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Abstract

We introduce a general a priori convergence result for the approx-
imation of parametric derivatives of parametrized functions. We show
that for a given approximation scheme the approximations of parametric
derivatives of a given parametrized function are convergent provided that
the approximation of the function itself is convergent. The assumptions
on the approximation scheme are rather weak; for example we may con-
sider both projection-based and interpolation-based approximation. We
present numerical results with one particular interpolation scheme — the
Empirical Interpolation Method — to confirm the validity of the general
theory.
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1 Introduction
In contexts such as product design, shape optimization, and parameter estima-
tion it is crucial to understand the behavior of a given physical system as a
function of parameters that describe the system in terms of for example ma-
terials, shapes, or operation conditions. Typically, the goal is to minimize a
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parameter dependent cost functional related to certain quantities derived from
the state of the system. To this end an automatic optimization algorithm may
be employed. Such algorithms typically necessitates calculation of derivatives
of the cost functional with respect to the parameters (parametric or sensitivity
derivatives). This calculation may be performed directly on the cost functional
(by finite differences), or through parametric derivatives of the state [3].

The state of a parametrized physical system can typically be viewed as a pa-
rameter dependent function implicitly defined as the solution of a parametrized
partial or ordinary differential equation. In this paper, we develop a new a
priori convergence theory that for a given approximation scheme demonstrates
that the approximations of parametric derivatives of a given parametrized func-
tion are convergent provided that the approximation of the function itself is
convergent. The assumptions on the approximation scheme are rather weak.
We restrict here attention to parameter dependent functions that are defined
explicitly, i.e., functions that in addition to spatial variables have an explicit
dependence on one or several scalar parameters. However in principle our new
theory also applies to cases in which the parametrized function is defined im-
plicitly as the solution to a differential equation.

The Empirical Interpolation Method (EIM), introduced in [1, 8], is an inter-
polation method developed specifically for the approximation of parametrized
functions.1 The new convergence theory presented in this paper is developed
with the EIM in mind, and is discussed and applied within the context of the
EIM. However, our theoretical results also apply to rather general approximation
schemes other than the EIM; in particular, we may consider both projection-
based and interpolation-based approximation. The main limitations of the
theory are related to regularity assumptions in space and parameter on the
parametrized function, and on the particular norms that may be considered.

The results in this paper have several useful implications. First, if the EIM
is employed for evaluation of an objective function subject to optimization —
typically an integral — with respect to a set of parameters, our theory suggests
that we may accurately compute the parametric Jacobian and Hessian matrices
without expensive generation of additional EIM spaces. Second, the rigorous a
posteriori bounds for the error in the EIM approximation recently introduced
in [6] depend on the error in the EIM approximation of parametric derivatives
at a finite number of points in the parameter domain; smaller errors for these
EIM derivative approximations imply sharper EIM error bounds.

The remainder of the paper is organized as follows. First, in Section 2
we introduce necessary notation and recall some results from polynomial ap-
proximation theory. Next, in Section 3, we present the new general a priori
convergence result. Then, in Section 4 we review the EIM and apply the new

1In particular, the EIM serves to construct parametrically affine approximations of pa-
rameter dependent non-affine or non-linear differential operators within the Reduced Basis
(RB) framework for parametric reduced order modelling of partial differential equations [13].
An affine representation (or approximation) of the operator allows an efficient “offline-online”
computational decoupling, which in turn is a crucial ingredient in the RB computational
framework. We refer to [7, 8] for the application of the EIM for RB approximations.
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convergence theory in this particular context. Subsequently, in Section 5, we
validate the theory through two numerical examples for which the functions to
be approximated have different parametric smoothness. Finally, in Section 6,
we provide some concluding remarks.

2 Preliminaries

2.1 Notation
We denote by Ω ⊂ Rd the spatial domain (d = 1, 2, 3); a particular point x ∈ Ω
shall be denoted by x = (x(1), . . . , x(d)). We denote by D = [−1, 1]P ⊂ RP the
parameter domain (P ≥ 1); a particular parameter value µ ∈ D shall be denoted
by µ = (µ(1), . . . , µ(P )). We choose D = [−1, 1]P for the sake of simplicity in
our theoretical arguments; our results remain valid for any parameter domain
that maps to [−1, 1]P through an affine transformation.

We introduce a parametrized function F : Ω×D → R for which we assume
F(·;µ) ∈ L∞(Ω) for all µ ∈ D; here, L∞(Ω) = {v : ess supx∈Ω |v(x)| <∞}. We
then introduce a multi-index of dimension P ,

β = (β1, . . . , βP ), (1)

where the entries βi, 1 ≤ i ≤ P , are non-negative integers. We define for any
multi-index β the parametric derivatives of F ,

F (β) =
∂|β|F

∂µβ1

(1) · · · ∂µ
βP
(P )

, (2)

where

|β| =
P∑
i=1

βi (3)

is the length of β and hence the differential order. Given the parameter domain
dimension P , we denote the set of all distinct multi-indices β of length p by
Mp.

For purposes of our theoretical arguments later we assume, for all x ∈ Ω, that
F(x; ·) ∈ C1(D) and that supµ∈D |F (β)(x;µ)| <∞ for all β ∈M2. Here Cs(D)
denotes the space of functions with continuous s-order parametric derivatives
over D.

Also for purposes of our theoretical arguments we shall write D as the tensor
product D = D(1)×· · ·×D(P ), where D(i) = [−1, 1], 1 ≤ i ≤ P . We shall further
consider any particular parameter dimension S ≡ Dj , 1 ≤ j ≤ P . In this case
we fix the P−1 parameter values µ(i) ∈ D(i), 1 ≤ i ≤ P , i 6= j, and we introduce
for simplicity of notation the function Jβ,j : Ω× S → R defined for x ∈ Ω and
y ∈ S by

Jβ,j(x; y) ≡ F (β)
(
x; (µ(1), . . . , µ(j−1), y, µ(j+1), . . . , µ(P ))

)
. (4)
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2.2 Polynomial Interpolation
In this section we recall some results from polynomial interpolation theory.
We first describe a general interpolation framework for which we state three
hypotheses. These hypotheses are key ingredients in the proof of our new con-
vergence theory in Section 3.

Let Γ = [−1, 1], and let H denote a family of functions such that each h ∈ H
is a function Γ → R wich sufficient regularity. We introduce N + 1 distinct
interpolation nodes yN,i ∈ Γ, 0 ≤ i ≤ N , and N + 1 characteristic functions
χN,i, 0 ≤ i ≤ N , that satisfy χN,i(yN,j) = δi,j , 0 ≤ i, j ≤ N ; here, δi,j is
the Kronecker delta symbol. We finally introduce an interpolation operator IN
defined for any function h ∈ H by INh =

∑N
i=0 h(yN,i)χN,i. We may now

formally state our three hypotheses.

