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Black Box Approximation of Tensors in

Hierarchical Tucker Format

Jonas Ballani ∗, Lars Grasedyck, Melanie Kluge †

October 1, 2010

We derive and analyse a scheme for the approximation of order d tensors A ∈
R

n×···×n in the hierarchical (H-) Tucker format, a dimension-multilevel variant
of the Tucker format and strongly related to the TT format. For a fixed rank
parameter k, the storage complexity of a tensor in H-Tucker format is O(dk3 +
dnk) and we present a (heuristic) algorithm that finds an approximation to a
tensor in the H-Tucker format in O(dk4 + d log(d)nk2) by inspection of only
dk3 + d log(d)nk2 entries. Under mild assumptions, tensors in the H-Tucker
format are reconstructed. For general tensors we derive error bounds that are
based on the approximability of matrices (matricizations of the tensor) by few
outer products of its rows and columns. The construction parallelizes with respect
to the order d and we also propose an adaptive approach that aims at finding the
rank parameter for a given target accuracy ε automatically.

Keywords: Hierarchical Tucker, Tensor Rank, Tensor Approximation, Tensor
Train, Cross Approximation.
MSC: 15A69, 65F99

1 Introduction

In this article we provide a heuristic that aims at finding — by inspecting only a few entries
of A — an accurate representation of a tensor

A ∈ R
n1×···×nd, n1, . . . , nd ∈ N,

in a data-sparse low rank tensor format, namely the hierarchical (H-) Tucker format [6, 5].
The tensor A could, e.g., be given by a multivariate function f : [0, 1]d → R on a tensor grid:

Ai1,...,id = f(ξi1, . . . , ξid), ξi ∈ [0, 1].
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For the tensor A, respectively the function f , we require that there exists a low (hierarchical)
rank approximation — which is unknown to us. Our goal is to find, i.e. construct, the data-
sparse low rank representation without forming the whole tensor. In almost all practical
applications where tensors arise it is not known a priori how a low rank representation
should be obtained, and thus our approximation scheme can be regarded as a general tool
for the conversion into the H-Tucker format. Once the tensor is in the H-Tucker format, one
can perform standard arithmetic operations with it in a complexity O(dk4 + k2

∑d
µ=1 nµ),

where k is an internal rank parameter.
A crucial part for the approximation is to determine the necessary entries of the tensor

A that have to be inspected, the so-called pivot elements. We provide an adaptive and
incremental construction alongside with an error estimate and stopping criterion.

In [10] a cross approximation algorithm is proposed for the TT format [9, 8] which is a
special subclass of the H-Tucker format. Our results can be regarded as an extension to
the H-Tucker format, but we also provide an adaptive pivoting strategy, an incremental
construction as well as error bounds for the approximation (under reasonable assumptions).

In Section 2 we introduce the hierarchical Tucker format [6, 5] and the corresponding
hierarchical rank. In Section 3 we present the hierarchical black box approximation scheme
as well as the adaptive pivoting strategy. In Section 4 we derive a priori error bounds and
a plausible but heuristic bound. In the last Section 5 we provide a number of numerical
examples and counterexamples that underline the efficiency of the method as well as its
limitations.

2 The Hierarchical Tucker Format

In the hierarchical Tucker format, the sparsity of the representation of a tensor is determined
by the hierarchical rank which is the rank of certain matricizations of the tensor. For the
rest of the article we use the notation for index sets

I := I1 × · · · × Id, Iµ := {1, . . . , nµ}, µ = 1, . . . , d.

2.1 Definition of the H-Tucker Format

Definition 1 (Matricization) For a tensor A ∈ R
I, a collection of dimension indices

t ⊂ {1, . . . , d} and the complement s := {1, . . . , d} \ t the matricization (cf. Figure 1)

A(t) ∈ R
It×Is, It := ×

µ∈t
Iµ, Is := ×

µ∈s
Iµ,

is defined by its entries (
A(t)

)
(iµ)µ∈t,(iµ)µ∈s

:= Ai1,...,id.

Example 2 The matricizations of the tensor

Ai1,i2,i3,i4 := i1 + 2(i2 − 1) + 4(i3 − 1) + 8(i4 − 1), i1, i2, i3, i4 ∈ {1, 2}

2



A({1}) =




◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ ◦ • ◦ ◦ ◦ ◦ ◦




Figure 1: Left: Position of entries of a 4×4×4 tensor A. Right: Matricization A({1}) for the
node t = {1}. The blue dots form a column in the matricization.

are

A({1}) =

[
1 3 5 7 9 11 13 15
2 4 6 8 10 12 14 16

]
, A({2}) =

[
1 2 5 6 9 10 13 14
3 4 7 8 11 12 15 16

]
,

A({3}) =

[
1 2 3 4 9 10 11 12
5 6 7 8 13 14 15 16

]
, A({4}) =

[
1 2 3 4 5 6 7 8
9 10 11 12 13 14 15 16

]
,

A({2,3,4}) = (A({1}))T , A({1,2}) =




1 5 9 13
2 6 10 14
3 7 11 15
4 8 12 16


 , A({3,4}) = (A({1,2}))T .

Based on the matricization of a tensor A with respect to several sets t ⊂ {1, . . . , d} one
can define the hierarchical rank and the hierarchical Tucker format. In order to be able to
perform efficient arithmetics, we require the sets t to be organized in a tree.

