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Abstract

The interaction of a jet of cooling gas injected through single boreholes or slots
with a supersonic flow field plays an essential role in the design of innovative
cooling systems. In order to appropriately resolve the physically relevant effects
an efficient and reliable solver is needed. For this purpose, a fully adaptive and
parallel multiresolution finite volume scheme is used. Here grid adaptation is
based on a multiscale decomposition of the discrete flow data in terms of cell
averages at hand. The resulting multiscale data are compressed by means of
hard thresholding. From the remaining data a locally refined grid is constructed.

For validation purposes, first a simplified two-dimensional configuration mim-
icking the gas injection through a slot of infinite length in a plate is investigated.
These numerical results are thoroughly validated by van Driest’s self-similar
solution for laminar boundary layers and computations performed with non-
adaptive codes. In the following, three-dimensional simulations of slots of finite
length are carried out and compared with experimental data. The influence
of varying rate of cooling gas, injection angle etc. on the cooling efficiency is
investigated.

Keywords: Finite Volume Method, Film cooling, Cooling gas injection,
Multiscale techniques, Grid adaptation

1. Introduction

In combustion chambers of rocket engines the walls are exposed to very high
temperatures. In order to avoid material damage one has to resort to well-
designed thermal protection system. Another application area for such systems
are supersonic reentry processes. One widely-used cooling concept for problems
of this type is radiation cooling in combination with materials with very low
thermal conductivity. One disadvantage of such passive techniques is that they
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cannot be adjusted during the flight and therefore must be designed to with-
stand the highest thermal load occurring in the course of the flight trajectory.
Instead active cooling strategies such as film cooling might offer a promising
more economical alternative to reducing the heat load of the wall. The basic
idea of film cooling is to inject cooling fluid, commonly air, through boreholes
or slots in the wall surface such that a thin film develops at the wall. Thus,
the high temperature gas does not come into direct contact with the surface
and the heat load at the wall is reduced. So far these concepts have been used
primarily for subsonic applications. For example, film cooling is widely used
in subsonic flow regimes for cooling turbine blades. An overview of previous
experimental studies and theoretical models is given by Goldstein [1]. These
investigations deal mostly with free stream Mach numbers in the range of 0.02
to 0.2]. The interaction of the injected cooling gas with the main flow field has
been studied for slot injection, cf. Taslim [2] and Fitt [3] as well as for shaped
holes, cf. Thole [4]. According to the characteristics of turbine flows, these
studies address subsonic, turbulent flow conditions. As a typical adverse effect,
the cooling gas injection leads to three-dimensional vortex structures, which in
general reduce the cooling efficiency locally. The studies mentioned above focus
on reducing this effects.

Only very recently, active cooling strategies have been developed also for
supersonic flows. Film cooling for supersonic flows is, for instance, considered in
scramjet applications. Here the flows are also turbulent and tangential injection
is the preferred choice, cf. Konopka [5].

Gollnick [6] focuses on tangential injection into a supersonic, laminar flow
field with different types of cooling gases. Near the leading edge of a reentry
vehicle, for example, supersonic laminar flow conditions are encountered in the
region of the critical thermal loads. In these applications, the blowing ratio, i.e.,
the ratio of the specific mass flux of the cooling gas compared to the specific free
stream mass flux, is lower than for turbine blade cooling. The Mach number is
typically between 2 and 3.

Non-tangential cooling gas injection into laminar, supersonic flows has been
recently investigated experimentally by Heufer & Olivier [8] focusing on slot
injection in a Mach-2.6 boundary layer with different blowing ratios and angles.
These experiments play on one hand an important role for the validation of the
simulation tools presented in this paper. On the other hand, our simulations
will be seen to refine the information obtained from these experiments. Further-
more, Linn & Kloker [9] performed numerical simulations of injection through
rows of holes with the same Mach number. The latter also investigated the
injection through aligned and staggered rows of holes into a Mach-6 boundary
layer [10]. However, in summary, it is fair to say that one still faces a severe lack
of understanding concerning the fundamentals of the flow field and the thermal
interaction.

In the present work we focus on the numerical simulation of cooling gas
injected into a laminar, supersonic flow field through a finite single slot in a
plate. For this configuration experimental data are available. The main purpose
is to resolve the three-dimensional flow field generated by the finite slot and
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understand the behavior of the flow, in particular, the effects triggered at the
ends of the slot. More specifically, the vortex system generated at both ends
of the slot are not sufficiently resolved by experiments, primarily because of its
small extent in spanwise direction. We shall show that numerical simulations
provide more detailed information on these vortices.

We employ the adaptive and parallel solver Quadflow [11] for our simula-
tions. This solver has been designed as an integrated tool in a way that each
of its constituents, namely the type of discretization, grid generation and han-
dling, as well as grid adaptation support each other to a possibly large extent.
Specifically, the core ingredients are: (i) the flow solver concept based on a finite
volume discretization, (ii) the grid adaptation concept based on wavelet tech-
niques, and (iii) the grid generator based on B-spline mappings. In particular,
the three constituents are not just viewed as black boxes communicating only
via interfaces.

In this context, the mathematical concept of multiresolution-based grid
adaption plays a central role in that it reliably detects all physical relevant
effects and resolves them reasonably. First work in this regard has been pub-
lished by Harten [12]. The basic idea is to perform a multiscale analysis of a
sequence of cell averages associated with any given finite volume discretization
on a given highest level of resolution (reference mesh). This results in cell av-
erages on some coarse level and the fine scale information is encoded in arrays
of detail coefficients of ascending resolution. In Harten’s original approach, the
multiscale analysis is used to steer a hybrid flux computation that resorts to
cheap finite differences whenever the detail coefficients indicate that it is save
to do so. This results in quantitative savings of CPU time. However, this strat-
egy does not reduce the overall complexity rate because the computational work
still stays proportional to the number of cells of the uniform high resolution
reference mesh, ultimately rendering this approach insufficient for complex 3D
computations. In contrast to this strategy, in [13, 14] threshold techniques are
applied to the multiresolution decomposition where detail coefficients below a
threshold value are discarded. By means of the remaining significant details, a
locally refined mesh is determined whose complexity is substantially reduced in
comparison to the underlying reference mesh.

