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Abstract

We present rigorous a posteriori output error bounds for reduced basis approximations of

parametrized parabolic partial differential equations with non-affine source terms. The method

employs the empirical interpolation method in order to construct affine coefficient-function ap-

proximations of the non-affine parametrized functions. Our a posteriori error bounds take both

error contributions explicitly into account — the error introduced by the reduced basis approx-

imation and the error induced by the coefficient function interpolation. To this end, we employ

recently developed rigorous error bounds for the empirical interpolation method and develop error

estimation and adjoint procedures to provide rigorous bounds for the error in specific outputs of

interest. We present an efficient offline-online computational procedure for the calculation of the

reduced basis approximation and associated error bound. The method is thus ideally suited for

many-query or real-time contexts. As a specific motivational example we consider a welding pro-

cess. Our numerical results show that we obtain efficient and reliable mathematical models which

may be gainfully employed in manufacturing and product development.

Keywords:

reduced basis methods, parabolic PDEs, non-affine parameter dependence, a posteriori error

estimation, empirical interpolation method, welding process

1. Introduction

The role of numerical simulation in engineering and science has become increasingly important.

System or component behavior is often modeled using a set of partial differential equations and
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associated boundary and initial conditions, the analytical solution to which is generally unavailable.

In practice, a discretization procedure such as the finite element method (FEM) is used.

However, as the physical problems become more complex and the mathematical models more

involved, current computational methods prove increasingly inadequate, especially in contexts re-

quiring numerous solutions of parametrized partial differential equations for many different values

of the parameter. For example, the design, optimization, control, and characterization of engineer-

ing components or systems often require repeated, reliable, and real-time prediction of performance

metrics, or outputs, se, such as heat fluxes or flow rates1. These outputs are typically functionals of

field variables, ye, — such as temperatures or velocities — associated with a parametrized partial

differential equation; the parameters, or inputs, µ, serve to identify a particular configuration of

the component — such as boundary conditions, material properties, and geometry. The relevant

system behavior is thus described by an implicit input-output relationship, se(µ), evaluation of

which demands solution of the underlying partial differential equation (PDE). Even for modest-

complexity models, the computational cost to solve these problems using classical discretization

procedures is prohibitive.

More specifically, the motivation of this work is to develop an efficient mathematical model

for the heat flow in a welding process [1, 2, 3, 4, 5]. An accurate knowledge of the temperature

distribution within the workpiece is crucial in determining the quality of the weld: two such quality

measures are the weld pool depth — indicating the strength of the joint — and the shape distortion

of the workpiece.

A complete model of the welding process which couples and accounts for all of the physical

processes involved does not yet exist. In actual practice, the heat flux input is therefore modeled

as a parametrized volume heat source [6, 2, 7]. The temperature distribution, ye(x, t;µ), within

the workpiece is governed by the unsteady convection-diffusion equation

∂

∂t
ye(x, t;µ) + v · ∇ye(x, t;µ)− κ∇2ye(x, t;µ) = q(x;µ) u(t), x ∈ Ω, t ∈ I, (1)

with initial condition (say) ye(x, t = 0;µ) = 0. Here, Ω ⊂ R3 is the spatial domain, a point in

which shall be denoted by x = (x1, x2, x3), the time interval of interest is I =]0, tf ] with final time

1Here, superscript “e” shall refer to “exact.” We shall later introduce a “truth approximation” which will bear

no superscript.
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tf > 0, v is the velocity, κ the thermal diffusivity, and u(t) the source strength. In this paper, we

consider the so called hemispherical volume heat source given by

q(x;µ) := e−x
2
1/σ

2
1 e−x

2
2/σ

2
2 e−x

2
3/σ

2
3 , x ∈ Ω, (2)

with the parameter µ = (σ1, σ2, σ3). This type of source is a special case of the double ellipsoid

source which was first introduced by Goldak et al. [6] to model the heating effect of a welding

torch. We note, however, that the methods developed in this paper are not restricted to the

particular welding process considered here, i.e., Gaussian source terms play an important role in

many applications in science and engineering — another prominent example is the simulation of

airborne contaminants [8, 9, 10]. Furthermore, our approach of course also directly applies to other

types of non-affine functions besides Gaussians.

The main task in the analysis and modeling of the welding process is to find parameters µ such

that the simulated temperature at one or several measurement points on the surface of the work-

piece predicted by (1) and (2) matches the experimental measurements [11]. Given the parameter

estimates, we may subsequently aim to control the welding process to achieve a desired weld pool

depth [12, 13, 3]. The parameter estimation problem thus needs to be solved in real-time, requiring

a rapid and reliable evaluation of the PDE (1).

To achieve this goal we pursue the reduced basis method. The reduced basis method is a

model-order reduction technique which provides efficient yet reliable approximations to solutions

of parametrized partial differential equations in the many-query or real-time context; see [14]

for a recent review of contributions to the methodology. In this paper we focus on parabolic

problems with a non-affine parameter dependence in the source term — a typical example is

given by the Gaussian function (2). To this end we employ the empirical interpolation method

(EIM) [15] which serves to construct affine approximations of non-affine parametrized functions.

The method is frequently applied in reduced basis approximations of parametrized PDEs with non-

affine parameter dependence [15, 16, 17, 18]; the affine approximation of the coefficient function is

crucial for computational efficiency.

A posteriori error estimators for non-affine elliptic and parabolic problems have been proposed

in [19, 18] and [20], respectively. However, these estimators generally do not provide a rigorous

upper bound for the true error due to the contribution of the interpolation error. Only recently,

Eftang et al. [21] introduced a rigorous error analysis for the EIM. Furthermore, reduced basis
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output approximations and associated output bounds may suffer from a slow convergence, thus

requiring a large dimension of the reduced order model to achieve a desired accuracy. To circumvent

this problem adjoint procedures were proposed in [22, 23]; however, these previous works only

considered affine problems. The contributions here are thus (i) rigorous a posteriori error bounds

for reduced basis approximations of non-affine parabolic problems, and (ii) the development of

adjoint procedures for non-affine problems to ensure rapid convergence of the reduced basis output

approximation and output error bound.

This paper is organized as follows: in Section 2 we present a short review of the EIM and

corresponding rigorous error analysis. The abstract problem formulation and reduced basis ap-

proximation for linear coercive parabolic problems with non-affine source terms are introduced in

Section 3. In Section 4 we develop our a posteriori error estimation procedures and in Section 5

we briefly discuss the sampling technique to generate the reduced basis space. Numerical results

for the welding process are presented in Section 6. Finally, we offer concluding remarks in Section

7.

2. Empirical Interpolation Method

In this section we briefly review the EIM and associated a posteriori error estimation procedures.

2.1. Coefficient Function Approximation

We assume we are given a function g : Ω × D → R with g(·;µ) ∈ L∞(Ω) for all µ ∈ D, where

D ⊂ RP is the set of admissible parameters, Ω ⊂ Rd, d = 1, 2, 3, is a bounded domain, and

L∞(Ω) := {v | ess supv∈Ω |v(x)| < ∞}. We introduce a finite but suitably large parameter train

sample ΞEIM
train ⊂ D which shall serve as our surrogate for D, and a triangulation TN (Ω) of Ω with

N vertices over which we shall in practice realize g(·;µ) as a piecewise linear function.

The construction of the EIM approximation space W g
M and set of interpolation points T gM =

{x̂1, . . . , x̂M} is based on a greedy algorithm [24]: we first choose µ1 := arg maxµ∈ΞEIM
train
‖g(·;µ)‖L∞(Ω),

set x̂1 := arg ess supx∈Ω

∣∣g(x;µ1)
∣∣, and obtain the first (normalized) EIM basis function ĝ1(x) :=

g(x;µ1)/g(x̂1;µ1). We define W g
1 := span

{
ĝ1(·)

}
and introduce the nodal value matrix G1 ∈ R1×1

with the single element G1
1,1 := ĝ1(x̂1) = 1.
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Then, for 1 ≤M ≤Mmax − 1, we compute the approximation gM (·;µ) to g(·;µ) from

gM (x;µ) :=
M∑
m=1

ωm(µ)ĝm(x), (3)

where the coefficient vector ω(µ) = [ω1(µ), . . . , ωM (µ)]T ∈ RM is given by the solution of the linear

system

GMω(µ) =
[
g(x̂1;µ), . . . , g(x̂M ;µ)

]T
. (4)

We choose the next parameter

µM+1 := arg max
µ∈ΞEIM

train

‖g(·;µ)− gM (·;µ)‖L∞(Ω) (5)

and define the residual rgM (x) := g(x;µM+1)− gM (x;µM+1). The next interpolation point is then

set to x̂M+1 := arg maxx∈Ω

∣∣rgM (x)
∣∣, and the next EIM basis function is given by ĝM+1(x) :=

rgM (x)/rgM (x̂M+1). We define W g
M+1 := span { ĝm(·) | 1 ≤ m ≤M + 1}, and update our nodal

value matrix GM+1 ∈ R(M+1)×(M+1) with components GM+1
mn := ĝn(x̂m), 1 ≤ m,n ≤ M + 1.