Hypothesis 1. For all h ∈ H the error in the derivative of the interpolant INh
satisfies

|h′(y)− (INh)′(y)| ≤ G(N), ∀y ∈ Γ, (5)

where the function G : N→ (0,∞) is independent of h and satisfies G(N)→ 0
as N →∞.

Hypothesis 2. The characteristic functions χN,i, 0 ≤ i ≤ N , satisfy
N∑
i=0

|χ′N,i(y)| ≤ D(N), ∀y ∈ Γ, (6)

where the function D : N→ (0,∞) satisfies D(N)→∞ as N →∞.

Hypothesis 3. Let ε ∈ R+. As ε → 0 the solution Nbal = Nbal(ε) > 0 to the
equation

G(Nbal) = D(Nbal)ε (7)

satisfies

H(ε) ≡ εD
(
Nbal(ε)

)
→ 0. (8)

We next consider several interpolation schemes and in each case confirm
the corresponding instantiations of our hypotheses under suitable regularity
conditions on the functions in the family H. First, we assume for all h ∈ H that
h ∈ C1(Γ) and furthermore that supy∈Γ |h′′(y)| <∞; we then consider piecewise
linear interpolation over equidistant interpolation nodes yN,i = (2i/N − 1) ∈ Γ,
0 ≤ i ≤ N . In this case the characteristic functions χN,i are continuous and
piecewise linear “hat functions” with support only on the interval [yN,0, yN,1] for
i = 0, only on the interval [yN,i−1, yN,i+1] for 1 ≤ i ≤ N − 1, and only on the
interval [yN,N−1, yN,N ] for i = N . For piecewise linear interpolation Hypothesis
1 and Hypothesis 2 obtain for

G(N) = 2N−1 sup
h∈H
‖h′′‖L∞(Γ) ≡ clinH N−1, (9)

D(N) = N, (10)
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respectively, where clinH = 2 suph∈H ‖h‖L∞(Γ). In this case (6) in Hypothesis 2
obtains with equality. We include the proofs in Appendix A.1. It is straight-
forward to demonstrate Hypothesis 3: we note that in this case (7) has the
solution

Nbal(ε) =

(
2 sup
h∈H

‖h′′‖L∞(Γ)

ε

)1/2

=

(
clinH
ε

)1/2

(11)

and hence that

H(ε) = (clinH ε)
1/2 → 0 (12)

as ε→ 0.
Next, we assume for all h ∈ H that h ∈ C2(Γ) and furthermore that

supy∈Γ |h′′′(y)| < ∞; we then consider piecewise quadratic interpolation over
equidistant interpolation nodes yN,i = (2i/N − 1) ∈ Γ, 0 ≤ i ≤ N . We assume
that N is even such that we may divide Γ into N/2 intervals [yN,i, yN,i+2], for
i = 0, 2, 4, . . . , N − 2. The characteristic functions are for y ∈ [yN,i, yN,i+2] then
given as

χN,i(y) =
(y − yN,i+1)(y − yN,i+2)

2h2
, (13)

χN,i+1(y) =
(y − yN,i)(y − yN,i+2)

−h2
, (14)

χN,i+2(y) =
(y − yN,i)(y − yN,i+1)

2h2
, (15)

for i = 0, 2, 4, . . . , N − 2, where h = 2/N = yN,j+1 − yN,j , 0 ≤ j ≤ N − 1. For
piecewise quadratic interpolation Hypothesis 1 and Hypothesis 2 obtain for

G(N) = 28N−2 sup
h∈H
‖h′′′‖L∞(Γ) ≡ cquad

H N−2, (16)

D(N) =
5

2
N, (17)

respectively, where cquad
H = 28 suph∈H ‖h′′′‖L∞(Γ). We include the proofs in

Appendix A.2. It is straightforward to demonstrate Hypothesis 3: we note that
in this case (7) has the solution

Nbal(ε) =

(
56 suph∈H ‖h′′′‖L∞(Γ)

5ε

)1/3

=

(
2cquad
H
5ε

)1/3

(18)

and hence that

H(ε) =
5

2

(2

5
cquad
H

)1/3

ε2/3 → 0 (19)

as ε→ 0.
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Finally, we assume for all h ∈ H that h is analytic over Γ and consider stan-
dard Chebyshev interpolation over the Chebyshev nodes yN,i = − cos(iπ/N),
0 ≤ i ≤ N . The characteristic functions are in this case the Lagrange polyno-
mials χN,i ∈ PN (Γ) that satisfy χN,i(yN,j) = δi,j , 0 ≤ i, j ≤ N . For Chebyshev
interpolation Hypothesis 1 and Hypothesis 2 obtain for

G(N) = cCheb
H Ne−N log(ρH), (N > 0) (20)

D(N) = N2, (21)

respectively, where cCheb
H > 0 and ρH > 1 depend only on H.

A proof of (20) (realized for an analytic function h ∈ H) can be found in
[11]. A similar but somewhat less optimal result is obtained in [14, Eq. (4.18)].
However the result in [14] holds only for the maximum error over the N + 1
Chebyshev interpolation nodes. In [11] this result is improved and extended
to a bound for the maximum pointwise error over the entire interval [−1, 1].
We note that results similar to (21) (arbitrary high algebraic order convergence
for smooth functions) are common in the literature for L2 or Sobolev norms;
see for example [2, 4, 14]. The pointwise exponential estimate required for our
theoretical derivation in this paper proved more difficult to find.

The result (6) in Hypothesis 2 obtains in this case with equality. We refer
to [12, pp. 119–121] for a proof.

We finally demonstrate Hypothesis 3: we let c = cCheb
H , η = ηH = log(ρH) >

0, and we note that in this case (7) yields the transcendental equation

cNe−Nη = N2ε. (22)

which admits the solution

Nbal(ε) =
1

η
W
(cη
ε

)
, (23)

where W denotes the LambertW function(s) [5] defined by ξ = W(ξ)eW(ξ) for
any ξ ∈ C.