The fully adaptive concept has proven to be highly efficient and reliable.
So far, it has been employed with great success to different application sce-
narios, e.g., 2D/3D-steady and unsteady computations of compressible fluids
around airfoils modeled by the Euler and Navier-Stokes equations, respectively,
on block-structured curvilinear grid patches [11], backward-facing step flows
on 2D triangulations [15], and simulation of a flame ball modeled by reaction-
diffusion equations on 3D Cartesian grids [16]. By now, there is an increasing
number of groups working on this subject: Postel et al. [17], Schneider et al. [18],
Burger et al. [19], Domingues et al. [20], Duarte et al. [21], and Koumoutsakos
et al. [22]. For a more thorough discussion on adaptive multiresolution finite
volume schemes we refer to the recent review [23] and the articles in [24].

The present paper is structured as follows: First, the basic concepts of the
flow solver Quadflow concerning grid adaptation, grid generation, finite volume
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discretization and parallelization are briefly summarized in Section 2. In Sec-
tion 3 the solver is validated by means of a supersonic flow over a flat plate
without injection. This allows us to compare the numerical results with van
Driest’s [27] self-similar solution. Here the reliability and efficiency of the grid
adaptation are of in particular interest. Finally, in Section 4 we apply the solver
to the problem of cooling gas injection where a gas is injected through (i) one
infinite slot in the plate into a two-dimensional flow field and (ii) through a
finite slot into a three-dimensional flow field. Specifically, we investigate the
interaction of the cooling gas jet with the laminar boundary layer and the su-
personic flow field. We conclude with a summary of the main results and give
an outlook to future work.

2. Numerical Method

For all computations reported in this article we have employed the adaptive
flow solver Quadflow, cf. [11]. This solver has been developed over a period of
more than one decade within the collaborative research center SFB 401 Mod-
ulation of Flow and Fluid-Structure Interaction at Airplane Wings [28], [29].
It solves the compressible Euler and Navier-Stokes equations around complex
aerodynamic configurations by a cell-centered finite volume method on locally
refined grids. Mesh adaptation is based on multiscale analysis as opposed to
of classical gradient- or residual-based error estimators. To deal with complex
geometries the computational grids are represented by block-structured para-
metric B-Spline patches. In order to reduce the computational load in terms of
CPU time and memory to an acceptable amount, these tools are complemented
by parallelization techniques based on space-filling curves which allows us to
run the simulations on distributed memory architectures.

The central objective is to realize adaptively generated discretizations that
are able to resolve the physically relevant phenomena at the expense of possibly
few degrees of freedom and correspondingly reduced storage demands. This
requires a careful coordination of the core ingredients namely the discretization
of the underlying system of partial differential equations, the generation and
management of suitable meshes and the adaptation mechanism. In the following
we briefly summarize the underlying equations and the basic ingredients of the
Quadflow solver.

2.1. Governing Equations
Laminar viscous fluid flow is described by the Navier–Stokes equations for

a compressible gas. Neglecting body forces and volume supply of energy, the
conservation laws for any control volume V with boundary ∂V and outward
unit normal vector n on the surface element dS ⊂ ∂V can be written in integral
form as:

∂

∂t

∫
V

u dV +
∮

∂V

(
Fc(u)− Fd(u)

)
n dS = 0 . (1)
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To complete the posed problem initial values u (x, t0) = u0 (x), x ∈ V ⊂ Rd, d ∈
{2, 3}, and boundary conditions u (x, t)|Γ(t) = B (x, t), x ∈ Γ(t) are to be sup-
plemented, where Γ(t) is a subset of ∂V , determined by the flow characteristics
at time t
Here u = (ρ, ρv, ρE)T denotes the vector of the unknown conserved quantities.
Moreover, Fc and Fd represent the convective flux including pressure and the
diffusive flux function, respectively:

Fc =

 ρv
ρv ◦ v + p I
ρv(E + p/ρ)

 , Fd =

 0
τv

vτv − q

 , (2)

where ρ denotes the density, p the static pressure, v the velocity vector of the
fluid, E the total energy, and the symbol ◦ indicates the dyadic product. The
viscous stress tensor τv for an isentropic Newtonian fluid is defined as

τv = µ
(
∇v + (∇v)T

)
− 2

3
µ (∇ · v) I . (3)

Heat conduction is modeled by Fourier’s law q = −κ∇T , where the thermal
conductivity is assumed as κ = cpµ/Pr, with Prandtl number Pr = 0.72. The
variation of the dynamic viscosity µ as a function of temperature is determined
by Sutherland’s law. The static pressure is related to the specific internal energy
according to the equation of state for a perfect gas p = ρ (γ − 1)

(
E − 1/2 |v|2

)
,

where γ is the ratio of specific heats, which is 1.4 for air.

2.2. Adaptation
The main distinction from previous work regarding adaptation lies in the

fact that we employ here recent multiresolution techniques based on biorthog-
onal wavelets, cf. [12, 30]. The starting point is to transform the arrays of cell
averages associated with any given finite volume discretization into a different
format that reveals insight into the characteristic contributions of the solution
to different length scales. The cell averages on a given highest level of resolu-
tion l = L are represented as cell averages on some coarse level l = 0, while the
intermediate fine scale information is encoded in arrays of detail coefficients of
ascending resolution l = 0, . . . , L− 1. In Figure 1(a) the multiscale transforma-
tion is sketched. This requires a hierarchy of meshes as exemplified by Figure
2(a) for a Cartesian grid hierarchy.

The multiscale representation is used to create locally refined meshes pro-
ceeding in the following three steps, cf. [13]:
Step 1. Due to the cancellation property of biorthogonal wavelets the details
may become small, if the underlying data are locally smooth. Therefore, quite
in the spirit of image compression, we may compress the vector of details by
means of hard thresholding, i.e., we discard all detail coefficients whose abso-
lute values fall below a level-dependent threshold εl = 2(l−L)dε for a suitable
parameter ε.
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dJ−1

ûJ
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û0

leaf cells ante cells base cells

(b)

Figure 1: Pyramid scheme of multiscale (a) and inverse multiscale (b) transformation.

