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A WELL-BALANCED RECONSTRUCTION OF WET/DRY FRONTS FOR1

THE SHALLOW WATER EQUATIONS2

ANDREAS BOLLERMANN † , GUOXIAN CHEN ‡† , ALEXANDER KURGANOV § , AND SEBASTIAN NOELLE †∗
3

Abstract.4

In this paper, we construct a well-balanced, positivity preserving finite volume scheme for the shallow water equations based5

on a continuous, piecewise linear discretization of the bottom topography. The main new technique is a special reconstruction6

of the flow variables in wet-dry cells, which is presented in this paper for the one dimensional case. We realize the new7

reconstruction in the framework of the second-order semi-discrete central-upwind scheme from (A. Kurganov and G. Petrova,8

Commun. Math. Sci., 2007). The positivity of the computed water height is ensured following (A. Bollermann, S. Noelle and9

M. Lukáčová, Commun. Comput. Phys., 2010): The outgoing fluxes are limited in case of draining cells.10

Key words. Hyperbolic systems of conservation and balance laws, Saint-Venant system of shallow water equations, finite11

volume methods, well-balanced schemes, positivity preserving schemes, wet/dry fronts.12

AMS subject classifications. 76M12, 35L6513

1. Introduction14

We study numerical methods for the Saint-Venant system of shallow water equations [3],15

which is widely used for the flow of water in rivers or in the ocean. In one dimension, the16

Saint-Venant system reads:17 ht+(hu)x=0,

(hu)t+
(
hu2+

1

2
gh2
)
x
=−ghBx,

(1.1)18

subject to the initial conditions

h(x,0)=h0(x), u(x,0)=u0(x),

where h(x,t) is the fluid depth, u(x,t) is the velocity, g is the gravitational constant, and19

the function B(x) represents the bottom topography, which is assumed to be independent20

of time t and possibly discontinuous. The systems (1.1) is considered in a certain spatial21

domain X and if X ̸=R the Saint-Venant system must be augmented with proper boundary22

conditions.23

In many applications, quasi steady solutions of the system (1.1) are to be captured using24

a (practically affordable) coarse grid. In such a situation, small perturbations of steady25

states may be amplified by the scheme and the so-called numerical storm can spontaneously26

develop [19]. To prevent it, one has to develop a well-balanced scheme—a scheme that is27
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2 A Well-Balanced Reconstruction of Wet/Dry Fronts

capable of exactly balancing the flux and source terms so that “lake at rest” steady states,28

u=0, w :=h+B=Const. (1.2)29

are preserved within the machine accuracy. Here, w denotes the total water height or free30

surface. Examples of such schemes can be found in [1, 2, 4, 5, 8, 9, 11–14,19–23,30,31].31

Another difficulty one often has to face in practice is related to the presence of dry areas32

(island, shore) in the computational domain. As the eigenvalues of the Jacobian of the33

fluxes in (1.1) are u±
√
gh, the system (1.1) will not be strictly hyperbolic in the dry areas34

(h=0), and if due to numerical oscillations h becomes negative, the calculation will simply35

break down. It is thus crucial for a good scheme to preserve the positivity of h (positivity36

preserving schemes can be found, e.g., in [1, 2, 4, 11,12,20,21]).37

We would also like to point out that when h=0 the “lake at rest” steady state (1.2)38

reduces to39

hu=0, h=0, (1.3)40

which can be viewed as a “dry lake”. A good numerical scheme may be considered “truly”41

well-balanced when it is capable of exactly preserving both “lake at rest” and “dry lake”42

steady states, as well as their combinations corresponding to the situations, in which the43

domain X is split into two nonoverlapping parts X1 (wet area) and X2 (dry area) and the44

solution satisfies (1.2) in X1 and (1.3) in X2.45

We focus on Godunov-type schemes, in which a numerical solution realized at a certain46

time level by a global (in space) piecewise polynomial reconstruction, is evolved to the next47

time level using the integral form of the system of balance laws. In order to design a well-48

balanced scheme for (1.1), it is necessary that this reconstruction respects both the “lake at49

rest” (1.2) and “dry lake” (1.3) steady-state solutions as well as their combinations. On the50

other hand, to preserve positivity we have to make sure that the reconstruction preserves51

a positive water height for all reconstructed values. Both of this has been achieved by52

the hydrostatic reconstruction introduced by Audusse et al. [1], based on a discontinuous,53

piecewise smooth discretisation of the bottom topography. In this paper, we consider a54

continuous, piecewise linear reconstruction of the bottom. We propose a piecewise linear55

reconstruction of the flow variables that also leads to a well-balanced, positivity preserving56

scheme. The new reconstruction is based on the proper discretization of a front cell in the57

situation like the one depicted in Figure 1.1. The picture depicts the real situation with a58

sloping shore, and we see a discretization of the same situation that seems to be the most59

suitable from a numerical perspective. We also demonstrate that the correct handling of60

(1.2), (1.3) and their combinations leads to a proper treatment of non-steady states as well.61

Provided the reconstruction preserves positivity, we can prove that the resulting central-62

upwind scheme is positivity preserving. In fact, the proof from [12] carries over to the new63
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Fig. 1.1. “Lake at rest” steady state w with dry boundaries upon a piecewise smooth topography B (dashed line), which is
reconstructed using piecewise linear, continuous B̃ (full line).

scheme, but with a possibly severe time step constraint. We therefore adopt a technique64

from [2] and limit outgoing fluxes whenever the so-called local draining time is smaller than65

the global time step. This approach ensures positive water heights without a reduction of66

the global time step.67

The paper is organized as follows. In §2, we briefly review the well-balanced positivity68

preserving central-upwind scheme from [12]. A new positivity preserving reconstruction is69

presented in §3. The well-balancing and positivity preserving properties properties of the70

new scheme are proven in §4. Finally, we demonstrate the performance of the proposed71

method in §5.72

2. A Central-Upwind Scheme for the Shallow Water Equations73

Our work will be based on the central-upwind scheme proposed in [12]. We will therefore74

begin with a brief overview of the original scheme.75

We introduce a uniform grid xα :=α∆x, with finite volume cells Ij := [xj− 1
2
,xj+ 1

2
] of length76

∆x and denote by Uj(t) the cell averages of the solution U := (w,hu)T of (1.1) computed at77

time t:78

Uj(t)≈
1

∆x

∫
Ij

U(x,t)dx. (2.1)79

We then replace the bottom function B with its continuous, piecewise linear approximation80