This procedure is either terminated if the maximum dimension of the EIM space Mmax is reached

or if the maximum of ‖g(·;µ)− gM (·;µ)‖L∞(Ω) over all µ ∈ ΞEIM
train is smaller than some desired

tolerance εtol > 0. We note that the determination of the coefficients ω(µ) requires only O(M2)

computational cost since GM is lower triangular with unity diagonal and that {ĝm}Mm=1 is a basis

for W g
M [15, 16].

Finally, we define a “Lebesgue constant” [25] ΛM := supx∈Ω

∑M
m=1 |VM

m (x)|, where VM
m (x) ∈

W g
M are the characteristic functions of W g

M satisfying VM
m (xn) ≡ δmn, 1 ≤ m,n ≤M ; here, δmn is

the Kronecker delta symbol. We recall that (i) the set of all characteristic functions {VM
m }Mm=1 is a

basis forW g
M , and (ii) the Lebesgue constant ΛM satisfies ΛM ≤ 2M−1, see [15, 16]. In applications,

the actual asymptotic behavior of ΛM is much better, as we shall observe subsequently.

2.2. A Posteriori Error Estimation

We briefly recall the non-rigorous and rigorous a posteriori error bound procedures for the EIM.

Given an approximation gM (x;µ) to g(x;µ), we define the interpolation error as

εgM (µ) := ‖g(·;µ)− gM (·;µ)‖L∞(Ω) . (6)

The first error estimator provides a rigorous upper bound for εM (µ) only under the condition

g( · ;µ) ∈ W g
M+1 — thus referred to as “next-point” error bound — whereas the second bound is
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rigorous without requiring an additional condition on g( · ;µ). We discuss the trade-off and present

numerical results for the performance of both bounds in Section 2.3.

2.2.1. A “Next Point” Error Bound

Assume we are given an approximation gM (x;µ) for M ≤ Mmax − 1. If g(·;µ) ∈ W g
M+1, the

interpolation error satisfies [15, 16]

εgM (µ) = ε̂gM (µ), (7)

where the estimator is defined as ε̂gM (µ) := |g(xM+1;µ)−gM (xM+1;µ)|. We note that the estimator

is very inexpensive — it requires only one additional evaluation of g(·;µ) at a single point in Ω.

However, in general g(·;µ) 6∈ W g
M+1, and hence our estimator ε̂M (µ) is indeed a lower bound for

the true error, i.e., we have εgM (µ) ≥ ε̂gM (µ).

2.2.2. A Rigorous Error Bound

In a recent note, Eftang et al. [21] proposed a new rigorous a posteriori error bound which does

not rely on the assumption g(·;µ) ∈W g
M+1. We shall assume that g is parametrically smooth; for

simplicity here, we suppose g ∈ C∞(D, L∞(Ω)).

We first introduce a P -dimensional multi-index β := [β1, . . . , βP ] with non-negative integers

β1, . . . , βP . We define the length |β| :=
∑P

i=1 βi and refer to BPl as the set of all multi-indices β of

dimension P and length |β| = l. The number of elements of BPl is then given by
∣∣BPl ∣∣ =

(
P+l−1

l

)
.

We then define the parametric derivatives

g(β)(x;µ) :=
∂|β|g(x;µ)

∂µβ1
1 . . . ∂µβP

P

. (8)

Note that we use the same interpolation space W g
M for both the function g and its parametric

derivatives.

We further assume that for all non-negative integers p there exists a constant σp <∞ such that

maxµ∈Dmaxβ∈BP
p

∥∥g(β)(·;µ)
∥∥
L∞(Ω)

≤ σp. We also introduce a finite set of points Φ ⊂ D with |Φ|

elements and define ρΦ := maxµ∈Dminφ∈Φ ‖µ− φ‖2; here ‖·‖2 is the usual Euclidean norm. For

given positive integer p, the interpolation error then satisfies [21]

εgM (µ) ≤ δgM,p,Φ, ∀µ ∈ D, (9)
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where the error bound is given by

δgM,p,Φ := (1 + ΛM )
σp
p!
ρpΦP

p/2 + sup
φ∈Φ

p−1∑
j=0

ρjΦ
j!
P j/2 max

β∈BP
j

∥∥∥g(β)(·;φ)− g(β)
M (·;φ)

∥∥∥
L∞(Ω)

 . (10)

In practice, higher values of p and larger cardinalities |Φ| require larger computational effort

but result in sharper bounds. However, note that the bound is parameter-independent and can

thus be computed once offline.

2.3. Numerical Results

In this section we apply the EIM to the hemispherical volume heat source defined in (2), given

by

q(x;µ) = e−x
2
1/σ

2
1 e−x

2
2/σ

2
2 e−x

2
3/σ

2
3 , x ∈ Ω, (11)

for x = (x1, x2, x3) ∈ Ω := [−30, 10]×[0, 10]×[−10, 0] and µ = (σ1, σ2, σ3) ∈ D := [1.08, 1.32]3. The

admissible parameter set D is obtained by taking µ̄ = [1.2, 1.2, 1.2] from the double ellipsoid source

of the penetration welding example in [6] and assuming a 10% uncertainty in each parameter. We

perform our computations on a triangulation TN (Ω) with N = 23891 vertices (also see Figure 2

for a sketch of the computational domain).

Next, we choose a random parameter train sample ΞEIM
train ⊂ D with 1000 elements for the

greedy algorithm to construct the coefficient-function approximation. For the computation of the

rigorous error bound we introduce two deterministic parameter samples Φ1 ⊂ D and Φ2 ⊂ D with

|Φ1| = 125 and |Φ2| = 1000 elements. We shall consider p = 1, 2, . . . , 5 and test the rigorous error

bound with a random parameter test sample ΞEIM
test ⊂ D with 100 elements.

In Figures 2.3 (a) and (b), we plot the maximum interpolation error εq,max
M = maxµ∈ΞEIM

test
εqM (µ)

and interpolation error bound δqM,p,Φ as function of M for p = 1, 2, . . . , 5 and Φ = Φ1 and Φ = Φ2,

respectively. We observe that the error bounds initially decrease, but then reach a plateau in M

depending on the particular value of p. The plateau itself is due to the fact that the first term in

(10) eventually dominates and compromises the sharpness of the bounds. The slight increase of

each plateau is related to the growth of the Lebesgue constant ΛM with M . We note that with

increasing p and increasing |Φ| the bound is sharper for a larger range of M , thus resulting in

smaller effectivities.

In Table 1, we first present the Lebesgue constant ΛM , the condition number κ(GM ) of the

nodal value matrix GM , and the maximum interpolation error εq,max
M as a function of M . We
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(b) Φ = Φ2 with |Φ2| = 1000

Figure 1: Numerical results for the empirical interpolation of q(x;µ): maximum interpolation error εq,max
M (dashed

line) and interpolation error bound δq
M,p,Φ (solid lines) for p = 1, . . . , 5 as a function of M .

observe that the Lebesgue constant grows very slowly, and that the nodal value matrix GM is

quite well-conditioned. Note that the modest growth of the Lebesgue constant is crucial to obtain

a sharp error bound [26]. The maximum interpolation error εq,max
M decreases very fast with M .

We next compare the rigorous error bound and the non-rigorous “next-point” error bound.

To this end, we also present in Table 1 the rigorous error bound δqM,p,Φ and the effectivity

ηqM,p,Φ = δqM,p,Φ/ε
q,max
M for p = 5 and Φ = Φ2, as well as the maximum non-rigorous error bound

ε̂q,max
M = maxµ∈ΞEIM

test
ε̂qM (µ) and the average effectivity η̂q,ave

M = (1/|ΞEIM
test |)

∑
µ∈ΞEIM

test
ε̂qM (µ)/εqM (µ).