Step 2. In order to account for the dynamics of a flow field, due to the time
evolution, and to appropriately resolve all physical effects on the new time level,
this set is to be inflated somewhat such that the resulting prediction set con-
tains all ε-significant details of the old and the new time level. The prediction
strategy depends on the underlying system of evolution equations to be approx-
imated. Here we use Harten’s heuristic prediction strategy [12].
Step 3. From the significant details we finally construct the locally refined grid
and corresponding cell averages. For this purpose, we proceed levelwise from
coarse to fine, see Figure 2(b), checking for all cells of a level whether there
exists a significant detail. If there is one, we refine the respective cell, i.e., we
replace the average of this cell by the averages of its children by locally applying
the inverse multiscale transformation, see Figure 1(b).

A few comments on some distinctions from pure Cauchy problems with com-
pactly supported initial data are in order. Since the dynamics of the flow are
triggered by the free stream conditions the first time step is executed on a uni-
form refinement of the initial grid on level l = 1 and not just on level l = 0
itself, in order to resolve the relevant details. We postpone more details about
subsequent refinement strategies to the numerical experiments below.

From a mathematical point of view a principal objective is to extract the
inherent complexity of the problem by placing as few degrees of freedom so as
to still capture the features of the searched for solution within a given tolerance.
A central mathematical problem is then to show that the essential information
to be propagated in time is still kept with sufficient accuracy when working on
locally coarser meshes, cf. [14, 31]. A detailed derivation and analysis of the
multiscale-based grid adaptation concept can be found in the monograph [13].
An overview on recent developments and an extended list of related work is
given in [23].

2.3. Mesh Generation
The adaptation strategy gives rise to locally refined meshes of quadtree re-

spectively octree type. The second important ingredient is the generation of
such meshes along with the information needed by the flow solver at any stage
of a dynamical calculation. A key idea is to represent such meshes through
parametric mappings with as few parameters - control points - as possible so
that further successive refinements just boil down to evaluating these mappings
and thus can be efficiently computed based on the knowledge of the few control
points. This is of vital importance with regard to (geometrically) non-stationary
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Figure 2: Hierarchy of nested Cartesian grids (a) and grid adaptation procedure in case of
Cartesian grids (b)

processes. Roughly speaking, the mesh in each block results from evaluating a
parametric mapping from the computational domain into the physical domain,
see Figure 3. Such mappings can be based on B-spline representations in com-
bination with well established concepts from CAGD (computer aided geometric
design). The quantities to be updated in time are the relatively few control
parameters in those parametric representations, while mesh points on any level
of resolution can be efficiently computed due to the locality of the B-spline rep-
resentation. The fact that one needs indeed only relatively few control points in
order to generate meshes of good quality is partly due to the variation dimin-
ishing property of B-splines. To deal with complex geometries, we embed this
concept in a multi-block topology, where in each block we generate a B-spline
mapping, see Figure 4. For the realization of B-spline mesh generation on multi-
block topologies we refer to the thesis of Lamby [32]. Some recent developments
are presented in [33].

Rj;k

1

0 1

-x
Vj;k := x(Rj;k)

Figure 3: Parametric Mappings
Figure 4: Multi-block topology
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2.4. Flow Solver
The discretization scheme has to meet the requirements of the adaptation

concept and has to fit well with the mesh generation. This requires the develop-
ment of a finite volume scheme for fairly general cell partitions that can cope, in
particular, with hanging nodes and possible unstructured parts in complicated
regions of the flow domain. For this purpose, the locally adapted grid is treated
as a fully unstructured mesh with arbitrary polygonal/polyhedral control vol-
umes in two and three space dimensions, respectively. The convective fluxes
are determined by solving quasi–onedimensional Riemann problems at the cell
interfaces. Several approximate Riemann solvers (Roe, HLLC, AUSMDV) and
upwind schemes (van Leer) have been incorporated, cf. [35]. A linear, multidi-
mensional reconstruction of the conservative variables is applied to increase the
spatial accuracy. In order to avoid oscillations in the vicinity of local extrema
and discontinuities, limiters with TVD property are used such as the Venkatakr-
ishnan limiter. Concerning the computation of the viscous fluxes, the gradients
of the variables at cell interfaces are determined using the divergence theorem.
Finally, the time–integration is executed by an explicit multistage Runge–Kutta
scheme and a fully implicit Newton–Krylov type method in case of unsteady and
steady state computations, respectively. Details on the implementation can be
found in the thesis of Bramkamp [34]. An overview of the latest developments
is given in [36].

2.5. Parallelization
Although multiscale-based grid adaptation leads to a significant reduction of

the computational complexity (CPU time and memory) in comparison to com-
puting on uniform meshes, this by itself is ultimately not sufficient to warrant an
acceptable efficiency when dealing with realistic 3D computations for complex
geometries. In addition, parallelization techniques are indispensable for further
reducing the computational time to an affordable order of magnitude.

The performance of a parallelized code crucially depends on load-balancing
and minimal interprocessor communication. Since due to hanging nodes, the
underlying adaptive grids are unstructured this task is by no means trivial.
Instead of employing graph-partitioning methods, we use space-filling curves, see
e.g. [37]. Here the basic idea is to map level-dependent multiindices identifying
the cells in a grid hierarchy to a one-dimensional line. The interval is then split
into different parts each containing approximately the same number of entries.
An example is presented in Figure 5. For more details on the parallelization
concept and its realization we refer to [38].

3. Validation: Supersonic flow over a flat plate

The flow solver Quadflow has been primarily developed for the simulation
of transonic flow fields around airfoils, cf. [36]. In order to perform numerical
simulations of cooling gas injection into a supersonic flow field, we need to
validate the solver thoroughly by means of classical benchmark problems. For
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Figure 5: Encoding of the Hilbert order for a three-level adaptive grid with the corresponding
split of the unit interval to three processors.

this purpose, we first consider the supersonic flow over a 2D flat plate and
compare the results with van Driest’s self-similar solution [27].