B̃. To this end, we first define81

Bj+ 1
2
:=

B(xj+ 1
2
+0)+B(xj+ 1

2
−0)

2
, (2.2)82

which in case of a continuous function B reduces to Bj+ 1
2
=B(xj+ 1

2
), and then interpolate83



4 A Well-Balanced Reconstruction of Wet/Dry Fronts

between these points to obtain84

B̃(x)=Bj− 1
2
+
(
Bj+ 1

2
−Bj− 1

2

)
·
x−xj− 1

2

∆x
, xj− 1

2
≤x≤xj+ 1

2
. (2.3)85

From (2.3), we obviously have86

Bj := B̃(xj)=
1

∆x

∫
Ij

B̃(x)dx=
Bj+ 1

2
+Bj− 1

2

2
. (2.4)87

The central-upwind semi-discretization of (1.1) can be written as the following system of88

time-dependent ODEs:89

d

dt
Uj(t)=−

Hj+ 1
2
(t)−Hj− 1

2
(t)

∆x
+Sj(t), (2.5)90

where Hj+ 1
2
are the central-upwind numerical fluxes and Sj is an appropriate discretization91

of the cell averages of the source term:92

Sj(t)≈
1

∆x

∫
Ij

S(U(x,t),B(x))dx, S := (0,−ghBx)
T . (2.6)93

Using the definitions (2.2) and (2.4), we write the second component of the discretized source94

term (2.6) as (see [11] and [12] for details)95

S
(2)

j (t) :=−ghj

Bj+ 1
2
−Bj− 1

2

∆x
. (2.7)96

The central-upwind numerical fluxes Hj+ 1
2
are given by:97

Hj+ 1
2
(t)=

a+
j+ 1

2

F(U−
j+ 1

2

,Bj+ 1
2
)−a−

j+ 1
2

F(U+
j+ 1

2

,Bj+ 1
2
)

a+
j+ 1

2

−a−
j+ 1

2

98

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

−a−
j+ 1

2

[
U+

j+ 1
2

−U−
j+ 1

2

]
, (2.8)99

where we use the following flux notation:100

F(U,B) :=

(
hu,

(hu)2

w−B
+
g

2
(w−B)2

)T

. (2.9)101

The values U±
j+ 1

2

=(w±
j+ 1

2

,h±
j+ 1

2

·u±
j+ 1

2

) represent the left and right values of the solution at102

point xj+ 1
2
obtained by a piecewise linear reconstruction103

q̃(x) := qj+(qx)j(x−xj), xj− 1
2
<x<xj+ 1

2
, (2.10)104
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of q standing for w and u respectively with h±
j+ 1

2

=w±
j+ 1

2

−Bj+ 1
2
. To avoid the cancellation

problem near dry areas, we define the average velocity by

uj :=

{
(hu)j/hj, if hj ≥ ϵ,

0, otherwise.

We choose ϵ=10−9 in all of our numerical experiments. This reconstruction will be second-105

order accurate if the approximate values of the derivatives (qx)j are at least first-order ap-106

proximations of the corresponding exact derivatives. To ensure a non-oscillatory nature of107

the reconstruction (2.10) and thus to avoid spurious oscillations in the numerical solution,108

one has to evaluate (qx)j using a nonlinear limiter. From the large selection of the limiters109

readily available in the literature (see, e.g., [6,10,13,16,18,25,29]), we chose the generalized110

minmod limiter ( [16,18,25,29]):111

(qx)j =minmod

(
θ
qj−qj−1

∆x
,
qj+1−qj−1

2∆x
, θ

qj+1−qj
∆x

)
, θ∈ [1,2], (2.11)112

where the minmod function, defined as113

minmod(z1,z2, ...) :=


minj{zj}, if zj >0 ∀j,
maxj{zj}, if zj <0 ∀j,
0, otherwise,

(2.12)114

is applied in a componentwise manner, and θ is a parameter affecting the numerical vis-115

cosity of the scheme. It is shown in [12] that this procedure (as well as any alternative116

“conventional” reconstruction, including the simplest first-order piecewise constant one, for117

which (wx)j ≡0) might produce negative values h±
j+ 1

2

near the dry areas (see [12]). There-118

fore, the reconstruction (2.10)–(2.12) must be corrected there. The correction algorithm119

used in [12] restores positivity of the reconstruction depicted in Figure 3.2, but destroys the120

well-balancing property. This is explained in §3, where we propose an alternative positivity121

preserving reconstruction, which is capable of exactly preserving the “lake at rest” and the122

“dry lake” steady states as well as their combinations.123

Finally, the local speeds a±
j+ 1

2

in (2.8) are obtained using the eigenvalues of the Jacobian
∂F
∂U

as follows:

a+
j+ 1

2

=max
{
u+
j+ 1

2

+
√

gh+
j+ 1

2

, u−
j+ 1

2

+
√
gh−

j+ 1
2

, 0
}
, (2.13)

a−
j+ 1

2

=min
{
u+
j+ 1

2

−
√
gh+

j+ 1
2

, u−
j+ 1

2

−
√

gh−
j+ 1

2

, 0
}
. (2.14)

Note that for Uj, U
±
j+ 1

2

and a±
j+ 1

2

, we dropped the dependence of t for simplicity.124

As in [12], in our numerical experiments, we use the third-order strong stability preserving125



6 A Well-Balanced Reconstruction of Wet/Dry Fronts

Runge-Kutta (SSP-RK) ODE solver (see [7] for details) to numerically integrate the ODE126

system (2.5). The timestep is restricted by the standard CFL condition,127

CFL :=
∆t

∆x
max

j
|a±

j+ 1
2

| ≤ 1

2
(2.15)128

For the examples of the present paper, results of the second and third order SSP-RK solvers129

are almost undistinguishable.130

3. A New Reconstruction at the Almost Dry Cells131

In the presence of dry areas, the central-upwind scheme described in the previous section132

may create negative water depth values at the reconstruction stage. To understand this, one133

may look at Figure 3.1, where we illustrate the following situation: The solution satisfies134

(1.2) for x>x⋆
w (where x⋆

w marks the waterline) and (1.3) for x<x⋆
w. Notice that cell j is135

a typical almost dry cell and the use of the (first-order) piecewise constant reconstruction136

clearly leads to appearance of negative water depth values there. Indeed, in this cell the total137

amount of water is positive and therefore wj >Bj, but clearly wj <Bj− 1
2
and thus hj− 1

2
<0.138

Bj− 1

2

Bj+ 1

2

xj x
∗

w

w
+

j− 1

2

w
−

j+ 1

2

wj

w
+

j+ 1

2
wj+1

Fig. 3.1. Wrong approximations of the wet/dry front by the piecewise constant reconstruction.