T 0

I {1, 2, 3, 4, 5, 6, 7}
��=ZZ~

T 1

I {1, 2, 3, 4}
��=ZZ~

{5, 6, 7}
��=ZZ~

T 2

I {1, 2}
���AAU

{3, 4}
���AAU

{5, 6}
���AAU

{7}

T 3

I {1}{2} {3}{4} {5}{6}

T 0

I{1, 2, 3, 4, 5, 6, 7}
��=ZZ~

T 1

I{1} {2, 3, 4, 5, 6, 7}
��=ZZ~

T 2

I{2} {3, 4, 5, 6, 7}
��=ZZ~

T 3

I{3} {4, 5, 6, 7}
��=ZZ~

T 4

I{4} {5, 6, 7}
��=ZZ~

T 5

I{5} {6, 7}
��=ZZ~

T 6

I{6} {7}

Figure 2: Left: The canonical dimension tree. Right: The degenerate TT-tree.

Definition 3 (Dimension tree) A dimension tree or mode cluster tree TI for dimension
d ∈ N is a tree with root D := {1, . . . , d} and depth p such that each node t ∈ TI is either

1. a leaf and singleton t = {µ} or

2. the union of two disjoint successors S(t) = {t1, t2}:

t = t1 ∪̇ t2. (1)
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The level ℓ of the tree is defined as the set of all nodes having a distance of exactly ℓ to the
root, cf. Figure 2. We denote the level ℓ of the tree by

T ℓ
I := {t ∈ TI | level(t) = ℓ}.

The set of leaves of the tree is denoted by L(TI) and the set of interior (non-leaf) nodes is
denoted by I(TI). A node of the tree is a so-called mode cluster (a union of modes).

Definition 4 (Hierarchical rank, H-Tucker) Let TI be a dimension tree. The hierarchi-
cal rank (kt)t∈TI

of a tensor A ∈ R
I is defined by

∀t ∈ TI : kt := rank(A(t)).

The set of all tensors of hierarchical rank (node-wise) at most (kt)t∈TI
, the so-called H-Tucker

tensors, is denoted by

H-Tucker((kt)t∈TI
) := {A ∈ R

I | ∀t ∈ TI : rank(A(t)) ≤ kt}.

Remark 5 (Canonical dimension tree and TT-tree) In the hierarchical format only
some of the possible subsets t of all modes appear. A special case is the so-called TT-format
[8] with corresponding TT-rank and TT-tree, where all nodes are of the form (cf. Figure 2)

t = {q} or t = {q, . . . , d}, q = 1, . . . , d.

This tree is of maximal depth (cf. [5, Section 5] for a discussion).
In the canonical case the tree is of minimal depth p := ⌈log2(d)⌉ := min{i ∈ N0 | i ≥

log2(d)} with mode clusters of the form (cf. Figure 2)

{1, . . . , d}
{1, . . . , ⌈d/2⌉}, {⌈d/2⌉ + 1, . . . , d},
{1, . . . , ⌈d/4⌉}, {⌈d/4⌉ + 1, . . . , ⌈2d/4⌉}, {⌈2d/4⌉+ 1, . . . , ⌈3d/4⌉}, {⌈3d/4⌉+ 1, . . . , d},
etc.

2.2 Arithmetics in the H-Tucker Format

The storage complexity for a tensor in the (CP) format (cf. [7] and the references therein)
with rank k, mode size n and order d is O(dkn). In the H-Tucker format the storage
complexity will turn out to be roughly one factor k higher.

Lemma 6 (Hierarchical Tucker format, [5]) Let TI be a dimension tree and let A ∈
H-Tucker((kt)t∈TI

). Then A can be represented by transfer tensors (Bt)t∈I(TI) (for interior
nodes) and mode frames (Ut)t∈L(TI) (for leaves), where Bt ∈ R

kt×kt1
×kt2 for S(t) = {t1, t2}

and Ut ∈ R
It×kt.

The storage complexity in terms of number of entries for Bt, Ut from the previous lemma is

Storage((Bt)t∈I(TI), (Ut)t∈L(TI)) ≤ (d − 1)k3 + k
d∑

µ=1

nµ, k := max
t∈TI

kt, (2)

i.e. linear in the order d (provided that k is uniformly bounded) [5].
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Notation 7 For a matrix U ∈ R
I×J we denote by a single subscript Uj ∈ R

I the j-th column
of the matrix. If this is ambiguous then the notation U·,j or U |I×{j} is used.

For each of the interior nodes the corresponding mode frame is implicitly given by the
following nestedness property:

(Ut)i =

kt1∑

j=1

kt2∑

ℓ=1

(Bt)i,j,ℓ(Ut1)j ⊗ (Ut2)ℓ (3)

In particular the tensor A is given by A = UD for the root D. In the following section we
explain how the mode frames Ut for the leaves t and the transfer tensors Bt for the interior
nodes can be constructed efficiently.

Basic arithmetic operations like linear combinations of H-Tucker tensors can be performed
exact, but the representation rank (kt)t∈TI

will be proportional to the sum of the represen-
tation ranks. It is therefore necessary to reduce (truncate) the rank of a tensor A by finding
(almost) best approximations with prescribed rank, Tk(A), or (almost) minimal rank approx-
imations with prescribed truncation accuracy, Tε(A). Such a truncation is possible in the
H-Tucker format. The details are not relevant here, we just summarize the main result from
[5].