3.1. Computational Setup
First of all, we consider a supersonic flow over a flat plate of length 200mm,

where the plate thickness in the computation is assumed to be zero. The free
stream conditions at the leading edge of the plate are characterized by the Mach
number Mae = 2.6, the Reynolds number Ree = 4.3 · 106 and the temperature
Te = 488 K. These will also be used later on in Section 4, where in addition a
cooling gas is injected through a slot in the plate. Since the flow field is supposed
to be laminar, the computations are presented in two space dimensions only.
Note that these 2D results coincide with slices of 3D computations, that have
been carried out as well for consistency reasons.

The flow field is characterized by a laminar boundary layer and an isotropic
compression wave emanating at the leading edge of the plate. These physical
effects have to be adequately resolved by locally anisotropic and isotropic grids,
respectively. To account for both opposing requirements, we therefore split the
computational domain into basically two blocks ΩB = [−0.01m, 0.2m]× [0m, δ]
and ΩF = [−0.01 m, 0.2 m] × [δ, 0.15 m] for the offset at the plate and the far
field, respectively. Here the offset δ = 0.005m is about four times the analytical
prediction, according to van Driest [27], of the boundary layer thickness at the
end of the plate.

Due to the high Reynolds number, the boundary layer is very thin. To resolve
this thin layer by dyadic, isotropic grid refinement would require a very high
number of refinement levels resulting in a tremendously large number of cells.
This can be avoided to some extent by concentrating grid lines towards the wall
resulting in stretched cells. On the other hand, the leading edge of the boundary
layer needs to be resolved locally by an isotropic grid to capture the compression
wave emanating at this point. To compensate for the stretching in wall-normal
direction, we also have to narrow grid lines in tangential direction at the leading
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edge. In addition, it 5 out that the flow field in front of the plate has to be
discretized as well to resolve the physical effects at the leading edge. Therefore
the offset block ΩB is split into two sub-blocks ΩB,1 = [−0.01m, 0m]× [0m, δ]
in front of the plate and ΩB,2 = [0 m, 0.2 m] × [0 m, δ] at the plate, where in
each block a B-spline mapping is constructed. In order to concentrate grid lines
at the wall and at the leading edge of the plate (x = 0m), we apply stretching
functions to the parameter spaces of the B-Spline functions corresponding to the
tangential and wall-normal direction, respectively. In the far field, i.e., block
ΩF , a Cartesian mesh is used.

In front of the flat plate, we impose symmetric boundary conditions, i.e.,
∂ρ

∂n
= 0,

∂u

∂n
= 0, v = 0,

∂p

∂n
= 0, (4)

for the density ρ, the velocity components u and v in x- and y-direction, re-
spectively, and for the pressure p. On the surface of the plate, we prescribe
no-slip conditions and a constant wall temperature of Tw = 293K modeling an
impermeable and isothermal wall.

The coarse grid discretization corresponding to level l = 0 is comprised of
605 cells. Note that the current implementation of the no-slip conditions re-
quires resolving all cells attached to the wall by the highest refinement level
in order to avoid the occurrence of hanging nodes, i.e., grid adaptation is sus-
pended in these cells. Due to grading, the resolution may decrease gradually
in wall-normal direction. This can be seen in Fig. 6(a). As mentioned earlier,
since the flow field is initialized by the homogeneous free stream conditions, the
computation is started on the uniformly refined mesh corresponding to level
l = 1, see Fig. 6(a). In the course of the computation grid adaptation is applied
whenever the averaged density residual has dropped by 4 orders of magnitude
for five adaptations. Afterwards, computation continues until a residual drop
of 10−5 is reached. Note that the first four adaptation steps are only used to
generate an initial guess for the iteration on the final adaptive grid. Therefore
these have not to be fully converged in time. Since in each adaptation step
an additional refinement level can be introduced, the final adaptive grid corre-
sponds to L = 5. Due to the steady state character of the solution, we employ
an implicit time discretization by a backward Euler step. Moreover, the time
step is chosen locally with respect to a varying global CFL number determined
by the following CFL evolution strategy

CFLk+1 = min(CFLmin · 1.05k, CFLmax), (5)

where CFLmin and CFLmax are set to 1 and 10000, respectively. Here the
index k enumerates the number of time steps since the last adaptation, i.e.,
after each adaptation the CFL number is again set to CFLmin. For solving the
Riemann problem at the cell interfaces we use the van Leer solver. The viscosity
is calculated by Sutherland’s law

µ(T ) = µe

(
T

Te

)3/2
Te + S

T + S
(6)

with the Sutherland constant S = 110 K. The wall-temperature ratio is given
as Tw/Te = 1.665.
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(a) (b)

Figure 6: Initial grid (uniform 1st refinement level) (a) and final locally refined grid (b).

3.2. Numerical Results
As explained above, starting from a homogeneous flow field, the initial grid,

see Fig. 6(a), is locally refined during the computation by means of multiscale-
based grid adaptation. The final grid corresponding to the steady state solution
consists of about 45000 cells distributed over 5 levels of refinement, see Fig. 6(b).
For comparison, the uniformly refined mesh corresponding to L = 5 consists of
about 620000 cells. Hence the computational complexity is reduced by a factor
of about 14.

As can be concluded from Fig. 6(b), the compression wave has been au-
tomatically detected during runtime through grid adaptation. At the trailing
edge, see Fig. 7(b), the compression wave is adequately resolved by cells on the
highest refinement level. In the far field, since the compression becomes weaker,
it no longer needs to be resolved on the highest refinement level.

For the boundary layer we have similar conclusions. Although the grid is
a priorily refined in this layer, due to the stretching applied to the parameter
spaces of the B-Spline mappings, the grid is further refined. This is verified by
Fig. 8, where the resolution of the boundary layer at the end of the plate is
shown for the initial and the final grid, respectively. The numerical boundary
layer thickness at the end of the plate δnum = 1.12 mm that can be seen from
Fig. 8(b), fits very well with the analytical prediction δ = 1.14mm of van Driest’s
self-similar solution. At the end of the plate the boundary layer is resolved by
about 50 cells in wall-normal direction.

It has to be emphasized that the concept of multiscale-based grid adapta-
tion reliably and automatically detects all physical relevant effects, namely, the
compression wave and the boundary layer.

