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Abstract

The two-layer shallow water system looses hyperbolicity if the
magnitude of the shear velocity is above a certain threshold, essen-
tially determined by the density difference between the two layers.
Introducing an additional third layer might recover hyperbolicity
in regions of strong shear. We demonstrate that this adaptive
two/three-layer approach can cure some of the shortcomings of
the two-layer model.

1 Introduction

In this paper we consider stratified flows. An example which has recently
found attention in applied mathematics is the superimposition of the
Mediterranean and the Atlantic in the Strait of Gibraltar, e.g. [4]. This
layering persists as long as the velocity difference (shear velocity) is
not too large. Under this condition the flow may be modeled by two
coupled shallow water models, yielding a non-conservative hyperbolic
system in one or two space dimensions which may be solved efficiently
and accurately by well-balanced finite volume schemes, e.g. [3].

In regions of strong gradients in the bottom topography, however,
the lower layer Mediterranean water may accelerate, causing a strong
shear and hence a Kelvin-Helmholtz instability. Mathematically, the
hyperbolicity of the two-layer model is lost, and usually the finite volume
solvers break down or produce questionable results. The obvious, but
expensive, solution would be to switch to the full 2D or 3D Navier-Stokes
equations and apply the respective free surface incompressible solvers.

A challenging question is whether one can model such local instabili-
ties without giving up the depth-averaging everywhere. Several authors
have suggested such models, e.g. LeVeque and Kim [6], Castro and Pares
[5], Bouchut and Morales [2] and Audusse [1].

Here we explore an adaptive two/three layer model. We introduce
an intermediate third layer to regain hyperbolicity in case it is lost.
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2 Multilayer flows

The multilayer shallow water system The flow of i = 1, . . . , N
layers of water, ordered from top to bottom, is governed by

∂thi + ∂xqi = 0,

∂tqi + ∂x

(

q2
i /hi + g/2 h2

i

)

= −ghi∂x

(

∑i−1

j=1
rjihj +

∑N

j=i+1
hj + b

)

(2.1)
with densities ρi < ρi+1 and rij := ρi

ρj
denoting the density ratios. The

coordinate x refers to the spatial position, t is the time, and g is gravity.
The unknowns qi(x, t) and hi(x, t) represent respectively the discharge
and the height, i.e. thickness of the i-th layer at the section of coordinate
x at time t. The bottom topography is given by the function b.

The system (2.1) can be written in quasi-linear form

wt + A(w)wx = S(w)bx, (2.2)

cf. [3]. The eigenvalues of matrix A(w) may become complex even
for physically relevant data, corresponding to the development of shear
instabilities. We will call a multilayer state w hyperbolic, if the matrix
A(w) is diagonalizable and all its eigenvalues are real.

Loss of hyperbolicity In the two-layer case, the matrix A becomes
a 4 × 4 matrix. An approximation formula for the eigenvalues in the
limit of almost constant water level, almost equal densities and vanishing
velocity difference is given in [7]. The authors distinguish two pairs of
eigenvalues, the internal and the external ones:

λ±
ext =

u1h1 + u2h2

h1 + h2

± (g(h1 + h2))
1

2 , (2.3)

λ±
int =

u1h2 + u2h1

h1 + h2

±

[

g′
h1h2

h1 + h2

(

1 −
(u1 − u2)

2

g′(h1 + h2)

)]

1

2

, (2.4)

where g′ := (1 − r12)g is a small constant in this limit. The external
eigenvalues λ±

ext correspond to the eigenvalues of a single-layer shallow
water system with total water height H := h1 + h2 and an averaged
total velocity u = u1h1+u2h2

h1+h2
. These eigenvalues are therefore distinct

and real, thus they are not important regarding the hyperbolicity. If

κ :=
(u1 − u2)

2

g′(h1 + h2)
> 1, (2.5)

the approximative internal eigenvalues become complex. In [5] it is
shown that (2.5) is a good approximative criterion for the loss of hy-
perbolicity when r12 is close to 1. The ratio κ can be interpreted as the
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balance between the stabilizing influence of the difference in density and
the destabilizing one of the velocity shear.