139

It is clear that replacement of the first-order piecewise constant reconstruction with a140

conventional second-order piecewise linear one will not guarantee positivity of the computed141

point values of h. Therefore, the reconstruction in cell j may need to be corrected. The142

correction proposed in [12] will solve the positivity problem by raising the water level at one143

of the cell edges to the level of the bottom function there and lowering the water level at the144

other edge by the same value (this procedure would thus preserve the amount of water in cell145

j). The resulting linear piece is shown in Figure 3.2. Unfortunately, as one may clearly see146

in the same figure, the obtained reconstruction is not well-balanced since the reconstructed147
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values w−
j+ 1

2

and w+
j+ 1

2

are not the same.

Bj− 1

2

Bj+ 1

2

xj x
∗

w

w
−

j+ 1

2

wj

w
+

j+ 1

2

wj+1

Fig. 3.2. Approximations of the wet/dry front by the positivity preserving but unbalanced piecewise linear reconstruction
from [12] .

148

Here, we propose an alternative correction procedure, which will be both positivity p-149

reserving and well-balanced even in the presence of dry areas. This correction bears some150

similarity to the reconstruction near dry fronts of depth-averaged granular avalanche models151

in [28]. However, in [28] the authors tracked a front running down the terrain, and did not152

treat well-balancing of equilibrium states. Let us assume that at a certain time level all com-153

puted values wj ≥Bj and the slopes (wx)j and (ux)j in the piecewise linear reconstruction154

(2.10) have been computed using some nonlinear limiter as it was discussed in §2 above. We155

also assume that at some almost dry cell j,156

Bj− 1
2
>wj >Bj+ 1

2
(3.1)157

(the case Bj− 1
2
<wj <Bj+ 1

2
can obviously be treated in a symmetric way) and that the158

reconstructed values of w in cell j+1 satisfy159

w+
j+ 1

2

>Bj+ 1
2

and w−
j+ 3

2

>Bj+ 3
2
, (3.2)160

that is, cell j+1 is fully flooded. This means that cell j is located near the dry boundary161

(mounting shore), and we design a well-balanced reconstruction correction procedure for cell162

j in the following way:163

We begin by computing the free surface in cell j (denoted by wj), which represents the164

average total water level in (the flooded parts of) this cell assuming that the water is at165

rest. The meaning of this formulation becomes clear from Figure 3.3. We always choose166

wj such that the area enclosed between the line with height wj and the bottom line equals167

the amount of water given by ∆x ·hj, where hj :=wj−Bj. The resulting area is either a168
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trapezoid (if cell j is a fully flooded cell as in Figure 3.3 on the left) or a triangle (if cell j is169

a partially flooded cell as in Figure 3.3 on the right), depending on hj and the bottom slope170

(Bx)j.

xj− 1

2

xj+ 1

2

B

wj

∆x · hj

x
∗

w

xj− 1

2

xj+ 1

2

B

wj

∆x · hj

Fig. 3.3. Computation of wj . Left: Fully flooded cell; Right: Partially flooded cell.

171

So if the cell j is a fully flooded cell, i.e. hj ≥ ∆x
2
|(Bx)j|, the free surface wj(x) is defined172

as173

wj(x)=wj,174

otherwise the free surface is a continuous piecewise linear function given by175

wj(x)=

Bj(x), if x<x⋆
w,

wj, otherwise,
(3.3)176

where x⋆
w is the boundary point separating the dry and wet parts in the cell j. It can be177

determined by the mass conservation,178

∆x ·hj =

∫ x
j+1

2

x
j− 1

2

(wj(x)−Bj(x))dx=

∫ x
j+1

2

x⋆
w

(wj−Bj(x))dx179

=
∆x⋆

w

2
(wj−Bj+ 1

2
)=

∆x⋆
w

2
(B(x⋆

w)−Bj+ 1
2
)=−(∆x⋆

w)
2

2
(Bx)j,180

where ∆x⋆
w=xj+ 1

2
−x⋆

w, thus181

∆x⋆
w=

√
2∆xhj

−(Bx)j
=

√
2hj

Bj− 1
2
−Bj+ 1

2

∆x, (3.4)182
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resulting in the free surface wj formula for the wet/dry cells,183

wj =Bj+ 1
2
+
√

2hj|Bj− 1
2
−Bj+ 1

2
| (3.5)184

Note that the limit for the distinction of cases in (3.3) is determined from the area of the185

triangle between the bottom line and the horizontal line at the level of Bj− 1
2
. We also note186

that if cell j satisfies (3.1), then it is clearly a partially flooded cell (like the one shown in187

Figure 3.3 on the right) with ∆x⋆
w<∆x.188

Remark 3.1. We would like to emphasize that if cell j is fully flooded, then the free surface is189

represented by the cell average wj (see the first case in equation (3.3)), while if the cell is only190

partially flooded, wj does not represent the free surface at all (see, e.g., Figure 3.1). Thus, in191

the latter case we need to represent the free surface with the help of another variable wj ̸=wj192

(see the second case in (3.3)), which is only defined on the wet part of cell j, [x⋆
w,xj+ 1

2
], and193

thus stays above the bottom function B, see Figure 3.3 (right).194

We now modify the reconstruction of h in the partially flooded cell j to ensure the well-195

balanced property. To this end, we first set w−
j+ 1

2

=w+
j+ 1

2

(which immediately implies that196

h−
j+ 1

2

:=w−
j+ 1

2

−Bj+ 1
2
=w+

j+ 1
2

−Bj+ 1
2
=:h+

j+ 1
2

) and determine the reconstruction of w in cell j197

via the conservation of hj in this cell. We distinguish between the following two possible198

cases. If the amount of water in cell j is sufficiently large (as in the case illustrated in Figure199

3.4 on the left), there is a unique h+
j− 1

2

≥0 satisfying200

hj =
1

2
(h−

j+ 1
2

+h+
j− 1

2

). (3.6)201

From this we obtain w+
j− 1

2

=h+
j− 1

2

+Bj− 1
2
, and thus the well-balanced reconstruction in cell j202

is completed.203

If the value of h+
j− 1

2

, computed from the conservation requirement (3.6) is negative, we204

replace a linear piece of w in cell j with two linear pieces as shown in Figure 3.4 on the right.205