Let TI be a dimension tree and A ∈ H-Tucker((kt)t∈I). Let Abest denote the best approxi-
mation of A in H-Tucker((k̃t)t∈TI

) and Tk̃(A) the truncation of A to rank (k̃t)t∈TI
. Then the

truncation is quasi-optimal,

‖A − Tk̃(A)‖ ≤
√

2d − 3‖A − Abest‖,

and it can be computed in

O
(

d max
t∈TI

k4
t +

d∑

µ=1

nµk2
µ

)
.

For the proof we refer to [5, Theorem 3.11, Remark 3.12, Lemma 4.9].
We conclude that the H-Tucker format is almost as data-sparse as the (CP)-model, and

additionally it allows for a formatted (truncated) arithmetic in quasi-optimal complexity
(one additional factor k) and with quasi-optimal accuracy (proportionality factor

√
2d − 3).

3 Black Box Approximation and Pivoting

The approximation of tensors in the H-Tucker format is based on two concepts: One has
to approximate the matricizations A(t) (Definition 1) by low rank kt, and one has to ensure
that the approximations are nested (3).

3.1 Approximation of Matricizations

In [4] the approximability of matrices by outer products of some of its columns and rows is
analysed. The main theorem states that for every matrix A(t) ∈ R

It×It′ and every rank k
approximation

‖A(t) − R‖2 ≤ ε, rank(R) ≤ k,
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there exist k row indices Pt = {p(t)
1 , · · · , p

(t)
k } ⊂ It and column indices Pt′ = {q(t′)

1 , · · · , q
(t′)
k } ⊂

It′ and a matrix S such that

Ã(t) := A(t)|It×Pt′
· S−1 · A(t)|Pt×It′

, S ∈ R
Pt×Pt′ ,

approximates the whole matrix with an error of the size

‖A(t) − Ã(t)‖2 ≤ ε
(
1 + 2

√
k
(√

#It +
√

#It′

))
.

A practical construction based on successive rank one approximations is given in [1]. The

∼∼

631
2

4

7

13 6
2
4
7

Figure 3: Rows and columns of A(t) are used for a low rank approximation.

idea is to construct rank one approximations of the remainder:

X1 := A(t)
·,q1

1

A
(t)
p1,q1

A(t)
p1,· ,

Xj := Xj−1 + (A(t) − Xj−1)·,qj

1

(A(t) − Xj−1)pj ,qj

(A(t) − Xj−1)pj ,· , j = 2, . . . , k. (4)

The final approximation is given by Ã(t) := Xk. In the form above, the matrix S is

S = A(t)|Pt×Pt′
, Pt := {p1, . . . , pk}, Pt′ := {q1, . . . , qk}.

In principle, we use exactly this approximation scheme with three necessary modifications:

1. The column and row vectors can only be formed when the index sets It, It′ are small,
i.e., when t, t′ are leaves of the tree. Whereas in [10] this is done by fixing an initial
guess of all pivot elements and then optimizing them with respect to one mode at a
time, we will choose an entirely different approach.

2. The pivot elements are best chosen such that S has maximal volume. Since this is in
general practically impossible, one instead chooses the pivot indices pj , qj such that the
remainder

∣∣(A(t) − Xj−1)pj ,qj

∣∣ is maximized over the whole matrix (full pivoting), or a
column/row (partial pivoting), respectively. We will use a maximization over crosses
of the tensor as it was introduced in [3, Algorithm 2: Greedy Initial Pivot Search].

3. The choice of possible row and column pivots is restricted in order to ensure the nest-
edness property.
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3.2 Choice of Pivot Elements

In the incremental construction (4), we will choose pivot elements (pj , qj) from a restricted
set (required in Subsection 3.3)

pj ∈ Pt ⊂ It, qj ∈ Pt′ = It̄ × Pf ′ ⊂ It′ ,

where Pf ′ = {q(f ′)
1 , . . . , q

(f ′)
k } is the set of column pivot indices for the father f of t and t̄

(S(f) = {t, t̄ }).
In each step of construction (4) we thus aim at finding

(pj , qj) := argmax
pj∈It,qj∈It̄×Pf ′

∣∣∣(A(t) − Xj−1)pj ,qj

∣∣∣.

This is done by a simple greedy search in the entries of the remainder (similar to Algorithm 2
in [3]) starting at random entries and then looking for entries by varying only one component
at a time. The procedure is given in Algorithm 1.

Algorithm 1 Greedy Pivot Search

1: Given: an initial index (iµ)µ∈D, D := {1, . . . , d}, a subset It̄×Pf ′ ⊂ It′ , t′ = {1, . . . , d}\t,
a tensor A ∈ R

I and an approximation Xj−1 of A.
2: for ℓ = 1, 2, . . . , ℓmax (typically ℓmax := 3) do
3: for µ ∈ f = t ∪ t̄ do
4: Modify the µ-th index by

iµ := argmax
iµ∈{1,...,nµ}

∣∣(A − Xj−1)(i1,...,id)

∣∣

5: end for
6: Modify the remaining indices in f ′ = D \ f by

(iµ)µ∈f ′ := argmax
(iµ)µ∈f ′∈Pf ′

∣∣(A − Xj−1)(i1,...,id)

∣∣

7: end for
8: Return value: the pivot index (i1, . . . , id).

