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Abstract

We present reduced basis approximations and associated a poste-
riori error bounds for nonaffine linear time-varying parabolic partial
differential equations. We employ the Empirical Interpolation Method
in order to construct “affine” coefficient-function approximations of the
“nonaffine” parametrized functions. To this end, we extend previous
work on time-invariant functions to time-varying functions and intro-
duce a new sampling approach to generate the function approximation
space for the latter case. Our a posteriori error bounds take both error
contributions explicitly into account — the error introduced by the
reduced basis approximation and the error induced by the coefficient
function interpolation. We present an efficient offline-online computa-
tional procedure for the calculation of the reduced basis approximation
and associated error bound. Numerical results are presented to confirm
and test our approach.

1 Introduction

Our focus here is on parabolic PDEs. For simplicity, we will directly consider
a time-discrete framework associated to the time interval I ≡]0, tf ] (Ī ≡
[0, tf ]). We divide Ī into K subintervals of equal length ∆t = tf

K and define
tk ≡ k∆t, 0 ≤ k ≤ K ≡ tf

∆t , and I ≡ {t0, . . . , tK}; for notational convenience,
we also introduce K ≡ {1, . . . ,K}. We shall consider Euler-Backward for the
time integration although higher-order schemes such as Crank-Nicolson can
also be readily treated [14]. We refer to [33] for a reduced basis approach for
∗Numerical Mathematics, RWTH Aachen University, Templergraben 55, 52056 Aachen,

Germany.
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parabolic problems using arbitrary-order Discontinuous-Galerkin temporal
schemes. The abstract formulation can be stated as follows: given any
µ ∈ D ⊂ RP , we evaluate the output se k(µ) ≡ se(tk;µ) = `(ye k(µ)), ∀k ∈ K,
where ye k(µ) ≡ ye(tk;µ) ∈ Xe satisfies

m(ye k(µ), v) + ∆t a(ye k(µ), v;µ) = m(ye k−1(µ), v) + ∆t f(v;µ)u(tk),
∀v ∈ Xe, ∀k ∈ K, (1)

with initial condition (say) ye(t0;µ) = ye
0(µ) = 0. Here, D is the parameter

domain in which our P -tuple (input) parameter µ resides, Xe is an appro-
priate Hilbert space, and Ω ⊂ Rd is our spatial domain, a point in which
shall be denoted x. Furthermore, a(·, ·;µ) and m(·, ·) are Xe-continuous and
Y e-continuous (Xe ⊂ Y e) bounded bilinear forms, respectively; f(·;µ), `(·)
are Y e-continuous bounded linear functionals; and u(tk) is the “control in-
put” at time t = tk. We assume here that `(·), and m(·, ·) do not depend on
the parameter; parameter dependence, however, is readily admitted [17].

Since the exact solution is usually unavailable, numerical solution tech-
niques must be employed to solve (1). Classical approaches such as the
finite element method can not typically satisfy the requirements of real-time
certified prediction of the outputs of interest. In the finite element method,
the infinite dimensional solution space is replaced by a finite dimensional
“truth” approximation space X ⊂ Xe of size N : for any µ ∈ D, we evaluate
the output

sk(µ) = `(yk(µ)), ∀k ∈ K, (2)

where yk(µ) ∈ X satisfies

m(yk(µ), v) + ∆t a(yk(µ), v;µ) = m(yk−1(µ), v) + ∆t f(v;µ)u(tk),
∀v ∈ X, ∀k ∈ K, (3)

with initial condition y(µ, t0) = y0(µ) = 0. We shall assume — hence the
appellation “truth” — that the approximation space is sufficiently rich such
that the FEM approximation yk(µ) (respectively, sk(µ)) is indistinguishable
from the analytic, or exact, solution ye k(µ) (respectively, se k(µ)).

Unfortunately, for any reasonable error tolerance, the dimensionN needed
to satisfy this condition is typically extremely large, and in particular much
too large to satisfy the condition of real-time response or the need for nu-
merous solutions. Our goal is the development of numerical methods that
permit the efficient and reliable evaluation of this PDE-induced input-output
relationship in real-time or in the limit of many queries — that is, in the
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design, optimization, control, and characterization contexts. To achieve this
goal we pursue the reduced basis method; see [34] for a recent review of
contributions to the methodology.

In this paper we focus on time-varying problems, i.e, we assume that the
bilinear form a is given by

akt (w, v;µ) = a0(w, v) + a1(w, v, gkt (x;µ)), ∀k ∈ K (4)

and
f(v; gkt (x;µ)) =

∫
Ω
v gkt (x;µ), ∀k ∈ K. (5)

where gkt (x;µ) = gt(x, tk;µ) is a parametrized nonaffine time-varying func-
tion. In [16] we developed efficient offline-online strategies for reduced basis
approximations of time-invariant nonaffine (and certain classes of nonlin-
ear) elliptic and parabolic PDEs. Our approach is based on the Empirical
Interpolation Method (EIM) [3] — a technique that recovers the efficient
offline-online decomposition even in the presence of nonaffine parameter de-
pendence. A posteriori error bounds for nonaffine linear and certain classes
of nonaffine nonlinear elliptic problems have been proposed in Ref. [26] and
Ref. [5], respectively. In this paper, we shall consider the extension of these
techniques and develop a posteriori error bounds for nonaffine linear time-
varying parabolic problems. We recall that the computational cost to gener-
ate the collateral reduced basis space for the function approximation is very
high in the parabolic case if the function g is time-varying either through
an explicit dependence on time or an implicit dependence via the field vari-
able y(tk;µ) [16]. We therefore propose a novel more efficient approach
to generate the collateral reduced basis space which is based on a POD(in
time)/Greedy(in parameter space) search [18].

A large number of model order reduction (MOR) techniques [1, 6, 7,
25, 27, 32, 36, 40] have been developed to treat (nonlinear) time-dependent
problems. One approach is linearization [40] and polynomial approxima-
tion [7, 27]: however, due to a lack of efficient representations of nonlinear
terms and fast exponential growth (with the degree of the nonlinear ap-
proximation order) of computational complexity, these methods are quite
expensive and do not address strong nonlinearities efficiently. Other ap-
proaches for highly nonlinear systems (such as piecewise-linearization) have
also been proposed [32, 35] but at the expense of high computational cost
and little control over model accuracy. Furthermore, although a priori error
bounds to quantify the error due to model reduction have been derived in
the linear case, a posteriori error bounds have not yet been adequately con-
sidered even for the linear case, let alone the nonlinear case, for most MOR
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approaches. Finally, it is important to note that most MOR techniques fo-
cus mainly on reduced order modeling of dynamical systems in which time
is considered the only “parameter;” the development of reduced order mod-
els for problems with a simultaneous dependence of the field variable on
parameter and time — our focus here — is much less common [4, 8].

This paper is organized as follows: In Section 2 we first present a short
review of the empirical interpolation method and then extend these ideas
to treat nonaffine time-varying functions. The abstract problem formula-
tion, reduced basis approximation, associated a posteriori error estimation,
and computational considerations for linear time-varying parabolic problems
with nonaffine parameter dependence are discussed in Section 3. Numerical
results are used throughout to test and confirm our theoretical results. We
offer concluding remarks in Section 4.

2 Empirical Interpolation Method

The Empirical Interpolation Method, introduced in [3], serves to construct
“affine” coefficient-function approximations of “non-affine” parametrized func-
tions. The method is frequently applied in reduced basis approximations of
parametrized partial differential equations with nonaffine parameter depen-
dence [3, 16, 16]; the affine approximation of the equations is crucial for
computational efficiency. Here, we briefly summarize the results for the
interpolation procedure and the estimator for the interpolation error and
subsequently extend these ideas to treat nonaffine time-varying functions.