The breaking point between the “wet” and “dry” pieces will be denoted by x⋆
j and it will be206

determined from the conservation requirement, which in this case reads207

∆x ·hj =
∆x⋆

j

2
h−
j+ 1

2

, (3.7)208

where

∆x⋆
j =
∣∣xj+ 1

2
−x⋆

j

∣∣.
Combining the above two cases, we obtain the reconstructed value209

h+
j− 1

2

=max
{
0, 2hj−h−

j+ 1
2

}
. (3.8)210



10 A Well-Balanced Reconstruction of Wet/Dry Fronts

Bj− 1

2

Bj+ 1

2

wj

w
+

j−1/2

w
±

j+ 1

2

xj− 1

2

xj+ 1

2

x
∗
w

xj

Bj− 1

2

Bj+ 1

2

wj

w
±

j+ 1

2

xj− 1

2

xj+ 1

2

x
∗
w

xj

x
∗
j

Fig. 3.4. Conservative reconstruction of w at the boundary with the fixed value w+

j+ 1
2

. Left: Linear reconstruction with

nonnegative h+

j− 1
2

; Right: Two linear pieces with h+

j− 1
2

=0.

We also generalize the definition of ∆x⋆
j and set211

∆x⋆
j :=∆x ·min

{
2hj

h−
j+ 1

2

, 1

}
, (3.9)212

which will be used in the proofs of the positivity and well-balancing of the resulting central-213

upwind scheme in §4. We summarize the wet/dry reconstruction in the following definition:214

Definition 3.2. (wet/dry reconstruction) For the sake of clarity, we denote the left and215

right values of the piecewise linear reconstruction (2.10) – (2.12) by Ũ±
j+ 1

2

=(w̃±
j+ 1

2

, h̃±
j+ 1

2

·216

ũ±
j+ 1

2

). The purpose of this definition is to define the final values U±
j+ 1

2

=(w±
j+ 1

2

,h±
j+ 1

2

·u±
j+ 1

2

),217

which are modified by the wet/dry reconstruction.218

Case 1. w̄j ≥Bj− 1
2
and w̄j ≥Bj+ 1

2
: there is enough water to flood the cell for flat lake.219

1A. w̃+
j− 1

2

≥Bj− 1
2
and w̃−

j+ 1
2

≥Bj+ 1
2
: the cell is fully flooded, and we set U±

j+ 1
2

:=220

Ũ±
j+ 1

2

.221

1B. otherwise, as in [12] we redistribute the water via222

If w̃−
j+ 1

2

<Bj+ 1
2
, then set (wx)j :=

Bj+ 1
2
−wj

∆x/2
,223

=⇒ w−
j+ 1

2

=Bj+ 1
2
, w+

j− 1
2

=2wj−Bj+ 1
2
;224

and225

If w̃+
j− 1

2

<Bj− 1
2
, then set (wx)j :=

wj−Bj− 1
2

∆x/2
,226

=⇒ w−
j+ 1

2

=2wj−Bj− 1
2
, w+

j− 1
2

=Bj− 1
2
.227
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Case 2. Bj− 1
2
>wj >Bj+ 1

2
: the cell is possible partially flooded.228

2A. w̃+
j+ 1

2

>Bj+ 1
2
and w̃−

j+ 3
2

>Bj+ 3
2
, i.e., cell j+1 is fully flooded and w+

j+ 1
2

= w̃+
j+ 1

2

.229

Define w−
j+ 1

2

=w+
j+ 1

2

and h−
j+ 1

2

=w−
j+ 1

2

−Bj+ 1
2
.230

2A1. 2hj−h−
j+ 1

2

≥0, the amount of water in cell j is sufficiently large, we set231

h+
j− 1

2

=2hj−h−
j+ 1

2

, so w+
j− 1

2

=h+
j− 1

2

+Bj− 1
2

232

2A2. otherwise set h+
j− 1

2

=0,w+
j− 1

2

=Bj− 1
2
and ∆x⋆

j as in (3.9).233

2B. otherwise set h−
j+ 1

2

:=wj−Bj+ 1
2
(3.5) and ∆x⋆

j :=∆x⋆
w (3.4). Note that this sit-234

uation is not generic and may occur only in the under-resolved computations.235

Case 3. Bj− 1
2
<wj <Bj+ 1

2
: analogous to Case 2.236

4. Positivity Preserving and Well-Balancing237

In the previous section, we proposed a new spatial reconstruction for wet/dry cell. In this238

section, we will implement a time-quadrature for the fluxes at wet/dry boundaries developed239

in [2]. It cuts off the space-time flux integrals for partially flooded interfaces. Then we prove240

that the resulting central-upwind scheme is positivity preserving and well-balanced under241

the standard CFL condition (2.15).242

We begin by studying the positivity using a standard time integration of the fluxes. The243

following lemma shows that for explicit Euler time stepping, positivity cannot be guaranteed244

directly under a CFL condition such as (2.15).245

Lemma 4.1. (2.5)–(2.14) with the piecewise linear reconstruction (2.10) corrected according246

to the procedure described in §3. Assume that the system of ODEs (2.5) is solved by the247

forward Euler method and that for all j, h
n

j ≥0. Then248

(i) h
n+1

j ≥0 for all j provided that249

∆t≤min
j

{
∆x⋆

j

2aj

}
, aj :=max{a+

j+ 1
2

,−a−
j+ 1

2

}. (4.1)250

(ii) Condition (4.1) cannot be guaranteed by any finite positive CFL condition (2.15).251

Proof: (i) For the fully flooded cells with ∆x⋆
j =∆x, the proof of Theorem 2.1 in [12] still252

holds. Therefore, we will only consider partially flooded cells like the one shown in Figure253