3.3 Ensuring Nestedness

Let t be a node with sons S(t) = {t1, t2}. We denote the three corresponding approximations
of the matricizations by

Nt := AtS
−1
t A′

t, At := A(t)|It×Pt′
, St := A(t)|Pt×Pt′

, A′
t := A(t)|Pt×It′

, (5)

Nt1 := At1S
−1
t1 A′

t1 , At1 := A(t1)|It1
×Pt′

1

, St1 := A(t1)|Pt1
×Pt′

1

, A′
t1 := A(t1)|Pt1

×It′
1

, (6)

Nt2 := At2S
−1
t2

A′
t2
, At2 := A(t2)|It2

×Pt′
2

, St2 := A(t2)|Pt2
×Pt′

2

, A′
t2

:= A(t2)|Pt2
×It′

2

. (7)
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In the leaves t we set
(Ut)i := A(t)|·,qi

, qi ∈ Pt′ .

For all interior nodes we define

(Bt)i,j,ℓ :=
∑

p∈Pt1

∑

q∈Pt2

(S−1
t1

)qj ,pA
(t)
(p,q),qi

(S−1
t2

)qℓ,q, qi ∈ Pt′ . (8)

The construction breaks down if a non-zero pivot element could not be determined (the
matrix S becomes singular). This can either be the case when the tensor is of rank j−1 and
the remainder zero, or it could be that there are non-zero elements that we could not find.
For a discussion and counterexamples see, e.g. [2].

The construction (4) with the greedy pivot search and setup of the transfer tensors (8) is
adaptive in the sense that the size of the pivot element gives an estimate for the ‖ · ‖∞ norm
of the remainder. Also, one can update an approximation that is not accurate enough by
continuation of the pivot search — independently for each node t. This is a difference to the
procedure in [9], where the rank distribution has to be determined or guessed in advance.
In the numerical tests we will see that the (heuristic) error estimation gives good results. In
the following section we will estimate the approximation error under stronger assumptions.

Lemma 8 (Complexity) The complexity Nsetup for the setup of the mode frames Ut for
the leaves t ∈ L(TI) and the transfer tensors Bt for the interior nodes t ∈ I(TI) is

Nsetup = O
(

dk4 + log(d)k2

d∑

µ=1

nµ

)
, k := max

t∈TI

kt.

The number of entries Nentries required from A is of the size

Nentries = O
(

dk3 + log(d)k2
d∑

µ=1

nµ

)
.

Proof: (Nsetup): Once the pivot elements are determined, it is clear that the setup of all

Ut for leaves t is of complexity
∑d

µ=1 nµkµ (copy of entries from A to Ut). For the transfer

tensors the ktkt1kt2 entries of A
(t)
(p,q),qi

are transformed by the inverses S−1
t1 , S−1

t2 which in sum

provides the first part of the claimed estimate. The setup of S−1
t is of complexity at most

O(k3
t ), and this is required kt times (j = 1, . . . , kt). In total, this is of complexity O(k4

t ),
which gives again the first term in the estimate.

The evaluation of Xj−1 in a single point (i, ℓ) is of complexity k2
t

∑
µ∈t nµ because the low

rank form allows the evaluation of the form

Ã
(t)
i,ℓ = (At)i,·S

−1
t (A′

t)·,ℓ.

When one of the two indices is fixed and we compute entries, e.g., for several indices i,
then S−1

t (A′
t)·,ℓ can be precomputed in O(k2

t ). Afterwards, each evaluation is of complexity
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kt

∑
µ∈t nµ. For all j = 1, . . . , k and all nodes of the tree this sums up to the second term in

the claimed estimate:

∑

t∈TI

(
k2

t

∑

µ∈t

nµ + k3
t

)
≤ dk3 + k2

∑

t∈TI

∑

µ∈t

nµ ≤ dk3 + k2

depth(TI)∑

ℓ=0

∑

t∈T ℓ
I

∑

µ∈t

nµ

≤ dk3 + k2

depth(TI)∑

ℓ=0

d∑

µ=1

nµ ≤ dk3 + k2(log(d) + 1)
d∑

µ=1

nµ

(Nentries): The entries required for the setup of Ut, Bt are O(
∑d

µ=1 nµkµ +dk3). For the pivot

search we have in each node t a number of evaluations O(
∑

µ∈t nµk2
t ) (kt iterations), and

summing this up over all nodes gives O(log(d)k2
∑d

µ=1 nµ).

4 A Priori Error Estimation

If we would approximate each matricization A(t) independently by a skeleton decomposition
with error ε, then form the orthogonal factor Qt,

QtRt = A(t)|It×Pt′
,

and use QtQ
T
t as orthogonal projector

(πtA)(t) := QtQ
T
t A(t),

then [5, Theorem 3.11, Remark 3.12] shows that the projection

AQ :=

(
∏

t∈TI

πt

)
A

fulfills
‖A − AQ‖ ≤

√
2d − 3 ε, AQ ∈ H-Tucker((kt)t∈TI

).