We now note that for real ξ > e, we have W(ξ) < log(ξ). We demonstrate
the proof in Appendix A.3. Thus, for sufficiently large ε such that cη/ε > e, we
obtain

Nbal(ε) <
1

η
log
(cη
ε

)
=

1

η

(
log(cη) + log(1/ε)

)
≤ A log(1/ε) (24)

for some sufficiently large constant A. Hence in this case

H(ε) < εA2(log(1/ε))2 (25)

for ε sufficiently small. We now consider H(ε) as ε → 0. By application of
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L’Hôpital’s rule twice (Eqs. (28) and (30) below) we obtain

lim
ε→0

H(ε) < A2 lim
ε→0

ε(log(1/ε))2 (26)

= A2 lim
ε→0

(
log(ε)

)2
1/ε

(27)

= A2 lim
ε→0

2 log(ε)/ε

−1/ε2
(28)

= 2A2 lim
ε→0

log(ε)

−1/ε
(29)

= 2A2 lim
ε→0

1/ε

1/ε2
(30)

= 2A2 lim
ε→0

ε = 0. (31)

Hypothesis 3 thus holds.

3 A General A Priori Convergence Result
We introduce an approximation space WM ≡ WM (Ω) of finite dimension M .
For any µ ∈ D, our approximation to the function F(·;µ) : Ω → R shall reside
in WM ; the particular approximation procedure invoked is not relevant for our
theoretical results in this section. We show here that if, for any µ ∈ D, the error
in the best L∞(Ω) approximation to F(·;µ) in WM goes to zero as M → ∞,
then, for any multi-index β, |β| ≥ 0, the error in the best L∞(Ω) approximation
to F (β)(·;µ) inWM also goes to zero asM →∞. Of course, only modestM are
of interest in practice: the computational cost associated with the approximation
is M -dependent. However, our theoretical results in this section provide some
promise that we may in practice invoke the “original” approximation space and
approximation procedure also for the approximation of parametric derivatives.

We introduce, for any fixed p ≥ 0 and any M ≥ 1,

epM ≡ max
β∈Mp

max
µ∈D

inf
w∈WM

‖F (β)(·;µ)− w‖L∞(Ω). (32)

We then recall the definition of Jβ,j from (4), and state

Proposition 1. Let p be a fixed non-negative integer. Assume that Hypotheses
1, 2, and 3 hold for the family of functions H given by

H = {Jβ,j(x; ·) : x ∈ Ω, β ∈Mp, 1 ≤ j ≤ P}. (33)

In this case, if epM → 0 as M →∞, then

ep+1
M → 0 (34)

as M →∞.
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Proof. For each x ∈ Ω, and for given β ∈ Mp and j, 1 ≤ j ≤ P , we first
introduce the interpolant JN,β,j(x; ·) ≡ INJβ,j(x; ·) ∈ PN (S) given by

JN,β,j(x; ·) ≡ INJβ,j(x; ·) =

N∑
i=0

Jβ,j(x; yN,i)χN,i(·); (35)

recall that here, S = D(j) = [−1, 1], and χN,i : S → R, 0 ≤ i ≤ N , are
characteristic functions that satisfy χN,i(yN,j) = δi,j , 0 ≤ i, j ≤ N .

We then introduce functions

w∗β,j(·;µ(1), . . . , µ(j−1), y, µ(j+1), . . . , µ(P )) ≡ w∗β,j(·; y)

≡ arg inf
w∈WM

‖Jβ,j(·; y)− w‖L∞(Ω) (36)

for any y ∈ S.2 Next, for all (x, y) ∈ Ω × S, we consider an approximation to
Jβ,j(x; y) given by

∑N
i=0 χN,i(y)w∗β,j(x; yN,i). Note that this approximation is

just an interpolation between the optimal approximations at the interpolation
nodes yN,i ∈ S and hence that for y = yN,i this approximation is exact. We next
let ′ denote differentiation with respect to the variable y and consider the error
in the derivative of this approximation. By the triangle inequality we obtain

∥∥∥J ′β,j − N∑
i=0

χ′N,iw
∗
β,j(·; yN,i)

∥∥∥
L∞(Ω×S)

=
∥∥∥J ′N,β,j − N∑

i=0

χ′N,iw
∗
β,j(·; yN,i) + J ′β,j − J ′N,β,j

∥∥∥
L∞(Ω×S)

≤
∥∥∥J ′N,β,j − N∑

i=0

χ′N,iw
∗
β,j(·; yN,i)

∥∥∥
L∞(Ω×S)

+
∥∥∥J ′β,j − J ′N,β,j∥∥∥

L∞(Ω×S)
. (37)

Here, J ′N,β,j ≡ (JN,β,j)′ =
∑N
i=0 Jβ,j(·; yN,i)χ′N,i(·).

We first develop a bound for the first term on the right hand side of (37).
By (35) and the triangle inequality we obtain∥∥∥J ′N,β,j − N∑

i=0

χ′N,iw
∗
β,j(·; yN,i)

∥∥∥
L∞(Ω×S)

(38)

=
∥∥∥ N∑
i=0

(Jβ,j(·; yN,i)− w∗β,j(·; yN,i))χ′N,i
∥∥∥
L∞(Ω×S)

(39)

≤
∥∥∥ N∑
i=0

|χ′N,i||Jβ,j(·; yN,i)− w∗β,j(·; yN,i)|
∥∥∥
L∞(Ω×S)

(40)

≤
∥∥∥ max

0≤i≤N
|Jβ,j(·; yN,i)− w∗β,j(·; yN,i)|

N∑
j=0

|χ′N,j |
∥∥∥
L∞(Ω×S)

. (41)

2Note that w∗β,j depends on all P parameter values µ(i), 1 ≤ i ≤ P . However we shall
suppress the dependence on parameters µ(i), i 6= j, for simplicity of notation.
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Further, by Hypothesis 2, by taking the maximum over the interval S, by the
definition of w∗β,j in (36), and finally the definition of epM in (32), we obtain

∥∥∥ max
0≤i≤N

|Jβ,j(·; yN,i)− w∗β,j(·; yN,i)|
N∑
j=0

|χ′N,j |
∥∥∥
L∞(Ω×S)

(42)

≤ D(N) max
0≤i≤N

‖Jβ,j(·; yN,i)− w∗β,j(·; yN,i)‖L∞(Ω) (43)

≤ D(N) max
y∈S
‖Jβ,j(·; y)− w∗β,j(·; y)‖L∞(Ω) (44)

= D(N) max
y∈S

inf
w∈WM

‖Jβ,j(·; y)− w‖L∞(Ω) (45)

≤ D(N)epM , (46)

and hence ∥∥∥J ′N,β,j − N∑
i=0

χ′N,iw
∗
β,j(·; yN,i)

∥∥∥
L∞(Ω×S)

≤ D(N)epM (47)