The results obtained are validated by van Driest self-similar solution [27]. As
can be seen in Fig. 9, the numerical results for the skin friction agree very well
with its theoretical prediction. The results for the Stanton number, describing
the heat flux at the wall, show slight differences, but the quality of agreement
is still satisfactory.
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(a) (b)

Figure 7: Resolution of the leading edge of the plate: initial grid (uniform 1st refinement
level) (a) and final adaptive grid (b).

(a) (b)

Figure 8: Resolution of the boundary layer: initial grid (uniform 1st refinement level) (a) and
final adaptive grid (b).

(a) (b)

Figure 9: Supersonic flow over a flat plate compared according to van Driest’s self-similar
solution [27]: skin friction (a) and Stanton number (b).
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4. Application

The validated solver is now applied to the simulation of cooling gas injection
through a slot that is formally infinite in spanwise direction for a 2D simulation
but has finite length in 3D. The results are compared with experiments that
were carried out in the shock tunnel TH2 at the Shock Wave Laboratory of the
RWTH Aachen as well as with numerical simulations for the formally infinite
slot provided by a structured two-dimensional finite volume solver [8] and a
three-dimensional mixed finite difference / spectral method of higher order [26],
both non-adaptive. Note that due to the use of the spectral method in spanwise
direction, the latter code cannot handle the finite slot.

4.1. Experimental Setup
The experiments have been conducted at supersonic inflow conditions, where

the main flow field hits a wedge with edge length 150 mm at an angle of attack
α = 30◦, see Figure 10. Typically an oblique shock forms at the leading edge of
the wedge. Cooling gas, here air, is injected through a slot in the surface that is
located 55 mm from the leading edge of the wedge, see Fig. 11. Characteristic
parameters of the experimental setup are the slot width Ls, the injection angle
Θ and the blowing ratio

F =
ρc|vc|
ρe|ve|

, (7)

where the subscripts e and c denote the respective values behind the oblique
shock wave and the condition of the injected cooling gas. These parameters can
be varied as follows: Ls ∈ [0.5mm, 1mm], Θ ∈ [30◦, 90◦] and F ∈ [0.0151, 0.13]
where for the latter range the flow is expected to remain laminar. Note that
Θ = 90◦ corresponds to an injection orthogonal to the wall. For a slot width in
spanwise direction larger than 90 mm Heufer [8] found no measurable influence
of the vortices generated at the ends of the slot on the wall heat flux on the
symmetry line of the plate. In agreement with the above setup we compare the
two-dimensional simulations of the formally infinite slot with experiments with
120 mm slot width, see Section 4.2, and three-dimensional computations with
60 mm slot width, see Section 4.4, respectively.

4.2. Computational Setup (2D)
The flow field in the experiment is essentially laminar and, as stated in the

previous section, two-dimensional on the symmetry axis for large enough span-
wise slot widths. In order to reduce the computational complexity, we therefore
simplify the 3D experimental setup by a two-dimensional configuration of a flat
plate, see Fig. 11, where we impose inflow boundary conditions determined by
the flow conditions behind the oblique shock. These post-shock conditions cor-
respond to the free stream condition specified in Section 3. For the injection, we
consider five configurations with varying slot width Ls, injection angle Θ and
maximum blowing ratio F as summarized in Table 1. For all cases the cooling
fluid is air at a temperature equal to the wall temperature Tw = 293 K. Note
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Figure 11: Computational setup: plate with a slot where the dashed lines indicate the bound-
aries of the grid blocks (not to scale).

that cond. 1 and 3 only differ in the smaller injection angle. Since the effective
slot width varies with the injection angle according to

Ls,eff = Ls sin(θ). (8)

the effective mass flux is given by

Feff = F Ls sin(θ) (9)

and hence is the same in both cases. In our computations, the mass flow of
injection gas is either prescribed by imposing a top hat profile via boundary
conditions at the slot, i.e.,

∂p

∂n
= 0, (ρ u, ρ v) = F ρeMae ce (cos(Θ), sin(Θ)), T = Tw, (10)
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cond. 1 cond. 2 cond. 3 cond. 4 cond. 5 cond. 6
Ls [mm] 0.5 1 1 1 1 0.5
Θ [◦] 90 90 30 90 60 90
F [ - ] 0.065 0.0151 0.065 0.065 0.065 0.13
Ls,eff [mm] 0.5 1 0.5 1 0.87 0.5
Feff [mm] 0.0325 0.0151 0.0325 0.065 0.0563 0.065

Table 1: List of injection parameters for different configurations.

(a) (b)

Figure 12: Cond. 1: Initial grid (uniform 1st refinement level) (a) and final adaptive grid (b)
for simulated injection.

(a) (b)

Figure 13: Cond. 1: Zoom into the initial grid (uniform 1st refinement level) (a) and final
adaptive grid (b) near the injection slot in case of simulated injection.

or we fully simulate the flow in the injection channel. In the following we refer to
the results of the different approaches by either simulated or modeled injection,
respectively.

The computations have been carried out either on a 5-block (modeled in-
jection) or 6-block (one extra block for the simulated injection) grid, refined
by stretching either towards the solid wall or, in the other parameter direction,
towards the leading edge of the plate and to the slot, respectively. The compu-
tational domain extends over Ω = [−0.01m, 0.15m]× [0m, 0.15m]. In total the
coarse 5-block grid consists of 796 grid cells and the coarse 6-block grid of 846
cells, respectively, and 4 levels of refinement are used, see Fig. 12.
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(a) (b)

Figure 14: Cond. 1: Density distribution and streamlines for simulated (a) and modeled (b)
injection.

4.3. Numerical Results (2D)
First, we discuss the performance of the grid adaptation exemplifying the

computations corresponding to cond. 1 in case of simulated injection. For this
configuration, the final adaptive grid corresponding to the steady state solution
consists of about 58000 grid cells. For comparison, the non-adaptive reference
computations by Heufer [25] are based on a grid for a smaller computational
domain that consists of 74000 grid cells. As can be seen in Figs. 12 and 13
the grid is locally refined in the boundary layer and at the compression waves.
Note that there are two isotropic compression waves, one emanating at the
leading edge of the plate and another one on top of the injection jet that is
shown in Fig. 13(b). The second compression wave results from the interaction
of the injection jet with the laminar boundary layer. Due to the injection, the
boundary layer becomes thicker and causes a local compression of the attached
supersonic flow field which in turn gives rise to the development of a compression
wave. This is displayed in Fig. 14 for the density field.