We quantify this loss of hyperbolicity by the indicator δ as follows:

Definition 1. The hyperbolicity indicator δ for a state U is given by

δ(U) := |ℜ(λ+
int(U)) −ℜ(λ−

int(U))| − |ℑ(λ+
int(U)) −ℑ(λ−

int(U))|, (2.6)

where ℜ denotes the real part and ℑ the imaginary part.

This indicator is nonnegative if the eigenvalues are real and negative
if they are complex conjugate. It is extended to the multilayer case by
applying it to each pair of internal eigenvalues, then taking the minimum.

3 The three-layer adaptation

The breakdown of hyperbolicity corresponds to a Kelvin-Helmholtz in-
stability and the onset of mixing [7]. Our interest is to model this situa-
tion in the context of shallow water models. We introduce an intermedi-
ate layer around the original interface with constant values for velocity
and density attached to it, assuming that all the possible turbulence and
mixing is contained within this layer and does not affect the horizontal
velocities of the other layers in a substantial way.

A strategy for choosing the intermediate layer Given a two-
layer state [(ρ1, h1, u1), (ρ2, h2, u2)] we are now looking at a way to find
a corresponding three layer state [(ρ̃1, h̃1, ũ1), (ρm, hm, um), (ρ̃2, h̃2, ũ2)]
such that the discharge (Q), mass (M) and total water height (H) are
conserved:

∑

i
ρihiui =

∑

i
ρ̃ih̃iũi + ρmhmum (Q)

∑

i
ρihi =

∑

ρ̃ih̃i + ρmhm (M)
∑

i
hi =

∑

i
h̃i + hm (H)

In the upper and lower layer the densities and the velocities are set to

ũ1 = u1, ũ2 = u2, ρ̃1 = ρ1, ρ̃2 = ρ2. (C.1)

Next, among several possible choices we pick ρm = 1

2
(ρ1 + ρ2) in the

intermediate layer, thus enforcing constant density throughout the layer,
and consider hm a free parameter. This gives

h̃1 = h1 −
1

2
hm, h̃2 = h2 −

1

2
hm, um = ρ1u1+ρ2u2

ρ1+ρ2
. (C.2)

The density ρm is independent of x and t. Thus even for multiple
adaption steps the three-layer context persists, simplifying the construc-
tion of an adaptive solver.
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Hyperbolic domains We test the hyperbolicity of 10.000 randomly
chosen two-layer test states and compare with those of the corresponding
three-layer states gained by the transformation formula (C). The ratio
r12 = 0.98 is kept fix.

The hyperbolicity is tested by inserting the test states into the matrix
A in (2.2) and then numerically calculating the eigenvalues. In case of all
real, distinct eigenvalues we plot a blue dot in the left graph in Fig. 3.1,
otherwise we plot a red dot in the right graph. The axes are (u2 − u1)

2

and h1 + h2. With this choice, the hyperbolic and the non-hyperbolic
region are approximately1 separated by the straight line κ = 1.
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Figure 3.1: Hyperbolic domain for 2-layer test cases, r12 = 0.98
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Figure 3.2: Left: Hyperbolic domain for 2-3-layer adaptation, Θ = 0.111;
Right: hopt

m , Hopt and heuristic h̃heu
m

To check whether we gain hyperbolicity with our adaptation strat-
egy, we try to find any intermediate layer height for the given test states

1Note that there are indeed some hyperbolic states with κ > 1 close to the ap-

proximative boundary. Also, there is a second region of hyperbolicity for very large

shear velocities, but this is not in the focus of our work.
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Figure 3.3: Left: Hyperbolic domain for 2-3-layer adaptation, Θ = 0.222;
Right: hopt

m , Hopt and heuristic h̃heu
m
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Figure 3.4: Left: Hyperbolic domain for 2-3-layer adaptation, Θ = 0.444;
Right: hopt

m , Hopt and heuristic h̃heu
m

that gives a hyperbolic state with three positive layer heights. The inter-
mediate layer height hopt

m is chosen to maximize the indicator δ among
all states with positive layer heights. Again we plot dots indicating the
hyperbolicity, this time of the three-layer system, but at the location
given by the values of the associated original two-layer system. Thus we
can observe from the plots the change in hyperbolicity triggered by the
two/three-layer adaptation. We can indeed notice a gain in hyperbolic-
ity but a clear picture only emerges if the data are ordered by the ratio
Θ := h2

H with H := h1 + h2 the total water height. The plots on the left
in Figs. 3.2, 3.3 and 3.4 show the gain for different values of Θ. Note
that there is a small area in Fig. 3.2 where the hyperbolicity is lost when
transferring from two to three layers. This does not pose a problem as
those states are hyperbolic for the two-layer model.