We observe that both the rigorous bound δqM,p,Φ and the non-rigorous bound ε̂q,max
M decrease very

fast. However, δqM,p,Φ is a true upper bound for the interpolation error: the effectivity is always

larger than one and — as expected — grows slowly with M (note that δqM,5,Φ2
reaches the plateau

for M = 36). The non-rigorous error bound, on the other hand, clearly underestimates the inter-

polation error: the average effectivities are less than one for all values of M . We recall that the

offline stage for the rigorous bound is much more expensive than for the next-point bound [21]. In

the online stage, however, the rigorous bound requires no computation at all and the next-point

bound requires only one additional evaluation of the non-affine function at a single point in Ω. As

long as we can afford the increased offline cost, the rigorous bound is thus clearly preferable.
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M ΛM κ(GM ) εq,max
M δqM,5,Φ2

ηqM,5,Φ2
ε̂q,max
M η̂q,ave

M

10 2.29 4.96 1.17E-03 2.31E-03 1.98 1.13E-03 0.48

20 6.71 7.57 7.30E-05 3.08E-04 4.22 7.30E-05 0.53

30 8.54 13.86 2.20E-05 1.16E-04 5.26 2.20E-05 0.57

40 14.78 22.78 2.36E-06 3.12E-05 13.20 1.97E-06 0.51

50 15.31 25.32 1.83E-06 3.01E-05 16.49 1.22E-06 0.63

Table 1: Numerical results for the empirical interpolation of q(x;µ): Lebesgue constant ΛM , condition number

κ(GM ), maximum interpolation error εq,max
M , rigorous error bound δq

M,p,Φ and associated effectivity ηq
M,p,Φ for p = 5

and Φ = Φ2, maximum non-rigorous error bound ε̂g,max
M and associated average effectivity η̂g,ave

M as a function of M .

3. Reduced Basis Method

In this section we incorporate the empirical interpolation method described in the last section

into our reduced basis approximation to develop an efficient offline-online computational procedure

for linear parabolic problems with non-affine source terms.

3.1. Problem Formulation

3.1.1. Abstract Statement

We recall that Ω ⊂ Rd, d = 1, 2, 3, denotes the spatial domain, a particular point in which

is denoted by x = (x1, . . . , xd) ∈ Ω. We also specify the function space Xe ≡ H1
0 (Ω) — or,

more generally H1
0 (Ω) ⊂ Xe ⊂ H1(Ω) — where H1(Ω) := {v | v ∈ L2(Ω),∇v ∈ (L2(Ω))d},

H1
0 (Ω) := {v | v ∈ H1(Ω), v|∂Ω = 0}, and L2(Ω) is the space of square integrable functions over

Ω [27].

For simplicity, we will directly consider a time-discrete framework associated to the time interval

I :=]0, tf ] (Ī := [0, tf ]). We divide Ī into K subintervals of equal length ∆t = tf/K and define

tk := k∆t, 0 ≤ k ≤ K = tf/∆t. We shall apply the finite differences θ-method [25] with 0.5 ≤ θ ≤ 1

for the time integration and define vk+θ ≡ (1 − θ)vk + θvk+1 for any time-discrete variable vk,

0 ≤ k ≤ K. Note that θ = 1 corresponds to the Euler-backward and θ = 0.5 to the Crank-Nicolson

scheme.

Our exact problem of interest is then: given a parameter µ ∈ D ⊂ RP , we evaluate the output

se(tk;µ) = l(ye(·, tk;µ)), k = 1, . . . ,K, (12)

9



where ye,k(µ) ≡ ye(·, tk;µ) ∈ Xe satisfies the weak form of the parametrized linear parabolic PDE

m(ye,k+1(µ)− ye,k(µ), v) + ∆t a(ye,k+θ(µ), v;µ) = ∆t f(v; g(·;µ))uk+θ (13)

for all v ∈ Xe and k = 0, 1, . . . ,K−1, with initial condition (say) ye(·, 0;µ) ≡ 0 for all µ ∈ D. Here,

a(·, ·;µ) is an Xe-continuous bilinear form, m(·, ·) = (·, ·)L2(Ω) is a symmetric L2(Ω)-continuous

bilinear form, l(·) and f(·; g(·;µ)) are L2(Ω)-continuous linear forms, u : ]0, tf ] → R is the control

function, and g(·;µ) ∈ L∞(Ω) is a prescribed function which is non-affine with respect to the

parameter µ.

We next introduce the X-inner product

(v, w)X =
1
2

(a(v, w; µ̄) + a(w, v; µ̄)) , ∀v, w ∈ Xe (14)

and induced norm ‖v‖X =
√

(v, v)X , where µ̄ ∈ D is a fixed reference parameter. We also introduce

the continuity and coercivity constants of the bilinear form a as

γe
a(µ) = sup

v∈Xe
sup
w∈Xe

a(v, w;µ)
‖v‖X ‖w‖X

, ∀µ ∈ D, (15)

and

αe
a(µ) = inf

v∈Xe

a(v, v;µ)
‖v‖2X

, ∀µ ∈ D, (16)

respectively. Moreover, we assume that the bilinear form a is affine with respect to the parameter

µ, i.e.

a(·, ·;µ) ≡
Qa∑
q=1

ϑqa(µ) aq(·, ·), (17)

with parameter-dependent functions ϑq(µ) and parameter-independent bilinear forms aq.

3.1.2. Truth Approximation

Since we do not have access to the exact semi-discrete solution ye,k(µ) ∈ Xe we replace it with

a so called “truth solution” yk(µ) that resides in a finite element approximation space X ⊂ Xe

of very large dimension N . Our truth approximation to (12) and (13) is then: given µ ∈ D, we

evaluate

s(tk;µ) := l(yk(µ)), k = 1, . . . ,K, (18)

where yk(µ) ∈ X satisfies

m(yk+1(µ)− yk(µ), v) + ∆t a(yk+θ(µ), v;µ) = ∆t f(v; g(·;µ))uk+θ (19)
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for all v ∈ X and k = 0, 1, . . . ,K−1, with initial condition y0(µ) ≡ 0. The continuity and coercivity

constants of the bilinear form a with respect to X are given by

γa(µ) = sup
v∈X

sup
w∈X

a(v, w;µ)
‖v‖X ‖w‖X

, ∀µ ∈ D, (20)

and

αa(µ) = inf
v∈X

a(v, v;µ)
‖v‖2X

, ∀µ ∈ D, (21)

respectively.

We recall that the affine parameter dependence of the bilinear and linear forms is a crucial

ingredient for the computational efficiency, i.e., the offline-online decomposition, of the reduced

basis method [16]. We may therefore replace the non-affine function g(·;µ) in (19) by its affine

coefficient-function approximation gM (·;µ) defined in (3) to obtain the approximately affine prob-

lem: find ykM (µ) ∈ X such that

m(yk+1
M (µ)− ykM (µ), v) + ∆t a(yk+θ

M (µ), v;µ) = ∆t fM (v;µ)uk+θ (22)

for all v ∈ X and k = 0, 1, . . . ,K − 1, with y0
M (µ) ≡ 0; here,

fM (v;µ) := f(v; gM (x;µ)) = f(v;
M∑
q=1

ωq(µ)ĝq(x)) =
M∑
q=1

ωq(µ)f(v; ĝq(x)) =
M∑
q=1

ωq(µ)f qM (v), (23)

for all v ∈ X and µ ∈ D, where the f qM (v) := f(v; ĝq(x)), q = 1, . . . ,M , are parameter-independent

linear forms and the ωq(µ), q = 1, . . . ,M, are calculated from (4). Note that this affine approxi-

mation to the truth formulation (19) has only a theoretical purpose. In fact, we stress that ykM (µ)

is not computed at any stage in the offline phase and that our a posteriori error bounds derived in

Section 4 measure the error of the reduced basis approximation with respect to the truth solution

yk(µ) from (19) and not with respect to the affine approximation ykM (µ) to the truth solution.

However, since (22) is affine in the parameter we could directly apply the results from [23] at the

cost of neglecting the error due to the empirical interpolation [17]. We return to this discussion in

Section 4.