We next develop a bound for the second term on the right hand side of (37).
To this end we invoke the fact that for any x ∈ Ω the function Jβ,j(x; ·) belongs
to the family H defined by (33). We may thus invoke Hypothesis 1 to directly
obtain

‖J ′β,j(x; ·)− (INJβ,j(x; ·))′‖L∞(Ω×S) ≤ G(N). (48)

We may now combine (37) with (47) and (48) to obtain

∥∥∥J ′β,j − N∑
i=0

χ′N,iw
∗
β,j(·; yN,i)

∥∥∥
L∞(Ω×S)

≤ G(N) +D(N)epM . (49)

Next, we introduce β+
j = β + ej where ej is the canonical unit vector of

dimension P with the j’th entry equal to unity; we recall that β has length
|β| = p and hence β+

j has length |β+
j | = p + 1. We note that the multi-index

β, the parameter values µ(i) ∈ D(i), 1 ≤ i ≤ P , i 6= j, as well as the dimension
j, were chosen arbitrarily above. We may thus conclude (recall above we wrote
y = µ(j) for each fixed j) that3

max
β∈Mp

max
1≤j≤P

max
µ∈D

∥∥∥F (β+
j )(·;µ)−

N∑
i=0

χ′N,i(µ(j))w
∗
β,j(·; yN,i)

∥∥∥
L∞(Ω)

≤ G(N) +D(N)epM . (50)

We note that for any β ∈ Mp, any µ(j) ∈ D(j), and any 1 ≤ j ≤ P , the
function

∑N
i=0 χ

′
N,i(µ(j))w

∗
β,j(·; yN,i) is just one particular member of WM . For

3Recall that w∗β,j depends implicitly on the parameter values µ(i), i 6= j.
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the error ep+1
M of the best approximation of any derivative of order p+ 1 in WM

we thus obtain

ep+1
M = max

β∈Mp+1

max
µ∈D

inf
w∈WM

‖F (β)(·;µ)− w‖L∞(Ω) ≤ G(N) +D(N)epM . (51)

The final step is to bound the right-hand side of (51) in terms of epM alone.
To this end we note that we may choose N freely. In particular we may choose
N as the minimizer of the right hand side of (51). However for simplicity we
shall make a different choice for N ; in particular we choose N = Nbal(e

p
M ) to

balance the two terms on the right hand side of (51). With this choice we obtain

ep+1
M ≤ 2D(Nbal(e

p
M ))epM = 2H(epM ), (52)

and thus ep+1
M → 0 as epM → 0 by Hypothesis 3.

We now provide three lemmas, each of which quantifies the convergence in
Proposition 1. The first lemma quantifies the convergence in Proposition 1 in
the case that F(x; ·) ∈ C1(D) for all x ∈ Ω.

Lemma 1. Assume for all x ∈ Ω that F (β)(x; ·) ∈ C1(D) and furthermore that
all second order derivatives of F (β)(x; ·) are bounded over D. Then for any fixed
p = |β| ≥ 0 there is a constant Cp+1 > 0 (independent of M) such that for any
M

ep+1
M ≤ Cp+1

√
epM . (53)

Proof. In this case we may invoke piecewise linear interpolation as our inter-
polation system in the proof of Proposition 1. By (12) and (52) we obtain
ep+1
M ≤ 2(clinH e

p
M )1/2. The result follows for Cp+1 = 2(clinH )1/2.

The next lemma quantifies the convergence in Proposition 1 in the case that
F (β)(x; ·) ∈ C2(D) for all x ∈ Ω.

Lemma 2. Assume for all x ∈ Ω that F (β)(x; ·) ∈ C2(D) and furthermore that
all third order derivatives of F (β)(x; ·) are bounded over D. Then for any fixed
p = |β| ≥ 0 there is a constant Cp+1 > 0 (independent of M) such that for any
M

ep+1
M ≤ Cp+1(epM )2/3. (54)

Proof. In this case we may invoke piecewise quadratic interpolation as our inter-
polation system in the proof of Proposition 1. By (19) and (52) we obtain ep+1

M ≤
5(2cquad

H /5)1/3(epM )2/3. The result follows for Cp+1 = 5(2cquad
H /5)1/3.

We make the following remark concerning Lemma 1 and Lemma 2 in the
case of algebraic convergence.
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Remark 1. Let |β| = p, and assume for all x ∈ Ω that F (β)(x, ·) ∈ Cqp(D),
qp > 0, and furthermore that all qp+1 order derivatives of F (β)(x, ·) are bounded
over D. Suppose in this case that for all M we have epM ≤ const ·M−rp with
rp > 0.4 For qp = 1 we may invoke Lemma 1 to obtain

ep+1
M ≤ Cp+1(epM )

1
2 ∝M−

rp
2 = M

rp
2 epM . (55)

Similarly, for qp = 2 we may invoke Lemma 2 to obtain

ep+1
M ≤ Cp+1(epM )

2
3 ∝M−

2rp
3 = M

rp
3 epM . (56)

More generally, with higher-regularity versions of Lemma 1 and Lemma 2, we
expect for any qp > 0 that

ep+1
M ≤ Cp+1(epM )

1− 1
qp ∝M−rp

(
1− 1

qp

)
= M

rp
qp+1 epM . (57)

for any qp > 0. We shall comment on these estimates further in our discussion
of numerical results in Section 5.

The third lemma quantifies the convergence in Proposition 1 in the case that
F(x, ·) is analytic over D.
Lemma 3. Assume for all x ∈ Ω that F(x, ·) : D → R is analytic over D. Then
for any fixed p ≥ 0 there exists a constant Cp+1 > 0 (independent of M) such
that for any M > M0,

ep+1
M ≤ Cp+1 log(epM )2epM . (58)

In particular, if for some p (independent of M)

epM ≤ ĉM
σe−γM

α

(59)

where σ and α are constants and γ and ĉ are positive constants, then there exists
a constant Ĉp+1 such that

ep+1
M ≤ Ĉp+1M

σ+2αe−γM
α

. (60)

Proof. In this case we may invoke Chebyshev interpolation as our interpolation
system in the proof of Proposition 1. For suffiently large M (i.e. sufficiently
small epM ), we may use (24) and (52) to obtain ep+1

M < 2A2(log(1/epM ))2epM .
The result (58) follows for Cp+1 = 2A2 since (log(1/epM ))2 = (log(epM ))2.