The exact projection with the orthogonal factors, however, is practically impossible. Instead,
we try to approximate

A(t)|·,i ≈
kt1∑

j=1

kt2∑

ℓ=1

A(t1)|·,qj
⊗ A(t2)|·,qℓ

· (Bt)i,j,ℓ,

where Bt was defined in (8). We will now estimate the error of this approximation step.
From [2] it is well known that the pivot search can fail for matrices. Here, we will assume

that the pivot search is successful for all matricizations.

Assumption 9 We assume that for every matricization A(t) the pivot search (Algorithm 1)
is almost optimal, i.e., for some δ ≥ 0

|(A(t) − Xj−1)pj ,qj
| ≥ 1

1 + δ
‖A(t) − Xj−1‖∞, j = 1, . . . , k

9



Further, we assume that for each matricization the error of the non-nested approximation is
bounded by ε:

‖A(t) − Xkt‖∞ ≤ ε

We use the same notation as in the previous section. We define the defect matrices

Ft := (A(t) − Nt)|It×Pt′
, Ft1 := (A(t1) − Nt1)|It1

×(It2
×Pt′)

, Ft2 := (A(t2) − Nt2)|It2
×(It1

×Pt′)
.

Lemma 10 Let Nt1 , Nt2 from (6),(7) be approximations of A(t1), A(t2) with defect Ft1 , Ft2.
Then for i1 ∈ It1 , i2 ∈ It2 and q ∈ Pt′ holds

A
(t)
(i1,i2),q

=

kt1∑

j=1

kt2∑

ℓ=1

A
(t1)

i1,q1

j

· A(t2)

i2,q2

ℓ

· (Bt)q,j,ℓ + (Ft)(i1,i2),q

(
q1
j ∈ Pt′

1
, q2

ℓ ∈ Pt′
2

)

for the defect tensor

(Ft)(i1,i2),q :=

kt1∑

α=1

(At1S
−1
t1

)i1,α(Ft2)i2,(α,q) + (Ft1)i1,(i2,q)

Proof: First, we approximate A
(t)
(i1,i2),q

by (Nt1)i1,(i2,q) with error (Ft1)i1,(i2,q), then we approx-

imate (A′
t1
)α,(i2,q) by (Nt2)i2,(α,q) with error (Ft2)i2,(α,q). Both together yield the stated error.

In the defect tensor Ft each entry is possibly amplified by At1S
−1
t1 . This factor is estimated

next.

Lemma 11 Let At1 , St1 denote the factors from (6). Then for i1 ∈ It1 and α ∈ Pt1 holds

|(At1S
−1
t1 )i1,α| ≤ δk := k(1 + δ)2(2 + δ)k−2.

Proof: The pivot elements are denoted by pj , qj. We introduce the notation

Gj
· := −(A(t1) − Xj−1)−1

pj ,qj
(A(t1) − Xj−1)pj ,·

and observe that due to Assumption 9: ‖Gj‖∞ ≤ 1 + δ.
The first approximation step is

X1 = A(t1)
·,q1

(A(t1)
p1,q1

)−1A(t1)
p1,· =

[
A(t1)

·,q1

]
[1]
[
−G1

]T
.

One can in a straight-forward way derive that the approximation after k steps is of the form

Xk =
[
A(t1)

·,q1

∣∣A(t1)
·,q2

∣∣ . . .
∣∣A(t1)

·,qk

] [
M0

∣∣M1

∣∣M2

∣∣ · · ·
∣∣Mk−1

] [
− G1

∣∣ · · ·
∣∣− Gk

]T

with vectors

M ′
1(l) :=

[
G1

ql

]
∈ R

1, . . . , M ′
k−1(l) :=

[
M ′

k−2(l) + M ′
k−2(k − 1)Gk−1

ql

Gk−1
ql

]
∈ R

k−1, l ≤ k

10



and their extensions to vectors of length k by appending a one and zeros:

M0 :=




1
0
...
0


 ∈ R

k, Mj :=




M ′
j(j + 1)

1
0
...
0



∈ R

k, Mk−1 :=

[
M ′

k−1(k)
1

]
∈ R

k.

We use the notation Y k := Mk−1(−Gk)T and show per induction
∥∥Y k

∥∥
∞

≤ (1 + δ)2(2 + δ)k−2. (9)

From Assumption 9 we derive the maximum norm bound
∥∥Y k

∥∥
∞

= ‖Mk−1‖∞
∥∥Gk

∥∥
∞

≤ (1 + δ) ‖Mk−1‖∞ .

For k = 3 we can directly estimate

∥∥Y 3
∥∥
∞

≤ (1 + δ) ‖M2‖∞ = (1 + δ)

∥∥∥∥∥∥




G1

q3
+ G1

q2
G2

q3

G2
q3

1





∥∥∥∥∥∥
∞

≤ (1 + δ)(
∣∣G1

q3

∣∣+
∣∣G1

q2
G2

q3

∣∣) ≤ (1 + δ)
(
(1 + δ) + (1 + δ)2

)
= (1 + δ)2(2 + δ).