To ensure rapid convergence of our reduced basis output approximation we introduce a dual

problem [28]. Invoking the LTI property, the truth approximation of the dual of the output at

time tL, L = 1, . . . ,K, is defined by

ψL(·, tk;µ) = Ψ(·, tK−L+k;µ), k = 1, . . . , L, (24)
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where Ψk(µ) ≡ Ψ(·, tk;µ) ∈ X satisfies

−m(v,Ψk+1(µ)−Ψk(µ)) + ∆t a(v,Ψk+(1−θ)(µ);µ) = 0 (25)

for all v ∈ X and k = 1, . . . ,K, with parameter-independent final condition

m(v,ΨK+1) = l(v) (26)

for all v ∈ X. Note that the dual problem inherits the spatial and temporal discretization from

the primal problem. Also note that the dual problem is affine with respect to the parameter since

the source term f does not enter into the dual problem.

3.1.3. Model Problem

The welding process discussed in Section 1 shall serve as our model problem. We consider a

coordinate system moving with the (non-dimensional) velocity Pe of the torch in the x1-direction;

in this coordinate system, the torch is stationary at the origin and the velocity enters as a factor

of a convective term in the governing equation, see Figure 2. The temperature ye in the workpiece

is then governed by the convection-diffusion equation (1) with v = (−Pe, 0, 0) and the source term

is given by Eq. (2), c.f. [4]. Since our interest is in the non-affine term we keep all parameters fixed

except for the ones in the source term; according to the data in [6] we thus set Pe = 3.65, κ = 1,

and the control input to u ≡ 12.3. We choose the time interval I =]0, 5] with K = 100 and θ = 1.

Figure 2: Sketch of the computational domain of the model problem with welding torch at the origin and the

measuring point at the top side of the workpiece.

We consider the start-up of the welding process and thus set the initial condition to zero. We

assume homogeneous Neumann boundary conditions on ΓN and homogeneous Dirichlet boundary
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conditions on ΓD, where ΓD corresponds to the inflow and outflow part of the boundary. The

inflow and outflow boundaries are chosen far enough from the origin so as not to influence the

temperature at the measurement location.

We next derive the weak formulation of (1) and apply the finite differences θ-method. The

governing equation for the temperature yk(µ) ∈ X is thus (19), where X is a linear finite element

truth approximation subspace of dimension N = 23891. The bilinear and linear forms are given

by m(w, v) =
∫

Ωwv dx, a(w, v;µ) = a(w, v) =
∫

Ω∇w ·∇v dx+Pe
∫

Ω
∂
∂x1

w v dx, and f(v; q(·;µ)) =∫
Ω v q(x;µ) dx, with q(x;µ) given by (2). The output of interest is the temperature measurement

in a specific volume at the surface, i.e.,

s(tk;µ) = l(yk(µ)) =
1
|Ωm|

∫
Ωm

yk(µ) dx, k = 1, . . . ,K, (27)

where Ωm = [−0.25, 0.25]× [1.5, 2]× [−0.1, 0].

3.2. Reduced Basis Approximation

We suppose that we are given the nested Lagrangian reduced basis spaces

Xpr
Npr = span{ζpr,n(x), 1 ≤ n ≤ Npr}, 1 ≤ Npr ≤ Npr

max, (28)

and

Xdu
Ndu = span{ζdu,n(x), 1 ≤ n ≤ Ndu}, 1 ≤ Ndu ≤ Ndu

max, (29)

where the ζpr,n, 1 ≤ n ≤ Npr, and the the ζdu,n, 1 ≤ n ≤ Ndu, are mutually (·, ·)X -orthogonal

basis functions. In general, we have Npr 6= Ndu. We comment on the POD/Greedy algorithm for

constructing the basis functions in Section 5.

Our reduced basis approximation ykM,Npr(µ) to yk(µ) is obtained by a standard Galerkin pro-

jection: given µ ∈ D, ykM,Npr(µ) ∈ Xpr
Npr satisfies

m(yk+1
M,Npr(µ)− ykM,Npr(µ), v) + ∆t a(yk+θ

M,Npr(µ), v;µ) = ∆t fM (v;µ)uk+θ (30)

for all v ∈ Xpr
Npr and k = 0, 1, . . . ,K − 1, with initial condition y0

M,Npr(µ) = 0.

Similarly, we obtain the reduced basis approximation Ψk
Ndu(µ) ∈ Xdu

Ndu to Ψk(µ) ∈ X as solution

of

−m(v,Ψk+1
Ndu(µ)−Ψk

Ndu(µ)) + ∆t a(v,Ψk+(1−θ)
Ndu (µ);µ) = 0 (31)
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for all v ∈ Xdu
Ndu and k = 1, . . . ,K, with final condition

m(v,ΨK+1
Ndu ) = l(v) (32)

for all v ∈ Xdu
Ndu .

Let N = (Npr, Ndu) be a multi-index indicating the reduced basis dimension of the primal and

dual problem respectively. The reduced basis approximation of the output can then be evaluated

as

skM,N (µ) = l(ykM,Npr(µ)) + ∆t
k∑

k′=1

ry,k
′

Npr(Ψ
K−k+k′+(1−θ)
Ndu (µ);µ), (33)

for k = 1, . . . ,K; here, the residual of the primal problem is defined as

ry,kNpr(v;µ) := fM (v;µ)uk−1+θ − a(yk−1+θ
M,Npr (µ), v;µ)− 1

∆t
m(ykM,Npr(µ)− yk−1

M,Npr(µ), v), (34)

with k = 1, . . . ,K for all v ∈ X. We may also obtain a simple reduced basis output approximation

from

s̃kM,Npr(µ) = l(ykM,Npr(µ)), (35)

k = 1, . . . ,K. Note that we do not require the dual problem to evaluate s̃kM,Npr(µ). We shall

compare the performance of both output approximations in Section 6.

3.3. Computational Procedure

Now we develop the offline-online computational procedure in order to fully exploit the dimen-

sion reduction. First, we express ykM,Npr(µ) in the form

ykM,Npr(µ) =
Npr∑
i=1

(
ykM,Npr(µ)

)
i
ζpr,i (36)

and choose as test functions v = ζpr,i(x), 1 ≤ i ≤ Npr in Eq. (30). We thus obtain

Npr∑
i=1

((
yk+1
M,Npr(µ)

)
i
−
(
ykM,Npr(µ)

)
i

)
m(ζpr,i, ζpr,j ;µ)

+ ∆t
Npr∑
i=1

(
yk+θ
M,Npr(µ)

)
i
a(ζpr,i, ζpr,j ;µ) = ∆t fM (ζpr,j ;µ)uk+θ (37)

for all j = 1, . . . , Npr and k = 0, 1, . . . ,K − 1, which we can rewrite in the algebraic form

(Mpr + θ∆t Apr(µ))T yk+1
M,Npr(µ) = (Mpr − (1− θ) ∆t Apr(µ))T yk

M,Npr(µ)

+ ∆t
(

(1− θ)uk + θuk+1
)
F pr
M (µ), (38)
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for k = 0, 1, . . . ,K − 1, where

Apr(µ) =
[
Apr
ij (µ)

]
∈ RNpr×Npr

, Apr
ij (µ) = a(ζpr,i, ζpr,j ;µ), 1 ≤ i, j ≤ Npr (39)

Mpr =
[
Mpr
ij

]
∈ RNpr×Npr

, Mpr
ij = m(ζpr,i, ζpr,j), 1 ≤ i, j ≤ Npr (40)

F pr
M (µ) =

[
F pr
M,j(µ)

]
∈ RNpr

, F pr
M,j(µ) = fM (ζpr,j ;µ), 1 ≤ j ≤ Npr (41)

and yk
M,Npr(µ) =

[(
ykM,Npr(µ)

)
1
, . . . ,

(
ykM,Npr(µ)

)
Npr

]T
∈ RNpr

. The initial condition is given by

y0
M,Npr(µ) = 0.

We now invoke the affine parameter dependence (17) to obtain

Apr(µ) =
Qa∑
q=1

ϑqa(µ)Apr,q, (42)

where the parameter independent matrices Apr,q =
[
Apr,q
ij

]
∈ RNpr×Npr

, 1 ≤ q ≤ Qa, are given by

Apr,q
ij = aq(ζpr,i, ζpr,j), 1 ≤ i, j ≤ Npr, 1 ≤ q ≤ Qa. Furthermore, it follows from (23) that we can

express F pr
M (µ) as

F pr
M (µ) =

M∑
q=1

ωq(µ)F pr,q
M , (43)

where the parameter independent vectors F pr,q
M =

[
F pr,q
M,j

]
∈ RNpr

, 1 ≤ q ≤M, are given by F pr,q
M,j =

f qM (ζpr,j) = f(ζpr,j ; ĝq(x)), 1 ≤ j ≤ Npr, 1 ≤ q ≤ M , and the ωq(µ), 1 ≤ q ≤ M, are calculated

from (4). The computational procedure for the dual problem and the output approximation directly

follows from the primal problem and is therefore omitted [23].