3.4. First, from (3.7) we have that in such a cell j the cell average of the water depth at254

time level t= tn is255

h
n

j =
∆x⋆

j

2∆x
h−
j+ 1

2

, (4.2)256

and it is evolved to the next time level by applying the forward Euler temporal discretization257

to the first component of (2.5), which after the subtraction of the value Bj from both sides258
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can be written as259

h
n+1

j =h
n

j −λ
(
H

(1)

j+ 1
2

−H
(1)

j− 1
2

)
, λ :=

∆t

∆x
, (4.3)260

where the numerical fluxes are evaluated at time level t= tn. Using (2.8) and the fact that261

by construction w+
j+ 1

2

−w−
j+ 1

2

=h+
j+ 1

2

−h−
j+ 1

2

, we obtain:262

H
(1)

j+ 1
2

=
a+
j+ 1

2

(hu)−
j+ 1

2

−a−
j+ 1

2

(hu)+
j+ 1

2

a+
j+ 1

2

−a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

−a−
j+ 1

2

[
h+
j+ 1

2

−h−
j+ 1

2

]
. (4.4)263

Substituting (4.2) and (4.4) into (4.3) and taking into account the fact that in this cell264

h+
j− 1

2

=0, we arrive at:265

h
n+1

j =

[
∆x⋆

j

2∆x
−λa+

j+ 1
2

(
u−
j+ 1

2

−a−
j+ 1

2

a+
j+ 1

2

−a−
j+ 1

2

)]
h−
j+ 1

2

266

−λa−
j+ 1

2

(
a+
j+ 1

2

−u+
j+ 1

2

a+
j+ 1

2

−a−
j+ 1

2

)
h+
j+ 1

2

+λa+
j− 1

2

(
u−
j− 1

2

−a−
j− 1

2

a+
j− 1

2

−a−
j− 1

2

)
h−
j− 1

2

, (4.5)267

Next, we argue as in [12, Theorem 2.1] and show that h
n+1

j is a linear combination of268

the three values, h±
j+ 1

2

and h−
j− 1

2

(which are guaranteed to be nonnegative by our special269

reconstruction procedure) with nonnegative coefficients. To this end, we note that it follows270

from (2.13) and (2.14) that a+
j+ 1

2

≥0, a−
j+ 1

2

≤0, a+
j+ 1

2

−u+
j+ 1

2

≥0, and u−
j+ 1

2

−a−
j+ 1

2

≥0, and271

hence the last two terms in (4.5) are nonnegative. By the same argument, 0≤
a+
j− 1

2

−u+

j− 1
2

a+
j− 1

2

−a−
j− 1

2

≤1272

and 0≤
u−
j+1

2

−a−
j+1

2

a+
j+1

2

−a−
j+1

2

≤1, and thus the first term in (4.5) will be also nonnegative, provided the273

CFL restriction (4.1) is satisfied. Therefore, h
n+1

j ≥0, and part (i) is proved.274

In order to show part (ii) of the lemma, we compare the CFL-like conndition (4.1) with

the standard CFL condition (2.15),

CFL∗ :=∆tmax
j

(
|aj|
∆x∗

j

)
=max

j

(
|aj|

max
i

|ai|
∆x

∆x∗
j

)
CFL (4.6)

We note that depending on the water level wj in the partially flooded cell, ∆x∗
j can be275

arbitrarily small, so there is no upper bound of CFL∗ in terms of CFL. 2276

Part (ii) of Lemma 4.1 reveals that one might obtain a serious restriction of the timestep277

in the presence of partially flooded cells. We will now show how to overcome this restriction278

using the draining time technique developed in [2].279

We start from the equation (4.3) for the water height and look for a suitable modification
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of the update such that the water height remains positive,

h
n+1

j =h
n

j −∆t
H

(1)

j+ 1
2

−H
(1)

j− 1
2

∆x
≥0.

As in [2], we introduce the draining time step280

∆tdrainj :=
∆xh

n

j

max(0,H
(1)

j+ 1
2

)+max(0,−H
(1)

j− 1
2

)
, (4.7)281

which describes the time when the water contained in cell j in the beginning of the time282

step has left via the outflow fluxes. We now replace the evolution step (4.3) with283

h
n+1

j =h
n

j −
∆tj+ 1

2
H

(1)

j+ 1
2

−∆tj− 1
2
H

(1)

j− 1
2

∆x
, (4.8)284

where we set the effective time step on the cell interface as285

∆tj+ 1
2
=min(∆t,∆tdraini ), i= j+

1

2
−
sgn
(
H

(1)

j+ 1
2

)
2

. (4.9)286

The definition of i selects the cell in upwind direction of the edge. We would like to point287

out that the modification of flux is only active in cells which are at risk of running empty288

during the next time step. It corresponds to the simple fact that there is no flux out of a289

cell once the cell is empty. The positivity based on the draining time is summarized as the290

following theorem, which we proved in [2]. Note that in contrast to Lemma 4.1, the timestep291

is now uniform under the CFL condition (2.15):292

Theorem 4.1. Consider the update (4.8) of the water height with fluxes with the help of293

the draining time (4.7). Assume that the initial height h
n

j is non-negative for all j. Then294

the height remains nonnegative,295

h
n+1

j ≥0 for all j. (4.10)296

provided that the standard CFL condition (2.15) is satisfied.297

To guarantee well-balancing, we have to make sure that the gravity driven part of the

momentum flux H
(2)

j+ 1
2

cancels the source term S
(2)

j+ 1
2

, in a lake at rest situation. To this end,

we follow [2] and split the momentum flux F(2)(U) in its advective and gravity driven parts:

F(2),a(U) :=
(hu)2

w−B
and F(2),g(U) :=

g

2
(w−B)2,

respectively. For convenience, we will denote w−B by h in the following. The corresponding
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advective and gravity driven parts of the central-upwind fluxes then read

H
(2),g

j+ 1
2

(t)=
a+
j+ 1

2

F(2),g(U−
j+ 1

2

)−a−
j+ 1

2

F(2),g(U+
j+ 1

2

)

a+
j+ 1

2

−a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

−a−
j+ 1

2

[
U

(2),+

j+ 1
2

−U
(2),−
j+ 1

2

]
,

and

H
(2),a

j+ 1
2

(t)=
a+
j+ 1

2

F(2),a(U−
j+ 1

2

)−a−
j+ 1

2

F(2),a(U+
j+ 1

2

)

a+
j+ 1

2

−a−
j+ 1

2

,

The above fluxes adds up to the following modified update of the momentum:298

(hu)n+1
j =(hu)nj −

∆tj+ 1
2
H

(2),a

j+ 1
2

−∆tj− 1
2
H

(2),a

j− 1
2

∆x
−∆t

H
(2),g

j+ 1
2

−H
(2),g

j− 1
2

∆x
+S

(2),n

j

 . (4.11)299

This modified finite volume scheme (4.8) and (4.11) ensures the well-balancing property300

even in the presence of dry areas, as we will show in Theorem 4.2.301

Theorem 4.2. Consider the system (1.1) and the fully discrete central-upwind scheme (4.8)302

and (4.11). Assume that the numerical solution U(tn) corresponds to the steady state which303

is a combination of the “lake at rest” (1.2) and “dry lake” (1.3) states in the sense that for304

all wj defined in 3.3, wj =Const and u=0 whenever hj >0. Then U(tn+1)=U(tn), that is,305

the scheme is well-balanced.306

Proof: We have to show that in all cells the fluxes and the source term discretization307

cancel exactly. First, we mention the fact that the reconstruction procedure derived in §3308

preserves both the “lake at rest” and “dry lake” steady states and their combinations. For309

all cells where the original reconstruction is not corrected, the resulting slopes are obviously310

zero and therefore w∓
j± 1

2

=wj there. As hu=0 in all cells, the reconstruction for hu obviously311

reproduces the constant point values (hu)∓
j± 1

2

=0, ∀j, resulting that the draining time is equal312

to the global time step, i.e., ∆tdrainj =∆t.313

We first analyze the update of the free surface using (4.8). The first component of flux