By induction the assertion (9) follows from

∥∥Y k
∥∥
∞

≤ (1 + δ) ‖Mk−1‖∞ = (1 + δ)

∥∥∥∥∥∥




M ′

k−2(k) + M ′
k−2(k − 1)Gk−1

qk

Gk−1
qk

1





∥∥∥∥∥∥
∞

≤ (1 + δ)




∥∥∥∥∥∥




M ′
k−2(k)
0
0




∥∥∥∥∥∥
∞

+

∥∥∥∥∥∥



M ′

k−2(k − 1)Gk−1
qk

Gk−1
qk

1




∥∥∥∥∥∥
∞




≤ (1 + δ)
(
(1 + δ)(2 + δ)k−3 + (1 + δ)2(2 + δ)k−3

)
= (1 + δ)2(2 + δ)k−2

The final assertion follows from (9):

∥∥At1S
−1
t1

∥∥
∞

=

∥∥∥∥
[
M0

∣∣M1

∣∣M2

∣∣ · · ·
∣∣Mk−1

] [
− G1

∣∣ · · ·
∣∣− Gk

]T∥∥∥∥
∞

≤ k
∥∥Y k

∥∥
∞

≤ k(1 + δ)2(2 + δ)k−2

In the following we will assume for simplicity kt = k for all nodes t. We use the results of
the above lemmata to get a bound of the defect tensor Ft in the mode cluster t.

Lemma 12 Let the matricizations A(t), A(t1) and A(t2) with S(t) = {t1, t2} fulfill Assumption
9. We use the notation from Lemma 11. Then the error bound of the approximation of A(t)

is given by
‖Ft‖∞ ≤ ε (k δk + 1) =: ε c(k)

11



Proof: According to Assumption 9 and Lemma 11 we obtain

‖Ft‖∞ = max
i1,i2,q

∣∣(Ft)(i1,i2),q

∣∣ ≤ max
i1,i2,q

k∑

α=1

∣∣(At1S
−1
t1

)i1,α

∣∣ ∣∣(Ft2)i2,(α,q)

∣∣+ ε

≤ kε max
i1,α

∣∣(At1S
−1
t1

)i1,α

∣∣+ ε ≤ ε(kδk + 1).

Let t1, t2 be mode clusters on level p − 1 with sons

S(t1) = {s1, s2}, S(t2) = {s3, s4}.

Then the above error bound of the approximation is described by the constant c(k). In order
to define the error bound for all other levels l < p, we denote this constant by

cp−1(k) := c(k).

Lemma 13 Let t ∈ TI \ L(TI) be a mode cluster on level l − 1 with the sons t1 and t2 ∈
TI \ L(TI) on level l. By using the notation

A
(t)

(i1,i2),q
:=

k∑

j=1

k∑

ℓ=1

(Ñt1)i1,q1

j
· (Ñt2)i2,q2

ℓ
· (Bt)q,j,ℓ

with Ñt1 , Ñt2 approximations of Nt1 , Nt2 with ‖·‖∞ error εcl(k), the error of the approximation
in level l − 1 is bounded by

∥∥∥(A(t) − A
(t)

)|It×Pt′

∥∥∥
∞

≤ εcl−1(k), cl−1(k) := c(k) + k3 δk cl(k)2.

Proof: For the short notation

Ã
(t)
(i1,i2),q

:=

k∑

j=1

k∑

ℓ=1

A
(t1)

i1,q1

j

· A(t2)

i2,q2

ℓ

· (Bt)q,j,ℓ

we obtain

∣∣(Ã(t) − A
(t)

)(i1,i2)

∣∣ ≤
∣∣∣

k∑

j=1

k∑

ℓ=1

(Bt)q,j,ℓ (A(t1) − Ñt1)i1,q1

j
· (A(t2) − Ñt2)i2,q2

ℓ

∣∣∣.

From the definition (8) of the transfer tensor, and due to the pivoting (with stopping tolerance
ε) we obtain the bound

|(Bt)q,j,ℓ| ≤ k δk/ε.

Both together yield

∥∥∥(A(t) − A
(t)

)|It×Pt′

∥∥∥
∞

≤
∥∥∥(A(t) − Ã(t))|It×Pt′

∥∥∥
∞

+
∥∥∥(Ã(t) − A

(t)
)|It×Pt′

∥∥∥
∞

≤ ε (c(k) + k3 δk cl(k)2).

12



The error bound of the tensor is the bound of the approximation in the root D with sons
S(D) := {t, t′}. The entry (m, n) of the cross approximation in the root D is of the form

k∑

j=1

k∑

ℓ=1

A
(t)
m,j A

(t′)
n,ℓ (BD)1,j,ℓ =

k∑

j=1

k∑

ℓ=1

A
(t)
m,j (BD)1,j,ℓ A

(t)
ℓ,n

=
(
A(t)

∣∣
It×Pt′

(BD)1,·,· A
(t)
∣∣
Pt×It′

)
m,n

Lemma 14 We use the notation of Lemma 13 and additionally

BD :=
(
A(t)

∣∣
Pt×Pt′

)−1
.

The error of the tensor approximation is given by

∥∥A − A
∥∥
∞

≤ ε (1 + 2 c1(k) δk + c1(k)2). (10)

Proof: By the triangle inequality we get

∥∥A − A
∥∥
∞

=
∥∥∥A(t) − A

(t) ∣∣
It×Pt′

(
A(t)

∣∣
Pt×Pt′

)−1
A

(t) ∣∣
Pt×It′

∥∥∥
∞

≤
∥∥A(t) − Nt

∥∥
∞

+
∥∥∥Nt − A

(t) ∣∣
It×Pt′

(
A(t)

∣∣
Pt×Pt′

)−1
A(t)

∣∣
Pt×It′

∥∥∥
∞

+
∥∥∥A(t) ∣∣

It×Pt′

(
A(t)

∣∣
Pt×Pt′

)−1
[
A(t)

∣∣
Pt×It′

− A
(t) ∣∣

Pt×It′

]∥∥∥
∞

≤ ε + ε c1(k) δk + ε c1(k)
∥∥∥A(t) ∣∣

It×Pt′

(
A(t)

∣∣
Pt×Pt′

)−1
∥∥∥
∞

≤ ε + ε c1(k) δk + ε c1(k) δk + ε c1(k)2 = ε (1 + 2 c1(k) δk + c1(k)2).