The offline-online decomposition is now clear. In the offline stage — performed only once —

we compute the basis functions ζpr,1(x), . . . , ζpr,Npr
(x) of the primal and ζdu,1(x), . . . , ζdu,Ndu

(x) of

the dual problem. Then we determine the parameter-independent matrices Apr,q, Mpr, and F pr,q
M

for the primal problem; Adu,q and Mdu for the dual problem; and Apr,du,q, Mpr,du, F du,q
M , and Lpr

for the output approximation. The computational costs are thus O(K + (Npr + Ndu)) solutions

of the N -dimensional truth finite element approximation and O(Qa((Npr)2 + (Ndu)2 +NprNdu) +

M(NprNdu)) N -inner products. The storage requirements are O(Qa((Npr)2 +(Ndu)2 +NprNdu)+

M(Npr +Ndu)).

In the online stage — performed many times, for each new parameter value µ — we assemble

the parameter-dependent matrices Apr(µ), Adu(µ), Apr,du(µ) and vectors F pr
M (µ), F du

M (µ) which

requires O(Qa((Npr)2 + (Ndu)2 + NprNdu) + M2 + M(Npr + Ndu)). We then solve the primal
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problem (38) and the dual problem — considering the LTI property and the fact that the matrices

are generally full — at cost O((Npr)3+(Ndu)3+K((Npr)2+(Ndu)2)). Finally, the evaluation of the

output approximation (33) at time tk requires O(kNprNdu) — the evaluation of the output for all

K timesteps has a cost of O(K2NprNdu) due to the residual correction term. However, evaluating

the simple reduced basis output approximation (35) at all timesteps costs only O(KNpr). The

online stage is thus independent of the truth finite element dimension N .

4. A Posteriori Error Estimation

In this section we develop rigorous a posteriori error bounds for the reduced basis approx-

imation of the state and output. The new ingredients are (i) the combination of the rigorous

error bounds for the EIM of Section 2 with the “standard” affine reduced basis error bounds, and

(ii) the development of adjoint procedures for non-affine parabolic problems. We recall that non-

rigorous error bounds have been developed for elliptic and parabolic problems in [19, 18] and [20],

respectively; and that adjoint procedures for affine parabolic problems have been proposed in [23].

Furthermore, we refer the interested reader to [16] for a priori convergence results of non-affine

problems.

4.1. Preliminaries

To begin, we assume that we are given a positive lower bound for the coercivity constant αa(µ):

αLB
a (µ) : D → R+ satisfies

αa(µ) ≥ αLB
a (µ) ≥ α0

a > 0, ∀ µ ∈ D. (44)

This bound can be calculated using the Successive Constraint Method (SCM) [29]; however, simpler

recipes often suffice [30, 31]. We next introduce the dual norm of the primal residual (34), given

by ∥∥∥ry,kNpr(·;µ)
∥∥∥
X∗

= sup
v∈X

ry,kNpr(v;µ)
‖v‖X

, 1 ≤ k ≤ K, (45)

and the dual norm of the dual residual∥∥∥rΨ,k
Ndu(·;µ)

∥∥∥
X∗

= sup
v∈X

rΨ,k
Ndu(v;µ)
‖v‖X

, 1 ≤ k ≤ K, (46)

where

rΨ,k
Ndu(v;µ) := −a(v,Ψk+(1−θ)

Ndu (µ);µ) +
1

∆t
m(v,Ψk+1

Ndu(µ)−Ψk
Ndu(µ)), (47)
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for v ∈ X, 1 ≤ k ≤ K. Finally, the spatio-temporal energy norm for the primal problem is defined

as ∣∣∣∣∣∣∣∣∣vk∣∣∣∣∣∣∣∣∣pr

µ
:=

(
m(vk, vk) + ∆t

k∑
k′=1

a(vk
′−1+θ, vk

′−1+θ;µ)

) 1
2

, (48)

and for the dual problem as

∣∣∣∣∣∣∣∣∣vk∣∣∣∣∣∣∣∣∣du

µ
:=

(
m(vk, vk) + ∆t

K∑
k′=k

a(vk+(1−θ), vk+(1−θ);µ)

) 1
2

. (49)

4.2. Primal Variable

We first revisit our discussion related to the truth formulation (19) and its affine approximation

(22). Assuming we are interested in the error between the reduced basis approximation, ykM,Npr(µ),

and the affine approximation to the truth, ykM (µ), we can directly apply the result from [23]. Indeed,

the error, ykM (µ)− ykM,Npr(µ), satisfies∣∣∣∣∣∣∣∣∣ykM (µ)− ykM,Npr(µ)
∣∣∣∣∣∣∣∣∣pr

µ
≤ ∆yM ,k

Npr (µ), ∀µ ∈ D, ∀k = 1, . . . ,K, (50)

where the error bound is given by

∆yM ,k
Npr (µ) :=

(
∆t

αLB
a (µ)

k∑
k′=1

∥∥∥ry,k′Npr(·;µ)
∥∥∥2

X∗

) 1
2

. (51)

Although this approach is appealing due to its simplicity, the error bound (51) does not account

for the error due to the empirical interpolation of the non-affine terms. Our goal is to incorporate

the interpolation error into the bound formulation and thus provide a rigorous upper bound for

the error between the reduced basis, ykM,Npr(µ), and the truth approximation, yk(µ). However, we

shall use the bound defined in (51) for notational convenience and to show the analogy between

the affine and non-affine error bound formulations.

We are now ready to state

Proposition 1. Let P = (p,Φ) be a multi-index with a positive integer p and a finite subset Φ of

D. Then the error

ey,kM,Npr(µ) ≡ yk(µ)− ykM,Npr(µ) (52)

of the reduced basis solution ykM,Npr(µ) with respect to the truth solution yk(µ) satisfies∣∣∣∣∣∣∣∣∣ey,kM,Npr(µ)
∣∣∣∣∣∣∣∣∣pr

µ
≤ ∆y,k

M,Npr,P(µ), ∀µ ∈ D, ∀k = 1, . . . ,K, (53)
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where the error bound ∆y,k
M,Npr,P(µ) is defined by

∆y,k
M,Npr,P(µ) :=

(
2
(

∆yM ,k
Npr (µ)

)2
+

2∆t
αLB
a (µ)

(
δgM,p,Φ ‖f(·; 1)‖X∗

)2
k∑

k′=1

(
uk−1+θ

)2
) 1

2

(54)

and ∆yM ,k
Npr (µ) is defined in (51) and ‖f(·; 1)‖X∗ := supv∈X

f(v;1)
‖v‖X

.

We note that the error bound (54) consists of two terms: the first term contains the error

bound defined in (51) and thus represents the contribution due to the affine terms; the second

term depends on the estimator δgM,p,Φ for the interpolation error, and thus accounts for the error

due to the non-affine function interpolation.

Proof. The proof is an extension of the one presented in [23] for affine problems with the added

complexity due to error in the function interpolation. Following the same steps, we obtain

m(ey,kM,Npr , e
y,k
M,Npr)−m(ey,k−1

M,Npr , e
y,k−1
M,Npr) + 2∆t a(ey,k−1+θ

M,Npr , ey,k−1+θ
M,Npr ;µ)

≤ 2∆t ry,kNpr(ey,k−1+θ
M,Npr ;µ) + 2∆t f(ey,k−1+θ

M,Npr , g(µ)− gM (µ))uk−1+θ. (55)

The new ingredient is the non-affine contribution on the right hand side. Using Young’s inequality,

the first term on the right hand side can be bounded by

ry,kNpr(ey,k−1+θ
M,Npr ;µ) ≤ 1

2

(
2

αLB
a (µ)

∥∥∥ry,kNpr(·;µ)
∥∥∥2

X∗
+
αLB
a (µ)

2

∥∥∥ey,k−1+θ
M,Npr

∥∥∥2

X

)
. (56)

We now use the EIM rigorous bound result (9), (10), and Young’s inequality to bound the second

term on the right hand side by

f(ey,k−1+θ
M,Npr , g(µ)− gM (µ))uk−1+θ

≤ 1
2

(
αLB
a (µ)

2

∥∥∥ey,k−1+θ
M,Npr

∥∥∥2

X
+

2
αLB
a (µ)

(
δgM,p,Φ ‖f(·; 1)‖X∗ u

k−1+θ
)2
)
. (57)

The desired result then directly follows from (55), (56), (57), the coercivity of a and (44) after

summing from k′ = 1 to k.