2.1 Time-invariant parametrized functions

2.1.1 Coefficient-function approximation

We are given a function g : Ω × D → R such that, for all µ ∈ D, g(·;µ) ∈
L∞(Ω). Here, D ⊂ RP is the parameter domain, Ω ⊂ R2 is the spatial
domain – a point in which shall be denoted by x = (x(1), x(2)) – and L∞(Ω) ≡
{v | ess supv∈Ω |v(x)| <∞}.

We first define the nested sample sets SgM ≡ {µ
g
1 ∈ D, . . . , µ

g
M ∈ D},

associated reduced basis spaces W g
M = span {ξm ≡ g(x;µgm), 1 ≤ m ≤

M}, and nested sets of interpolation points T gM = {x1, . . . , xM}, 1 ≤ M ≤
Mmax. We present here a generalization for the construction of the EIM
which allows a simultaneous definition of the generating functions W g

M and
associated interpolation points T gM [24]. The construction is based on a
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greedy algorithm [38] and is required for our POD/Greedy-EIM algorithm
which we will introduce in Section 2.2.1.

We first choose µg1 ∈ D, compute ξ1 ≡ g(x;µg1), define W g
1 ≡ span{ξ1},

and set x1 = arg ess supx∈Ω |ξ1(x)|, q1 = ξ1(x)/ξ1(x1), and B1
11 = 1. We then

proceed by induction to generate SgM , W g
M , and T gM : for 1 ≤M ≤Mmax−1,

we determine µgM+1 ≡ arg maxµ∈Ξg
train
‖g(·;µ) − gM (·;µ)‖L∞(Ω), compute

ξM+1 ≡ g(x;µgM+1), and define W g
M+1 ≡ span{ξm}M+1

m=1 . To generate the
interpolation points we solve the linear system

∑M
j=1 σ

M
j qj(xi) = ξM+1(xi),

1 ≤ i ≤ M and we set rM+1(x) = ξM+1(x) −
∑M

j=1 σMj qj(x), xM+1 =
arg ess supx∈Ω |rM+1(x)|, and qM+1(x) = rM+1(x)/rM+1(xM+1). Here,
Ξgtrain ⊂ D is a finite but suitably large train sample which shall serve as our
D surrogate, and gM (·;µ) ∈ W g

M is the EIM interpolant of g(·;µ) over the
set T gM for any µ ∈ D. Specifically

gM (x;µ) ≡
M∑
m=1

ϕMm(µ)qm, (6)

where
M∑
j=1

BM
ij ϕM j(µ) = g(xi;µ), 1 ≤ i ≤M, (7)

and the matrix BM ∈ RM×M is defined such that BM
ij = qj(xi), 1 ≤ i, j ≤

M . We note that the determination of the coefficients ϕMm(µ) requires only
O(M2) computational cost since BM is lower triangular with unity diagonal
and that {qm}Mm=1 is a basis for W g

M [3, 16].
Finally, we define a “Lebesgue constant” [30] ΛM ≡ supx∈Ω

∑M
m=1 |VM

m (x)|,
where VM

m (x) ∈ W g
M are the characteristic functions of W g

M satisfying
VM
m (xn) ≡ δmn, 1 ≤ m,n ≤ M ; here, δmn is the Kronecker delta symbol.

We recall that (i) the set of all characteristic functions {VM
m }Mm=1 is a basis

for W g
M , and (ii) the Lebesgue constant ΛM satisfies ΛM ≤ 2M − 1 [3, 16].

In applications, the actual asymptotic behavior of ΛM is much lower, as we
shall observe subsequently.

2.1.2 A posteriori error estimation

Given an approximation gM (x;µ) for M ≤Mmax − 1, we define EM (x;µ) ≡
ε̂M (µ) qM+1(x), where ε̂M (µ) ≡ |g(xM+1;µ)−gM (xM+1;µ)|. We also define
the interpolation error as

εM (µ) ≡ ‖g( · ;µ)− gM ( · ;µ)‖L∞(Ω). (8)
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In general, εM (µ) ≥ ε̂M (µ), since εM (µ) ≥ |g(x;µ)−gM (x;µ)| for all x ∈ Ω,
and thus also for x = xM+1. However, we can prove (see [3, 16, 24]).

Proposition 1. If g(·;µ) ∈W g
M+1, then (i) g(x;µ)−gM (x;µ) = ±EM (x;µ)

(either EM (x;µ) or −EM (x;µ)), and (ii) ‖g( · ;µ)−gM ( · ;µ)‖L∞(Ω) = ε̂M (µ).

Of course, in general g( · ;µ) 6∈ W g
M+1, and hence our estimator ε̂M (µ)

is indeed a lower bound. However, if εM (µ) → 0 very fast, we expect that
the effectivity,

ηM (µ) ≡ ε̂M (µ)
εM (µ)

, (9)

shall be close to unity. Furthermore, the estimator is very inexpensive – one
additional evaluation of g( · ;µ) at a single point in Ω.

Finally, we note that we can readily improve the rigor of our bound by
relaxing the condition g( · ;µ) ∈ W g

M+1. In fact, since the space W g
M is

hierarchical, i.e., W g
1 ⊂ W g

2 ⊂ . . . ⊂ W g
Mmax

, the assumption g( · ;µ) ∈ W g
M

is more likely to hold as we increase the dimension M of the approximation
space. Thus, given an approximation gM (x;µ) for M ≤ Mmax − k, we can
show that if g(·;µ) ∈ W g

M+k, then ε̃M (µ) = 2k−1 maxi∈{1,...,k} |g(xM+i;µ)−
gM (xM+i;µ)| is an upper bound for interpolation error εM (µ) [16]. This
relaxation of the assumption on g(x;µ) only comes at a modest additional
cost – we need to evaluate g( · ;µ) at k additional points in Ω.

2.1.3 Numerical results

We consider the function g(·;µ) = G(·;µ), where

G(x;µ) ≡ 1√
(x(1) − µ1)2 + (x(2) − µ2)2

, (10)

for x ∈ Ω =]0, 1[2∈ R2 and µ ∈ D ≡ [−1,−0.01]2. From a physical point of
view, G(x;µ) describes the gravity potential of a unit mass located at the
position (µ1, µ2) in the spatial domain.

We introduce a triangulation of Ω with N = 2601 vertices over which
we realize G(·;µ) as a piecewise linear function. We choose for Ξtrain ⊂
D a deterministic grid of 40 × 40 parameter points over D and we take
µg1 = (−0.01,−0.01). Next, we pursue the empirical interpolation procedure
described in Section 2.1.1 to construct SgM , W g

M , T gM , and BM , 1 ≤ M ≤
Mmax, for Mmax = 57.

We now introduce a parameter test sample ΞTest of size QTest = 225,
and define the maximum error εM,max = maxµ∈ΞTest

εM (µ), the maximum
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error estimator ε̂M,max = maxµ∈ΞTest
ε̂M (µ), the average effectivity η̄M =

Q−1
Test

∑
µ∈ΞTest

ηM (µ), where ηM (µ) is the effectivity defined in (9), and κM
is the condition number of BM . We present in Table 2 εM,max, ε̂M,max, η̄M ,
ΛM , and κM as a function of M . We observe that εM,max and the bound
ε̂M,max converge rapidly with M and that the error estimator effectivity is
less than but reasonably close to unity. We also note that the Lebesgue
constant grows very slowly and that BM is quite well-conditioned for our
choice of basis.

Table 1: Numerical results for empirical interpolation of G(x;µ):
εM,max, ε̂M,max, η̄M , ΛM , and κM as a function of M .