The additional result (60) follows from the assumption (59) since the right
hand side of (58) decreases monotonically as epM → 0 for epM < e−2. We obtain
in this case

ep+1
M ≤ Cp+1 log(ĉMσe−γM

α

)2Mσe−γM
α

= Cp+1(log ĉ+ σ logM − γMα)2Mσe−γM
α

≤ Ĉp+1M
2αMσe−γM

α

(61)

for M sufficiently large.
4The convergence rate rp will depend on the sequence of spaces WM ; we expect that the

convergence rate also will depend on the parametric regularity qp.
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We make the following two remarks concerning Lemma 3.

Remark 2. Note that Lemma 3, in contrast to 1 and 2, only holds for all M
sufficiently large. The reason is that to obtain (58) we invoke the assumption
W(ξ) < log(ξ), which holds only for ξ > e (see Appendix A.3 for a proof). Since
here ξ ∝ 1/epM , this assumption will be satisfied when eM is sufficiently small,
i.e. when M is sufficiently large.

Remark 3. We note that we may invoke the result (60) recursively to obtain,
for any fixed p and all M > M̂0,p,

εpM ≤ C̃pM
σ+2αpe−γM (62)

whenever ε0M ≤ cMσe−γM
α

. Here, C̃p and M̂0,p depend on p, but C̃p does not
depend on M .

4 The Empirical Interpolation Method
In this section we first recall the Empirical Interpolation Method (EIM) [1, 8, 9]
and then consider the convergence theory of the previous section applied to the
EIM. The EIM approximation space is spanned by precomputed snapshots of
a parameter dependent “generating function” for judiciously chosen parameter
values from a predefined parameter domain. Given any new parameter value in
this parameter domain, we can construct an approximation to the generating
function at this new parameter value — or in principle an approximation to any
function defined over the same spatial domain — as a linear combination of the
EIM basis functions. The particular linear combination is determined through
interpolation at judiciously chosen points in the spatial domain. For paramet-
rically smooth functions, the EIM approximation to the generating function
yields rapid — typically exponential — convergence.

4.1 Procedure
We introduce the generating function G : Ω × D → R such that for all µ ∈ D,
G(·;µ) ∈ L∞(Ω). We introduce a training set Ξtrain ⊂ D of finite cardinality
|Ξtrain| which shall serve as our computational surrogate for D. We also intro-
duce a triangulation TN (Ω) of Ω with N vertices over which we shall in practice,
for any µ ∈ D, realize G(·;µ) as a piecewise linear function.

Now, for 1 ≤ M ≤ Mmax < ∞, we define the EIM approximation space
WGM and the EIM interpolation nodes TGM associated with G; here, Mmax is
a specified maximum EIM appproximation space dimension. We first choose
(randomly, say) an initial parameter value µ1 ∈ D; we then determine the first
EIM interpolation node as t1 = arg supx∈Ω |G(x;µ1)|; we next define the first
EIM basis function as q1 = G(·;µ1)/G(t1;µ1). We can then, for M = 1, define
WGM = span{q1} and TGM = {t1}. We also define a nodal value matrix B1 with
(a single) element B1

1,1 = q1(t1) = 1.

12



Next, for 2 ≤ M ≤ Mmax, we first compute the empirical interpolation of
G(·;µ) for all µ ∈ Ξtrain: we solve the linear system

M−1∑
j=1

φM−1
j (µ)BM−1

i,j = G(ti;µ), 1 ≤ i ≤M − 1, (63)

and compute the empirical interpolation GM−1(·;µ) ∈WGM−1 as

GM−1(·;µ) =

M−1∑
i=1

φM−1
i (µ)qi, (64)

for all µ ∈ Ξtrain. We then choose the next parameter µM ∈ D as the maximizer
of the EIM interpolation error over the training set,

µM = arg max
µ∈Ξtrain

‖GM−1(·;µ)− G(·;µ)‖L∞(Ω); (65)

note that thanks to our piecewise linear realization of G(·;µ), the norm eval-
uation is a simple comparison of function values at the N vertices of TN (Ω).
We now choose the next EIM interpolation node as the point in Ω at which the
EIM error associated with GM−1(µM ) is largest,

tM = arg sup
x∈Ω
|GM−1(x;µM )− G(x;µM )|. (66)

The next EIM basis function is then

qM =
GM−1(·;µM )− G(·;µM )

GM−1(tM ;µM )− G(tM ;µM )
. (67)

We finally enrich the EIM space: WGM = span{q1, . . . , qM}; expand the set of
nodes: TGM = {t1, . . . , tM}; and expand the nodal value matrix: BMi,j = qj(ti),
1 ≤ i, j ≤M .

Now, given any function F : Ω × D → R (in particular, we shall consider
F = G(β)), we define for any µ ∈ D and for 1 ≤ M ≤ Mmax the empirical
interpolation of F(·;µ) in the space WGM (the space generated by G) as

FGM (·;µ) =

M∑
i=1

φMi (µ)qi, (68)

where the coefficients φMi (µ), 1 ≤ i ≤M , solve the linear system

M∑
j=1

φMj (µ)BMi,j = F(ti;µ), 1 ≤ i ≤M. (69)

We note that by construction the matrices BM ∈ RM×M , 1 ≤ M ≤ Mmax,
are lower triangular: by (63), GM−1(tj ;µM ) = G(tj ;µM ) for j < M . As a result,

13



computation of the EIM coefficients φMj , 1 ≤ j ≤M , in (69) and (63) areO(M2)
operations. We emphasize that the computational cost associated with the EIM
approximation (68)–(69) (after snapshot precomputation) is independent of the
number N of vertices in the triangulation TN (Ω). We may thus choose N
conservatively.

We next note that, for any multi-index β,

(FGM )(β) =
( M∑
i=1

φMi (µ)qi

)(β)

=

M∑
i=1

ϕMi (µ)qi, (70)

where ϕMi (µ) = (φMi )(β)(µ), 1 ≤ i ≤M , solve the linear system (recall that the
matrix BM is µ-independent)

M∑
j=1

ϕMj (µ)BMi,j = F (β)(ti;µ), 1 ≤ i ≤M. (71)

Hence,

(FGM )(β) = (F (β))GM , (72)

that is, the parametric derivative of the approximation is equivalent to the
approximation of the parametric derivative. We note that this equivalence holds
since we invoke the same approximation spaceWGM for both EIM approximations
FGM and (F (β))GM .