4.3. Dual Variable

Since the dual problem is affinely parameter dependent, the results from [23] directly apply:

the error

eΨ,k
Ndu(µ) ≡ Ψk(µ)−Ψk

Ndu(µ) (58)
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in the dual state satisfies∣∣∣∣∣∣∣∣∣eΨ,k
Ndu(µ)

∣∣∣∣∣∣∣∣∣du

µ
≤ ∆Ψ,k

Ndu(µ) ∀µ ∈ D, ∀k = 1, . . . ,K, (59)

where the dual state error bound is given by

∆Ψ,k
Ndu(µ) :=

(
∆t

αLB
a (µ)

K∑
k′=k

∥∥∥rΨ,k′

Ndu (·;µ)
∥∥∥2

X∗

) 1
2

. (60)

4.4. Output Bounds

Finally, the error bound for the output approximation is given in the following proposition. We

provide the proof in Appendix A.

Proposition 2. Let P = (p,Φ) be a multi-index with a positive integer p and a finite subset Φ of

D. The error between the truth output sk(µ) and its reduced basis approximation skM,N (µ) satisfies∣∣∣sk(µ)− skM,N (µ)
∣∣∣ ≤ ∆s,k

M,N,P(µ) ∀µ ∈ D, ∀k = 1, . . . ,K, (61)

with the primal-dual output error bound

∆s,k
M,N,P(µ) := ∆yM ,k

Npr (µ) ∆Ψ,K−k+1
Ndu (µ)

+ δgM,p,Φ ∆Ψ,K−k+1
Ndu (µ) ‖f(·; 1)‖X∗

(
∆t

αLB
a (µ)

k∑
k′=1

(
uk
′−1+θ

)2
) 1

2

+ ∆t δgM,p,Φ

k∑
k′=1

∣∣∣f(ΨK−k+k′+(1−θ)
Ndu (µ); 1) uk

′−1+θ
∣∣∣ ,

(62)

where ∆yM ,k
Npr (µ) and ∆Ψ,k

Ndu(µ) are defined in (51) and (60), respectively.

We also introduce a simple reduced basis output approximation and corresponding error bound

which shall serve as a comparison for the primal-dual formulation.

Proposition 3. Let P = (p,Φ) be a multi-index with a positive integer p and a finite subset Φ of

D. The error between the truth output sk(µ) and its simple reduced basis approximation s̃kM,Npr(µ)

satisfies ∣∣∣sk(µ)− s̃kM,Npr(µ)
∣∣∣ ≤ ∆̃s,k

M,Npr,P(µ) ∀µ ∈ D, ∀k = 1, . . . ,K, (63)

with the simple output error bound

∆̃s,k
M,Npr,P(µ) := sup

v∈X

l(v)
‖v‖L2(Ω)

∆y,k
M,Npr,P(µ). (64)
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Proof. From the definition of the simple output we obtain∣∣∣sk(µ)− s̃kM,Npr(µ)
∣∣∣ =

∣∣∣l(ey,kM,Npr(µ))
∣∣∣ = sup

v∈X

l(v)
‖v‖L2(Ω)

∥∥∥ey,kM,Npr(µ)
∥∥∥
L2(Ω)

. (65)

The result directly follows since∥∥∥ey,kM,Npr(µ)
∥∥∥
L2(Ω)

=
(
m(ey,kM,Npr(µ), ey,kM,Npr(µ))

) 1
2 ≤

∣∣∣∣∣∣∣∣∣ey,kM,Npr(µ)
∣∣∣∣∣∣∣∣∣pr

µ
. (66)

for all µ ∈ D.

At this point, we make several comments from a theoretical point of view. First, similar to the

error bound for the primal variable, the output error bound (62) consists of several terms: the first

term represents the usual primal-dual contribution to the error bound. If the problem becomes

affine, i.e., we redefine the affine approximation to the truth finite element approximation given by

(22) to be our new “truth” the error bound then simplifies to the one proposed for affine problems

in [23]: the interpolation error bound δgM,p,Φ vanishes and only the primal-dual contribution in

the first term, ∆yM ,k
Npr (µ) ∆Ψ,K−k+1

Ndu (µ), remains. However, for non-affine problems we obtain two

additional terms which account for the error due to the function approximation.

Second, the goal of the adjoint formulation is to recover the square effect, i.e., a primal con-

tribution multiplied by a dual contribution, in the output bound. The second term of the output

error bound (62) also shows this square effect since the error bound of the dual state is multiplied

with the EIM error bound. The last term, on the other side, only contains the EIM error bound

δgM,p,Φ. We thus need to choose M large enough — and thus guarantee that δgM,p,Φ is small enough

— so that the last term does not limit the convergence of the overall output error bound.

Third, we observe that the simple output error bound does not show the square effect. We thus

expect a much slower convergence of the output bound for the primal-only formulation.

4.5. Computational Procedure

The offline-online computational procedures for the calculation of the error bounds ∆y,k
M,Npr,P(µ),

∆̃s,k
M,Npr,P(µ) and ∆s,k

M,N,P(µ) are a direct extension of the procedures described in [23, 20]. We there-

fore omit the details and only summarize the computational costs involved in the online stage.

We recall that the EIM a posteriori error bound δgM,p,Φ is evaluated offline and does not require

any online calculations. In the online stage the computational cost to evaluate ∆y,k
M,Npr,P(µ) and

∆̃s,k
M,Npr,P(µ) for all K is thusO(K(NprMQa+(Npr)2Q2

a)), while the computational cost to evaluate

the primal-dual output bound ∆s,k
M,N,P(µ) is O(K(NprMQa + (Npr)2Q2

a + (Ndu)2Q2
a)).
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5. Sampling Procedure

In this section we review the combined proper orthogonal decomposition (POD) and greedy

sampling procedure [32] to construct the primal and dual reduced basis space.

We only summarize the POD/Greedy procedure for the primal problem: we first choose an

arbitrary parameter value µ1 ∈ D and set S0 = {0}, X0 = {0}, Npr = 0. Then, for 1 ≤ Npr ≤ Npr
max,

we first set the parameter sample to SNpr = SNpr−1 ∪ {µNpr} and compute the projection error

ey,kNpr,proj(µNpr), k = 1, . . . ,K, which is the difference of the truth solution yk(µNpr) and its X-

orthogonal projection ykproj(µNpr) onto the reduced basis space XNpr . We then expand the reduced

basis space by the largest POD mode of the time history of {ey,kNpr,proj(µNpr) | 1 ≤ k ≤ K} which

we compute using the method of snapshots [33]. Finally, we choose the next parameter value from

µNpr+1 = arg maxµ∈Ξtrain ∆y,K
M,Npr(µ)/|||yKM,Npr(µ)|||pr

µ , i.e. we perform a greedy search over Ξtrain

for the largest relative a posteriori state error bound at the final time. Here Ξtrain ⊂ D denotes a

finite but suitably large parameter train sample.

Note that we set M = Mmax during the greedy procedure so that the contribution of the non-

affine terms does not spoil the greedy search. If the control u(tk) is not known in advance, e.g., in

an (optimal) control setting, we may perform the sampling procedure with the impulse input δ1,k

without detriment to the accuracy of the resulting reduced basis approximation [23].

6. Numerical Results

We now present numerical results for our model problem introduced in Section 3.1.3. The

generation of the EIM approximation of the non-affine source term and the numerical results are

discussed in Section 2.3.

We first choose a random parameter sample Ξtrain ⊂ D with 1000 elements to construct the pri-

mal reduced basis space Xpr
Npr according to the POD/Greedy sampling procedure in Section 5. Since

the dual problem is parameter-independent we perform only the POD part of the POD/Greedy

procedure to construct the dual reduced basis space Xdu
Ndu . For the numerical tests we use a random

parameter test sample Ξtest ⊂ D with 60 elements.

In Figure 3 we plot, as a function of Npr and M , the maximum relative state error bound

∆y,max,rel
M,Npr,P = maxµ∈Ξtest ∆y,K

M,Npr,P(µ)/
∣∣∣∣∣∣yK(µ)

∣∣∣∣∣∣pr

µ
of the primal problem at the final time step tK .