6 Castro, Frings, Noelle, Pares, Puppo

Choice of intermediate layer height We fix Θ and randomly gen-
erate a set with 10000 two-layer test states with h2/H = Θ. For each
test state, using the transformation rules (C), we search for a three-layer
state with all positive layer heights that maximizes δ. This gives an
intermediate height hopt

m . Now plotting (κ, hopt
m /H) we found interesting

structures as shown by the exemplary results in the plots on the right
of Figs. 3.2, 3.3 and 3.4. Θ is fixed for each plot, but varies from plot
to plot. Considering several values of Θ, the points (κ, hopt

m /H) seem to
form a surface hopt

m (κ,Θ). Note that for each Θ, there is a value κmax

such that for κ > κmax the third layer cannot cure the hyperbolicity
loss, at least not without deteriorating to a two-layer state again.

There are three additional alleged curves in these plots. The two sets

of pairs (κ, h
min/max
m ) are defined as follows: define Hopt for a given κ

as the largest interval of hyperbolic points containing hopt
m . This interval

exists as the eigenvalues depend smoothly on the state (and thus on hm).
Then Hopt =: [hmin

m , hmax
m ]. The remaining curve is given by a heuristic

approach for the intermediate layer height.

Heuristic intermediate layer height As a result of the structure
revealed by the Figs. 3.2, 3.3 and 3.4 we can define a heuristic method to
determine hm. We fit curves to the point values of hopt given for different
fixed values of Θ and then use interpolation between the discrete curves
to get a function h̃heu

m depending on Θ and κ. The resulting function
hheu

m is defined only for 1 < κ < κmax, i.e. for those values of κ for which
hyperbolicity could be regained. hheu

m is shown in the figures mentioned
above as solid lines lying within the optimal intervals Hopt found for the
tested states. In the interval [(κmax +1)/2, κmax) it is defined as a least-
squares linear fit to the optimal heights. In the interval [1, (κmax +1)/2)
the definition is hheu

m (κ,Θ) := cΘ(1−κ)αΘ , where cΘ, αΘ > 0 are chosen
in such a way that the linear fit in κmax/2 is matched with C1 smoothness.
For κ = 1 it connects to the corresponding two-layer hyperbolic state.

Loss of hyperbolicity for a two-layer tidal flow over a hump

We present the details of a tidal flow over a hump as shown in Fig. 3.5.
The initial data are set to:

η := h1 + h2 + b = 2, h2 = 1 + 0.45 · atan(1.5(x + 0.75)) − b,

q1 = 0.001, q2 = −0.001,

b = e−x2

.

with r = 0.98 and g = 9.812. The spatial domain is I = (−3, 3) subdi-
vided into 20 cells and CFL-Number is cfl = 0.8. Absorbing boundary
conditions are applied.
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Figure 3.5: Left: Initial state; Right: Situation close to loss of hyperbol-
icity
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Figure 3.6: Left: Refined state, hyperbolicity regained; Right: Situation
close to second loss of hyperbolicity

This test problem is an idealized version of a natural two-layer flow
being found e.g. at the Strait of Gibraltar, where the denser Mediter-
ranean Sea forms the lower layer and “spills” over a hump while being
moved by tidal forces. Our goal is to design an efficient numerical solver
that retains most of the physical features of the real flow.

The simulation runs up until time t = 3.9524, where the indicator
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shows that hyperbolicity is close to being lost, see Fig. 3.5. At this
time an adaptation step is carried out using our heuristic approach to
determine the intermediate height. The simulation then continues to run
for some time steps until time t = 4.1689 when the three-layer system
loses hyperbolicity in the same cell that was marked critical before the
adaptation step, see Fig. 3.6. This is caused mainly by the transport of
the intermediate layer. Mass is flowing away from the formerly critical
cell and the intermediate layer height drops below hmin

m for that state.
The adaptive strategy we have designed can cure hyperbolicity at a

given fixed time. However, our results suggest that the cure may not
be stable under time evolution. Several improvements are possible, and
they will be the subject of future research.
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