M εM,max ε̂M,max η̄M ΛM κM
8 2.05 E – 01 1.62 E – 01 0.17 1.98 3.73
16 8.54 E – 03 8.54 E – 03 0.85 2.26 6.01
24 6.53 E – 04 6.49 E – 04 0.50 3.95 8.66
32 1.29 E – 04 1.28 E – 05 0.73 5.21 12.6
40 1.37 E – 05 1.35 E – 06 0.43 5.18 16.6
48 4.76 E – 06 1.78 E – 07 0.19 10.2 20.0

2.2 Time-varying parametrized functions

2.2.1 Coefficient-function approximation

We extend the previous results and consider parametrized nonaffine time-
varying functions gt : Ω× I ×D → R. We assume that gt is smooth in time;
for simplicity here, we suppose that for all µ ∈ D, gt(·, ·;µ) ∈ C∞(I, L∞(Ω)).
Note that we use the subscript t to signify the dependence on time. We
consider the time-discretization introduced in Section 1 and — analogous to
the notation used for the field variable yk(µ) – write gkt (x;µ) = gt(x, tk;µ).

We first consider the construction of the nested sample sets Sgt

M , associ-
ated reduced basis spaces W gt

M , and nested sets of interpolation points T gt

M .
To this end, we propose a new POD/Greedy-EIM procedure which combines
the greedy selection procedure in parameter space, described in Section 2.1.1
for nonaffine time-invariant functions, with the Proper Orthogonal Decom-
position (POD) in time.

Let PODY ({gkt (·;µ), 1 ≤ k ≤ K}, R) return the R largest POD modes,
{χi, 1 ≤ i ≤ R}, with respect to the (·, ·)Y inner product. We recall that the
POD modes, χi, are mutually Y -orthogonal such that PR = span{χi, 1 ≤
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i ≤ R} satisfies the optimality property

PR = arg inf
YR⊂span{gk

t (·;µ),1≤k≤K}

(
1
K

K∑
k=1

inf
w∈YR

‖gkt (·;µ)− w‖2Y

)
, (11)

where YR denotes a linear space of dimension R. Here, we are only in-
terested in the largest POD mode which we obtain using the method of
snapshots [36]. To this end, we solve the eigenvalue problem Cψi = λiψi

for (ψ1 ∈ RK , λ1 ∈ R) associated with the largest eigenvalue of C, where
Cij = (git(·;µ), gjt (·;µ))Y , 1 ≤ i, j ≤ K. We then obtain the first POD mode
from χ1 =

∑K
k=1 ψ

1
k g

k
t (·;µ).

Before summarizing the POD/Greedy-EIM procedure, we define the
EIM interpolant in the time-varying case as

gkt,M (x;µ) ≡
M∑
m=1

ϕkM m(µ) qm, ∀k ∈ K, (12)

where
M∑
j=1

BM
ij ϕ

k
M j(µ) = gkt (xi;µ), 1 ≤ i ≤M, ∀k ∈ K. (13)

We note that the computational cost to determine the time-varying coeffi-
cients ϕkM m(µ), 1 ≤ m ≤M, for all timesteps isO(KM2). The POD/Greedy-
EIM procedure is summarized in Algorithm 1.

2.2.2 A posteriori error estimation

The a posteriori error estimation procedure for the time-varying case directly
follows from the time-invariant case of Section 2.1.2. We first define the
time-varying interpolation error as

εkt,M (µ) ≡ ‖gkt (x;µ)− gkt,M (x;µ)‖L∞(Ω), ∀k ∈ K, (14)

and the estimator ε̂kt,M (µ) ≡ |gkt (xM+1;µ) − gkt,M (xM+1;µ)|, ∀k ∈ K. The
estimator for the interpolation error at each timestep follows from Proposi-
tion 1 and is stated in

Corollary 2.1. If gkt ( · ;µ) ∈ W gt

M+1 for all k ∈ K, then (i) gkt (x;µ) −
gkt,M (x;µ) = ±ε̂kt,M (µ)qM+1(x), ∀k ∈ K, and (ii) ‖gkt (·;µ)−gkt,M (·;µ)‖L∞(Ω) =
ε̂kt,M (µ), ∀k ∈ K.
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Algorithm 1: POD/Greedy-EIM Algorithm
specify Ξgtrain ⊂ D, Mmax, µgt

1 ∈ D (arbitrary).

ξ1 ≡ PODY ({gkt (·;µgt
1 ), 1 ≤ k ≤ K}, 1) .

set M = 1, Sg11 = {µgt
1 }, W

gt
1 ≡ span{ξ1}.

set x1 = arg ess supx∈Ω |ξ1(x)|, q1 = ξ1(x)/ξ1(x1), and B1
11 = 1.

while M ≤Mmax − 1 do

µgt

M+1 = arg maxµ∈Ξtrain ∆t
∑K

k=1 ‖gkt (·;µ)− gkt,M (·;µ)‖L∞(Ω),

where gkt,M is calculated from (12) and (13);

ekM,EIM(µ) = gkt (x;µgt

M+1)− gkt,M (x;µgt

M+1), 1 ≤ k ≤ K;

ξM+1 = PODY ({ekM,EIM(µgt

M+1), 1 ≤ k ≤ K}, 1);

W gt

M+1 ←W gt

M ⊕ span{ξM+1};
Sgt

M+1 ← Sgt

M ∪ µ
gt

M+1;

solve for σMj from
∑M

j=1 σ
M
j qj(xi) = ξM+1(xi), 1 ≤ i ≤M ;

set rM+1(x) = ξM+1(x)−
∑M

j=1 σ
M
j qj(x);

set xM+1 = arg ess supx∈Ω |rM+1(x)|;
set qM+1(x) = rM+1(x)/rM+1(xM+1);

update BM+1
i j = qj(xi), 1 ≤ i, j ≤M + 1;

M ←M + 1;

end
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We note that the condition gkt (·;µ) ∈W gt

M+1 has to hold for all timesteps
and is thus more restrictive than in the time-invariant case. In general,
ε̂kt,M (µ) is a lower bound for the interpolation error at each timestep. Finally,
we may also define the effectivity

ηkt,M (µ) ≡
ε̂kt,M (µ)

εkt,M (µ)
, ∀k ∈ K. (15)

Again, our estimator is very inexpensive – at each individual timestep we
have to perform only one additional evaluation of gkt ( · ;µ) at a single point
in Ω.

2.2.3 Numerical results

We consider the nonaffine time-varying function gkt (·;µ) = Gkt (·;µ), where

Gkt (x;µ) ≡ 1√(
x(1) − (µ1 − tk/2)

)2 +
(
x(2) − (µ2 − tk/2)

)2 , (16)

for x ∈ Ω =]0, 1[2∈ R2, tk ∈ I, and µ ∈ D ≡ [−1,−0.01]2. Compared to the
stationary problem (10), Gt(x;µ) describes the gravity potential of a unit
mass which is now moving in the spatial domain, i.e., the mass is initially
located at the position (µ1, µ2) and then moving with velocity (−1/2,−1/2)
as time proceeds.