For the interpolation error bound we used p = 5 and Φ = Φ2. We observe that the reduced
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basis approximation converges quite rapidly. We also note that the curves for fixed M stagnate

at some point and that the curves level off at smaller values as M increases: for fixed M the EIM

error bound will ultimately dominate for large Npr; increasing M renders the coefficient function

approximation more accurate, which in turn leads to a drop in the error. The separation points of

the Npr-M -convergence curves reflect a balanced contribution of both error bound terms in (54);

neither Npr nor M limit the convergence of the reduced basis approximation.
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Figure 3: Numerical results for the reduced basis method: maximum relative primal state error bound ∆y,max,rel
M,Npr,P as

a function of Npr for M = 10, 20, 30, 36, p = 5 and Φ = Φ2.

In Table 2 we present, as a function of Npr and M , the maximum relative truth error εy,max,rel
M,Npr ,

the maximum relative error bound ∆y,max,rel
M,Npr,P , and the average effectivity ηy,ave

M,Npr,P ; here, εy,max,rel
M,Npr

is the maximum over Ξtest of εy,KM,Npr(µ)/
∣∣∣∣∣∣yK(µ)

∣∣∣∣∣∣pr

µ
, and ηy,ave

M,Npr,P is the average over Ξtest of

∆y,K
M,Npr,P(µ)/εy,KM,Npr(µ). Note that the tabulated (Npr,M) values correspond roughly to the sep-

aration points of the Npr-M -convergence curves. We observe that the effectivities are larger than

but close to 1; we obtain rigorous and sharp upper bounds for the true error.

The corresponding results for the dual problem are presented in Table 3. Since the dual is

parameter-independent, we observe a much faster convergence of the error and the error bound

than for the primal problem. The effectivities are thus very good for all values of Ndu.

We next turn to the output error bound and present in Figure 4 the maximum relative primal-

dual output error bound ∆s,max,rel
M,N,P = maxµ∈Ξtest ∆s,K

M,N,P(µ) at the final time step tK as a function

of Npr for Ndu = 5, 10, 15, 20. We use p = 5, Φ = Φ2 and M = 36 for the empirical interpolation.

The convergence curves show the full potential and advantage of the primal-dual formulation for
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Npr M εy,max,rel
M,Npr ∆y,max,rel

M,Npr,P ηy,ave
M,Npr,P

5 10 9.88E-02 5.28E-01 6.57

10 20 3.76E-02 1.35E-01 4.19

25 30 7.59E-03 3.21E-02 5.56

40 36 1.02E-03 6.89E-03 7.88

Table 2: Reduced basis approximation of the primal state: maximum relative truth error εy,max,rel
M,Npr , maximum relative

error bound ∆y,max,rel
M,Npr,P and average effectivity ηy,ave

M,Npr,P as a function of M and Npr. The values of the error bound

refer to p = 5 and Φ = Φ2.

Ndu εΨ,rel
Ndu ∆Ψ,rel

Ndu ηΨ
Ndu

5 6.01E-02 2.30E-01 3.83

10 2.76E-03 5.70E-03 2.07

15 2.26E-05 4.52E-05 2.00

20 7.74E-08 1.76E-07 2.28

Table 3: Reduced basis approximation of the dual state: relative truth error εΨ,rel

Ndu , relative error bound ∆Ψ,rel

Ndu and

effectivity ηΨ
Ndu as a function of Ndu.

the problem considered. We can obtain a specific desired accuracy of the output bound for different

combinations of Npr and Ndu. Due to the faster convergence of the dual problem, however, the

effect of increasing Ndu is much larger than the effect of increasing Npr. To obtain a maximum

output bound of approximately 10%, we require either Npr = 30 and Ndu = 5 or Npr = 4 and

Ndu = 10. We can thus considerably decrease Npr — here, a factor of ≈ 7 — while we only have

to double Ndu to keep the same accuracy of the output bound.

We also note that the convergence curves only reach an accuracy of approximately 2E-04. At

this point the interpolation error bound, i.e., the last term in (62), dominates the primal-dual

output error bound. Thus, increasing Npr or Ndu has, at this point, no effect on the convergence

of the output bound anymore. This is in contrast to the results for affine problems, where only

the first term in (62) is present and the convergence curves thus keep decreasing without reaching

a plateau. We note that this plateau effect is important in choosing an efficient combination of

Npr vs. Ndu vs. M . As a general guideline, M should be large enough such that the interpolation
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error is small enough and the last term in (62) has the same order of magnitude as the first term.

Subsequently, Npr and Ndu can be chosen so as to minimize the computational cost involved. The

actual values of Npr, Ndu, and M required to satisfy these goals, however, are strongly problem

dependent.
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Figure 4: Numerical results for the reduced basis method: maximum relative primal-dual output error bound

∆s,max,rel
M,N,P as a function of Npr for Ndu = 5, 10, 15, 20, M = 36, p = 5 and Φ = Φ2.

Finally, we present in Table 4 for a specific combination of Npr, Ndu, and M the maximum

relative truth output errors εs,max,rel
M,N , the maximum relative output bound ∆s,max,rel

M,N,P , and the

average effectivity ηs,ave
M,N,P ; here, εs,max,rel

M,N is the maximum over Ξtest of εs,KM,N/|sK |, ∆s,max,rel
M,N,P is the

maximum over Ξtest of ∆s,K
M,N,P/|sK(µ)|, and ηs,ave

M,N,P is the average over Ξtest of ∆s
M,N,P(µ)/εsM,N (µ).

We also present the online computational times to calculate skM,N (µ) and ∆s,k
N,M,P for 1 ≤ k ≤ K.

The values are normalized with respect to the computational time for direct calculation of the truth

approximation output sk(µ), 1 ≤ k ≤ K. We present the corresponding results for the primal-only

approach in Table 5.

We observe that the output approximation and output bound for the primal-dual formulation

converge very fast. Furthermore, the primal-dual formulation is clearly superior to the primal-only

formulation for the problem considered here. The reason, of course, is the parameter independence

and thus fast convergence of the dual problem. To achieve a desired accuracy in the output bound

of approximately 1%, we require Npr = 20, Ndu = 10, and M = 20 for the primal-dual formulation.

Using the primal-only formulation the output bound is still larger than 10% even if we set Npr

and M to their maximum values Npr
max = Mmax = 50. The output effectivities are O(100) and thus
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worse than the effectivities of the energy norm bounds since our bound cannot take into account

any correlation between the primal and dual error. Despite the quite large effectivities, however,

the computational savings are considerable: the computational time to evaluate the reduced basis

output approximation and output bound is a factor of O(104) faster than direct calculation of the

truth approximation output.

Npr Ndu M εs,max,rel
M,N ∆s,max,rel

M,N,P ηs,ave
M,N,P comp. time ∀k

10 5 10 6.59E-03 1.28E+00 599.62 6.09E-05

20 10 20 1.04E-04 9.50E-03 346.56 7.98E-05

30 15 30 3.74E-05 6.21E-04 813.41 1.05E-04

Table 4: Primal-dual reduced basis output approximation: maximum relative truth output error εs,max,rel
M,N , maximum

relative output error bound ∆s,max,rel
M,N,P , average effectivity ηs,ave

M,N,P and computation times for p = 5 and Φ = Φ2 as

a function of Npr, Ndu and M . The computation time is normalized with respect to the computation time of

calculating the truth output.

Npr M ε̃s,max,rel
M,Npr ∆̃s,max,rel

M,Npr,P η̃s,ave
M,Npr,P comp. time ∀k

5 10 2.41E-01 1.14E+01 257.26 2.34E-05

10 20 4.16E-02 2.87E+00 1585.89 3.01E-05

25 30 5.82E-03 6.84E-01 591.01 5.43E-05

40 36 1.11E-03 1.45E-01 562.08 8.39E-04

Table 5: Primal-only reduced basis output approximation: maximum relative truth output error ε̃s,max,rel
M,Npr , maximum

relative output error bound ∆̃s,max,rel
M,Npr,P , average effectivity η̃s,ave

M,Npr,P and computation time for p = 5 and Φ = Φ2 as

a function of M and Npr. The computation time is normalized with respect to the computation time of calculating

the truth output.