(2.8) is

H
(1)

j+ 1
2

=
a+
j+ 1

2

(hu)−
j+ 1

2

−a−
j+ 1

2

(hu)+
j+ 1

2

a+
j+ 1

2

−a−
j+ 1

2

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

−a−
j+ 1

2

[
(h+B)+

j+ 1
2

−(h+B)−
j+ 1

2

]
=0,

as B+
j+ 1

2

=B−
j+ 1

2

, h+
j+ 1

2

=h−
j+ 1

2

and (hu)+
j+ 1

2

=(hu)−
j+ 1

2

=0. This gives

wn+1
j =h

n+1

j +Bj =h
n

j +Bj =wn
j

Secondly, we analyze the update of the momentum using (4.11). Using the same argument314
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and setting u±
j+ 1

2

=0 at the points x=xj+ 1
2
where h+

j+ 1
2

=h−
j+ 1

2

=0, for the second component315

we obtain316

H
(2),a

j+ 1
2

+H
(2),g

j+ 1
2

=
a+
j+ 1

2

(hu2)
−
j+ 1

2
−a−

j+ 1
2

(hu2)
+
j+ 1

2

a+
j+ 1

2

−a−
j+ 1

2

+
a+
j+ 1

2

(
g
2
h2
)−
j+ 1

2

−a−
j+ 1

2

(
g
2
h2
)+
j+ 1

2

a+
j+ 1

2

−a−
j+ 1

2

317

+
a+
j+ 1

2

a−
j+ 1

2

a+
j+ 1

2

−a−
j+ 1

2

[
(hu)+

j+ 1
2

−(hu)−
j+ 1

2

]
=

g

2
h2
j+ 1

2
,318

where hj+ 1
2
:=h+

j+ 1
2

=h−
j+ 1

2

. So, the finite volume update (4.11) for the studied steady state319

reads after substituting the source quadrature (2.7),320

(hu)n+1
j =(hu)nj −

∆t

∆x

[g
2
(hj+ 1

2
)2− g

2
(hj− 1

2
)2
]
+∆tS

(2),n

j321

=(hu)nj −
∆t

∆x

[g
2
(hj+ 1

2
)2− g

2
(hj− 1

2
)2
]
− ∆t

∆x
ghj(Bj+ 1

2
−Bj− 1

2
)322

=(hu)nj ,323

where we have used324

(hj+ 1
2
)2−(hj− 1

2
)2

2
=−h

n

j

(
Bj+ 1

2
−Bj− 1

2

)
. (4.12)325

It remains the verify (4.12). In the fully flooded cells, where wj >Bj± 1
2
, we have326

(hj+ 1
2
)2−(hj− 1

2
)2

2
=

hj+ 1
2
+hj− 1

2

2

(
hj+ 1

2
−hj− 1

2

)
=h

n

j

(
wj−Bj+ 1

2
−wj+Bj− 1

2

)
327

=−h
n

j

(
Bj+ 1

2
−Bj− 1

2

)
,328

and thus (4.12) is satisfied. In the partially flooded cells (as the one shown in Figure 3.3 on

the right), wj <Bj− 1
2
, hj− 1

2
=0, and thus using (3.7) equation (4.12) reduces to

(hj+ 1
2
)2

2
=−

∆x⋆
jhj+ 1

2

2∆x

(
Bj+ 1

2
−Bj− 1

2

)
=−

hj+ 1
2

2
∆x⋆

j(Bx)j,

which is true since at the studied-steady situation, x⋆
j =x⋆

w, which implies that ∆x⋆
j =∆x⋆

w,329

and hence, −∆x⋆
j(Bx)j =hj+ 1

2
.330

This concludes the proof of the theorem. 2331

Remark 4.2. The draining time ∆tdrainj equals the standard time step ∆t in all cells except332

at the wet/dry boundary. Therefore, the update (4.8) equals the original update (2.5) almost333

everywhere.334

Remark 4.3. We would like to point out that the resulting scheme will clearly remain335

positivity preserving if the forward Euler method in the discretization of the ODE system336
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(2.5) is replaced with a higher-order SSP ODE solver (either the Runge-Kutta or the multistep337

one), because such solvers can be written as a convex combination of several forward Euler338

steps, see [7]. In each Runge-Kutta stage, the time step ∆t is chosen as the global time step339

at the first stage. This is because the draining time ∆tdrainj , which is a local cut-off to the340

numerical flux, does not reduce, or even influence, the global time step.341

5. Numerical Experiments342

Here, we set θ=1.3 in the minmod function (2.11), and in (2.15) we set CFL=0.5.343

To show the effects of our new reconstruction at the boundary, we first test the numerical344

accuracy order using a continuous problem; then compare our new scheme with the scheme345

from [12] for the oscillating lake problem and the wave run-up problem on a slopping shore.346

These schemes only differ in the treatment of the dry boundary, so that the effects of the347

proposed modifications are highlighted. At last, we apply our scheme to dam-break problems348

over a plane and a triangular hump with bottom friction. For the sake of brevity, we refer349

to the scheme from [12] as KP and to our new scheme as BCKN.350

Before the simulations, let us talk about the cell averages for the initial condition. Sup-351

pose that the states at cell interfaces Uj− 1
2
and Uj+ 1

2
are given. The cell averages of mo-352

mentums (hu)j are computed using the trapezoidal rule in the cells Ij as353

(hu)j =
(hu)j− 1

2
+(hu)j+ 1

2

2
.354

As for the water height, we have to distinguish between three cases [21]. Cells Ij are called355

wet cells if the water heights at both cell interfaces are positive,356

hj− 1
2
>0 and hj+ 1

2
>0.357

If instead,358

hj− 1
2
=0, hj+ 1

2
>0 and Bj− 1

2
>Bj+ 1

2
,359

we speak of cells with upward slope. If360

hj− 1
2
=0, hj+ 1

2
>0 and Bj− 1

2
<Bj+ 1

2
,361

we speak of downward slope. For the wet cells and cells with downward slope, the cell362