We use the triangulation of Ω and Ξtrain from Section 2.1.3 and take
µgt

1 = (−0.01,−0.01). Next, we employ Algorithm 1 to construct Sgt

M , W gt

M ,
T gt

M , and BM , 1 ≤ M ≤ Mmax, for Mmax = 49. We define the maxi-
mum error εt,M,max = maxµ∈ΞTest

maxk∈K ε
k
t,M (µ), maximum error bound

ε̂t,M,max = maxµ∈ΞTest
maxk∈K ε̂

k
t,M (µ), and the average effectivity η̄t,M =

(KQTest)−1
∑

µ∈ΞTest

∑
k∈K η

k
t,M (µ). Here, we use the parameter test sam-

ple ΞTest of size QTest = 225 from Section 2.1.3.
We present in Table 2 εt,M,max, ε̂t,M,max, η̄t,M , the Lebesgue constant

ΛM , and the condition number of BM , κM , as a function of M . Similar
to the time-invariant case, the maximum error and bound converge rapidly
with M and the error estimator effectivity is less than but still reasonably
close to unity. However, εt,M,max and ε̂t,M,max are always larger than the
corresponding time-invariant quantities in Table 1 for the same value of
M . This is to be expected since time acts like an additional, albeit special,
parameter. In fact, for the numerical example considered here the time-
dependence effectively increases the admissible parameter domain D of the
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time-invariant problem. Finally, we note that the Lebesgue constant grows
very slowly and that BM remains well-conditioned also for the time-varying
case.

Table 2: Numerical results for empirical interpolation of Gkt (x;µ), 1 ≤ k ≤
K: εt,M,max, ε̂t,M,max, η̄t,M , ΛM , and κM as a function of M .

M εt,M,max ε̂t,M,max η̄t,M ΛM κM
8 4.79 E – 01 4.79 E – 01 0.58 3.67 6.26
16 2.76 E – 02 2.39 E – 02 0.56 5.11 13.0
24 3.09 E – 03 3.09 E – 03 0.77 6.47 18.8
32 1.99 E – 04 1.15 E – 04 0.60 11.4 27.7
40 9.13 E – 05 9.13 E – 05 0.34 8.84 45.8
48 1.11 E – 05 5.16 E – 06 0.11 9.05 54.4

3 Nonaffine Linear Time-varying Parabolic Equa-
tions

In this section we consider reduced basis approximations and associated a
posteriori error estimation procedures for linear parabolic PDEs with non-
affine parameter dependence. We derive the theoretical results for linear
time-varying (LTV) problems and occasionally comment on the simplifica-
tions that arise for linear time-invariant (LTI) problems. Numerical results
are presented for both the LTI and LTV problem.

3.1 Problem statement

3.1.1 Abstract formulation

We first recall the Hilbert spacesXe ≡ H1
0 (Ω) — or, more generally, H1

0 (Ω) ⊂
Xe ⊂ H1(Ω) — and Y e ≡ L2(Ω), where H1(Ω) ≡ {v | v ∈ L2(Ω),∇v ∈
(L2(Ω))d}, H1

0 (Ω) ≡ {v | v ∈ H1(Ω), v|∂Ω = 0}, and L2(Ω) is the space
of square integrable functions over Ω [31]. Here Ω is a bounded domain in
Rd with Lipschitz continuous boundary ∂Ω. The inner product and norm
associated with Xe (Y e) are given by (·, ·)Xe ((·, ·)Y e) and ‖ · ‖Xe = (·, ·)1/2

Xe

(‖ · ‖Y e = (·, ·)1/2
Y e ) , respectively; for example, (w, v)Xe ≡

∫
Ω∇w · ∇v +∫

Ωw v, ∀w, v ∈ X
e, and (w, v)Y e ≡

∫
Ωw v, ∀w, v ∈ Y

e. The truth approx-
imation subspace X ⊂ Xe(⊂ Y e) shall inherit this inner product and norm:
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(·; ·)X ≡ (·; ·)e
X and ‖ · ‖X ≡ ‖ · ‖eX ; we further define Y ≡ Y e.

We directly consider the truth approximation statement defined in (3)
with the output given by (2), where the bilinear form a is given by

akt (w, v;µ) = a0(w, v) + a1(w, v, gkt (x;µ)), ∀k ∈ K (17)

and
f(v; gkt (x;µ)) =

∫
Ω
v gkt (x;µ), ∀k ∈ K. (18)

Here, a0(·, ·) is a continuous (and, for simplicity, parameter-independent)
bilinear form and a1 : X × X × L∞(Ω) is a trilinear form. We shall use
the subscript “t” notation to signify the dependence of the bilinear form akt
on time. We obtain the LTI problem simply by replacing gkt (x;µ) with the
nonaffine time-invariant function g(x;µ) in (17) and (18).

We shall further assume that akt (·, ·;µ), ∀k ∈ K, and m(·, ·) are continu-
ous

akt (w, v;µ) ≤ γa(µ)‖w‖X‖v‖X ≤ γ0
a‖w‖X‖v‖X , ∀ w, v ∈ X, ∀ µ ∈ D,(19)

m(w, v) ≤ γ0
m‖w‖Y ‖v‖Y , ∀ w, v ∈ X; (20)

coercive,

0 < α0
a ≤ αa(µ) ≡ inf

w∈X

akt (w,w;µ)
‖w‖2X

, ∀ µ ∈ D, (21)

0 < α0
m ≡ inf

v∈X

m(v, v)
‖v‖2Y

; (22)

and symmetric, akt (v, w;µ) = akt (w, v;µ), ∀w, v ∈ X, ∀µ ∈ D, and m(v, w) =
m(w, v), ∀w, v ∈ X, ∀ µ ∈ D. (We (plausibly) suppose that γ0

a, γ0
m, α0

a, α
0
m

may be chosen independent of N .) We also assume that the trilinear form
a1 satisfies

a1(w, v, z) ≤ γ0
a1
‖w‖X ‖v‖X ‖z‖L∞(Ω), ∀ w, v ∈ X, ∀z ∈ L∞(Ω). (23)

Next, we require that the linear forms f(·; gkt (x;µ)) : X → R, ∀k ∈ K, and
`(·) : X → R be bounded with respect to ‖ · ‖Y . It follows that a solution
to (3) exists and is unique [13, 37]; also see [31] for the LTI case.

3.1.2 Model problem

As a numerical test case for the LTI and LTV problem we consider the follow-
ing nonaffine diffusion problem defined on the unit square, Ω =]0, 1[2∈ R2:
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Given µ ≡ (µ1, µ2) ∈ D ≡ [−1,−0.01]2 ⊂ RP=2, we evaluate yk(µ) ∈ X
from (3), where X ⊂ Xe ≡ H1

0 (Ω) is a linear finite element truth approxi-
mation subspace of dimension N = 2601,

m(w, v) ≡
∫

Ω
w v, a0(w, v) ≡

∫
Ω
∇w·∇v, a1(w, v, z) ≡

∫
Ω
z w v, f(v; z) ≡

∫
Ω
z v,

(24)
and z is given by G(x;µ) defined in (10) for the LTI problem and by Gkt (x;µ)
defined in (16) for the LTV problem. The output can be written in the
form (2), sk(µ) = `(yk(µ)), ∀ k ∈ K, where `(v) ≡ |Ω|−1

∫
Ω v — clearly a

very smooth functional. We shall consider the time interval Ī = [0, 2] and a
timestep ∆t = 0.01; we thus have K = 200. We also presume the periodic
control input u(tk) = sin(2πtk), tk ∈ I.

We first present results for the LTI problem (note that this problem is
similar to the one used in [16]). Two snapshots of the solution yk(µ) at
time tk = 25∆t are shown in Figures 1(a) and (b) for µ = (−1,−1) and
µ = (−0.01,−0.01), respectively. The solution oscillates in time and the
peak is offset towards x = (0, 0) for µ near the “corner” (−0.01,−0.01).
In Figure 2 we plot the output sk(µ) as a function of time for these two
parameter values.

We next turn to the LTV problem and present the output sk(µ) for
µ = (−0.01,−0.01) also in Figure 2 (dashed line). The LTV output shows
a transition in time from the LTI output for µ = (−0.01,−0.01) to the
LTI output for µ = (−1,−1). This behavior is plausible by comparing the
definitions of the nonaffine functions G(x;µ) and Gkt (x;µ).