4.2 Convergence theory applied to the EIM
We introduce the Lebesgue constants [10]

ΛM = sup
x∈Ω

M∑
i=1

|VMi (x)|, 1 ≤M ≤Mmax, (73)

where VMi ∈WGM are the characteristic functions associated with WGM and TGM :
VMi (tj) = δi,j , 1 ≤ i, j ≤M . Our theory of Section 3 considers the convergence
in the best approximation error. However, we can relate the EIM approximation
of F to the best approximation of F through

Lemma 4. The error in the EIM derivative approximation satisfies

‖F (β)(·;µ)− (F (β))GM (·;µ)‖L∞(Ω)

≤ (1 + ΛM ) inf
w∈WGM

‖F (β)(·;µ)− w‖L∞(Ω). (74)

Proof. The proof is identical to [1, Lemma 3.1]. We first introduce FG,∗M (·;µ) =
arg infw∈WGM

‖F(·;µ) − w‖L∞(Ω), and define coefficient functions ωMm (µ), 1 ≤
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m ≤M , such that FGM (·;µ)−FG,∗M (·;µ) =
∑M
m=1 ω

M
m (µ)qm. By the interpolation

property of the EIM we then obtain

F(tn;µ)−FG,∗M (tn;µ) = FGM (tn;µ)−FG,∗M (tn;µ) =

M∑
m=1

ωMm (µ)qm(tn). (75)

We then introduce EGM (µ) = ‖F(·;µ)−FGM (·;µ)‖L∞(Ω) and EG,∗M (µ) = ‖F(·;µ)−
FG,∗M (·;µ)‖L∞(Ω) and note that

EGM (µ)−EG,∗M (µ) ≤
∥∥∥ M∑
m=1

ωMm (µ)qm

∥∥∥
L∞(Ω)

=
∥∥∥ M∑
n=1

M∑
m=1

ωMm (µ)qm(tn)VMn

∥∥∥
L∞(Ω)

=
∥∥∥ M∑
n=1

(
F(tn;µ)−FG,∗M (tn;µ)

)
VMn

∥∥∥
L∞(Ω)

≤ ΛME
G,∗
M (µ) (76)

since |F(tn;µ) − FG,∗M (tn;µ)| ≤ EG,∗M (µ), 1 ≤ n ≤ M , and by the definition of
ΛM in (73). The result (74) follows for any β by replacing F by F (β) in the
arguments above.

It can be proven [1, 8] that ΛM < 2M − 1. However, in actual practice the
growth of ΛM is much slower than this exponential upper bound, as we shall
observe below (see also results in [1, 8, 9]). Based on Lemma 4 and the antici-
pated slow growth of ΛM , we expect the EIM approximation to any parametric
derivative to be good as long as the best approximation is good.

5 Numerical Results
In this section we demonstrate the theory through two numerical examples. In
each example, we consider a parametrized function F and we generate approx-
imation spaces with the EIM method for G = F as the generating function. To
confirm the theory we compute for a large number of parameter values in a test
set Ξtest ⊂ D, Ξtest 6= Ξtrain, the best approximation of F and the parametric
derivatives F (β) in these spaces. We define the maximum best approximation
error over the space of dimension M as

epM,test ≡ max
β∈Mp

max
µ∈Ξtest

inf
w∈WGM

‖F (β)(·;µ)− w‖L∞(Ω) (77)

(the test set Ξtest will be different for each example problem). We note that
thanks to the piecewise linear representation of F (and its parametric deriva-
tives), determination of the best approximation (and associated error) is equiv-
alent to the solution of a linear program for each µ ∈ Ξtest.

We shall also compute error degradation factors

ρpM.test ≡
epM,test

e0
M,test

(78)
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Figure 1: The maximum L∞(Ω) projection error over the test set, epM,test, for
0 ≤ p ≤ 3 for Example 1.

as a measure of how much accuracy we loose for different differential order p of
the function to be approximated.

We finally confirm for each example that the growth of the Lebesgue constant
is only modest and hence that, by Lemma 4, the EIM approximation will be
close to the best approximation.

5.1 Example 1: Parametrically smooth Gaussian surface
We introduce the spatial domain Ω = [0, 1]2 and the parameter domain D =
[0.4, 0.6]2. We consider the 2D Gaussian F : Ω×D → R defined by

F(x;µ) = exp

(
−(x(1) − µ(1))

2 − (x(2) − µ(2))
2

2σ2

)
(79)

for x ∈ Ω, µ ∈ D, and σ ≡ 0.1. This function is thus parametrized by the
location of the maximum of the Gaussian surface. We note that for all x ∈ Ω
the function F(x; ·) is analytic over D; we may thus invoke Lemma 3.

We introduce a triangulation TN (Ω) with N = 2601 vertices; we introduce
an equi-distant training set “grid” Ξtrain ⊂ D of size |Ξtrain| = 900 = 30 × 30.
We then pursue the EIM with G = F for Mmax = 99.

We now introduce a uniformly distributed random test set Ξtest ⊂ D of
size 1000 over which we compute best approximation errors epM , 1 ≤ M ≤
Mmax. In Figure 1 we show the maximum best approximation errors epM,test

for p = 0, 1, 2, 3. We note that the convergence is exponential not only for the
best approximation of F (p = 0), but also for the best approximation of its
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Figure 2: Error degradation factors ρpM,test, p = 1, 2, 3, for Example 1. The
shorter dashed lines are of slope M2p.

derivatives (p > 0). We also note that for large M , the (exponential) rates
of convergence associated with the parametric derivatives are close to the rate
associated with the generating function.

To provide for some theoretical explanation for these observations we make
the assumption e0

M = ĉMσe−γM . An ordinary least squares linear regression on
log(e0

M ) for 35 ≤ M ≤ Mmax provides estimates log ĉ ≈ 4.4194, σ ≈ −4.4611,
and γ ≈ 0.0436. Based on these estimates and the relatively small associated
standard errors5 we may expect that this assumption holds. In this case, we
expect from Remark 3 that epM ≤ C̃pMσ+2pe−γM also for p > 0. This result thus
explains the exponential convergence associated with the parametric derivatives.

In Figure 2 we show the error degradation factors ρpM,test for p = 1, 2, 3 as
functions ofM . The plot suggests that indeed ρpM,test ≤ const ·M2p as predicted
by Remark 3 and the bounds epM ≤ C̃pMσ+2pe−γM , p > 0, obtained above. We
note from Lemma 3 that had the result (60) been sharp we would have obtained
ρpM,test ∝ M2p. We conclude that, at least for the range of M considered for
these computations and for this particular F , the result (60) is not sharp.