Next we discuss the influence of modeling and simulating the injection. For
this purpose, we present in Fig. 15 the local temperature fields in the neigh-
borhood of the slot produced by the numerical simulations corresponding to
simulated and modeled injection, respectively. A few millimeters in front of
the slot, the main flow deflects from the plate and the boundary layer becomes
thicker. Furthermore, there is a separation bubble located in the subsonic area
in front of the slot, which arises from a large vortex located there. This clock-
wise rotating vortex seems to be more developed in case of modeled injection.
For cond. 6, with doubled mass flux, two vortices form upstream of the modeled
injection, see Fig. 16(b). The second one closer to the wall rotates counter-
clockwise. For simulated injection, the cooling gas jet already separates in the
injection channel and therefore the second vortex is located there, see Fig. 16(a).
In addition, for the simulated injection we observe another small vortex directly
behind the slot.

Although there are visible differences in the flow field, the effect on the
cooling efficiency

η = 1− q̇c/q̇nc (11)
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(a)

(b)

Figure 15: Cond. 1: Temperature distribution and streamlines for simulated (a) and mod-
eled (b) injection.

is small as can be seen in Fig. 17(b). Here the cooling efficiency is defined by the
specific wall heat fluxes q̇c and q̇nc corresponding to simulations with and with-
out cooling gas injection, respectively. This was already found by Heufer [25].
Far upstream the slot the cooling efficiency is 0, until it starts to increase in the
separation bubble. In the injection area it reaches 1 and then slowly decreases.
The only qualitative difference for the simulated injection can be found directly
behind the slot, where a cooling efficiency larger than 1 appears. This results
from the expanding flow around the corner, where the temperature next to the
wall becomes smaller than the wall temperature at this position and the wall
heat flux changes its sign. Furthermore, the cooling efficiency seems to decrease
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(a)

(b)

Figure 16: Cond. 6: Temperature distribution and streamlines for simulated (a) and mod-
eled (b) injection.

faster in case of modeled injection, but this phenomenon was not observed for
other conditions.

To validate our results, we compare them with experimental measurements
conducted in the shock tunnel TH2 and non-adaptive computations with the
2D finite volume code and the 3D mixed finite difference / spectral method,
provided by Heufer [25] and Keller [26], respectively. As can be concluded from
Figs. 17(a) and 17(c), the results for the cooling efficiency are in good agreement
and, hence, confirm our computations.

In addition we arrange parameter studies for varying injection parameters.
As can be seen in Fig. 17(e), the lower blowing ratio (cond. 2 compared to 4)
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(a) Cond. 1: Comparison with results from
Heufer (H) and Keller (K).

(b) Cond. 1: Comparison of modeled (mod)
and simulated (sim) injection.

(c) Cond. 2: Comparison of modeled (mod)
injection and experimental results [25]

(d) Comparison of different injection angles.

(e) Comparison of different slot widths
(cond. 1, 4) and blowing ratios (cond. 2, 4).

Figure 17: Cooling efficiency η.

19



Figure 18: Cooling efficiency η over x normalized by effective mass flux.

results in a much faster decreasing cooling efficiency. Decreasing the slot width
(cond. 1 compared to 4) has the same effect. If a critical blowing ratio is reached,
the cooling efficiency suddenly becomes negative, because the high mass flux
results in the transition of the boundary layer from laminar to turbulent. The
blowing ratios considered here are all below the critical ones found by Heufer [8].

In the above cases the direction of injection is orthogonal to the flow field.
Now we discuss the influence of injecting the cooling gas at a different angle
where we confine ourselves to the approach of modeled injection. The results
for the cooling efficiency are displayed in Fig. 17(d). Note that the injection
angle does not change the specific mass flux. Nevertheless, it influences the
cooling efficiency, because the effective slot width (8) changes by the factor of
sin(Θ). Therefore cond. 1 and 3 lead to almost the same results, because the
factor 2 in the slot width is compensated by the factor sin(30◦) = 1/2 in the
effective slot width Ls,eff . Keeping the other parameters fixed and decreasing
only the injection angle from 90◦ (cond. 4) over 60◦ (cond. 5) to 30◦ (cond. 3)
results in a decreasing cooling efficiency, because of the decreasing effective slot
width.

In order to compare the results of all different configurations, we finally scale
the x-axis with the different effective mass fluxes, see Table 1. This allows us
to compare the cooling efficiencies independently from the mass flux. As we
may conclude from Fig. 18, the results seem to be more or less independent of
the geometric parameters. At least this holds for the parameter range under
consideration, but might be different for small injection angles or higher blowing
ratios. There remains a significant dependence only on the effective mass flux
itself, i.e., the cooling efficiency in these regions scales nonlinearly with the
effective mass flux.

4.4. Computational Setup (3D)
After having validated the numerical method in 2D, we now turn to the

three-dimensional application. Here we investigate the injection of a cooling
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Figure 19: Projection of computational setup (bottom): flat plate with slot where the lines
indicate the plate (solid line), the block boundaries (dashed and solid lines), the non-refined
region (dotted line) and the symmetry line (dashed-dotted line) (not to scale).

gas through a finite slot into a supersonic laminar flow field and the interaction
between the main flow field and the jet. The computational configuration mimics
the experimental setup from Section 4.1, where we consider a flat plate of length
150 mm and width 100 mm. The leading edge of the injection slot is located
at 55 mm from the plate’s leading edge and is centered at the symmetry line
z = 0 m. The slot measures 60 mm in spanwise direction. The computational
setup is sketched in Figure 19.