3.2 Reduced basis approximation

3.2.1 Formulation

We suppose that we are given the nested Lagrangian [28] reduced basis
spaces

W y
N = span{ζn, 1 ≤ n ≤ N}, 1 ≤ N ≤ Nmax, (25)

where the ζn, 1 ≤ n ≤ N , are mutually (·, ·)X -orthogonal basis functions.
We comment on the POD/Greedy algorithm for constructing the basis func-
tions in Section 3.4.

Our reduced basis approximation ykN,M (µ) to yk(µ) is then: given µ ∈ D,

13
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Figure 1: Solution yk(µ) of LTI problem at tk = 25∆t for (a) µ = (−1,−1)
and (b) µ = (−0.01,−0.01).
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µ = (−1,−1), and output of the LTV problem for µ = (−0.01,−0.01).
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ykN,M (µ) ∈W y
N , ∀k ∈ K, satisfies

m(ykN,M (µ), v) + ∆t (a0(ykN,M (µ), v) + a1(ykN,M (µ), v; gkt,M (x;µ)))

= m(yk−1
N,M (µ), v) + ∆t f(v; gkt,M (x;µ)) u(tk), ∀ v ∈W y

N , (26)

with initial condition y0
N,M (µ) = 0. We then evaluate the output estimate,

skN,M (µ), ∀k ∈ K, from

skN,M (µ) ≡ `(ykN,M (µ)). (27)

Note that we directly replaced gkt (x;µ) in (17) by its affine approximation
gkt,M (x;µ) defined in (12).

We now express ykN,M (µ) =
∑N

n=1 ykN,Mn(µ) ζn, choose as test functions
v = ζj , 1 ≤ j ≤ N , and invoke (6) to obtain

N∑
i=1

{
m(ζi, ζj) + ∆t

(
a0(ζi, ζj) +

M∑
m=1

ϕkM m(µ) a1(ζi, ζj , qm)

)}
ykN,M i(µ)

=
N∑
i=1

m(ζi, ζj) yk−1
N,M i(µ) + ∆t

M∑
m=1

ϕkM m(µ) f(ζj ; qm) u(tk), 1 ≤ j ≤ N.

(28)

where ϕkM m(µ), 1 ≤ m ≤M , 1 ≤ k ≤ K, is determined from (13). We note
that (28) is well-posed if M is large enough such that the interpolation error
satisfies εkt,M (µ) ≤ αa(µ)/γ0

a1
, ∀k ∈ K. This condition on the interpolation

error directly follows from (21) and (23). We can thus recover online N -
independence even for nonaffine problems: the quantitiesm(ζi, ζj), a0(ζi, ζj),
a1(ζi, ζj , qm), and f(ζi; qm) are all parameter independent and can thus be
pre-computed offline, as discussed in the next section.

3.2.2 Computational procedure

We summarize here the offline-online procedure [2, 20, 23, 29]. We first
express ykN,M (µ) as

ykN,M (µ) =
N∑
n=1

ykN,Mn(µ) ζn, (29)
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and choose as test functions v = ζj , 1 ≤ j ≤ N in (26). It then follows
from (28) that yk

N,M
(µ) = [ykN,M 1(µ) ykN,M 2(µ) . . . ykN,M N (µ)]T ∈ RN sat-

isfies(
MN + ∆t AkN (µ)

)
yk
N,M

(µ) = MN yk−1
N,M

(µ) + ∆t F kN (µ) u(tk), ∀ k ∈ K,
(30)

with initial condition yN,M n(µ, t0) = 0, 1 ≤ n ≤ N . Given yk
N,M

(µ), ∀k ∈ K,
we finally evaluate the output estimate from

skN,M (µ) = LTN yk
N,M

(µ), ∀ k ∈ K. (31)

Here, MN ∈ RN×N is a parameter-independent SPD matrix with entries

MN i,j = m(ζi, ζj), 1 ≤ i, j ≤ N. (32)

Furthermore, we obtain from (6) and (17) that AkN (µ) ∈ RN×N and F kN (µ) ∈
RN can be expressed as

AkN (µ) = A0,N +
M∑
m=1

ϕkM m(µ) Am1,N , (33)

F kN (µ) =
M∑
m=1

ϕkM m(µ) FmN , (34)

where ϕkM m(µ), 1 ≤ m ≤ M, is calculated from (13) at each timestep, and
the parameter-independent quantities A0,N ∈ RN×N , Am1,N ∈ RN×N , and
FmN ∈ RN are given by

A0,N i,j = a0(ζi, ζj), 1 ≤ i, j ≤ N,
Am1,N i,j = a1(ζi, ζj , qm), 1 ≤ i, j ≤ N, 1 ≤ m ≤M,

FmN j = f(ζj ; qm), 1 ≤ j ≤ N, 1 ≤ m ≤M,

(35)

respectively. Finally, LN ∈ RN is the output vector with entries LN i =
`(ζi), 1 ≤ i ≤ N . We note that these quantities must be computed in a
stable fashion which is consistent with the finite element quadrature points
(see [14], p. 132).

The offline-online decomposition is now clear. In the offline stage —
performed only once — we first construct the nested approximation spaces
W gt

M and sets of interpolation points T gt

M , 1 ≤ M ≤ Mmax. We then solve
for the ζn, 1 ≤ n ≤ Nmax and compute and store the µ-independent quan-
tities in (32), (35), and LN . The computational cost — without taking
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into account the construction of W gt

M and T gt

M — is therefore O(KNmax)
solutions of the underlying N -dimensional “truth” finite element approxi-
mation and O(MmaxN

2
max) N -inner products; the storage requirements are

also O(MmaxN
2
max). In the online stage — performed many times, for each

new parameter value µ — we compute ϕkM m(µ), 1 ≤ m ≤M, from (13) at
cost O(M2) per timestep by multiplying the pre-computed inverse of BM

with the vector gkt (xm;µ), 1 ≤ m ≤M . We then assemble the reduced basis
matrix (33) and vector (34); this requires O(MN2) operations per timestep.
We then solve (30) for yk

N,M
(µ); since the reduced basis matrices are in

general full, the operation count is O(N3) per timestep. The total cost to
evaluate yk

N,M
(µ), ∀k ∈ K, is thus O(K(M2 +MN2 +N3)). Finally, given

yk
N,M

(µ) we evaluate the output estimate skN,M (µ), ∀k ∈ K, from (31) at a
cost of O(KN).

Concerning the LTI problem, we note that the overall cost to evaluate
yk
N,M

(µ), ∀k ∈ K, in the online stage reduces to O(M2 +MN2 +N3 +KN2).
We need to evaluate the time-independent coefficients ϕMm(µ), 1 ≤ m ≤M,
from (7) and subsequently assemble the reduced basis matrices only once,
we may then use LU decomposition for the time stepping.

Hence, as required in the many-query or real-time contexts, the online
complexity is independent of N , the dimension of the underlying “truth”
finite element approximation space. Since N , M � N we expect significant
computational savings in the online stage relative to classical discretization
and solution approaches.

3.3 A posteriori error estimation

We will now develop a posteriori error estimators which will help us to (i)
assess the error introduced by our reduced basis approximation (relative to
the “truth” finite element approximation); and (ii) devise an efficient proce-
dure for generating the reduced basis space W y

N . We recall that a posteriori
error estimates have been developed for reduced basis approximations of
linear affine parabolic problems using a finite element truth discretization
in [17]. Subsequently, extensions to finite volume disretizations including
bounds for the error in the L2(Ω)-norm have also been considered [18].