We finally note that the factor M2 in (60) originates from the sharp result
(21); hence with our present strategy for the proof of Proposition 1 it is not
clear how to sharpen (60). However, clearly our theory captures the correct
qualitative behavior: we observe exponential convergence for the parametric

5For the standard errors associated with log ĉ, σ, and γ we obtain 0.6552, 0.4846, and
0.0033, respectively. We use these standard errors as a non-rigorous measure of the uncertainty
in the estimated regression parameters; however we do make particular assumptions on the
regression error term and hence we can not assign any formal statistical interpretation to the
standard errors.
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Figure 3: The Lebesgue constant ΛM for Example 1.

derivatives and there is evidence of an algebraic degradation factor for the para-
metric derivative approximations.

Finally, in Figure 3, we report the Lebesgue constant ΛM . We note that
the growth of the Lebesgue constant is only modest. The EIM derivative ap-
proximation will thus be close to the best L∞(Ω) approximation in the space
WFM .

5.2 Example 2: A parametrically singular function
We introduce the spatial domain Ω = [−1, 1] and the parameter domain D =
[−1, 1]. We consider the function F : Ω×D → R defined by

F(x;µ) = |x− µ|5 (80)

for x ∈ Ω and µ ∈ D. The function thus has a singularity at x = µ for any
µ ∈ D.

For any x ∈ Ω we have F (p)(x; ·) ∈ Cqp(D) for qp = 4 − p with F (5)(x; ·)
bounded over D. Hence, to estimate e1

M from e0
M , we may as indicated in

Remark 1 invoke a higher order version of Lemma 1 (and Lemma 2) using
piecewise quartic interpolation. Similarly, to estimate e2

M based on e1
M , we may

invoke a piecewise cubic version of Lemma 1 (and Lemma 2). To estimate e3
M

based on e2
M , we may invoke Lemma 2 directly since F (2)(x; ·) ∈ C2(D) with

its third order derivative bounded over D.
We introduce a triangulation TN (Ω) with N = 500 vertices; we introduce

an equi-distant training set “grid” Ξtrain ⊂ D of size |Ξtrain| = 500. We then
pursue the EIM with G = F for Mmax = 89.
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Figure 4: The maximum L∞(Ω) projection error over the test set, epM,test, for
0 ≤ p ≤ 3 for Example 2. The shorter dashed lines are of slope M−5+p.

We now introduce a uniformly distributed random test set Ξtest ⊂ D of size
500. In Figure 4 we show the maximum best approximation errors epM,test for
p = 0, 1, 2, 3. The convergence is algebraic: ordinary least squares best fits
to the slopes for 30 ≤ M ≤ Mmax yield e0

M,test ≈ const · M−5.13, e1
M,test ≈

const · M−4.27, e2
M,test ≈ const · M−3.23, and e3

M,test ≈ const · M−2.10 (the
shorter dashed lines in the plot are of slope M−5+p). These estimates suggest
that rp = qp + ω where ω is somewhat larger than unity.

From Figure 4 we may also infer the approximate error degradation factors
ρpM,test for p = 1, 2, 3 as functions of M : a rough estimate is ρpM,test ∝Mp since
we loose approximately a factor M when p increases by one. We note that this
is exactly what we expect from Remark 1 if rp = qp + 1 and the error estimates
indicated in Remark 1 are sharp.

Finally, in Figure 5, we report the Lebesgue constant ΛM : any growth of
the Lebesgue constant is hardly present. The EIM derivative approximation
will thus be close to the best L∞(Ω) approximation in the space WFM .

6 Concluding remarks
We have introduced a new a priori convergence theory for the approximation
of parametric derivatives. Given a sequence of approximation spaces, we have
showed that the best approximation error associated with parametric deriva-
tives of a function will go to zero provided that the best approximation error
associated with the function itself goes to zero. In practice a method such as
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the EIM is used for the approximation of such functions, and hence the best
approximation convergence result does not directly apply. However, thanks to
the slowly growing Lebesgue constant associated with the EIM approximation
scheme, we expect that the EIM approximation error will be small whenever
the best approximation error is small.

A natural approach to the EIM approximation of parametric derivatives
would be to either enrich the original EIM space with snapshots of these para-
metric derivatives or to construct separate EIM spaces for each derivative, with
this derivative as the generating function. The results in this paper, however,
suggest that the EIM may be invoked in practice for the approximation of para-
metric derivatives without enrichment of the space or construction of additional
spaces.

There are admittedly several opportunities for improvements of the theory.
First, our numerical results of Section 5.1 suggest that the theoretical bounds for
parametrically analytic functions are not sharp. The theory predicts an error
degradation factor M2p, but the numerical results show (for this particular
example function F) a smaller error degradation factor. It is not clear with the
present strategy how to improve the theoretical bounds. Second, we would like
to extend the validity of the theory to other (e.g. Sobolev) norms; in this case
we may for example consider reduced basis [13] approximations to parametric
derivatives of solutions to partial differential equations.
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A Proofs for Hypotheses 1 and 2

A.1 Piecewise linear interpolation
We consider piecewise linear interpolation over the equidistant interpolation
nodes yN,i = (2i/N−1) ∈ Γ = [−1, 1], 0 ≤ i ≤ N . In this case the characteristic
functions χN,i are continuous and piecewise linear “hat functions” with support
only on the interval [yN,0, yN,1] for i = 0, on [yN,i−1, yN,i+1] for 1 ≤ i ≤ N − 1,
and on [yN,N−1, yN,N ] for i = N .

We recall the results (9) and (10) from Section 2.2. Let f : Γ → R with
f ∈ C1(Γ) and assume that supy∈Γ |f ′′(y)| < ∞. We then have, for any y ∈ Γ
and any N ≥ 0,

|f ′(y)− (INf)′(y)| ≤ 2N−1‖f ′′‖L∞(Γ). (81)

Further, for all y ∈ Γ, the characteristic functions χN,i, 0 ≤ i ≤ N , satisfy

N∑
i=0

|χ′N,i(y)| = N. (82)

We first demonstrate (81) (and hence (9)). For y ∈ [yN,i, yN,i+1], 0 ≤ i ≤
N − 1, we have

(INf)′(y) =
1

h

(
f(yN,i+1)− f(yN,i)

)
, (83)

where h = 2/N . We next write f(yN,i) and f(yN,i+1) as Taylor series around y
as

f(yN,i) =

1∑
j=0

f (j)(x)

j!
(yN,i − y)j +

∫ yN,i

y

f ′′(t)(yN,i − t) dt, (84)

f(yN,i+1) =

1∑
j=0

f (j)(y)

j!
(yN,i+1 − y)j +

∫ yN,i+1

y

f ′′(t)(yN,i+1 − t) dt, (85)

which we then insert in the expression (83) for (INf)′ to obtain

|(INf)′(y)−f ′(y)| =
∣∣∣ 1
h

∫ yN,i+1

y

f ′′(t)(yN,i+1−t) dt−
1

h

∫ yN,i

y

f ′′(t)(yN,i−t) dt
∣∣∣

≤ 1

h
‖f ′′‖L∞(Γ) max

y∈[yN,i,yN,i+1]

(
|yN,i+1 − y|2 + |yN,i − y|2

)
≤ h‖f ′′‖L∞(Γ) = 2N−1‖f ′′‖L∞(Γ). (86)
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We next demonstrate (82) (and hence (10)). It suffices to consider y ∈
[yN,i, yN,i+1] for 0 ≤ i ≤ N − 1. On [yN,i, yN,i+1] only |χ′N,i(y)| and |χ′N,i+1(y)|
contribute to the sum; furthermore we have |χ′N,i(y)| = |χ′N,i+1(y)| = 1/h =
N/2, from where the result (82) follows.