Remark 15 The bound from equation (10) can be bounded by

ε (1 + 2 c1(k) δk + c1(k)2) ≤ ε k2d−3(c̄(k))2d−2.

This bound is only a worst case estimate. In practice the true error seems to be at most a
small constant times ε, which is underlined by the numerical experiments of the following
section.

5 Numerical Experiments

As a first example, we consider a tensor A ∈ R
I given by the entries

A(i1,...,id) :=

(
d∑

µ=1

i2µ

)−1/2

. (11)
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It is well known that A can be approximated by a tensor AE ∈ R
I given as a sum of

exponentials,

AE :=

k∑

j=1

ωj

d⊗

µ=1

aj,µ, (aj,µ)iµ = exp(−i2µαj/d),

such that
‖A − AE‖∞ ≤ 7.315 × 10−10.

The weights ωj and exponents αj were obtained from W. Hackbusch and are available on
the webpage (k = 35, R = 1000000)

http://www.mis.mpg.de/scicomp/EXP_SUM.

We now consider A as a tensor given in a black box fashion and seek a tensor AB ∈ H-Tucker
such that AB ≈ A. In particular, we are interested in how the error norms ‖A − AB‖2 and
‖A − AB‖∞ will behave if we prescribe an accuracy of ε > 0 in the black box algorithm.
Since we cannot measure both norms directly, we will look at the error norm ‖AE − AB‖2

instead of ‖A − AB‖2 which can easily be computed within the H-Tucker framework. For
the ‖ · ‖∞ norm, we will randomly choose a set of indices J ⊂ I with #J = 105 and look at
the error

‖A − AB‖J ,∞ , ‖X‖J ,∞ := max
(i1,...,id)∈J

∣∣X(i1,...,id)

∣∣ .

In a first experiment, we fix n := n1 = . . . = nd := 32 and look at the errors for dimen-
sions d = 8, 16, 32, 64 (cf. Figure 4). The effective rank keff which corresponds to a storage
complexity of O((d− 1)k3

eff + keff

∑d
µ=1 nµ) and the timings needed for the black box approx-

imation are reported in Table 1. In a second experiment, we fix d := 16 and look at the
errors, effective ranks, and timings for different mode sizes n = 32, 64, 128, 256. The results
are summarised in Figure 5 and Table 2. Note that the accuracy for the Euclidean norm
cannot be smaller than the accuracy of the exponential sum.
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Figure 4: A as in (11). Left: ‖AE − AB‖2 / ‖AE‖2. Right: ‖A − AB‖J ,∞ / ‖A‖∞ for fixed
n = 32

As a second example, we consider a tensor A ∈ R
I given by the entries

A(i1,...,id) := exp



−

(
d∑

µ=1

(iµ/nµ)2

)1/2


 . (12)
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d
ε 8 16 32 64

1e-01 3.0 3.0 3.0 3.0
1e-02 4.6 4.8 4.5 4.9
1e-03 6.1 7.0 6.7 8.5
1e-04 8.1 8.6 9.8 10.7
1e-05 10.0 11.1 11.5 12.8
1e-06 11.0 13.1 13.4 15.5
1e-07 13.3 14.9 15.9 17.6
1e-08 15.2 16.2 18.4 20.7
1e-09 17.0 18.8 20.7 23.5
1e-10 18.2 20.4 23.2 25.0
1e-11 19.6 22.9 26.3 27.8
1e-12 21.1 23.8 27.3 30.3

d
ε 8 16 32 64

1e-01 0.03s 0.04s 0.08s 0.15s
1e-02 0.05s 0.11s 0.17s 0.38s
1e-03 0.10s 0.19s 0.33s 1.03s
1e-04 0.17s 0.25s 0.58s 1.38s
1e-05 0.24s 0.43s 0.80s 1.89s
1e-06 0.29s 0.63s 1.08s 3.11s
1e-07 0.42s 0.76s 1.70s 4.11s
1e-08 0.56s 0.90s 2.31s 5.77s
1e-09 0.69s 1.23s 3.00s 7.19s
1e-10 0.63s 1.46s 3.61s 8.31s
1e-11 0.77s 1.81s 4.87s 10.46s
1e-12 0.84s 1.96s 5.17s 12.59s

Table 1: A as in (11). Left: effective rank keff. Right: time for the black box algorithm for
fixed n = 32
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Figure 5: A as in (11). Left: ‖AE − AB‖2 / ‖AE‖2. Right: ‖A − AB‖J ,∞ / ‖A‖∞ for fixed
d = 16

Again, one can find a tensor AE ∈ R
I given as a sum of exponentials (k = 40, R = 300) such

that
‖A − AE‖∞ ≤ 8.507 × 10−9.

