf. Fig. 6).

As the first experiment illustrates, the convergence of the shift invert-strategy for the smallest
eigenvalue seems to be independent of the dimension. The second experiment demonstrates that
we also obtain convergence in the case of an intermediate and the maximal eigenvalue. Here, the
convergence behaviour slightly differs from the previous case. At first, the approximate eigen-
vector tends to converge to an eigenvector belonging to an eigenvalue different from the sought
one. After some iterations, the error increases again and thereafter the correct eigenvector is
found. In particular, one has to take care if an intermediate eigenvalue needs to be calculated.
On the one hand, the shift has to be chosen quite carefully in order to approximate the correct
eigenvalue. On the other hand, the system matrix (A − σI) becomes indefinite which has a
negative influence on the convergence behaviour of our method resulting in a very high number
of iterations. The calculation of an intermediate eigenvalue may therefore require some more
sophisticated techniques which are out of the scope of this article.

Example 24 (Eigenvalue Multigrid). Elliptic eigenvalue problems with a large mode size n may
efficiently been treated using a multigrid eigenvalue scheme, cf. [10], [1]. Here, we apply the
eigenvalue multigrid method to the previous example with fixed mode size n = 1023 and look
for the smallest eigenvalue λ1. In the multigrid scheme, we use eight different levels where the
eigenvalue problem is only solved on the coarsest level. The decrease of the error for dimensions
d = 4, 8, 16 is shown in Fig. 7.

As this final example demonstrates, the projection method in hierarchical Tucker format
perfectly fits into the setting of multidimensional eigenvalue problems. The combination with
a multigrid scheme allows for applications of large scale in high dimensions.

References

[1] L. Banjai, S. Börm, and S. Sauter. FEM for elliptic eigenvalue problems: how coarse can the
coarsest mesh be chosen? An experimental study. Comput. Visual. Sci., 11(4–6):363–372,
2008.

20

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 2 3 4 5

er
ro

r

iteration

Laplace Eigenvalue: n = 1023

d = 4
d = 8

d = 16

Figure 7: Error
∥

∥Ax(ℓ) − λ(ℓ)x(ℓ)
∥

∥ of the eigenvalue multigrid method applied to the Laplace
eigenvalue problem on the finest level with n = 1023.

[2] Gregory Beylkin and Martin J. Mohlenkamp. Numerical operator calculus in higher di-
mensions. Proc. Natl. Acad. Sci. USA, 99:10246–10251, 2002.

[3] Gregory Beylkin and Martin J. Mohlenkamp. Algorithms for numerical analysis in high
dimensions. SIAM J. Sci. Comput., 26(6):2133–2159, 2005.

[4] S. Börm and R. Hiptmair. Analysis of tensor product multigrid. Numer. Algorithms,
26(3):219–234, 2001.

[5] Lars Eldén and Berkant Savas. Krylov subspace methods for tensor computations. Tech-
nical Report 2, Linköpings Universitet, 2009.

[6] Mike Espig. Effiziente Bestapproximation mittels Summen von Elementartensoren in hohen

Dimensionen. PhD thesis, Universität Leipzig, 2008.

[7] Mike Espig, Wolfgang Hackbusch, Thorsten Rohwedder, and Reinhold Schneider. Varia-
tional calculus with sums of elementary tensors of fixed rank. Technical Report 52, Max
Planck Institute for Mathematics in the Sciences, 2009.

[8] Lars Grasedyck. Existence and computation of low kronecker-rank approximations for large
linear systems of tensor product structure. Computing, 72(3-4):247–265, 2004.

[9] Lars Grasedyck. Hierarchical singular value decomposition of tensors. Technical Report 27,
Max Planck Institute for Mathematics in the Sciences, 2009. accepted for SIMAX.

[10] Wolfgang Hackbusch. On the computation of approximate eigenvalues and eigenfunctions
of elliptic operators by means of a multi-grid method. SIAM J. Numer. Anal., 6(2):201–215,
1979.

[11] Wolfgang Hackbusch. Multi-grid methods and applications. Springer, 1985.

[12] Wolfgang Hackbusch, Boris N. Khoromskij, Stefan A. Sauter, and Eugene E. Tyrtyshnikov.
Use of tensor formats in elliptic eigenvalue problems. Technical Report 78, Max Planck
Institute for Mathematics in the Sciences, 2008.

[13] Wolfgang Hackbusch, Boris N. Khoromskij, and Eugene E. Tyrtyshnikov. Approximate
iterations for structured matrices. Numer. Math., 109(3):365–383, 2008.

21

[14] Wolfgang Hackbusch and Stefan Kühn. A new scheme for the tensor representation. J.

Fourier Anal. Appl., 15(5):706–722, 2009.

[15] Daniel Kressner and Christine Tobler. Krylov subspace methods for linear systems with
tensor product structure. SIAM J. Matrix Anal. Appl., 31(4):1688–1714, 2010.

[16] L. De Lathauwer, B. de Moor, and J. Vandewalle. A multilinear singular value decompo-
sition. SIAM J. Matrix Anal. Appl., 21(4):1253–1278, 2000.

[17] Yousef Saad. Iterative Methods for Sparse Linear Systems, Second Edition. SIAM, 2003.

22