A.2 Piecewise quadratic interpolation
We consider piecewise quadratic interpolation over equidistant interpolation
nodes yN,i = (2i/N − 1) ∈ Γ, 0 ≤ i ≤ N . We consider N equal such that
we may divide Γ into N/2 intervals [yN,i, yN,i+2], for i = 0, 2, 4, . . . , N − 2. The
characteristic functions χN,i are for y ∈ [yN,i, yN,i+2] given as

χN,i(y) =
(y − yN,i+1)(y − yN,i+2)

2h2
, (87)

χN,i+1(y) =
(y − yN,i)(y − yN,i+2)

−h2
, (88)

χN,i+2(y) =
(y − yN,i)(y − yN,i+1)

2h2
, (89)

for i = 0, 2, 4, . . . , N , where h = 2/N = yN,j+1 − yN,j , 0 ≤ j ≤ N − 1.
We recall the results (16) and (17) from Section 2.2. Let f : Γ → R with

f ∈ C2(Γ) and assume that supy∈Γ |f ′′′(y)| < ∞. We then have, for any y ∈ Γ
and any N ≥ 0,

|f ′(y)− (INf)′(y)| ≤ 28
‖f ′′′‖L∞(Γ)

N2
. (90)

Further, for all y ∈ Γ, the characteristic functions χN,i, 0 ≤ i ≤ N , satisfy

N∑
i=0

|χ′N,i(y)| = 5

2
N. (91)

We first demonstrate (90). It suffices to consider the interpolant INf(y) for
y ∈ Γi ≡ [yN,i, yN,i+2], in which case

INf(y) = f(yN,i)χN,i(y) + f(yN,i+1)χN,i+1(y) + f(yN,i+2)χN,i+2(y). (92)

Insertion of (87)–(89) and differentiation yields

(INf)′(y) =
1

2h2

(
f(yN,i)(2y − yN,i+1 − yN,i+2)

− 2f(yN,i+1)(2y − yN,i − yN,i+2) + f(yN,i+2)(2y − yN,i − yN,i+1)
)
. (93)
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We next write f(yN,i), f(yN,i+1), and f(yN,i+2) as Taylor series around y as

f(yN,i) =

2∑
j=0

f (j)(y)

j!
(yN,i − y)j +

∫ yN,i

y

f ′′′(t)
(yN,i − t)2

2
dt, (94)

f(yN,i+1) =

2∑
j=0

f (j)(y)

j!
(yN,i+1 − y)j +

∫ yN,i+1

y

f ′′′(t)
(yN,i+1 − t)2

2
dt, (95)

f(yN,i+2) =

2∑
j=0

f (j)(y)

j!
(yN,i+2 − y)j +

∫ yN,i+2

y

f ′′′(t)
(yN,i+2 − t)2

2
dt. (96)

We may then insert the expressions (94)–(96) into (93) to obtain

(INf)′(y)− f ′(y) =
1

2h2

(
(2y − yN,i+1 − yN,i+2)

∫ yN,i

y

f ′′′(t)
(yN,i − t)2

2
dt

− 2(2y − yN,i − yN,i+2)

∫ yN,i+1

y

f ′′′(t)
(yN,i+1 − t)2

2
dt

+ (2y − yN,i − yN,i+1)

∫ yN,i+2

y

f ′′′(t)
(yN,i+2 − t)2

2
dt

)
. (97)

(For j = 0 and j = 2 the terms on the right-hand-side of (93) cancel, and for
j = 1 we obtain f ′(y).) We further bound (97) as

|(INf)′(y)− f ′(y)| ≤
‖f ′′′‖L∞(Γ)

4h2
max
y∈Γi

(
|2y − yN,i+1 − yN,i+2||yN,i − y|3

+ 2|2y − yN,i − yN,i+2||yN,i+1 − y|3 + |2y − yN,i − yN,i+1||yN,i+2 − y|3
)

≤
‖f ′′′‖L∞(Γ)

4h
max
y∈Γi

(
3|yN,i − y|3 + 4|yN,i+1 − y|3 + 3|yN,i+2 − y|3

)
≤
‖f ′′′‖L∞(Γ)

4h
(3(2h)3 + 4h3) = 28

‖f ′′′‖L∞(Γ)

N2
, (98)

which is the desired result.
We next demonstrate (91). It again suffices to consider y ∈ Γi. On Γi only

χ′N,i(y), χ′N,i+1(y), and χ′N,i+2(y) contribute to the sum. With h = 2/N =
yj+1 − yj , 0 ≤ j ≤ N − 1, we have

max
y∈Γi
|χ′N,i(y)| = N2

8
max
y∈Γi
|2y − yN,i+1 − yN,i+2| =

3

4
N, (99)

max
y∈Γi
|χ′N,i+1(y)| = N2

4
max
y∈Γi
|2y − yN,i − yN,i+2| = N, (100)

max
y∈Γi
|χ′N,i+2(y)| = N2

8
max
y∈Γi
|2y − yN,i − yN,i+1| =

3

4
N. (101)

The result then follows.
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A.3 Proof that W(ξ) < log(ξ) for real ξ > e

We recall the definition of the LambertW function

ξ =W(ξ)eW(ξ), ξ ∈ C. (102)

By implicit differentiation we obtain

W ′(ξ) =
1

eW(ξ) + ξ
(103)

for ξ 6= −1/e. Further, W(ξ) is real-valued for real-valued ξ > 0. Hence

W ′(ξ) < 1

ξ
(104)

for real ξ > 0. We then make the observation that

W(e) = log(e) = 1. (105)

Hence for all ξ > e, we have W(ξ) < log(ξ).
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