averages of water height hj are computed using the trapezoidal rule in the cells Ij as363

hj =
hj− 1

2
+hj+ 1

2

2
,364

because it is impossible to be still water states. For the adverse slope, we use the inverse365
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function of (3.5),366

hj =
(hj+ 1

2
)2

2(Bj+ 1
2
−Bj− 1

2
)
,367

to computed the cell average water height assuming the water is flat. It is easy to see from368

our new reconstruction (3.4), (3.5) and (3.9) can exactly reconstruct the initial still water369

states.370

5.1. Numerical accuracy order371

To compute the numerical order of accuracy of our scheme, we choose a continuous exam-372

ple from [12]. With computational domain [0,1], the problem is subject to the gravitational373

constant g=9.812, the bottom topography374

B(x)=sin2(πx),375

the initial data376

h(x,0)=5+ecos(2πx), hu(x,0)=sin(cos(2πx)),377

and the periodic boundary conditions.

# points h error EOC hu error EOC

25 5.30e-2 2.33e-1
50 1.51e-2 1.81 1.38e-1 0.76
100 4.86e-3 1.63 4.43e-2 1.64
200 1.40e-3 1.80 1.14e-2 1.95
400 3.59e-4 1.96 2.84e-3 2.01
800 8.93e-5 2.01 7.05e-4 2.01

Table 5.1. Accuracy checking: Experimental order of convergence(EOC) measured in the L1-norm.

378

The reference solution is computed on a grid with 12800 cells. The numerical result is379

shown in the Table 5.1 at time t=0.1. The result confirm that our scheme is second-order380

accurate.381

5.2. Still and oscillating lakes382

In this section, we consider present a test case proposed in [1]. It describes the situation383

where the “lake at rest” (1.2) and “dry lake” (1.3) are combined in the domain [0,1] with384

the bottom topography given by385

B(x)=
1

4
− 1

4
cos((2x−1)π), (5.1)386
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and the following initial data:387

h(x,0)=max(0,0.4−B(x)) , u(x,0)≡0. (5.2)388

We compute the numerical solution by the KP and BCKN schemes with 200 points at389

the final time T =19.87. The results are shown in Figure 5.1 and Table 5.2. As one can390

clearly see there, the KP scheme introduces some oscillations at the boundary, whereas the391

BCKN scheme is perfectly well-balanced which means that our new initial data reconstruc-392

tion method can exactly preserve the well-balanceed property not only in the wet region but393

also in the dry region. And the influence on the solutions away from the wet/dry front is394

also visible because of oscillations at the boundary produced by the KP schme.

scheme L∞ error of h L∞ error of hu

KP 7.88e-5 9.08e-5
BCKN 3.33e-16 5.43e-16

Table 5.2. Errors in the computation of the steady state (cf. Figure 5.1)

395

x

w
 =

 h
+

B

0.1 0.15 0.2 0.25 0.3

0.3998

0.4

0.4002

KP
BCKN
Bed

x

h
u

0 0.2 0.4 0.6 0.8 1

-0.0001

-5E-05

0

5E-05

0.0001 KP
BCKN

Fig. 5.1. Lake at rest. Left: free surface h+B; Right: Discharge hu (cf. Table 5.2).

We now consider a sinusoidal perturbation of the steady state (5.1), (5.2) by taking

h(x,0)=max

(
0,0.4+

sin(4x−2−max(0,−0.4+B(x)))

25
−B(x)

)
.

As in [1], we set the final time to be T =19.87. At this time, the wave has its maximal height396

at the left shore after some oscillations.397

In Figure 5.2 we compare the results obtained by the BCKN and KP schemes with398

200 points with a reference solution (computed using 12800 points). Table 5.3 shows the399

experimental accuracy order for the two different schemes. One can clearly see that both KP400

and BCKN scheme can produce good results and acceptable numerical order. In Figure 5.3401
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x

w
=

h+
B

0 0.2 0.4 0.6 0.8 1

0.35

0.4

0.45

0.5
KP
BCKN
Ref. sol.
Bed

x

hu

0 0.2 0.4 0.6 0.8 1

0

0.004

0.008

0.012

KP 
BCKN
Ref. Sol.

Fig. 5.2. Oscillating lake. Left: Free surface h+B; Right: Discharge hu. Comparison of KP and BCKN schemes with
the reference solution.
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0

0.002

0.004

0.006

0.008

0.01

0.012
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Ref. sol.

x
+

Fig. 5.3. Oscillating lake, zoom at the right wet/dry front. BCKN solutions with 200, 400, 800 points and reference
solution (12800 points). Left: Free surface h+B; Right: Discharge hu.

we show a zoom of BCKN solutions for x∈ [0.74,0.84] with 200, 400 and 800 points, which402

converge nicely to the reference solution. In particular, the discharge converges without any403

oscillations.404

5.3. Wave run-up on a sloping shore405

This test describes the run-up and reflection of a wave on a mounting slope. It was406

proposed in [27] and reference solutions can be found, for example, in [2, 21,26].407

The initial data are

H0(x)=max
{
D+δ sech2(γ(x−xa)),B(x)

}
, u0(x)=

√
g

D
H0(x),
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# points h error EOC hu error EOC

25 9.48e-3 1.47e-2
50 2.81e-3 1.75 7.26e-3 1.02
100 1.65e-3 0.77 2.46e-3 1.56
200 7.88e-4 1.06 1.59e-3 0.63
400 3.33e-4 1.24 6.19e-4 1.36
800 1.26e-4 1.40 2.27e-4 1.45

KP scheme
25 7.55e-3 1.31e-2
50 2.27e-3 1.74 6.04e-3 1.11
100 1.45e-3 0.65 2.35e-3 1.36
200 6.77e-4 1.09 1.31e-3 0.84
400 2.71e-4 1.32 5.04e-4 1.38
800 1.04e-4 1.38 1.87e-4 1.43

BCKN scheme

Table 5.3. Oscillating lake: Experimental order of convergence measured in the L1-norm.

and the bottom topography is

B(x)=

0, if x<2xa,
x−2xa

19.85
, otherwise.

As in [2, 21], we set

D=1, δ=0.019, γ=

√
3δ

4D
, xa=

√
4D

3δ
arccosh

(√
20
)
.

The computational domain is [0,80] and the number of grid cells is 200.408

x

w
 =

 h
+

B
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bed
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h
u
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-0.06
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t=80

t=23

t=28

Fig. 5.4. Wave run-up on a sloping shore. KP, BCKN and reference solutions at times 17, 23, 28 and 80. Left: free
surface w=h+B; Right: discharge hu.