3.3.1 Preliminaries

To begin, we specify the inner products (v, w)X ≡ a0(v, w), ∀ v, w ∈ X and
(v, w)Y ≡ m(v, w), ∀v, w ∈ X. We next assume that we are given a positive

17



lower bound for the coercivity constant αa(µ): α̂a(µ) : D → R+ satisfies

αa(µ) ≥ α̂a(µ) ≥ α̂0
a > 0, ∀ µ ∈ D. (36)

We note that if gkt (x;µ) > 0, ∀k ∈ K, we may readily use α̂a(µ) = 1
as a lower bound. In general, however, we may need to develop a lower
bound, α̂a1,M (µ) for the coercivity constant of the perturbed weak form
a1(·, ·; gkt,M (x;µ)) using the Successive Constraint Method (SCM) [19]. In
this case we directly obtain from (17), (21) and (23) the additional require-
ment that the interpolation error has to satisfy εkt,M (µ) < (1+α̂a1,M (µ))/γ0

a1
.

In some instances, simpler recipes may also suffice [29, 39].
We next introduce the dual norm of the residual

εkN,M (µ) ≡ sup
v∈X

Rk(v;µ)
‖v‖X

, ∀ k ∈ K, (37)

where

Rk(v;µ) ≡ f(v; gkt,M (x;µ)) u(tk)−a0(ykN,M (µ), v)−a1(ykN,M (µ), v, gkt,M (x;µ))

− 1
∆t

m(ykN,M (µ)− yk−1
N,M (µ), v), ∀ v ∈ X, ∀ k ∈ K. (38)

We also introduce the dual norm

Φna k
M (µ) ≡ sup

v∈X

f(v; qM+1) u(tk)− a1(ykN,M (µ), v, qM+1)
‖v‖X

, ∀ k ∈ K, (39)

which reflects the contribution of the nonaffine terms. Finally, we de-
fine the “spatio-temporal” energy norm, |||vk(µ)|||2 ≡ m(vk(µ), vk(µ)) +∑k

k′=1 a
k′
t (vk

′
(µ), vk

′
(µ);µ) ∆t, ∀k ∈ K.

3.3.2 Error bound formulation

We obtain the following result for the error bound.

Proposition 2. Suppose that gkt (x;µ) ∈ W gt

M+1 for 1 ≤ k ≤ K. The error,
ek(µ) ≡ yk(µ)− ykN,M (µ), is then bounded by

|||ek(µ)||| ≤ ∆y k
N,M (µ), ∀ µ ∈ D, ∀ k ∈ K, (40)

where the error bound ∆y k
N,M (µ) ≡ ∆y

N,M (tk;µ) is defined as

∆y k
N,M (µ) ≡

(
2∆t
α̂a(µ)

k∑
k′=1

εk
′
N,M (µ)

2
+

2∆t
α̂a(µ)

k∑
k′=1

(
(ε̂k
′
t,M (µ) Φna k′

M (µ)
)2
) 1

2

.

(41)
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Proof. The proof is an extension of the result in [17]. We thus focus on the
new bits – the nonaffine parameter dependence. Following the steps in [17],
we obtain

m(ek(µ), ek(µ))−m(ek−1(µ), ek−1(µ)) + ∆t akt (e
k(µ), ek(µ);µ)

≤ ∆t εkN,M (µ) ‖ek(µ)‖X + ∆t
(
f(ek(µ); gkt (x;µ)− gkt,M (x;µ)) u(tk)

− a1(ykN,M (µ), ek(µ), gkt (x;µ)− gkt,M (x;µ))
)
. (42)

Using Young’s inequality, the first term on the right hand side can be bound
by

2 εkN (µ) ‖ek(µ)‖X ≤
2

α̂a(µ)
εkN,M (µ)

2
+
α̂a(µ)

2
‖ek(µ)‖2X . (43)

From our assumption, gkt (x;µ) ∈ W gt

M+1 for 1 ≤ k ≤ K, Corollary 2.1,
and (39) it directly follows that

f(ek(µ); gkt (x;µ)− gkt,M (x;µ)) u(tk)− a1(ykN,M (µ), ek(µ), gkt (x;µ)− gkt,M (x;µ))

≤ ε̂kt,M (µ) sup
v∈X

f(v; qM+1) u(tk)− a1(ykN,M (µ), v, qM+1)
‖v‖X

‖ek(µ)‖X

≤ ε̂kt,M (µ) Φna k
M (µ) ‖ek(µ)‖X , (44)

and again from Young’s inequality that

2 ε̂kt,M (µ) Φna k
M (µ) ‖ek(µ)‖X ≤

2
α̂a(µ)

(
ε̂kt,M (µ) Φna k

M (µ)
)2

+
α̂a(µ)

2
‖ek(µ)‖2X .

(45)
The desired results then directly follows from (42)-(45), invoking (21) and
(36), and finally summing from k′ = 1 to k with e(µ, t0) = 0.

We note from (41) that our error bound comprises the affine as well as the
nonaffine error contributions. We may thus choose N and M such that both
contributions balance, i.e., neither N nor M should be chosen unnecessarily
high. We also recall that our (crucial) assumption gkt (x;µ) ∈ W gt

M+1, 1 ≤
k ≤ K, cannot be confirmed in actual practice — in fact, we generally have
gkt (x;µ) /∈W gt

M+1 and hence our error bound (41) is not completely rigorous,
since ε̂kt,M (µ) ≤ εkt,M (µ). We comment on both of these issues again in detail
in Section 3.5 when discussing numerical results.

Finally, we note that the bound for the LTI case slightly simplifies due
to the fact that the error estimator ε̂M (µ) is independent of time and can
thus be pulled out of the summation.

We can now define the (simple) output bound in
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Proposition 3. Suppose that gkt (x;µ) ∈ W gt

M+1 for 1 ≤ k ≤ K. The error
in the output of interest is then bounded by

|sk(µ)− skN,M (µ)| ≤ ∆s k
N,M (µ), ∀ k ∈ K, ∀ µ ∈ D, (46)

where the output bound ∆s k
N,M (µ) is defined as

∆s k
N,M (µ) ≡ sup

v∈X

`(v)
‖v‖Y

∆y k
N,M (µ) . (47)

Proof. From (2) and (27) we obtain

|sk(µ)− skN,M (µ)| = |`(yk(µ))− `(ykN,M (µ))|

= |`(ek(µ))| ≤ sup
v∈X

`(v)
‖v‖Y

‖ek(µ)‖Y .

The result immediately follows since ‖ek(µ)‖Y ≤ ∆y k
N,M (µ), 1 ≤ k ≤ K.

3.3.3 Computational procedure

We now turn to the development of offline-online computational procedures
for the calculation of ∆y k

N,M (µ) and ∆s k
N,M (µ). The necessary computations

for the offline and online stage are detailed in [15]. Here, we only summarize
the computational costs involved.

In the offline stage we require solution of several Poisson problems and
inner products. These operations requires (to leading order) O(MmaxNmax)
expensive “truth” finite element solutions, and O(M2

maxN
2
max)N -inner prod-

ucts. In the online stage — given a new parameter value µ and associated
reduced basis solution yk

N,M
(µ), 1 ≤ k ≤ K — the computational cost to

evaluate ∆y k
N,M (µ) and ∆s k

N,M (µ), 1 ≤ k ≤ K, is O(KM2N2). Thus, all
online calculations needed are independent of N .

Concerning the LTI problem, we note that we can slightly lessen the
computational cost by performing the M -dependent sums once before eval-
uating the dual norm at each timestep; the computational cost is thus
O(M2N2 +KN2).