7. Conclusions

We have presented rigorous a posteriori error bounds for reduced basis approximations of

problems with non-affine source terms. To this end, we employed the recently proposed rigorous a

posteriori error bounds for the empirical interpolation method and we developed adjoint procedures

to ensure rapid convergence of the reduced basis output approximation and associated error bound.
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The error bounds take both error contributions — the error introduced by the reduced basis

approximation and the error induced by the function interpolation — explicitly into account.

We presented numerical results for a welding process that showed the very fast convergence of

the reduced basis approximation and associated error bounds. The computational savings in the

online stage are considerable; we observed a speed-up of O(104) in the calculation of the output

estimate and bound compared to direct calculation of the truth output.

The primal-dual formulation proved to be clearly superior to the primal-only formulation for our

model problem. We note that a small interpolation error and thus large enough dimension of the

EIM approximation space is essential in recovering the square effect in the output approximation

and bound. The welding problem has proven an ideal application for the use of adjoint techniques

— the parametric dependence enters only in the right hand side of the primal problem and thus

does not show up in the dual problem. However, adjoint techniques are advantageous also for

problems with a more general parameter dependence [14, 23, 34, 22] and our development is thus

not restricted to the particular problem considered here.

A topic of future research is the application of the methods developed here in the solution of

the inverse problem using real experimental data.

Appendix A. Proof of Proposition 2

For simplicity we shall omit the parameter-dependence of the state variables in our notation,

i.e. we write yk instead of yk(µ) etc.

First we note that the dual of the output at time tL, L = 1, . . . ,K, satisfies

−m(v, ψk
′+1
L − ψk′L ) + ∆t a(v, ψk

′+(1−θ)
L ;µ) = 0 (A.1)

for all v ∈ X and k′ = 1, . . . , L, with final condition

m(v, ψL+1
L ) = l(v) (A.2)

for all v ∈ X. We now choose v = ey,k
′−1+θ

M,Npr in (A.1) and sum from k′ = 1 to L to obtain

−
L∑

k′=1

m(ey,k
′−1+θ

M,Npr , ψk
′+1
L − ψk′L ) + ∆t

L∑
k′=1

a(ey,k
′−1+θ

M,Npr , ψ
k′+(1−θ)
L ;µ) = 0, (A.3)
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which can be rewritten in the form

L∑
k′=1

m(ey,k
′

M,Npr − ey,k
′−1

M,Npr , ψ
k′+(1−θ)
L ) + ∆t

L∑
k′=1

a(ey,k
′−1+θ

M,Npr , ψ
k′+(1−θ)
L ;µ) = m(ey,LM,Npr , ψ

L+1
L ), (A.4)

where we used the fact that ey,0M,Npr ≡ 0. We now note from the final condition of the dual problem

(A.2) that m(ey,LM,Npr , ψ
L+1
L ) = l(ey,LM,Npr) to obtain

l(ey,LNpr) =
L∑

k′=1

m(ey,k
′

M,Npr − ey,k
′−1

M,Npr , ψ
k′+(1−θ)
L ) + ∆t

L∑
k′=1

a(ey,k
′−1+θ

M,Npr , ψ
k′+(1−θ)
L ;µ). (A.5)

We next derive from (19) and (34) that the primal error satisfies

m(ey,k
′

M,Npr − ey,k
′−1

M,Npr , v) + ∆t a(ey,k
′−1+θ

M,Npr , v;µ)

= ∆t ry,k
′

Npr(v;µ) + ∆t f(v; g(µ)− gM (µ))uk
′−1+θ (A.6)

for all v ∈ X and k′ = 1, . . . ,K. Choosing v = ψ
k′+(1−θ)
L and summing from k′ = 1 to L it follows

that

L∑
k′=1

m(ey,k
′

M,Npr − ey,k
′−1

M,Npr , ψ
k′+(1−θ)
L ) + ∆t

L∑
k′=1

a(ey,k
′−1+θ

M,Npr , ψ
k′+(1−θ)
L ;µ)

= ∆t
L∑

k′=1

ry,k
′

Npr(ψ
k′+(1−θ)
L ;µ) + ∆t

L∑
k′=1

f(ψk
′+(1−θ)
L ; g(µ)− gM (µ))uk

′−1+θ. (A.7)

From (A.5) and (A.7) we have

l(ey,LNpr) = ∆t
L∑

k′=1

ry,k
′

Npr(ΨK−L+k′+(1−θ);µ)

+ ∆t
L∑

k′=1

f(ΨK−L+k′+(1−θ); g(µ)− gM (µ))uk
′−1+θ, (A.8)

where we used the shifting property of the dual (24). From the definition of the truth output,

sk(µ), the reduced basis output approximation, skM,N (µ), and (A.8) we now obtain

sk(µ)− skM,N (µ) = ∆t
k∑

k′=1

ry,k
′

Npr(e
Ψ,K−k+k′+(1−θ)
Ndu (µ);µ)

+ ∆t
k∑

k′=1

f(ΨK−k+k′+(1−θ)(µ); g(µ)− gM (µ))uk
′−1+θ. (A.9)
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Using the definition of the dual norm the first term of the right hand side of (A.9) is bounded by∣∣∣∣∣∆t
k∑

k′=1

ry,k
′

Npr(e
Ψ,K−k+k′+(1−θ)
Ndu (µ);µ)

∣∣∣∣∣
≤ ∆t

k∑
k′=1

∥∥∥ry,k′Npr(·;µ)
∥∥∥
X∗

∥∥∥eΨ,K−k+k′+(1−θ)
Ndu (µ)

∥∥∥
X
, (A.10)

and using the Cauchy-Schwarz inequality it follows that∣∣∣∣∣∆t
k∑

k′=1

ry,k
′

Npr(e
Ψ,K−k+k′+(1−θ)
Ndu (µ);µ)

∣∣∣∣∣
≤

(
∆t

αLB
a (µ)

k∑
k′=1

∥∥∥ry,k′Npr(·;µ)
∥∥∥2

X∗

) 1
2

×

(
∆t αLB

a (µ)
k∑

k′=1

∥∥∥eΨ,K−k+k′+(1−θ)
Ndu (µ)

∥∥∥2

X

) 1
2

. (A.11)

By definition, the first term of the right hand side of (A.11) is equal to the error bound ∆yM ,k
Npr (µ)

of the affine primal problem (22), and the second term satisfies

∆t αLB
a (µ)

k∑
k′=1

∥∥∥eΨ,K−k+k′+(1−θ)
Ndu (µ)

∥∥∥2

X
≤
(

∆Ψ,K−k+1
Ndu (µ)

)2
. (A.12)

We now turn to the second term of the right hand side of (A.9), which we can bound by

∆t
k∑

k′=1

f(ΨK−k+k′+(1−θ)(µ); g(µ)− gM (µ))uk
′−1+θ

≤ ∆t
k∑

k′=1

∥∥∥eΨ,K−k+k′+(1−θ)
Ndu (µ)

∥∥∥
X

sup
v∈X

f(v; g(µ)− gM (µ))
‖v‖X

∣∣∣uk′−1+θ
∣∣∣

+ ∆t
k∑

k′=1

f(ΨK−k+k′+(1−θ)
Ndu (µ); g(µ)− gM (µ))uk

′−1+θ. (A.13)

With the help of the rigorous EIM-bound δgM,p,Φ this can be simplified to

∆t
k∑

k′=1

f(ΨK−k+k′+(1−θ)(µ); g(µ)− gM (µ))uk
′−1+θ

≤ ∆t δgM,p,Φ ‖f(·; 1)‖X∗
k∑

k′=1

∥∥∥eΨ,K−k+k′+(1−θ)
Ndu (µ)

∥∥∥
X

∣∣∣uk′−1+θ
∣∣∣

+ ∆t δgM,p,Φ

k∑
k′=1

∣∣∣f(ΨK−k+k′+(1−θ)
Ndu (µ); 1)uk

′−1+θ
∣∣∣ . (A.14)
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Finally, using the Cauchy-Schwarz inequality, the coercivity of a and the definition of the dual

spatio-temporal energy norm and the dual error bound, we have

∆t
k∑

k′=1

∥∥∥eΨ,K−k+k′+(1−θ)
Ndu (µ)

∥∥∥
X

∣∣∣uk′−1+θ
∣∣∣ ≤ ∆Ψ,K−k+1

Ndu (µ)

(
∆t

αLB
a (µ)

k∑
k′=1

(
uk
′−1+θ

)2
) 1

2

. (A.15)

The result directly follows from (A.9)-(A.15).
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