Figure 5.4 shows the free surface and discharge computed by both BCNK and KP schemes409
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Fig. 5.5. Wave run-up on a sloping shore: deviation from stationary state. Left: free surface log(||w−max(1,B)||∞);
Right: discharge ln(||hu||∞). KP scheme (dashed) and BCKN scheme (dash-dot). Long time convergence of KP scheme stalls.

for different times. The reference solution is computed using 2000 points. A wave is running410

up the shore at time t=17, and running down at t=23. At time t=80 a steady state411

is reached. In the dynamic phase (up to time t=28), both schemes provide satisfactory412

solutions. In Figure 5.5 we study the long time decay towards equilibrium for different grid413

size resolutions. While the BCKN solutions decay up to machine accuracy, the long time414

convergence of the KP scheme comes to a halt. A brief check reveals that the deviation from415

equilibrium is roughly of the size of the truncation error of the KP scheme.416

5.4. Dam-break over a plane417

Here we study three dam breaks over inclined planes with various inclination angles.418

These test cases have been previously considered in [4, 32].419

The domain is [−15,15], the bottom topography is given by420

B(x)=−xtanα421

where α is the inclination angle. The initial data are422

u(x,0)=0, h(x,0)=

{
1−B(x), x<0,

0, otherwise.
423

At x=15 we impose a free flow boundary condition, and at x=−15 we set the discharge424

to zero. The plane is either flat (α=0), inclined uphill (α=π/60), or downhill (α=−π/60).425

We run the simulation until time t=2, with 200 uniform cells. The numerical results are426

displayed in Figure 5.6, for inclination angles α=0, π/60 and −π/60, from top to bottom.427

The left column shows h and u, the central column the front position and the right column428
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Fig. 5.6. Dam-break over a plane. Left : the numerical solution of w=h+B and u; Middle: the front position; Right:
the front velocity.

the front velocity. We also display the exact front positions and velocities (see [4]) given by429

xf (t)=2t
√

gcos(α)− 1

2
gt2 tan(α), uf (t)=2

√
gcos(α)−gttan(α).430

As suggested in [32], we define the numerical front position to be the first cell (counted from431

right to left) where the water height exceeds ϵ=10−9. While the BCKN scheme, which is432

only second order accurate, cannot fully match the resolution of the third and fifth order433

schemes in [4,32], it still performs reasonably well. What we would like to stress here is that434

the new scheme, which was designed to be well balanced near wet/dry equilibrium states, is435

also robust for shocks running into dry areas.436

5.5. Laboratory dam-break over a triangular hump437

We apply our scheme to a laboratory test of a dam-break inundation over a triangular438
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hump which is recommended by the Europe, the Concerted Action on Dam-Break Modeling439

(CADAM) project [17]. The problem consider the friction effect and then the corresponding440

governing equation (1.1) is changed to be441 ht+(hu)x=0,

(hu)t+
(
hu2+

1

2
gh2
)
x
=−ghBx−τb/ρ,

(5.3)442

where τb=ρcfu|u| represents the energy dissipation effect and are estimated from bed rough-443

ness on the flow, ρ is the density of water and cf =gn2/h1/3 represents the bed roughness444

coefficient with n being the Manning coefficient. For small water depths, the bed friction445

term dominates the other terms in the momentum equation, due to the presence of h1/3 in446

the denominator. To simplify the update of the momentum, we first update the solution447

using our new positivity preserving and well-balanced scheme stated in section 2, 3 and 4448

without the bed friction effect, and then retain the local acceleration from the only bed449

friction terms.450

(hu)t=−τb/ρ=−cfu|u|=−gn2u|u|
h1/3

. (5.4)451

A partially implicit approach [15,24] is used for the discretization of the above equation as452

(hu)n+1−(h̃ũ)n+1

∆t
=−gn2(hu)n+1|ũn+1|

(h̃n+1)4/3
. (5.5)453

Resolving this for (hu)n+1, we obtain454

(hu)n+1=
(h̃ũ)n+1

1+∆tgn2|ũn+1|/(h̃n+1)4/3
=

(h̃ũ)n+1(h̃n+1)4/3

(h̃n+1)4/3+∆tgn2|ũn+1|
, (5.6)455

where h̃ and ũ are given using our above stated scheme without friction term. The initial456

conditions and geometry (Figure 5.7) were identical to those used by [15,24]. The experiment457

was conducted in a 38-m-long channel. The dam was located at 15.5 m, with a still water458

surface of 0.75 m in the reservoir. A symmetric triangular obstacle 6.0 m long and 0.4 m459

high was installed 13.0 m downstream of the dam. The floodplain was fixed and initially dry,460

with reflecting boundaries and a free outlet. The Manning coefficient n was 0.0125, adopted461

from [15]. The flow depth was measured at seven stations, GP2, GP4, GP8, GP10, GP11,462

GP13, and GP20, respectively, located at 2, 4, 8, 10, 11, 13, and 20 m downstream of the463

dam, as shown in Figure 5.7. The simulation was conducted for 90 seconds.464

The numerical predictions using 200 points are shown in Figure 5.7. The comparison465

between the numerical results and measurements is satisfactory at all gauge points and the466

wet/dry transitions are resolved sharply (compare with [15, 24] and the references therein).467

This confirms the effectiveness of the current scheme together with the implicit method for468
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Fig. 5.7. Laboratory dam-break inundation over dry bed: experimental setup and the comparison of simulated and observed
water depth versus time at 7 gauge points.



A. Bollermann, G. Chen, A. Kurganov and S. Noelle; December 19, 2012 25

discretization of the friction term, even near wet/dry fronts.469

6. Conclusion470

In this paper, we designed a special reconstruction of the water level at wet/dry fronts,471

in the framework of the second-order semi-discrete central-upwind scheme and a continu-472

ous, piecewise linear discretisation of the bottom topography. The proposed reconstruction473

is conservative, well-balanced and positivity preserving for both wet and dry cells. The474

positivity of the computed water height is ensured by cutting the outflux across partially475

flooded edges at the draining time, when the cell has run empty. Several numerical examples476

demonstrate the experimental order of convergence and the well-balancing property of the477

new scheme, and we also show a case where the prerunner of the scheme fails to converge to478

equilibrium. The new scheme is robust for shocks running into dry areas and for simulations479

including Manning’s bottom friction term, which is singular at the wet/dry front.480
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