Because of the symmetry of the configuration in spanwise direction the com-
putational domain is reduced to one half of a flat plate with symmetric boundary
conditions. The grids are similar to those in the two-dimensional case, where
we uniformly extend the grids in spanwise direction. Thus the computational
domain is Ω = [−0.01 m, 0 m, 0 m] × [0.4 m, 0.15 m, 0.15 m] and, for simulated
injection, by another block for the injection channel. In total the coarse grid
for the modeled injection consists of 16585 grid cells and 5 levels of refinement
are used. The final adaptive grid after 5 adaptation steps has about 40 million
cells. In comparison to the uniformly refined reference mesh, we save a factor
of about 13. In order to avoid problems due to reflecting waves that might oc-
cur at the outflow boundary and at the non-symmetric side boundaries, we ŭse
an extended far field around the plate. Introducing a swamp region in the far
field, see Figure 19, where we do not apply grid adaptation, the computational
load can be significantly reduced, because waves emitting from the leading edge
and the injection are resolved only on a coarse grid in the far field. This re-
sults in numerical damping of these waves in the swamp region. However, this
does not affect the accuracy near the injection slot as confirmed by reference
computations without swamp region.

In the following we investigate different configurations, varying the injection
angle Θ and the blowing ratio F according to Tab. 2. Note that a blowing ratio
of F = 0.13 is close to the limit, where stable laminar solutions can be generated
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cond. 1a cond. 1b cond. 2a cond. 2b
Ls [mm] 0.5 1 0.5 1
Θ [◦] 90 30 90 30
F [ - ] 0.065 0.0065 0.13 0.13
Ls,eff [mm] 0.5 0.5 0.5 0.5
Feff [mm] 0.0325 0.0325 0.65 0.65

Table 2: List of injection parameters for different configurations.

Figure 20: Cond. 1a: Three-dimensional results on symmetry line compared with experimental
data and two-dimensional results.

in experiments. Recall that the effective slot width denotes the width of the
injection channel. This value is the same for all configurations which ensures
that the same amount of cooling gas is injected for different injection angles and
constant blowing ratio.

4.5. Numerical results (3D)
First, we compare the two-dimensional with three-dimensional results for

cond. 1a, the latter taken directly from the symmetry line, see Fig. 20. For
validation purposes, we invoke experimental data provided by Hombsch [39].
As can be seen, the cooling efficiencies derived from the two-dimensional com-
putation and from the symmetry line of the three-dimensional one match very
well.

Comparing the temperature distribution and the streamlines around the
injection at z = 10 mm, see Fig. 21(b), with the two-dimensional results, see
Fig. 15(b), the similarity is obvious. For higher blowing ratios and modeled
injection, see Fig. 22(b), a second vortex can be found upstream of the injection,
generated by the injected cooling gas. Therefore, it rotates in the opposite
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(a) Cond. 1a - Simulated injection

(b) Cond. 1a - Modeled injection

Figure 21: Temperature distribution and tangential streamlines on slice z = 0.01m.

direction to vortex 1 in the separation area, fed from the main flow. There is
also a third vortex downstream of the injection slot. For simulated injection,
vortex 2 is not located upstream of the injection, but in the injection slot itself,
see Fig. 22(a). These observations are again similar to the two-dimensional
results, see Fig. 16.

The differences in the cooling efficiency in spanwise direction can be seen in
Fig. 23. The distribution of the cooling efficiency is shown over the simulated
half-plate for different configurations. The symmetry line is located at z = 0m
and the slot width is again 60mm, that means it extents to z = 0.3m.

The three figures on the left show the two conditions with the lower blowing
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(a) Cond. 2a - Simulated injection

(b) Cond. 2a - Modeled injection

Figure 22: Temperature distribution and tangential streamlines on slice z = 0.01m.

ratio (cond. 1a and 1b). Comparing, from top to bottom, fully simulated with
modeled orthogonal injection, see Fig. 23(a) and 23(c), and modeled injection
with an injection angle of 30◦, see Fig. 23(e), there is just a small difference in
the distribution of the cooling efficiency between the first one and the other ones.
Next to the symmetry line, the isolines of the cooling efficiency are parallel to
the injection slot for all three configurations. Further downstream, the cooling
efficiency rises a little bit and then drops down to zero, before z = 0.03m. Due to
the injection jet of the cooling gas, the hot gas of the main flow field is deflected
and bends around the injection slot and narrows the regime of the cooling fluid.
This effect shows different intensities for the three approaches, that will become
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(a) Cond. 1a: Simulated injection (b) Cond. 2a: Simulated injection

(c) Cond. 1a: Modeled injection (d) Cond. 2a: Modeled injection

(e) Cond. 1b: Modeled injection (f) Cond. 2b: Modeled injection

Figure 23: Cooling efficiency η.

clear for higher blowing ratios. In Fig. 23(d), for the modeled injection, there
is a quite large region with a negative cooling efficiency downstream the edge
of the injection slot. The wall heat flux in this region is larger than for no
cooling at all, i.e., the wall is not cooled but heated. Clearly, this effect is
the opposite of what one would like to achieve. As we have seen for the two-
dimensional simulations before, the cooling gas injection is an obstacle for the
main flow field. In front of this obstacle, a system of three vortices is generated,
as can be seen in Fig. 22(b). These three vortices influence the vortex structure
downstream from the edge of the injection slot. Fig. 24 shows this three vortices
and the vortex system in front of the injection slot and behind. Downstream
from the edge of the injection slot, two counterrotating vortices appear. In
between these two vortices, hot gas from the main flow is transported directly
towards the wall. The temperature boundary layer is very thin in the region
between these two vortices.

For the simulated injection, see Fig. 23(b), this effect is less pronounced. The
region with negative cooling efficiency is smaller. The simulated injection poses
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Figure 24: Cond. 2a, modeled injection: vorticity magnitude and temperature slices at x =
0.08m, x = 0.1m and x = 0.12m.

a much smaller obstacle for the main flow, because, in contrast to the modeled
case, the jet is not perfectly orthogonal to the wall but bent in flow direction.
Therefore, vortex 1 is less strong. Injecting the cooling gas with an angle of
30◦, see Fig. 23(f), has the same effect, vortex 1 is not that strong, due to the
lower momentum of the injected mass flux in wall-normal direction. Therefore,
the wall is not heated in as large a region as in the modeled case. Although the
developement of the downstream vortices has not yet been investigated in detail,
we can clearly state that there is a direct impact on their size and strength from
the spanwise vortices around the injection slot and due to this, an influence on
the existence and size of the heated region.