The results for the approximation of A by the black box algorithm are summarised in Figures
6 and 7.

In a third example, we tested the black box algorithm for an H-Tucker tensor A for
which the entries of the transfer tensors and of the leaf frames were chosen randomly. We
then artificially forced the node-wise singular values to roughly decay like αj, α ∈ (0, 1),
j = 1, . . . , k. In a first experiment, we fix d := 8 and n := 32 and set all ranks to k = 20. We
now look at the Euclidean error for α = 0.25 corresponding to a fast decay of the singular
values (cf. Table 3). The accuracy of the smallest singular value which is in the range of
≈ 10−12 can be met by the black box algorithm. In a second experiment, we set all ranks to
k = 20 and look at the Euclidean error for α = 0.75 corresponding to a slow decay of the
singular values. Again, the accuracy of the smallest singular value which is in the range of
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n
ε 32 64 128 256

1e-01 3.0 3.0 3.0 3.0
1e-02 4.6 4.6 4.7 4.6
1e-03 6.8 6.1 5.6 5.7
1e-04 8.2 8.5 7.4 7.2
1e-05 9.4 10.1 9.4 8.7
1e-06 11.3 11.0 10.5 10.0
1e-07 13.2 12.9 12.1 11.4
1e-08 14.3 15.1 14.0 13.0
1e-09 16.2 16.3 15.5 14.5
1e-10 17.8 17.8 16.8 16.3
1e-11 19.4 19.6 19.3 17.5
1e-12 20.7 20.4 20.5 19.2

n
ε 32 64 128 256

1e-01 0.01s 0.02s 0.07s 0.22s
1e-02 0.01s 0.04s 0.14s 0.43s
1e-03 0.03s 0.08s 0.20s 0.69s
1e-04 0.04s 0.13s 0.34s 0.97s
1e-05 0.05s 0.18s 0.55s 1.44s
1e-06 0.07s 0.21s 0.63s 2.06s
1e-07 0.10s 0.29s 0.85s 2.42s
1e-08 0.12s 0.41s 1.11s 3.17s
1e-09 0.15s 0.47s 1.38s 3.87s
1e-10 0.19s 0.59s 1.59s 5.27s
1e-11 0.24s 0.77s 2.24s 5.83s
1e-12 0.28s 0.80s 2.63s 7.56s

Table 2: A as in (11). Left: effective rank keff. Right: time for the black box algorithm for
fixed d = 16
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Figure 6: A as in (12). Left: ‖AE − AB‖2 / ‖AE‖2. Right: ‖A − AB‖J ,∞ / ‖A‖∞ for fixed
n = 32
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Figure 7: A as in (12). Left:‖AE − AB‖2 / ‖AE‖2. Right: ‖A − AB‖J ,∞ / ‖A‖∞ for fixed
d = 16
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≈ 10−3 can be met by the black box algorithm (cf. Table 3).

ε ‖A − AB‖2 / ‖A‖2 keff

1e-01 4.71e-04 2.0
1e-02 3.98e-04 2.3
1e-03 3.83e-04 2.9
1e-04 2.02e-05 4.1
1e-05 3.75e-06 5.2
1e-06 2.64e-07 6.5
1e-07 5.23e-08 8.0
1e-08 2.17e-09 9.3
1e-09 1.51e-10 10.8
1e-10 2.22e-11 12.1
1e-11 1.74e-12 13.7
1e-12 2.64e-13 14.5

ε ‖A − AB‖2 / ‖A‖2 keff

5.00e-01 6.29e-02 2.0
2.50e-01 1.10e-01 2.4
1.25e-01 6.07e-02 3.6
6.25e-02 3.98e-02 4.9
3.12e-02 1.91e-02 8.6
1.56e-02 1.58e-02 9.1
7.81e-03 4.97e-03 12.8
3.91e-03 3.75e-03 13.7
1.95e-03 1.28e-03 16.9
9.77e-04 4.33e-04 18.3
4.88e-04 3.37e-05 19.4
2.44e-04 5.32e-06 19.7

Table 3: A chosen randomly. Error and effective ranks for fixed d := 8, n := 32, k = 20.
Left: α = 0.25. Right: α = 0.75

Conclusions

For tensors that can be represented exactly in the H-Tucker format with representation
ranks (kt)t∈TI

, we can reconstruct these by inspection of only O(dk3 + d log(d)nk2) entries
(k := maxt∈TI

kt, n := maxµ∈D nµ) in complexity O(dk4 + d log(d)nk2). A similar result is
obtained by Oseledets and Tyrtyshnikov [10] for the TT format. The difference is not only
that our construction applies for the H-Tucker format, but also that the pivot elements as
well as their number are chosen adaptively and incremental to achieve a prescribed accuracy
ε in the ‖ · ‖∞-norm. One can therefore estimate the error of the remainder during the
construction, one can determine the necessary ranks and one can update an already computed
approximation if a higher accuracy is required.

Under rather strong assumptions we have derived an error bound for the approximation
in the case that the tensor has a higher (possibly full) representation rank. In the numerical
examples we observe that the error in the ‖ · ‖∞-norm is typically close to the prescribed
stopping tolerance ε, i.e., in practice there is almost no error amplification. However, the
construction is heuristic and thus there can always be exceptions. It is therefore notable that
even for random tensors the numerical results show a stable and almost optimal approxima-
tion.
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