3.4 Sampling procedure

The sampling procedure is a two stage process. We first construct the
sample set Sgt

M , associated space W gt

M , and set of interpolation points T gt

M

for the nonaffine function as described in Section 2. We then invoke a
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POD/Greedy sampling procedure — a combination of the Proper Orthog-
onal Decomposition (POD) in time with a Greedy selection procedure in
parameter space [18, 21] — to generate W y

N . We first recall the function
PODX({yk(µ), 1 ≤ k ≤ K}, R) which returns the R largest POD modes,
{χi, 1 ≤ i ≤ R}, now with respect to the X inner product.

The POD/Greedy procedure proceeds as follows: we first choose a µ∗ ∈
D and set Sy0 = {0}, W y

0 = {0}, N = 0. Then, for 1 ≤ N ≤ Nmax, we
first compute the projection error ekN,proj(µ) = yk(µ∗)−projX,W y

N−1
(yk(µ∗)),

1 ≤ k ≤ K, where projX,WN
(w) denotes the X-orthogonal projection of

w ∈ X onto WN , and we expand the parameter sample SyN ← SyN−1 ∪ {µ∗}
and the reduced basis space W y

N ← W y
N−1 ∪ PODX({ekN,proj(µ

∗), 1 ≤ k ≤
K}, 1), and set N ← N + 1. Finally, we choose the next parameter value
from µ∗ ← arg maxµ∈Ξtrain ∆yK

N,Mmax
(µ)/|||yKN (µ)|||, i.e., we perform a greedy

search over Ξtrain for the largest relative a posteriori error bound at the final
time. Here, Ξtrain ⊂ D is a finite but suitably large train sample. In general,
we may also specify a desired error tolerance, εtol,min, and stop the procedure
as soon as maxµ∈Ξtrain ∆yK

N,Mmax
(µ)/|||yKN (µ)||| ≤ εtol,min is satisfied; Nmax is

then indirectly determined through the stopping criterion.
During the POD/Greedy sampling procedure we shall use the “best”

possible approximation gkt,M (x;µ) of gkt (x;µ) so as to minimize the error
induced by the empirical interpolation procedure, i.e., we set M = Mmax.

For the model problem introduced in Section 3.1.2 the control input u(tk)
was assumed to be known. In many instances, however, the control input
may not be known a priori — a typical example is the application of reduced
order models in a control setting. If the problem is linear time-invariant,
we can appeal to the LTI property and generate the reduced basis space
based on an impulse input in such cases [17]. Unfortunately, this approach
will not work for LTV problems and nonlinear problems, i.e., a reduced
basis space trained on an impulse response will, in general, not yield good
approximation properties for arbitrary control inputs u(tk). One possible
approach proposed in the literature is to train the reduced order model on a
“generalized” impulse input, see [22]. The idea here is to use a collection of
“representative” control inputs, e.g., impulse and step functions of different
magnitude shifted in time, in order to capture a richer dynamic behavior
of the system. These ideas are, of course, heuristic and the treatment of
unknown control inputs in the model reduction context is an open problem.
However, our a posteriori error bound serves as a measure of fidelity espe-
cially in the online stage and we can thus detect an unacceptable deviation
from the truth approximation in real-time.
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3.5 Numerical results

We next present results for the model problem introduced in Section 3.1.2.
We first consider the LTI problem and subsequently the LTV problem.

3.5.1 The time-invariant case

We construct the reduced basis space W y
N according to the POD/Greedy

sampling procedure in Section 3.4. To this end, we sample on Ξtrain with
M = Mmax and obtain Nmax = 45 for εtol,min = 1 E – 6. We note from the
definition of the X-inner product and the fact that G(x;µ) > 0, ∀µ ∈ D, that
we can simply use α̂a(µ) = 1 as a lower bound for the coercivity constant.

In Figure 3 we plot, as a function of N and M , the maximum relative
error in the energy norm εyN,M,max,rel = maxµ∈ΞTest

|||eK(µ)|||/|||yK(µy)|||,
where µy ≡ arg maxµ∈ΞTest

|||yK(µ)|||. We observe that the reduced basis
approximation converges very rapidly. We also note the “plateau” in the
curves for M fixed and the “drops” in the N → ∞ asymptotes as M in-
creases: for fixed M the error due to the coefficient function approximation,
gM (x;µ)− g(x;µ), will ultimately dominate for large N ; increasing M ren-
ders the coefficient function approximation more accurate, which in turn
leads to a drop in the error. We further note that the separation points, or
“knees,” of the N -M -convergence curves reflect a balanced contribution of
both error terms. At these points neither N nor M limit the convergence of
the reduced basis approximation.

In Table 3 we present, as a function of N and M , εyN,M,max,rel, the max-
imum relative error bound ∆y

N,M,max,rel, and the average effecitivity η̄yN,M ;

here, ∆y
N,M,max,rel is the maximum over ΞTest of ∆y k

N,M (µ)/|||yK(µy)||| and

η̄yN,M is the average over ΞTest × I of ∆y k
N,M (µ)/|||yk(µ) − ykN,M (µ)|||. Note

that the tabulated (N,M) values correspond roughly to the “knees” of the
N -M -convergence curves. We observe very rapid convergence of the reduced
basis approximation and error bound.

The effectivity serves as a measure of rigour and sharpness of the error
bound: we would like η̄yN,M ≥ 1, i.e., ∆y k

N,M (µ) be a true upper bound for
the error in the energy-norm, and ideally we have η̄yN,M ≈ 1 so as to obtain
a sharp bound for the error. We recall, however, that in actual practice
we cannot confirm the assumption g(x;µ) ∈W g

M+1 from Proposition 2 and
thus η̄yN,M ≥ 1 may not hold. Specifically, if we choose (N,M) such that the
function interpolation limits the convergence we do obtain effectivities less
than 1, e.g., for (N,M) = (25, 24) (instead of (25, 32) in Table 2) we obtain
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η̄yN,M = 0.83. A judicious choice for N and M is thus important for rigour
and safety.

We next turn to the output estimate and present, in Table 3, the maxi-
mum relative output error εsN,M,max,rel, the maximum relative output bound
∆s
N,M,max,rel, and the average output effectivity η̄s. Here, εsN,M,max,rel is the

maximum over ΞTest of |s(µ, tks(µ))−sN,M (µ, tks(µ))|/|s(µ, tks(µ))|, ∆s
N,M,max,rel

is the maximum over ΞTest of ∆s
N,M (µ, tks(µ))/|s(µ, tks(µ))|, and η̄s is the

average over ΞTest of ∆s
N,M (µ, tη(µ))/|s(µ, tη(µ)) − sN,M (µ, tη(µ))|, where

tks(µ) ≡ arg maxtk∈I |s(µ, tk)| and tη(µ) ≡ arg maxtk∈I |s(µ, tk)−sN,M (µ, tk)|.
Again, we observe very rapid convergence of the reduced basis output ap-
proximation and output bound — for only N = 15 and M = 24 the output
error bound is already less than 0.3%. The output effectivities are still
acceptable for smaller values of (N,M), but deteriorate for larger values.

In Table 4 we present, as a function of N and M , the online computa-
tional times to calculate skN,M (µ) and ∆s k

N,M (µ) for 1 ≤ k ≤ K. The values
are normalized with respect to the computational time for the direct calcula-
tion of the truth approximation output sk(µ) = `(yk(µ)), 1 ≤ k ≤ K. The
computational savings for an accuracy of less than 0.3 percent (N = 15,
M = 24) in the output bound is approximately a factor of 30. We note
that the time to calculate ∆s k

N,M (µ) exceeds that of calculating skN (µ) —
this is due to the higher computational cost, O(M2N2 +KN2), to evaluate
∆y k
N,M (µ). Thus, although our previous observation suggests to choose M

large so that the error contribution due to the nonaffine function approx-
imation is small, we should choose M as small as possible to retain the
computational efficiency of our method. We emphasize that the reduced ba-
sis entry does not include the extensive offline computations — and is thus
only meaningful in the real-time or many-query contexts.