The streamwise vortices generated at the end of the injection slot and their
effect on the temperature distribution can be seen in more detail in Fig. 25 for
cond. 1a and 1b, modeled injection, and in Fig. 26 for cond. 2a, simulated and
modeled injection. For a smaller blowing ratio the streamlines just form one
vortex, close to the injection, see Fig. 25(a). Further downstream, this vortex
vanishes, see Fig. 25(c) and Fig. 25(e). There is no significant influence of this
vortex on the temperature boundary layer. Changing the injection angle to
30◦, the streamlines and the temperature distributions are almost the same, see
Fig. 25(b), 25(d) and 25(f)).
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(a) Cond. 1a, x = 0.08m (b) Cond. 1b, x = 0.08m

(c) Cond. 1a, x = 0.1m (d) Cond. 1b, x = 0.1m

(e) Cond. 1a, x = 0.12m (f) Cond. 1b, x = 0.12m

Figure 25: Temperature slices with tangential streamlines at different positions for modeled
90◦ and 30◦ injection.

For a higher blowing ratio, more significant differences can be observed.
First of all, the influence of the injection on the temperature boundary layer is
larger. In particular, in the first cross section (Fig. 26(a) and 26(b)) the layer
of low temperature located directly at the wall is thicker on the left. As men-
tioned before, there are two counterrotating vortices for this condition. Between
them, the streamlines are directed towards the wall. This leads to a very thin
temperature boundary layer between the two vortices. For modeled injection,
further downstream, the vortex on the right moves into the cooled regime, see
Fig. 26(d) and 26(f). This increases the area that is not cooled at all when
compared with the simulated injection where the vortex more or less keeps its
spanwise position, see Fig. 26(c) and 26(e), also compare Fig. 23(d) and 23(b).

Due to their small extent in spanwise direction, the vortex systems that
are resolved by our simulations could not be found in the experiments for the
following simple reason. The vortex reaches a diameter of about 4 mm, while
the thermal elements have a diameter of 2mm and can therefore not be placed
within a mutual distance of less than 6mm. Furthermore, the effect on the wall
heat flux is not strong enough to be seen in infrared pictures.

5. Conclusion and Outlook

The numerical investigations confirm that the Quadflow solver is an appro-
priate tool for simulating film cooling offering insight that could not be obtained
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(a) Simulated injection, x = 0.08m (b) Modeled injection, x = 0.08m

(c) Simulated injection, x = 0.1m (d) Modeled injection, x = 0.1m

(e) Simulated injection, x = 0.12m (f) Modeled injection, x = 0.12m

Figure 26: Cond. 2a: Temperature slices with tangential streamlines at different positions for
both modeled and simulated injection.

from experiments. In particular, the multiscale-based grid adaptation concept
turns out to be a reliable tool by which all physically relevant effects are auto-
matically detected and appropriately resolved. Since the grid is only refined in
regions, where the flow field exhibits local variations, this results in substantial
savings of cells in comparison to a fully refined grid and hence the computational
costs both in terms of CPU time and memory using are significantly reduced,
whereas the accuracy of the uniform mesh corresponding to the highest refine-
ment level is maintained. Because of this, we have been able to locally resolve
physical effects on small scales, that are hard to detect by experiments, due to
size limitations of measuring devices.

Film cooling using slots is a promising strategy also in supersonic flows. Slots
generate a very homogeneous cooling film which entails a good cooling effect
over large homogeneous regions. Of special interest is the region downstream
from the edges of the slot where, in particular, for higher momentum ratios
in wall-normal direction vortices appear transporting hot gas directly to the
wall. The presented simulations show that this effect is rather sensitive since
modeling or simulating the injection yields quantitatively varying results. More
accurate ways of modeling, such as prescribing a velocity profile on the injection
boundary, should be investigated in the future. Depending on the geometry of
the underlying technical problem, staggered rows of finite slots or passive cooling
solutions in this region could be possible. Normal injection facilitates injecting
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a large amount of cooling gas through narrow slots, but boosts the separation
of the main flow and stronger vortices may form. Injection with a smaller
injection angle needs wider slots, but the momentum ratio is smaller. The
technical feasibility depends again on the concrete problem and its geometry.
Tangential injection into the main flow, for instance, behind a step is a topic of
current research [5].

In the present work we consider only air as cooling gas. With regard to
an optimal cooling efficiency, we have started to investigate different coolants.
This can have a major impact on the thickness of the cooling layer and the
resulting cooling efficiency were already investigated in experiments by Homb-
sch [43]. In particular, the influence of various coolants such as Air, Argon,
Helium, Sulfur(VI)fluoride and Carbon Dioxide on the wall heat fluxes and the
corresponding cooling efficiencies were measured. In order to perform numeri-
cal simulations the air flow over the flat plate and the injected coolants have to
be modeled as a mixture of perfect gases. For this purpose, the QUADFLOW
solver is currently being extended, see Windisch [44].

Our future interest will be concerned also with the interaction of a cooling
gas jet with a turbulent flow field. Since a DNS is not feasible, we have to model
the effect of the unresolved fluctuations on the resolved coarse scales. Up to now,
turbulent flow fields have been investigated by means of the Reynolds Averaged
Navier-Stokes (RANS) equations, where the averaged governing equations are
solved for the mean variables. For the turbulent closure, classical one- and two-
equation models such as Spalart-Allmaras and Menter-SST, respectively, are
used. Recently a differential Reynolds stress model, the SSG/LRR-ω model,
has been implemented into Quadflow [40]. In addition to these models, we will
use the Variational Multiscale Method (VMS). This method can be considered as
an advanced LES. It has already been implemented into Quadflow according to
Koobus and Farhat [41] and Dahmen et al. [42] and is currently being validated.

An even more challenging question concerns the use of porous media materi-
als for the injection. Appropriate materials are currently being investigated [45]
and experiments have already been conducted [46]. In order to perform efficient
numerical simulations we have to avoid the resolution of corresponding fine scale
geometric structures using upscaling strategies, for instance, based on local fine
scale problems. For this purpose, the detailed knowledge of the injection pro-
cess through single holes or slots will be helpful in deriving effective boundary
conditions for a homogenized mass flux of cooling gas through porous media.
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