Table 3: LTI problem: convergence rates and effectivities as a function of
N and M .

N M εyN,M,max,rel ∆y
N,M,max,rel η̄yN,M εsN,M,max,rel ∆s

N,M,max,rel η̄sN,M
5 16 1.22 E – 02 1.74 E – 02 1.42 3.30 E – 03 1.01 E – 01 29.1
15 24 3.32 E – 04 4.75 E – 04 1.09 1.57 E – 04 2.77 E – 03 27.5
25 32 2.91 E – 05 4.30 E – 05 1.44 1.88 E – 05 2.50 E – 04 85.4
35 40 3.78 E – 06 3.50 E – 06 1.11 3.22 E – 06 2.04 E – 05 137
45 48 5.66 E – 07 8.17 E – 07 1.39 8.14 E – 08 4.76 E – 06 553
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Table 4: LTI problem: online computational times (normalized with respect
to the time to solve for sk(µ), 1 ≤ k ≤ K).

N M skN,M (µ), ∀k ∈ K ∆s k
N,M (µ), ∀k ∈ K sk(µ), ∀k ∈ K

5 16 2.70 E – 03 1.84 E – 02 1
15 24 3.18 E – 03 3.01 E – 02 1
25 32 3.96 E – 03 4.57 E – 02 1
35 40 4.71 E – 03 7.16 E – 02 1
45 48 5.52 E – 03 1.02 E – 01 1

3.5.2 The time-varying case

We next consider the LTV problem and first recall the results for the non-
affine time-varying function approximation in Section 2.2.3. We perform the
POD/Greedy sampling procedure from Section 3.4 to generate the reduced
basis space. To this end, we sample on Ξtrain with M = Mmax and obtain
Nmax = 39 for εtol,min = 1 E – 6. We may again use α̂a(µ) = 1 as a lower
bound for the coercivity constant. Note that the quantities presented here
are defined analogous to the quantities presented for the LTI problem.

In Figure 4 we plot, as a function of N and M , the maximum relative
error in the energy norm εyN,M,max,rel. We observe that the reduced basis
approximation converges very rapidly and the curves show the same behavior
as in the LTI case. A balanced contribution of both error terms is important
to not limit the convergence of the approximation and thus to guarantee
computational efficiency.

In Table 5 we present, as a function of N and M , εyN,M,max,rel, the
maximum relative error bound ∆y

N,M,max,rel, the average effecitivity η̄yN,M ,
the maximum relative output error εsN,M,max,rel, the maximum relative out-
put bound ∆s

N,M,max,rel, and the average output effectivity η̄s. Again, the
tabulated (N,M) values correspond roughly to the “knees” of the N -M -
convergence curves. We observe very rapid convergence of the reduced basis
(output) approximation and (output) error bound. We obtain an average
effectivity of less than one for (N,M) = (5, 8), showing that our assumption
in Corollary 2.1 is not satisfied in general. However, for all other values of N
and M tabulated our a posteriori error bounds do provide an upper bound
for the true error. Furthermore, our bounds for the error in the energy norm
and the output are very sharp for all values of (N,M).

Finally, we present the online computational times to calculate skN,M (µ)
and ∆s k

N,M (µ) for 1 ≤ k ≤ K in Table 6. The values are normalized with
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Figure 3: LTI problem: convergence of the maximum relative error,
εyN,M,max,rel.
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Figure 4: LTV problem: convergence of the maximum relative error
εyN,M,max,rel.
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respect to the computational time for the direct calculation of the truth
approximation output sk(µ) = `(yk(µ)), 1 ≤ k ≤ K. The computational
savings for an accuracy of approximately 0.5 percent (N = 10, M = 16) in
the output bound is approximately a factor of 120. As we already observed
in the LTI case, the time to calculate ∆s k

N,M (µ) exceeds that of calculating
skN (µ) due to the higher computational cost for the bound calculation. Even
though the computational cost to evaluate the error bound in the LTV case
is higher than in the LTI case (see Section 3.3.3), the savings with respect
to the truth approximation are still larger here. The reason is that solving
the truth approximation requires a matrix assembly of the nonaffine terms
at every timestep.

Table 5: LTV problem: convergence rates and effectivities as a function of
N and M .

N M εyN,M,max,rel ∆y
N,M,max,rel η̄yN,M εsN,M,max,rel ∆s

N,M,max,rel η̄sN,M
5 8 9.72 E – 03 6.27 E – 02 0.64 1.17 E – 02 2.46 E – 02 1.64
10 16 9.13 E – 04 1.29 E – 03 1.44 2.68 E – 04 5.05 E – 03 34.8
15 24 9.75 E – 05 1.28 E – 04 1.32 6.48 E – 05 5.03 E – 04 16.7
25 32 1.13 E – 05 1.54 E – 05 1.19 6.99 E – 06 6.03 E – 05 7.28
35 40 1.13 E – 06 1.64 E – 06 1.44 1.38 E – 07 6.44 E – 06 64.0

Table 6: LTV problem: online computational times (normalized with respect
to the time to solve for sk(µ), 1 ≤ k ≤ K).

N M skN,M (µ), ∀k ∈ K ∆s k
N,M (µ), ∀k ∈ K sk(µ), ∀k ∈ K

5 8 1.35 E – 04 2.18 E – 03 1
10 16 1.92 E – 04 8.18 E – 03 1
15 24 2.86 E – 04 1.99 E – 02 1
25 32 4.48 E – 04 3.85 E – 02 1
35 40 7.07 E – 04 6.52 E – 02 1

4 Conclusions

We have presented a posteriori error bounds for reduced basis approxi-
mations of nonaffine linear time-varying parabolic partial differential equa-
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tions. We employed the Empirical Interpolation Method to construct affine
coefficient-function approximations of the nonaffine parametrized functions,
thus permitting an efficient offline-online computational procedure for the
calculation of the reduced basis approximation and the associated error
bounds. The error bounds take both error contributions — the error in-
troduced by the reduced basis approximation and the error induced by the
coefficient function interpolation — explicitly into account and are rigor-
ous upper bounds under certain conditions on the function approximation.
The POD/Greedy sampling procedure is commonly used to generate the
reduced basis space for time-dependent problems. Here, we extended these
ideas to the Empirical Interpolation Method and introduced a new sampling
approach to construct the collateral reduced basis space for time-varying
functions. The new sampling approach is more efficient than our previous
approach and thus also allows to consider higher parameter dimensions.

We presented numerical results that showed the very fast convergence
of the reduced basis approximations and associated error bounds. We note
that there exists an optimal, i.e., most online-efficient, choice of N vs. M
where neither error contribution limits the convergence of the reduced ba-
sis approximation. Although our results showed that we can obtain upper
bounds for the error with a judicious choice of N and M , our error bounds
are, unfortunately, provably rigorous only under a very restrictive condition
on the function interpolation. However, we can easily lift this restriction by
replacing our current bound for the interpolation error with a new rigorous
bound proposed in a recent note [9].

Our results also showed that the computational savings to calculate the
output estimate and bound in the online stage compared to direct calculation
of the truth output are considerable. Recently, hp techniques have been
proposed for reduced basis approximations [10, 11] and also for the EIM [12].
These ideas help limit the online cost by reducing the size of N and M
required to achieve a desired accuracy at the expense of a higher offline cost.
Combining the hp reduced basis and EIM ideas into a unified approach would
result in a further significant speed-up and is currently under investigation.
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